Archiv für den Monat: April 2020

Skarn

Abb. 1: Grobkörniger Skarn aus weißem Kalkspat, transparentem Quarz, grünem Ca-Pyroxen (Diopsid bis Hedenbergit) und hellgrünem Epidot. Anstehendprobe von Sunnerskog in Småland.
Abb. 2: Nahaufnahme des Gefüges.
  1. Allgemeines
  2. Vorkommen
  3. Entstehung von Skarnen
  4. Skarnvorkommen von Sunnerskog
  5. Skarn als Geschiebe
  6. Literatur

1. Allgemeines

Skarne sind metasomatisch gebildete Gesteine. Als Metasomatose bezeichnet man eine Gesteinsumwandlung unter maßgeblicher Beteiligung von Fluiden. Sie unterscheidet sich von der dynamischen Metamorphose, der Gesteinsumwandlung durch geänderte Temperatur- und Druckbedingungen, bei der Fluide nur in kleiner Menge mobilisiert werden und die Summe der chemischen Komponenten weitgehend erhalten bleibt (sog. isochemische Metamorphose). Metasomatose hingegen führt zu einer durchgreifenden Änderung der chemischen Zusammensetzung der Ausgangsgesteine durch einen anhaltenden Zu- und Abfluss von Ionen, z. B. zwischen subduzierten Kalksteinen und einem aufsteigenden Granitpluton. Im sedimentären Ausgangsgestein kommt es zur Bildung von Silikatmineralen. Die Gesteinsumwandlung ist von zahlreichen Variablen abhängig, daher sind Skarne eine sehr heterogene Gesteinsgruppe mit einer Vielfalt möglicher Mineralparagenesen. Häufig sind Skarne mit Ca-reichen Silikaten, z. B. Gesteine mit einer ungewöhnlichen Kombination aus rotem oder braunem Granat und grünem Pyroxen.

Der Begriff Skarn wird gelegentlich etwas weiter gefasst, zumal metasomatische und metamorphe Prozesse in relativer Nachbarschaft ablaufen können. So bezeichnen manche schwedische Geologen Einschaltungen von metamorphen Kalksilikatgesteinen in Marmorvorkommen als „Skarngneis“ (siehe Abb. 15 im Artikel „Marmorvorkommen in Mittelschweden“).

Gesteine aus Skarn-Vorkommen dürften als Geschiebe nur im Ausnahmefall erkennbar sein, u. a. weil sie in Erscheinungsbild und Zusammensetzung den metamorphen Äquivalenten (Marmor, Kalksilikatgesteine) ähneln. Einigermaßen sicher als Skarn identifizierbar sind grobkörnige Gesteine mit charakteristischen Paragenesen aus Granat und/oder grünem Pyroxen, optional mit hellgrünem Epidot, Calcit und Quarz (Abb. 3). Da Pyroxen leicht zur Verwitterung neigt, sind solche Geschiebe möglicherweise wenig erhaltungsfähig. Der Fund eines Skarn-Geschiebes wird in Böse & Ehmke 1996 genannt. Ries 2005 diskutiert den Fund eines Ce-Orthit-haltigen quarzitischen Skarns.

2. Vorkommen

Im nordischen Grundgebirge, vor allem in Mittelschweden, gibt es eine Vielzahl von Skarn-Vorkommen. Die meisten besitzen nur eine kleinräumige Ausdehnung, einige sind als Erzlagerstätte bedeutend. Im wichtigsten schwedischen Vorkommen in Falun (Dalarna) werden Skarne mit einer Cu-Zn-Ag-Au-Pb-Vererzung abgebaut.

3. Entstehung von Skarnen

Kalksteine, Dolomite oder karbonathaltige Sedimentgesteine können durch Subduktion in die Nähe von Intrusivkörpern gelangen. Das Karbonatgestein wird durch den aufsteigenden Pluton, z. B. ein Granit, zunächst nur kontaktmetamorph verändert (Bildung von Marmor oder Kalksilikatgesteinen). Unter bestimmten Bedingungen kann sich ein Stoffaustausch von Fluiden (Metasomatose), im weiteren Verlauf eine regelrechte Fluidkonvektion zwischen beiden Systemen entwickeln. Dabei werden fortwährend Wasser und CO2 aus den Kalksteinen sowie Fluide und Volatile (Cl, F) aus dem Pluton mobilisiert. Die aggressiven Fluide transportieren Fe-, Ca- und Si-Ionen, aber auch Cu und andere Buntmetalle in gelöster Form, und führen zu einer durchgreifenden Veränderung der Gesteine. Grad der Umwandlung und Mineralneubildungen sind abhängig von Temperatur, Druck und den variablen Fluidphasen. In der Nähe zum Intrusivkontakt können sehr grobkörnige Skarne entstehen. Mit zunehmendem Abstand zum Kontakt verändert sich die Zusammensetzung der Mineralgemeinschaft (z. B. Granat proximal, Pyroxen distal).

Das umgewandelte Sedimentgestein wird als Exoskarn, das veränderte magmatische Intrusivgestein als Endoskarn bezeichnet. Nach Wimmenauer 1985 sind die meisten Skarne Exoskarne und treten „im unmittelbaren Kontaktbereich bis in Entfernungen von mehreren hundert Metern vom Intrusivgestein“ auf. Als Neubildungen finden sich vor allem Ca-haltige Silikate wie Wollastonit Ca3[Si3O9], Ca-Fe-Mg-Pyroxene (Diopsid CaMg[Si2O6] bis Hedenbergit CaFe[Si2O6]), Granat (Grossular Ca3Al2[SiO4] und Andradit Ca3Fe2[SiO4]3), Ca-Amphibole, Vesuvian, Epidot, Scheelit sowie evtl. Erze und weitere Minerale.

4. Skarnvorkommen von Sunnerskog

Das Skarnvorkommen von Sunnerskog liegt etwa 6 km südöstlich von Holsbybrunn in Smaland (57.40679, 15.22564). Hier wurde periodisch vom 17. Jahrhundert bis 1894 ein Exoskarn mit einer Cu-(W-Mo)-Vererzung abgebaut. An der alten Grube befindet sich unterhalb des Hanges auf der gegenüberliegenden Straßenseite eine Halde mit bunten Skarn-Gesteinen. Die Skarne von Sunnerskog sind nur ein Beispiel für diesen variantenreichen Gesteinstyp.

Abb. 3: Grubensohle der Skarngrube Sunnerskog.

Die Grube liegt im etwa 1,8 Ga alten Oskarshamn-Jönköping-Gürtel (OJB), einer svekofennischen Exklave innerhalb der etwas jüngeren Gesteine des Transkandinavischen Magmatitgürtels (TIB). Der Skarn von Sunnerskog entstand durch Metasomatose von Kalksteinen und kieselig-kalkigen Sedimenten in der Nähe von granitischen Intrusionen. Auf den Halden und an der Grube lassen sich Gesteinsproben mit ganz unterschiedlichen Graden metasomatischer Umwandlung aufsammeln:

  • von Neubildungen augenscheinlich freie Metasedimente (Abb. 6),
  • quarzitische Metasedimente, mit oder ohne Granat und Pyroxen (Abb. 8),
  • mittelkörnige Skarne aus Calcit, Quarz, rotem Granat, grünem bis schwarzgrünem Pyroxen und hellgrünem Epidot,
  • grobkörnige Skarne aus Pyroxen und/oder Granat (Abb. 12, 15).

Auch die vom Abstand zum Intrusivkontakt abhängige Mineralzusammensetzung der Gesteine lässt sich an den Haldenfunden beobachten. Manche sind ausgesprochen grobkörnig, enthalten nur grünen Pyroxen (distaler Intrusivkontakt, Abb. 1), beide Minerale (Abb. 15) oder nur Granat (proximal, Abb. 10). Gesteinsbildende Minerale an der Lokalität Sunnerskog sind weißer Calcit, roter bis brauner Granat, grüner bis schwarzgrüner Pyroxen, Epidot (hellgrün), Quarz (milchig weiß bis klar) sowie evtl. Wollastonit (Abb. 11). In einigen Proben fanden sich spärliche Butzen mit Erzmineralen (Cu-Sulfide). Eine Untersuchung aller Proben auf Wolfram-Minerale (Scheelit, Ca[WO4], orange Fluoreszenz unter niederwelligem UV-Licht) verlief negativ.

Abb. 4: Ausschnitt aus dem geologischen Kartenblatt Vetlanda SV (Quelle: SGU, s. a. Persson 1989). Hellblau sind die Metasedimente der Vetlanda-Formation (tuffitische Arenite/ Metagrauwacken mit Einschaltungen von phyllitischem Glimmerschiefer mit Muskovit und Biotit). Die hellbraune Signatur mit schwarzen Punkten sind Granite des OJB.
Abb. 5: Feinkörniges, dem Augenschein nach kaum verändertes Nebengestein (Tuffit oder Grauwacke) von der Halde am Schacht. Lediglich eine leichte Grünfärbung weist auf eine niedrig metamorphe oder metasomatische Überprägung hin. Mit verdünnter Salzsäure zeigt es keine Reaktion.
Abb. 6: Ein häufiger Haldenfund sind quarzitische Kalksilikatgesteine mit scherbiger Bruchfläche. Das Gestein besteht im Wesentlichen aus Quarz und enthält geringe Mengen roter und grüner Ca-Silikate (Granat, Pyroxen).
Abb. 7: Schnittfläche einer ähnlichen Probe (E. Figaj leg.), Aufnahme unter Wasser. Quarzitisches Gestein mit Bändern von Silikatmineralen: roter Granat, schwarzgrüner Pyroxen und hellgrüner Epidot.
Abb. 8: Hellgrüner Epidot, dunkelgrüner Pyroxen und etwas roter Granat im Kontakt zu einem feinkörnigen und rötlichen Nebengestein (Metasediment, ähnlich der Grauwacke in Abb. 6).
Abb. 9: Gebänderter Skarn. Das Gestein besteht im Wesentlichen aus feinkörnigem Calcit und wird von einigen kleinen Quarzadern durchzogen. Die hellbraunen und roten Färbungen sind feinkörnige Einlagerungen von Silikatmineralen, z. B. Granat.
Abb. 10: Gleicher Stein, Nahaufnahme. An der Grenze zwischen Kalkstein und einer Partie aus transparentem Quarz sind farblose und radialstrahlige Kristallnadeln erkennbar, vermutlich Wollastonit. Die Umwandlung von Calciumkarbonat (CaCO3) + SiO2-Phase zu Wollastonit (CaSiO3) + CO2 ist das klassische Beispiel einer metasomatischen Mineralneubildung.
Abb. 11: Grobkörniger bunter Skarn, Breite 15 cm. Links eine Partie aus massigem und derbem Granat, auf der rechten Seite größere, teilweise annähernd sechseckige Aggregate von Granat in Calcit, der durch Einschlüsse von Silikatmineralen hellgrün gefärbt ist. Die feinkörnigen apfelgrünen Anflüge dürften Epidot sein.
Abb. 12: Idiomorpher brauner Granat (Grossular) in Calcit.
Abb. 13: Skarn aus grün pigmentiertem Calcit und einem Erzmineral mit metallischem Glanz, wahrscheinlich Chalcosin (wichtigstes Kupfermineral in Sunnerskog).
Abb. 14: Grobkörniger Skarn aus grünem Pyroxen und rotem Granat sowie etwas Quarz und Epidot.
Abb. 15: Pyroxen-Megakristall in einem grobkörnigen Pyroxen-Granat-Skarn. Granat füllt die Zwickel zwischen den großen Pyroxen-Kristallen. Aufnahme unter Wasser.
Abb. 16: Bruchstück eines großen Pyroxen-Einkristalls. Gut erkennbar sind die deutliche Spaltbarkeit und die typischen Spaltwinkel von etwa 90º.

5. Skarn als Geschiebe

Gesteine aus Skarn-Vorkommen dürften als Geschiebe nur im Ausnahmefall erkennbar sein, u. a. weil sie in Erscheinungsbild und Zusammensetzung den metamorphen Äquivalenten (Marmor, Kalksilikatgesteine) ähneln. Einigermaßen sicher als Skarn identifizierbar sind mittel- bis grobkörnige Gesteine mit charakteristischen Paragenesen aus Granat und/oder grünem Pyroxen, optional mit hellgrünem Epidot, Calcit und Quarz (Abb. 17-23). Da Pyroxen leicht zur Verwitterung neigt, sind solche Geschiebe möglicherweise wenig erhaltungsfähig. Der Fund eines Skarn-Geschiebes wird in BÖSE & EHMKE 1996 genannt. RIES 2005 diskutiert den Fund eines Cer-Orthit-haltigen quarzitischen Skarns.

Abb. 17: Pyroxen-Skarn; grobkörniges, im Wesentlichen aus grünem Pyroxen bestehendes Gestein mit etwas rotem Granat in den Zwickeln. Fundort: bei Stahnsdorf, leg. Hermann Müller, Slg. Museum Fürstenwalde.
Abb. 18: Nahaufnahme.
Abb. 19: Ein weiterer Pyroxen-Skarn, ähnlich der Probe in Abb. 15. Fundort: Berlin-Buch, H. Müller leg. am 12.09.1935, Geschiebesammlung der FU in Berlin-Lankwitz.
Abb. 20: „Silikatische Zone aus Kontakt-(Ur-)Kalk. Quarz + grüner Diopsid + glänzende Körnchen (nicht Magnetit, Titaneisen, Turmalin) + Kalkspat (fein veteilt) – Saarmund bei Potsdam, leg. W. Boschann“ – Sammlung Bennhold im Museum Fürstenwalde.
Abb. 21: Nahaufnahme.
Abb. 22: „Aus einem Geschiebeblock (Skarn): Hedenbergit, dunkelgrün, Diopsid, hellgrün; Skapolith, weiß, Magnetkies, bronze-metallisch. FO: Tagebau Jänschwalde Rinne Gosda Klinge; leg. K. Baumann, R. Kloß; det. F. Mädler 1985“; Geschiebesammlung im Museum Fürstenwalde.
Abb. 23: Nahaufnahme
Abb. 24: Als „Skapolithfels“ bezeichnetes Geschiebe, leg. 1927 W. Bennhold, Molkenberg bei Fürstenwalde. Sammlung Bennhold, Museum Fürstenwalde.

Das Etikett vermerkt: „Heimat: wahrsch. Norwegen; v.d.L.: mit Kobaltnitrat blaues Email; H=5; In HCl ganz allmählich weißlich werdend. Blättr. Minerale: v.d.L. bläht sich nicht auf, brennt sich mit Kobaltnitrat nicht blassrot, schmilzt an den Kanten nicht, wird nicht hart; in H2SO4 unveränderlich; H> Biotit. Also nicht Talk sondern Muskovit.“ – Walter Bennhold versucht hier eine Mineralbestimmung mittels der sog. Lötrohrprobierkunst, einer einfachen Methode zur qualitativen Analyse von Metallionen. Das blaue Email nach Behandlung mit Kobaltnitrat ist der Nachweis von Aluminium. Bennhold bestimmt das grüne Mineral als Skapolith, ein Gerüst-Alumosilikat mit der Summenformel (Na, Ca)4(Si, Al)12O24(Cl, CO3). Es findet sich in Kontaktmetamorphiten, Skarnen, Metabasiten und Gneisen. Die Anionen Cl und CO3 verraten, dass seine Bildung metasomatische Bedingungen erfordert.

Abb. 25: Nahaufnahme. Die Paragenese mit rotem Granat (links im Bild) spricht für eine Herkunft des Geschiebes aus einem Skarn-Vorkommen.

Ein feinkörniger und sehr schwerer Metamorphit/Metasomatit wirkte mit seiner rostigen Verwitterungsrinde auf den ersten Blick wenig attraktiv. Nur mit großer Mühe konnte eine Bruchfläche erzeigt werden. Hier erscheint das Gestein quarzitartig und enthält reichlich Granat.

Abb. 26: Feinkörniger Metamorphit/Metasomatit aus der Kiesgrube Penkun (Vorpommern), Bruchfläche.
Abb. 27: Nahaufnahme der Bruchfläche.
Abb. 28: In der Nahaufnahme der polierten Schnittfläche ist neben Quarz und rotem Granat ein grünes Mineral erkennbar, vermutlich Pyroxen. Das Gestein ähnelt etwas dem quarzitischen Metasomatit aus der Grube Sunnerskog (Abb. 7).

Das letzte Geschiebe könnte ein Skarn sein, scheint aber einen Amphibol mit Ca-Vormacht (grüner Amphibol) zu enthalten. Dafür sprechen die sechseckigen Anschnitte des grünen Minerals. Gleichzeitig ist roter Granat erkennbar, vor allem auf der angewitterten Außenseite und im Kontakt mit dem grünen Silikatmineral. Die ungleichkörnige, wahrscheinlich durch Kataklase überprägte Grundmasse enthalt einen hellen und transparenten Feldspat (keine perthitischen Entmischungen, aber auch keine polysynthetische Verzwilligung erkennbar). Ein Säuretest mit HCl verlief negativ.

Abb. 29: Polierte Schnittfläche eines Geschiebes (Skarn?) aus der Kiesgrube Schweinrich (N-Brandenburg), leg. F. Wilcke.
Abb. 30: Nahaufnahme.

6. Literatur

Ausführliche Informationen sowie ein umfangreiches Literaturverzeichnis über Skarn finden sich auf science.smith.edu sowie auf wikipedia.de und mineralienatlas.de.

BÖSE M & EHMKE G 1996 Geotope und ihre Unterschutzstellung in Berlin – Brandenburgische Geowissenschaftliche Blätter 3 (1): 155-159, 2 Tab., Kleinmachnow.

PERSSON L 1989 Beskrivning till berggrundskartorna 1 : 50000 – Vetlanda SV och SO – Sveriges Geologiska Undersökning (Af) 170+171: 130 S., Uppsala.

RIES G 2005 Ein Cer-Orthit-haltiger Quarzit als Geschiebe – Geschiebekunde aktuell 21 (1): 29-30, 2 Abb., 1 Tab., Hamburg / Greifswald.

WIMMENAUER W 1985 Petrographie magmatischer und metamorpher Gesteine; 297 Abb., 106 Tab., Enke-Verlag, Stuttgart.

Vislanda-Granit

Die Bezeichnung Vislanda-Granit ist nur in der Geschiebekunde gebräuchlich und kann für klein- bis mittelkörnige Småland-Granite vom Växjö-Typ mit überwiegend zuckerkörnig ausgebildetem Quarz verwendet werden. Granite dieses Typs kommen wahrscheinlich an mehreren Lokalitäten innerhalb des Transskandinavischen Magmatitgürtels vor und sind nicht als Leitgeschiebe geeignet.

Abb. 1: Blassroter und mittelkörniger Smaland-Granit vom Vislanda-Typ (Steinbruch 211, westlich von Påskallavik; 57.16605, 16.43578).

Beschreibung nach Hesemann 1975 und Zandstra 1988: 283 (nicht in Zandstra 1999, s. a. skan-kristallin.de): Geschiebe vom Vislanda-Typ sehen rot-weiß gefleckt aus. Der weiße bis blauweiße und feinkörnig granulierte („zuckerkörnige“) Quarz bildet eine Masse zwischen blass- bis sattroten Alkalifeldspäten, die eine Länge von 3-5 mm erreichen. Auch die Alkalifeldspäte sind intensiv zerbrochen und zeigen keine klaren Umrisse. Gelegentlich lassen sich einzelne größere Körner von Blauquarz entdecken. Plagioklas, auf der Außenseite von Geschieben weiß getönt, kann in größerer Menge vorkommen und ist auf der Bruchfläche kaum identifizierbar. Dunkle Minerale finden sich nur untergeordnet.

Zuckerkörniger Quarz entsteht durch mäßige tektonische Einwirkung auf den bereits vollständig erstarrten Plutonit in den oberen Bereichen der Erdkruste. Dabei können Feldspäte zerbrochen und der Quarz zu einer zuckerkörnigen Masse granuliert werden (Abb. 2), ohne dass es zu einer erkennbaren Einregelung der Mineralbestandteile kommt („Gneisgranit“). Kleine Mengen an granuliertem Quarz finden sich als feinkörniger Saum um größere Mineralkörner in vielen Småland-Graniten (Abb. 6-8). Vollständig granulierte Quarze (Vislanda-Typ) sind eher selten. Die winzigen glitzernden Bruchflächen von gleichmäßig-feinkörnigem und zerdrücktem Quarz erkennt man am besten auf einer frischen Bruchfläche, da auf angeschlagenen Geröll-Oberflächen auch kompakte Quarze zuckerkörnig aussehen können. Im Bruch zeigen die kompakten Quarze dann einen muscheligen Bruch. Ein weiterer Typ Småland-Granit mit überwiegend zerdrückten Quarzaggregaten ist der Älö-Granit (Zandstra 1988: 280).

Nach einer mündlichen Mitteilung von A. P. Meyer (Berlin) ist die namensgebende Lokalität für den Vislanda-Granit nicht der gleichnamige Ort in Südschweden, sondern ein kleines Gehöft bei Påskallavik, das vor etwa 100 Jahren Vislanda hieß. Bei einem Besuch in diesem Gebiet wurde das Gehöft zwar nicht ausfindig gemacht. Westlich von Påskallavik konnte der Vislanda-Gesteinstyp aber bei einem Besuch der Steinbrüche 210-213 (beschrieben in Bruun et al 2005) zweimal beprobt werden (Steinbrüche 211 und 212).

Abb. 2: Nahaufnahme der trockenen Bruchfläche mit reichlich zuckerkörnigem Quarz.
Abb. 3: Nahaufnahme der angefeuchteten Bruchfläche. Auch der rote Alkalifeldspat ist kräftig deformiert und zeigt undeutliche Korngrenzen.
Abb. 4: Aufnahme unter Wasser. Quarz und Feldspat lassen keine Einregelung erkennen. Lediglich die wenigen dunklen Glimmerminerale besitzen eine Vorzugsrichtung.
Abb. 5: Nahaufnahme unter Wasser: die Quarze besitzen eine schwach bläuliche Farbe, helle Feldspatkörner sind Plagioklas.

Etwa 250 m Luftlinie vom ersten Steinbruch entfernt gibt es einen weiteren Aufschluss (Steinbruch 210; 57.16876, 16.43418). Hier steht ein gleichkörniger Blauquarz-Granit vom Växjö-Typ an, in dem nur ein kleinerer Teil der Quarze granuliert ist (kein Vislanda-Typ).

Abb. 6: Småland-Granit vom Växjö-Typ („Tuna-Granit“) mit Blauquarz, anteilig mit zuckerkörnigem Quarz (Steinbruch 210, westlich von Påskallavik).
Abb. 7: Gleicher Stein, Aufnahme unter Wasser.
Abb. 8: Gleicher Stein, Nahaufnahme der nassen Bruchfläche.
Abb. 9: Vislanda-Granit, Geschiebefund eines hellen Alkalifeldspat-Granits mit reichlich zuckerkörnigem Quarz und wenig dunklen Mineralen (Kiesgrube Tegel, Berlin; A. P. Meyer leg. und det.).

Literatur

Bruun Å, Kornfält K-A, Sundberg A. Wik N-G, Wikman H, Wikström A 2005 Beskrivning till regional berggrundskarta över Kalmar län – SGU Ba 66, 50 S., Sveriges Geologiska Undersökning (SGU), Uppsala.

Hesemann J 1975 Kristalline Geschiebe der nordischen Vereisungen – GLA Nordrhein-Westfalen.

Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).

„Bottnischer“ Gneisgranit

Der Geschiebetyp des „Bottnischen Gneisgranits“ kann in Norddeutschland gehäuft in baltischen Geschiebegemeinschaften mit einem hohen Anteil an Åland-Gesteinen auftreten. Ein anstehendes Vorkommen ist bisher nicht bekannt. Es dürfte jedenfalls nicht in der Bottensee, eher in der nördlichen Ostsee zu suchen sein, da Geschiebefunde auf Åland fehlen (pers. Mitteilung M. Bräunlich).

Abb. 1: Die Außenseite von Geschieben des „Bottnischen“ Gneisgranits zeigt häufig eine gelblich-rote Färbung. Fund aus der Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).

Der grobkörnige und leicht deformierte Alkalifeldspatgranit („Gneisgranit“) besitzt eine netzartige Textur aus rotem Alkalifeldspat sowie reichlich granuliertem Quarz in Form einer feinkörnigen und glitzernden („zuckerkörnigen“) Kristallmasse. Im Unterschied zum Quarz sind die Alkalifeldspäte weitgehend intakt und zeigen bei geeignetem Anschnitt nahezu rechteckige Umrisse. Auf der rauhen Bruchfläche des Gesteins lassen sich die Netztextur und der granulierte Quarz am besten beobachten. Die Alkalifeldspäte sind hier gleichmäßig leuchtend rot gefärbt. Dunkle Minerale sowie Plagioklas fehlen oder kommen nur in geringer Menge vor (Beschreibung in Hesemann 1939 und Zandstra 1988, 1999; s. a. skan-kristallin.de).

Abb. 2: „Bottnischer“ Gneisgranit. Gut erkennbar ist die netzartige Textur aus rotem Alkalifeldspat und zuckerkörnigem Quarz. Geschiebe aus der Kiesgrube Ziezow (Brandenburg).

Granite mit zuckerkörnigem Quarz sind auch aus Småland bzw. dem Transskandinavischen Magmatitgürtel (TIB) bekannt und werden in der Geschiebekunde als „Vislanda-Granit“ bezeichnet. Zwar unterscheiden sich die bisher vorliegenden Anstehendproben deutlich vom Habitus des „Bottnischen“ Gneisgranits, unklar ist aber, ob es nicht ganz ähnliche Granite auch innerhalb des TIB gibt. So ist der „Bottnische“ Gneisgranit zwar ein regelmäßiger Begleiter von Åland-Gesteinen, als Leitgeschiebe aber nicht geeignet.

Abb. 3: Gleicher Stein, Aufnahme unter Wasser.
Abb. 4: Gleicher Stein, frische Bruchfläche.
Abb. 5: Die Nahaufnahme der frischen Bruchfläche zeigt glitzernde Kristallmassen aus zerdrücktem („zuckerkörnigem“) Quarz.
Abb. 6: Ein weiterer Fund dieses Geschiebetyps mit frischer Bruchfläche aus der Kiesgrube Niederlehme bei Berlin.

Aplite

Aplite sind helle und feinkörnige magmatische Gesteine, die keine oder nur sehr wenig dunkle Minerale enthalten. Sie finden sich als cm- bis dm-dicke Gänge oder Adern in granitischen Plutoniten und in Gneisen (Abb. 1). Die meisten Aplitgänge besitzen blasse Farben (weiß, hellgrau, rosa oder fleischfarben) und bestehen aus einem gleichkörnigen Mineralgefüge hypidiomorpher Feldspat- und Quarzkörner, das mit Hilfe einer Lupe erkennbar ist. Einsprenglinge fehlen. Auch in den Rapakiwi-Gebieten kommen Aplite und aplitähnliche Gesteine vor. Sie besitzen kräftigere Farben und im Detail abweichende Gefügemerkmale (s. u.).

Abb. 1: Hellroter, etwa 5 cm hoher Aplitgang in einem grauen Granodiorit mit Blauquarz (Geschiebe im ehem. Tagebau Cottbus-Nord, Niederlausitz).

Nachdem ein plutonischer Gesteinskörper weitgehend erstarrt ist, entstehen Klüfte und Dehnungsspalten. Diese Risse können durch aufsteigende Restschmelzen verfüllt werden. Die Klein- und Gleichkörnigkeit der Aplite spricht für eine schnelle Abkühlung und Kristallisation. Am häufigsten treten Aplite mit einer granitischen Zusammensetzung auf, aber auch Syenit-, Diorit- und Gabbroaplite sind bekannt. Ein Exot ist z. B. der Lestiwarit, ein aegirinführender Syenit-Aplit aus dem Oslograben.

Abb. 2: Hellroter Aplit mit großen Hellglimmer-Xenokristallen (Findlingshalde Steinitz, Niederlausitz).
Abb. 3: Nahaufnahme vom gleichen Stein.

Auch in den Randzonen von Pegmatiten kommen aplitische Gesteine vor. Hier kann es zu einem Eintrag der grobkörnigen Pegmatit-Minerale in die aplitische Schmelze kommen. Abb. 2 und 3 zeigt ein kleinkörniges Gestein aus Quarz und rotem Alkalifeldspat, das große Hellglimmer- sowie Alkalifeldspat-Kristalle führt, wahrscheinlich Fremdkristalle aus einem benachbarten Pegmatit.

Götemar-Aplit

In Nordost-Småland, in unmittelbarer Nähe zum Götemar-Pluton, wurden in einem Straßenaufschluss etwa 20-30 cm breite Gänge eines Aplits und eines Pegmatits beobachtet, die zunächst parallel und scharf voneinander getrennt verliefen. In der Nähe eines Diabasganges fand eine Vermengung von Aplit und Pegmatit statt. Abb. 4 zeigt eine Probe dieses Mischgesteins. Es besitzt eine feinkörnige aplitische Grundmasse und führt große Feldspat- und Quarz-Kristalle, die aus dem benachbarten Pegmatit stammen.

Abb. 4: Götemar-Aplit mit großen Xenokristallen von Feldspat und Quarz; Straßenaufschluss unmittelbar südlich des Götemar-Plutons (57.45053, 16.63260).
Abb. 5: Nahaufnahme des gleichen Steins. Die großen Alkalifeldspat-Einsprenglinge mit perthitischer Entmischung und die abgerundeten, dunklen und zonierten Quarze stammen aus dem Pegmatit. Rechts unten im Bild etwas Pyrit mit bunten Anlauffarben, am rechten oberen Bildrand die Grenze zum Diabas-Gang.

Rapakiwi-Aplite und Porphyraplite

Gänge, aber auch eigenständige kleine Massive von Apliten und aplitähnlichen Gesteinen treten in großer Anzahl in den Rapakiwi-Gebieten auf. Abb. 6 zeigt die Grenze eines Åland-Granitporphyrs („Ringquarzporphyr“) zu einem roten und feinkörnigen Aplit, Abb. 7 einen anderen Rapakiwi-Aplitgranit mit frischer Bruchfläche. Der Gesteinstyp enthält zwei Generationen von Quarz und Feldspat. Die kleineren Körner sind nahezu idiomorph ausgebildet (Abb. 8). Rapakiwi-Gesteine mit aplitischer Grundmasse und wesentlich größeren Quarz- und Feldspat-Einsprenglingen werden als Porphyraplit (Aplite mit einem porphyrischen Gefüge)  bezeichnet (Abb. 9). Die Einsprenglinge besitzen überwiegend abgerundete Formen, einige Feldspäte einen Plagioklas-Saum. Aplite und Porphyraplite sind in den Rapakiwi-Vorkommen weit verbreitet, besitzen ein variables Erscheinungsbild und kaum Merkmale, die sie auf ein bestimmtes Vorkommen zurückführen ließen. Sie sind als Leitgeschiebe nicht verwendbar.

Abb. 6: Grenze eines Åland-Granitporphyrs („Ringquarzporphyr“) zu einem feinkörnigen Aplit. Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 7: Rapakiwi-Aplitgranit aus der Kiesgrube Damsdorf/Bochow bei Lehnin (Brandenburg).
Abb. 8: Eine Nahaufnahme des Gefüges zeigt deutlich die zwei Generationen von Quarz und Feldspat.
Abb. 9: Porphyraplit. Kleinkörnige und aplitische Grundmasse aus Alkalifeldspat und Quarz mit Einsprenglingen von gerundeten Quarzkörnern, grünem Plagioklas und größeren hellen Feldspat-Ovoiden mit schmalem Plagioklas-Saum. Strandgeröll von Hökholz bei Eckernförde.