Schlagwort-Archive: Basalt

Basaltische Mandelsteine

  1. Allgemeines
  2. Vorkommen und Anstehendproben
  3. Geschiebetypen
    3.1. Ostsee-Melaphyr-Mandelstein
    3.2. Spilit-Mandelstein
    3.3. Prehnit-Mandelstein
  4. Literatur

Siehe auch achatführende Basaltmandelsteine und basaltische Brekzien.

Als Mandeln werden rundliche, mit hydrothermalen Mineralneubildungen verfüllte Blasenhohlräume in Vulkaniten bezeichnet. Man spricht auch von einem Mandelstein- oder amygdaloidem Gefüge (von amygda griech. Mandel). Nur teilweise mit Mineralen verfüllte Hohlräume nennt man Drusen. Mandelsteingefüge kann in allen Arten von Vulkaniten auftreten. Als Geschiebe findet es sich besonders häufig in basaltischen Gesteinen, darüber hinaus auch im Ostsee-Syenitporphyr, Rhombenporphyr oder Schonen-Lamprophyr.

Attraktiv sind basaltische Mandelstein-Geschiebe mit entsprechendem Farbkontrast zwischen Grundmasse und Mandeln. Die vergleichsweise schweren Gesteine bestehen aus einer feinkörnigen und grauen, rotbraunen, grünen oder violett gefärbten Grundmasse. Mit weißen, schwarzen, grünen oder roten Sekundärmineralen verfüllte Mandeln weisen runde, gelegentlich auch längliche, schlauchförmige oder verzweigte Formen auf. Darüber hinaus können Feldspat-Einsprenglinge von weißer, roter oder grüner Farbe enthalten sein.

Abb. 1: Violettgrauer basaltischer Mandelstein mit weißen Calcit-Mandeln; Geschiebe von Fehmarn.
Abb. 2: Violettgrauer basaltischer Mandelstein mit runden Mandeln und weißen bis grünlichen Feldspat-Einsprenglingen (eckig). Strandgeröll von Steinbeck/Klütz, Aufnahme unter Wasser.

Beim Aufstieg vulkanischer Schmelzen werden gelöste Gase durch Druckentlastung in Form von Blasen freigesetzt. Neigen Schmelzen quarzreicher Gesteine zum „Aufschäumen“ (Bims), bilden sich in niedrig viskosen und quarzarmen (z. B. basaltischen) Schmelzen einzelne und mehr oder weniger voneinander abgegrenzte Blasenhohlräume. Eine hydrothermale Überprägung der Gesteine und die damit verbundene Ausscheidung von Mineralen in Blasenhohlräumen erfolgt in den oberen Bereichen der Erdkruste oder an der Erdoberfläche, und zwar überall dort, wo ausreichend Wasser zur Verfügung steht: bei submarinen Eruptionen, bei der Interaktion von „trockenen“ basaltischen Schmelzen mit wässrigen Fluiden oder einer hydrothermalen Überprägung der Vulkanite nach ihrer Ablagerung.

Abb. 3: Rezentes Beispiel der Blasenbildung in einem Alkalibasalt. In der äußeren und kühleren Zone des Lavaergusses kommt es zur Entgasung und Bildung eines Blasenzuges, während in der heißeren Zone nur wenige, durch die anhaltende Bewegung der Lava ausgelängte Blasen erkennbar sind. Bildbreite 30 cm; La Gomera/Kanarische Inseln/Spanien.
Abb. 4: Blasenreiche Partie mit weißen Mandeln in einem grünlichgrauen basaltischen Gestein. Geschiebe aus der Kiesgrube Buchholz bei Prenzlau.

Durch hydrothermale Überprägung verändert sich der Mineralbestand basaltischer Gesteine. Die gewöhnlich dunkelgraue Grundmasse nimmt durch die Neubildung von Chloritmineralen, Epidot oder Amphibol (Aktinolith) eine grüne Färbung an. Rote oder grauviolette Farben sind auf Ausscheidungen von Hämatit zurückzuführen. Auch Magnetit – in vielen basaltischen Gesteinen mit einem Handmagneten nachweisbar – wird oxidiert und ist in den meisten Mandelsteinen nicht mehr enthalten. Der Vorgang der „Vergrünung“ basaltischer Gesteine (Grünstein) erfolgt unter niedrig metamorphen Bedingungen der Subgrünschiefer- oder Grünschieferfazies unter Mitwirkung metasomatischer Prozesse.

Die meist feinkörnigen Mandeln können aus einem einzigen Mineral oder einem Mineralgemisch bestehen. Nicht selten lässt sich eine konzentrische und schichtige Mineralabfolge beobachten. Während die Bildung von Quarz, Chalcedon, Achat, Jaspis, Calcit und Chlorit an keine speziellen Bedingungen geknüpft ist, sind faziesspezifische Minerale (z. B. Pumpellyit) nur mikroskopisch bestimmbar. Als Ausnahme mag Prehnit gelten, der unter günstigen Umständen auch von Hand erkennbar ist (s. u. Prehnit-Mandelstein, Abb. 34-37).

Weiße Mandeln bestehen aus Quarz, Chalcedon (massig, häufig bläulich, Abb. 13) oder Karbonaten (Calcit). Calcit ist mittels Säuretest nachweisbar, größere Kristalle zeigen gelegentlich eine deutliche Zwillingsstreifung parallel zur Spaltbarkeit (Abb. 12). Ebenfalls farblos sind Zeolithe (z. B. Natrolith). Sie reagieren nicht auf HCl und sind im Unterschied zu Quarz und Chalcedon mit dem Messer ritzbar. Weißer, roter oder orangefarbener Achat ist an seiner charakteristischen Bandtextur erkennbar (Abb. 14; siehe auch Abschnitt achatführende Basalt-Mandelsteine).

Grüne bis schwarzgrüne Farben weisen auf Minerale der Chloritgruppe hin. In Frage kommen auch Prehnit (blassgrün), Klinozoisit sowie Aktinolith, der bereits unter den Bedingungen der Grünschieferfazies entstehen kann. Ein Hinweis auf Epidot sind feinkörnige und apfelgrüne Pigmente. Gegebenfalls enthaltene Feldspat-Einsprenglinge (Plagioklas) können durch hydrothermale Alteration stark verändert sein. Neben der Umwandlung in Serizit (feinste Schüppchen von Hellglimmer) sind „vergrünte“ Plagioklase, mitunter auch hellgrüne „prehnitisierte“ Plagioklase zu beobachten (Abb. 38).

Abb. 5: Helle Mandel mit unregelmäßigem Umriss in einem grauen Basaltmandelstein. Gekritztes Geschiebe aus der Kiesgrube Althüttendorf (Brandenburg), Aufnahme unter Wasser.
Abb. 6: Nahaufnahme; die Mandel weist eine zonierte Mineralabfolge auf.
Abb. 7: Rotbrauner Mandelstein mit weißen, roten und schwarzen Mandeln; Kiesgrube Hohensaaten (Brandenburg).
Abb. 8: Grünlichbrauner Mandelstein mit grünen, teilweise zonierten Mandeln; Altenteil (Fehmarn).
Abb. 9: Grauer Mandelstein mit Feldspat-Einsprenglingen. Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 10: Gleicher Stein, Nahaufnahme; kleine schwarze Mandeln mit hellem Saum.
Abb. 11: Grünlichgrauer Mandelstein; Geschiebe von Hohenfelde, östlich von Kiel.
Abb. 12: Nahaufnahme; weißer Calcit ist bereits an seiner charakteristischen Zwillingsstreifung erkennbar.
Abb. 13: Polierte Schnittfläche eines basaltischen Mandelsteins mit bläulichem und massigem Chalcedon; Strand bei Misdroy (Polen).
Abb. 14: Roter Bandachat in einem grünen Mandelstein. Polierte Schnittfläche eines Geschiebes aus der Kiesgrube Penkun (Vorpommern).
Abb. 15: Beim Aufspalten dieses Mandelsteins präparierten sich ganze schwarze Mandeln heraus, die offenbar härter als das umgebende Gestein sind. Kiesgrube Hoppegarten, leg. G. Ramm.
Abb. 16: Nahaufnahme; die Außenseite der Mandeln weist konkave Vertiefungen auf, die wahrscheinlich auf Alterungsvorgänge der dunklen Minerale (Chlorit o. ä.) durch Wasserabgabe zurückzuführen sind.
Abb. 17: Rhombenporphyr-Lava mit weißen Calcit-Mandeln; Geschiebe von Hökholz bei Eckernförde.

2. Vorkommen und Anstehendproben

Im Vergleich zur Vielfalt an Geschiebefunden basaltischer Mandelsteine sind bisher nur wenige, zudem kleine anstehende Vorkommen bekannt. Gehäufte Geschiebefunde auf Gotland deuten auf ein größeres Vorkommen südlich von Stockholm am Grund der Ostsee hin (Abb. 18, s. a. skan-kristallin.de). Von dort stammt vermutlich ein großer Teil des Geschiebetyps „Ostsee-Melaphyr-Mandelstein“.

Abb. 18: Geschiebe von Gotland. Links oben ein basaltischer Mandelstein, links unten ein Brauner Ostsee-Quarzporphyr. Beide Gesteinstypen kommen auf Gotland häufig vor. Foto: G. Engelhardt.

Basaltische Mandelsteine mit schwarzen Mandeln sind vom Öje-Diabas in Dalarna bekannt (s. skan-kristallin.de). Der Öje-Diabas durchdringt den Dala-Sandstein in Form von Gängen und Sills. Ähnliche Gesteine sind auch innerhalb der anderen großen jotnischen Sandstein-Vorkommen zu erwarten.

Im Karbon und Perm wurden paläozoische Sedimentgesteine und das kristalline Grundgebirge in Schonen von Gängen basischer Gesteine durchschlagen. Teilweise unterlagen diese einer intensiven hydrothermalen Alteration. Ein Beispiel ist der Frualid-Mandelstein, der östlich von Övedkloster als steiler Bergrücken aufgeschlossen ist (Abb. 19).

Abb. 19: Frualid-Mandelstein, Anstehendprobe, Aufnahme unter Wasser.

Ein winziges Vorkommen mit metamorph überprägten, etwa 1,7 Ga alten basaltischen Mandelsteinen ist aus Småland bekannt (Ortsausgang von Nässja).

Abb. 20: Grauer basaltischer Mandelstein von Nässja (Småland); die weißen Mandeln wurden durch metamorphe Überprägung ausgelängt.

3. Geschiebetypen

3.1. Ostsee-Melaphyr-Mandelstein

Melaphyr ist eine veraltete Bezeichnung für Basalte von mindestens paläozoischem Alter (heutige Bezeichnung: Paläo-Basalt). Der Geschiebetyp ist häufig zu finden und besitzt eine violettgraue bis rötliche Grundmasse und Mandeln mit Calcit, Quarz oder grünen Mineralen (Chlorit). Die Namensgebung bezieht sich auf ein größeres Vorkommen, das südlich von Stockholm am Grund der Ostsee vermutet wird (siehe z. B. RUDOLPH 2017: 154).

Abb. 21: Basaltischer Mandelstein („Ostsee-Melaphyr-Mandelstein“). Geschiebe von Altenteil (Fehmarn), Aufnahme unter Wasser.
Abb. 22: Nahaufnahme; rotbraune bis rote Grundmasse mit Ausscheidungen von Hämatit und grünen (chloritisierten) Partien. Die Mandeln bestehen aus Calcit.
3.2. Spilit-Mandelstein

Spilite sind basaltische Gesteine, die an einem aktiven Plattenrand in einer ozeanischen Riftzone entstehen und unter niedrig metamorphen Bedingungen unter Mitwirkung metasomatischer Prozesse verändert wurden (sog. Ozeanboden-Metamorphose). Ohne den geologischen Kontext im Anstehenden sind Spilite nicht von vergrünten Basalten mit einer anderen Entstehungsgeschichte unterscheidbar.

Abb. 23: Graugrüner Mandelstein, durchsetzt mit zahlreichen schwarzgrünen Mandeln; Geschiebe von Misdroy (Polen).
Abb. 24: Grüner Mandelstein mit überwiegend dunklen Mandeln; Kiesgrube Althüttendorf (Brandenburg).
Abb. 25: Grüner Mandelstein mit weißen Mandelfüllungen und roten Hämatit-Ausscheidungen. Polierte Schnittfläche, Geschiebe aus der Kiesgrube Penkun (Vorpommern).
Abb. 26: Nahaufnahme. Die intensive Grünfärbung der Grundmasse weist auf eine nahezu vollständige Umwandlung der primären Mineralbestandteile (Pyroxen, Plagioklas) in Chlorit, Epidot o. ä. hin.
Abb. 27: Grüner Mandelstein mit roten Feldspat-Einsprenglingen; polierte Schnittfläche eines Geschiebes aus der Kiesgrube Teschendorf bei Oranienburg (Brandenburg).
Abb. 28: Nahaufnahme; zonierte Mandeln mit verschiedenen Mineralisationen. Helle Reaktionshöfe um die Mandeln lassen auf eine stoffliche Interaktion zwischen Grundmasse und Mandeln während oder nach der Bildung von Sekundärmineralen schließen.
Abb. 29: Einige der helleren Mandeln enthalten Chalcedon.
Abb. 30: Grüner Mandelstein mit hellroten Mandeln sowie grünen und stark alterierten Plagioklas-Einsprenglingen. Strandgeröll von Misdroy (Polen).
Abb. 31: Gleicher Stein, Nahaufnahme.
Abb. 32: Grünlichgrauer Mandelstein mit dunklen Mandeln. Eine einzelne Mandel ist mit bläulichem Chalcedon gefüllt. FO: Strand von Misdroy (Polen).
3.3. Prehnit-Mandelstein

Prehnit entsteht unter niedrigmetamorphen Bedingungen (Subgrünschieferfazies, sog. Prehnit-Pumpellyit-Fazies). ESKOLA 1933, 1934 beschreibt Geschiebefunde eines Mandelsteintyps aus Ostpreussen und Litauen, der Mandeln aus Prehnit, bisweilen auch „prehnitisierte“ Plagioklas-Einsprenglinge enthält. Ein anstehendes Vorkommen ist nicht bekannt und wird am Grund der Ostsee vermutet.

Nur Mandelstein-Gesteine mit blassgrünem Prehnit sind mit einiger Wahrscheinlichkeit erkennbar. Das Mineral kann auch farblos, weiß, grau, gelblich, rosa oder dunkelgrün gefärbt sein. Charakteristisch sind kugelige bis halbkugelige Aggregate mit einem radialstrahligen oder fächerförmigen Aufbau. Der zentrale Teil kann aus Quarz bestehen. Diese sog. „Prehnit-Sonnen“ lassen sich am besten auf einer Bruchfläche beobachten. Häufiger findet sich Prehnit aber in Gestalt einer körnigen und kristallinen Masse. Das durchsichtige bis durchscheinende hellgrüne Mineral besitzt Glasglanz und ist mit Quarz, Calcit und/oder etwas apfelgrünem Epidot vergesellschaftet. Die feinkörnige und dunkelrotbraune Grundmasse des Prehnit-Mandelsteins enthält gelegentlich zahlreiche und sehr kleine Plagioklasleisten. Größere Plagioklas-Einsprenglinge können ebenfalls in hellgrünen Prehnit umgewandelt sein (Pseudomorphosen von Prehnit nach Plagioklas).

Abb. 33: Hellgrüner Prehnit aus Namibia in radialstrahliger Ausbildung („Prehnit-Sonne“); Slg. E. Figaj.
Abb. 34: Prehnit-Mandelstein mit rotbrauner Grundmasse. FO: Preschen, Warthe-Grundmoräne, leg. F. Mädler.
Abb. 35: Nahaufnahme der Bruchfläche; massiger Prehnit, teilweise mit Calcit im Kern der Mandeln.
Abb. 36: Gleicher Stein, Nahaufnahme unter Wasser. Die Mandeln sind von einem Rand aus gelbgrünem Epidot umgeben.
Abb. 37: Prehnit-Diabasmandelstein; Niederfinow, leg. Müldner 1958. Geschiebesammlung der BGR in Berlin-Spandau.
Abb. 38: Stark alterierter Basaltmandelstein mit „prehnitisierten“ Feldspat-Einsprenglingen. Aufnahme unter Wasser; Kiesgrube Hohensaaten (Brandenburg).
Abb. 39: Gleicher Stein, polierte Schnittfläche.

4. Literatur

ESKOLA P 1933 Tausend Geschiebe aus Lettland – Annales Academiae Scientiarum Fennicae (A) 39 (5): 1-41, 9 Abb., 2 Tab., Helsinki.

ESKOLA P 1934 Prehnite amygdaloid from the bottom of the Baltic. – Bulletin de la Commission géologique de Finlande 17 (104) und Comptes Rendus de la Société géologique de Finlande 8 (8): 132-143, 7 Abb., Helsinki.

RUDOLPH F 2017 Das große Buch der Strandsteine – Wachholtz-Verlag – Murmann Publishers, Kiel/Hamburg.

VINX R 2011 Gesteinsbestimmung im Gelände – 480 S., 418 Abb., 3. Auflage Spekrum Akademischer Verlag Heidelberg.

Einschlussführende Diabase

1. Allgemeines
2. Geschiebetypen
3. Weitere Anstehendproben
4. Geschiebefunde
5. Lokalitäten
6. Literatur

Ein feinkörniges basaltisches Gestein mit kantigen oder runden Fremdgesteins-Einschlüssen (Xenolithe) wird schlicht als einschlussführender Diabas bezeichnet. Es entsteht, wenn basaltisches Magma bei seinem Aufstieg Quarz- und feldspathaltige Fragmente des Nebengesteins oder auch Einzelkristalle aufnimmt. Durch die hohe Temperatur basaltischer Schmelzen werden diese Fragmente leicht abgerundet, weil sie einen deutlich niedrigeren Schmelzpunkt besitzen, zudem einen chemischen Ausgleich mit der Schmelze anstreben. Die häufig rundlichen Formen von Einschlüssen in basaltischen Gesteinen führten wahrscheinlich zu der etwas unglücklichen Bezeichnung „Gerölldiabas“. Nur in wenigen Fällen dürfte es sich tatsächlich um Geröll-Horizonte handeln, die durch eine basaltische Schmelze aufgearbeitet wurden.

Abb. 1: Einschlussführender Diabas mit feinkörniger Grundmasse. Das Gestein enthält abgerundete Xenolithe von Alkalifeldspat und eckige Quarz-Feldspat-Fragmente. Polierte Schnittfläche eines Geschiebes aus der Kiesgrube Niederlehme bei Berlin.
Abb. 2: Die runden Feldspäte sind stark alteriert, teilweise auch zoniert durch wechselnde Anteile dunkler Minerale.

Einschlussführende Diabase können monomikt (nur eine Gesteinsart als Fremdeinschluss) oder oligomikt/polymikt (mehrere Gesteinsarten) zusammengesetzt sein. Als Einschluss kommen Plutonite und Gneise aller Art, Sandsteine und Quarzite sowie einzelne Quarze und Feldspäte in Frage. Wesentlich häufiger als einschlussführende Diabase lässt sich übrigens das umgekehrte Phänomen beobachten: Xenolithe basaltischer Gesteine in Plutoniten (Abb. 3).

Abb. 3: Basische Xenolithe (Basaltoide, Gabbro) in einem dioritischen Gestein. Kiesgrube Arendsee/Weggun, Brandenburg.

2. Geschiebetypen

In der Geschiebekunde werden mehrere Typen einschlussführender Diabase unterschieden: Björbo-Diabas, Brevik-Gerölldiabas und Ålsarp-Diabas. Neben diesen Typlokalitäten (s. Abb. 6) sind rund ein Dutzend weitere Vorkommen aus Blekinge, Mittelschweden (Grängesberg), von Bornholm sowie aus Norwegen und Finnland bekannt (Hesemann 1975, Korn 1927, Meyer 1981, Bartolomäus & Herrendorf 2003). Darüber hinaus dürfte es eine Reihe weiterer Lokalitäten mit einschlussführenden Partien innerhalb der schwarmartigen Vorkommen verschiedener Generationen von Diabasgängen geben. Die Gangschwärme nehmen jeweils größere Gebiete ein, von Bornholm bis nach Dalarna. Einschlussführende Partien treten nur lokal begrenzt und ausschließlich in kleinen Vorkommen auf. Es ist kaum möglich, hier spezifische Gesteinstypen mit einem begrenzten Herkunftsgebiet herauszustellen. Dies gilt auch für den Sandstein führenden Brevik-Typ (s. a. Bartolomäus & Herrendorf 2003). Einschlussführende Diabase sind daher nicht als Leitgeschiebe geeignet.

Abb. 4: Übersichtskarte mit einigen postorogenen Diabas-Gangschwärmen und im Text angeführten Lokalitäten.
Abb. 5: Brevik-Gerölldiabas, Foto aus skan-kristallin.de.

Der Brevik-„Gerölldiabas“ enthält eckige bis schwach gerundete Klasten von Sandsteinen aus der Almesåkra-Formation sowie bis zu 10 % Granit- und Porphyrklasten. Im Schwedischen heißt das Gestein diabaskonglomerat. Vorkommen dieses Gesteinstyps sind nicht auf das Gebiet von Brevik beschränkt (Bartolomäus & Herrendorf 2003).

Abb. 6: Björbo-Diabas aus Dalarna (4 km westlich von Björbo, K.-D. Meyer leg.) , Foto aus skan-kristallin.de.

Der Björbo-Diabas aus Dalarna besitzt eine feinkörnige bis dichte Grundmasse und runde, eigentümlich korrodierte Xenolithe aus rotem Feldspat. Quarz fehlt in dieser Probe, kann aber in den Diabasen dieses Typs zusätzlich enthalten sein. Beschreibung des Aufschlusses in Meyer KD 1981.

Abb. 7: Alsarp-Diabas, Anstehendprobe mit polierter Schnittfläche, K.-D. Meyer leg., Foto aus skan-kristallin.de.

Der einschlussführende Alsarp-Diabas besitzt eine ophitische Grundmasse und runde Xenolithe von roten Feldspäten. Foto aus skan-kristallin.de, siehe dort für eine Beschreibung und weitere Anstehendproben; siehe Abb. 14-16 für Bilder von der Lokalität Alsarp.

3. Weitere Anstehendproben

3.1. Södregården: Nördlich von Växjö wurde ein Diabasgang mit einer ungewöhnlichen Kombination von Einschlüssen aus Anorthosit und Sandstein/Quarzit beprobt (Lokalität 1). Nach Wikman 2000 (Kartenblatt Växjö NO, SGU) gibt es in diesem Gebiet weitere Aufschlüsse mit ähnlichen einschlussführenden Diabasen.

Abb. 8: Große Anorthosit-Xenolithe und kleinere quarzitartige Einschlüsse in einem Diabas an der Lokalität Södregården. Bildbreite 30 cm.
Abb. 9: Probe aus dem gleichen Aufschluss; Bruchfläche eines einschlussführenden Diabas mit quarzitähnlichen Einschlüssen, Aufnahme unter Wasser.
Abb. 10: Die Xenolithe sind Sandsteine der Almesakra-Formation, die bei der Aufnahme in das basaltische Magma aufgeschmolzen wurden. Die Sedimentite der Almesåkra-Formation dürften einst ein wesentlich größeres Gebiet eingenommen haben, da einschlussführende Diabase dieses Typs auch weit außerhalb ihrer heutigen Verbreitung gefunden wurden. Die Lokalität Södregården liegt über 40 km südlich davon.

3.2. Forserum: In der Nähe der Lokalität Brevik fanden sich einschlussführende Partien eines Diabases im Kontakt zu einem Småland-Granit (Lokalität 2). Gerundete Feldspat-Xenolithe im Diabas weisen darauf hin, dass es sich nicht um basaltische Xenolithe im Granit handelt.

Abb. 11: Einschlussführender Diabas in einem Småland-Granit (Lokalität 2).

3.3. Värlebo bei Påskallavik (Lokalität 3): Einige Vorkommen von Gangporphyren im östlichen Småland werden von Diabasen begleitet, die den gleichen Aufstiegsweg nutzten und an den Rändern der Gänge auftreten (bimodaler Magmatismus). Im Kontakt zu einem Påskallavik-Porphyr fand sich in der Nähe der Ortschaft Värlebo ein grüner Diabas, der gerundete Feldspäte und einige Blauquarze als Xenolithe führt.

Abb. 12: Graugrüner Diabas mit runden Einschlüssen von Feldspat und Blauquarz, die aus dem benachbarten Påskallavik-Porphyr stammen. Aufnahme unter Wasser.
Abb. 13: Gleicher Stein, nasse Bruchfläche.

3.4. Alsarp (Lokalität 4): Der Besuch eines Straßenaufschlusses in der Nähe der Typlokalität Alsarp in Ost-Småland war enttäuschend, weil der anstehende Diabasgang keine Einschlüsse von runden Feldspäten enthielt. Lediglich der benachbarte Småland-Granit wies Einschlüsse von Diabas sowie unterschiedliche Stadien einer Vermengung auf. Nach Meyer KD 1981 liegt der Aufschluss mit den einschlussführenden Partien 650 m weiter südwestlich (etwa 57.52943, 16.02641, s. a. Abb. 7).

Abb. 14: Småland-Granit mit Diabas-Einschlüssen vom Straßenaufschluss bei Alsarp. Breite des Abschlags ca. 15 cm.
Abb. 15: Anstehender Småland-Monzogranit mit teilweise assimilierten Diabas-Xenolithen; Aufnahme unter Wasser.
Abb. 16: Nahaufnahme einer weiteren Probe. Insgesamt handelt es sich um ein granitisches Gestein. Die Grundmasse enthält reichlich dunkle Minerale aus dem benachbarten Diabas (magma mingling).

4. Geschiebefunde

Abb. 17: Einschlussführender Diabas vom Brevik-Typ, Geschiebefund mit polierter Schnittfläche. Die feinkörnige, graue und basaltartige Matrix führt eckige bis schwach gerundete Einschlüsse von Sandstein. Die graue Matrix ist leicht magnetisch, der Sandstein nicht. Fundort: Kiesgrube Fresdorfer Heide bei Potsdam, leg. G. Engelhardt.
Abb. 18: Gleicher Stein, Nahaufnahme. Auffällig sind die schwarzen Reaktionsränder um die Sandsteinfragmente, die auf eine mineralische Veränderung des basaltischen Gesteins durch Stoffaustausch mittels Fluiden (Wasser) schließen lassen.
Abb. 19: Einschlussführender Diabas („Björbo-Typ“) mit feinkörniger Grundmasse. Geschiebe aus der Kiesgrube Penkun bei Stettin, Aufnahme unter Wasser.
Abb. 20: Nahaufnahme, runde Einschlüsse mit orangerotem Alkalifeldspat, grauem Quarz und wenigen dunklen Mineralen.
Abb. 21: Grenze eines feinkörnigen basaltischen Gesteins zu einem Rapakiwi-Quarzporphyr. Mitten im Basalt befindet sich ein einzelnes Porphyr-Fragment. Während basische Xenolithe in Rapakiwi-Graniten, z. B. Granitporphyren, regelmäßig zu finden sind, scheinen basaltische Gesteine mit Rapakiwi-Einschlüssen wesentlich seltener zu sein. Strandgeröll von Misdroy in Westpolen, Aufnahme unter Wasser.
Abb. 22: Basaltisches Gestein mit Einschlüssen granitischer Zusammensetzung; Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 23: Einschlussführender Diabas aus der Kiesgrube Hohensaaten (Brandenburg), Aufnahme einer frischen Bruchfläche unter Wasser.

Das Gestein enthält runde Feldspat- und Blauquarz-Einschlüsse sowie feinkörnige basaltische Xenolithe. Die Einschlüsse, besonders gut erkennbar an den Quarzen, weisen einen dunklen Reaktionssaum auf. Solche Säume, wie sie auch im Aland-„Ringquarzporphyr“ auftreten, sind ein Hinweis auf unvollständige Mineralumwandlungen. Die Reaktion fand nur an der Grenzfläche zweier Minerale statt, ein chemisches Gleichgewicht konnte sich nicht einstellen, weil die Reaktion vorzeitig zum Stillstand kam.

Abb. 24: Diabas mit Einschlüssen aus rotem Feldspat und runden Ringquarzen. Polierte Schnittfläche eines Geschiebes von Mukran auf Rügen (Slg. D. Lüttich).
Abb. 25: Diabas mit runden und eckigen Feldspäten und bläulichgrauem Quarz als Einschluss. Strandgeröll von Westermarkelsdorf, Fehmarn.
Abb. 26: Einschlussführender Diabas mit großen Alkalifeldspat-Xenokristallen und runden Blauquarzen. Kiesgrube Niederlehme bei Berlin.
Abb. 27: Schweres basaltartiges Gestein mit großen Feldspat-Fragmenten. Breite 16 cm, Kiesgrube Althüttendorf (Brandenburg).
Abb. 28: Einschlussführender Diabas, Großgeschiebe vom Rand des Tagebaus Welzow-Süd in Brandenburg, Höhe 90 cm.
Abb. 29: Das Gestein enthält schwach gerundete Fragmente von Gneisen und granitischen Plutoniten.

5. Lokalitäten

Lokalität 1: Einschlussführender Diabas mit Anorthosit- und quarzitähnlichen Sandstein-Fragmenten; Diabasgang 850 m OSO Södregården, Kartenblatt Växjö NO; WGS84DD 57.20566, 14.73403.

Lokalität 2: Småland-Granit mit Partien einschlussführender Diabase; lose Steine vom Anstehenden am Wegesrand; Waldweg bei Olstorp, SW Forserum; 57.67967, 14.44153.

Lokalität 3: Einschlussführender Diabas im Kontakt zum Påskallavik-Porphyr; Bahnanschnitt 1 km NW des ehemaligen Bahnhofs Värlebo; 57.06050, 16.19424.

Lokalität 4: Diabasgang und Diabas-Xenolithe im Småland-Granit; Aufschluss an der Straße von Alsarp nach Sjunnarp (57.53253, 16.03591), Typlokalität liegt ca. 650 m weiter südwestlich (57.52943, 16.02641).

6. Literatur

Bartholomäus WA & Herrendorf G 2003 Ein großes Gerölldiabas-Geschiebe von Varel in Oldenburg – Geschiebekunde aktuell 19 (1): 1-15, 2 Taf., 6 Abb., 1 Tab., Hamburg / Greifswald.

Hesemann J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 8 Taf. (1 Taf. im Anh.), 44 Abb., 29 Tab., 1 Kte., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

Korn J 1927 Die wichtigsten Leitgeschiebe der nordischen kristallinen Gesteine im norddeutschen Flachlande ; Ein Führer für den Sammler kristalliner Geschiebe – VI+64 S., 48 farb. Abb. auf Taf. 1-6, 8 Farb-Ktn. auf Taf. 7-14, 1 Tab., Berlin (Preußische geologische Landesanstalt).

Meyer K-D 1981 Ein Vorkommen einschlußführender Diabase bei Björbo, 60 km WSW Falun, Dalarna / Mittelschweden – Der Geschiebesammler 15 (3): 93-98 (-106), 3 Taf., 3 Abb., Hamburg. Wikman H 2000 Berggrundskartan 5E Växjö NO, skala 1:50 000. Sveriges geologiska undersökning Af 201.