Schlagwort-Archive: Smaland

Geschiebe am Steilufer von Nienhagen

Abb. 1: Nienhagener Kliff.

Die Steilküste bei Nienhagen, etwa 8 km westlich von Warnemünde, ist ein aktives Kliff aus weichselkaltzeitlichem Geschiebemergel, Geschiebelehm und Schmelzwassersanden. Hier finden sich zwei jüngere Geschiebemergel der Weichselvereisung, getrennt durch eine dünne Sand-, Kies- bzw. Gerölllage. Der liegende graue Geschiebemergel ist dem Hauptvorstoß des Pommerschen Stadiums vor 15.000 Jahren zuzuordnen, der braune Geschiebemergel dem vor ca. 13.200 Jahren einsetzenden Mecklenburger Stadium. Eine ähnliche Zusammensetzung findet sich am gesamten Küstenabschnitt von Geinitzort bis Kühlungsborn, während weiter östlich, entlang der Stoltera, Geschiebemergel älterer weichselzeitlicher Eisvorstöße abgelagert wurden (SCHULZ & PETERSS 1989, KLAFACK 1996).

Durch fortschreitende Küstenerosion ist das Nienhagener Kliff ständigen Veränderungen unterworfen, entsprechend ergeben sich immer neue Fundmöglichkeiten. Am westlichen Abstieg fallen zunächst große Blöcke von Larvikit ins Auge, die offenbar als Uferbefestigung dienen. Larvikit ist ein Anorthoklas-Syenit und kommt, wie alle übrigen Gesteine aus dem Oslograben sowie SW-schwedische Leitgeschiebe (Schonengranulit, Flammenpegmatit etc.), in Nienhagen nicht als Geschiebe vor.

Abb. 2: Larvikit als Uferbefestigung, Breite etwa 1 Meter.
Abb. 3: Das Gestein ist sehr grobkörnig, einzelne Anorthoklas-Kristalle erreichen eine Länge von 4 cm. Trocken fotografiert, Bildbreite 22 cm.
Abb. 4: Nahaufnahme, nass fotografiert. Einige der grünlichen Feldspäte besitzen den typisch blauen Schiller. Dieser entsteht durch Lichtbrechung an feinsten Entmischungslamellen innerhalb der Feldspäte.

Kristalline Geschiebe

In Nienhagen überwiegen ganz klar Magmatite und Vulkanite des Transkandinavischen Magmatitgürtels (TIB). Der Anteil an Åland- bzw. Rapakiwi-Gesteinen ist nicht besonders hoch (keine Bilder), der Braune Ostseeporphyr tritt hingegen sehr häufig auf. Dieser unterliegt – wie alle Vulkanite – Variationen hinsichtlich Farbe und Gefüge. Gemeinsame Merkmale dieses Porphyrtyps sind: Reichtum an Einsprenglingen, dichte Grundmasse, kleine Quarze, mafische Enklaven.

Abb. 5: Varianten des Braunen Ostsee-Quarzporphyrs. Bildbreite 25 cm.
Abb. 6: Brauner Ostsee-Quarzporphyr mit orangefarbenen Feldspat-Einsprenglingen. Breite 10 cm.
Abb. 7: Brauner Ostsee-Quarzporphyr mit weißen und roten Feldspat-Einsprenglingen, die deutliche Spuren magmatischer Korrosion zeigen. Leg. Sebastian Mantei.
Abb. 8: Brauner Ostsee-Quarzporphyr, Feldspäte teilweise stark magmatisch korrodiert. Breite 8,5 cm.
Abb. 9: Dem Braunen Ostsee-Quarzporphyr ähnliches Porphyrgeschiebe mit einer Abfolge verschiedener Gefügevarianten, vermutlich eine Folge von magma mingling bzw. einer mafischen Enklave.

Bei gehäuften Funden des Braunen Ostsee-Quarzporphyrs ist auch vermehrt mit Funden des Ostsee-Syenitporphyrs zu rechnen, dem ein ähnliches Herkunftsgebiet zugeschrieben wird. Aus Nienhagen liegen 4 Funde vor. Der gewöhnliche Ostsee-Syenitporphyr ist ein recht unauffälliges Gestein, einige seltene Varianten fallen ins Auge (Abb. 13-14).

Abb. 10: Ostsee-Syenitporphyr; grünlichgraue Grundmasse, schwarze Mandeln und Feldspateinsprenglinge in geringer Menge. Breite 15 cm.
Abb. 11: Ostsee-Syenitporphyr, grünliche Variante. Die Grundmasse wird von einem Netz aus Rissen durchzogen; Aufnahme unter Wasser.
Abb. 12: Ostsee-Syenitporphyr mit Gefügewechsel zwischen rotbrauner und grünlichgrauerGrundmasse; Aufnahme unter Wasser.
Abb. 13: Ostsee-Syenitporphyr, seltene blaugraue Variante; Aufnahme unter Wasser (Sebastian Mantei leg.).
Abb. 14: Nahaufnahme der nassen Oberfläche.

Auch basaltische Mandelsteine sind häufig anzutreffen.

Abb. 15: Violettgrauer basaltischer Mandelstein. Breite 11 cm.
Abb. 16: Basaltischer Mandelstein; zonierter Aufbau der Mandeln mit hellgrünem Epidot am Rand der ehemaligen Blasenhohlräume.
Abb. 17: Sehr blasenreicher basaltischer Mandelstein. Das hornsteinartige und dichte rote Material sind Ausscheidungen von Jaspis.

Vulkanite und Magmatite (Porphyre und Granite) aus Småland bzw. dem Transskandinavischen Magmatitgürtel (TIB) sind die häufigsten Kristallingeschiebe in Nienhagen.

Abb. 18: Järeda-Granit; blassroter Småland-Granit mit viel Blauquarz. Besonderes Kennzeichen sind die feinen, mit dunklen Mineralen gefüllten Risse innerhalb der Feldspäte. Breite 13 cm.
Abb. 19: Kinda-Granit. Porphyrischer Granit aus trübem, leicht bläulichem Quarz, größeren braunen Alkalifeldspäten und kleineren orangefarbenen Plagioklasen. Plagioklas bildet stellenweise unvollständige Säume um Alkalifeldspat. Innerhalb der dunklen Minerale ist gelblicher Titanit erkennbar.
Abb. 20: Ein weiterer Kinda-Granit bzw. NE-Småland-Granit. Breite 11 cm.
Abb. 21: Roter Småland-Granit (Filipstad-Typ) mit etwas gelblichem Plagioklas. Breite 17 cm.
Abb. 22: Leicht deformierter Småland-Granit vom Växjö-Typ (gleichkörnig) mit blassrotem Alkalifeldspat und weißem bis gelblichem Plagioklas. Der Blick geht auf die Foliationsebene, dadurch wirkt das Gestein quarzreicher. Breite 12 cm.
Abb. 23: Vollroter und grobkörniger Alkalifeldspatgranit, Breite 11 cm. Das Gefüge erscheint undeformiert; Plagioklas ist nicht erkennbar, Mafite nur in geringer Menge vorhanden. Es dürfte sich um einen Uthammar-Granit handeln.
Abb. 24: Granit vom Typ Filipstad mit runden Feldspat-Ovoiden, teilweise umgeben von einem gelbem Plagioklassaum; ohne nähere Herkunftsangabe. Breite 13 cm.
Abb. 25: Weißer Filipstad-Granit. Seltene Variante aus der Familie der Filipstad-Granite, evtl. als Leitgeschiebe für das westliche Värmland geeignet. Polierte Schnittfläche, leg. Sebastian Mantei.

Auch Granite aus anderen Gebieten als dem TIB finden sich in Nienhagen, z. B. der Karlshamn-Granit aus Blekinge, seltener auch Bornholm-Granite.

Abb. 26: Gneisgranit mit roten Flecken, evtl. von Bornholm. Breite 12 cm.
Abb. 27: Karlshamn-Granit aus Blekinge, Aufnahme unter Wasser.
Abb. 28: Der Granit enthält reichlich gelben Titanit.
Abb. 29: Ein ähnlicher Granit, wahrscheinlich Karlshamn-Granit. Breite 12 cm.

Die meisten der zahlreichen Porphyr-Geschiebe sind auf das Gebiet des TIB zurückzuführen, vor allem auf Småland, wo ausgedehnte Porphyrgebiete existieren. Eine genauere Herkunftsangabe lässt sich aber meist nicht machen. Als Leitgeschiebe eignen sich der Paskallavik- und Emarp-Typ, mit Abstrichen auch Lönneberga-, Högsrum- und Nymala-Porphyr. Porphyre aus Dalarna treten in Nienhagen nur untergeordnet auf; häufiger sind – neben Bredvad- und Grönklitt-Porphyr – Geschiebe vom Typ „Einsprenglingsreicher Porphyr aus Dalarna“. Auch unter den Småland-Porphyren gibt es einsprenglingsreiche Varianten (Abb. 34). Sie enthalten Enklaven mit dunklen Mineralen und sind in der Regel leicht deformiert.

Abb. 30: Påskallavik-Porphyr, Breite 11 cm.
Abb. 31: Deformierter Gangporphyr, „Högsrum-Porphyr„. Breite 9 cm.
Abb. 32: Nymåla-Porphyr, Breite 9 cm.
Abb. 33: Lönneberga-Porphyr, Breite 75 mm. Dieser Porphyrtyp ist in Nienhagen recht häufig anzutreffen.
Abb. 34: Einsprenglingsreicher Porphyr (Småland-Porphyr), Breite 10 cm.
Abb. 35: Quarzporphyr, Herkunft unbekannt. Breite 15 cm.
Abb. 36: Aus Dalarna stammt dieser Lapillituff aus roten, violetten und braunen, teils gerundeten Porphyr-Klasten (Digerberg-Tuffit). Breite 14 cm.

Unter den kleineren Strandsteinen in Nienhagen kann man sehr viele basische Gesteine beobachten, vor allem Dolerite vom Asby-Ulvö-Typ.

Abb. 37: Schonen-Lamprophyr. Dunkles und basaltähnliches Gestein mit Einsprenglingen von Pyroxen (schwarz), Olivin (gelbbraun) sowie weißen Mandeln. Breite ca. 30 cm. Einziger Fund dieses Gesteinstyps in Nienhagen.
Abb. 38: Dolerit mit grünem Olivin, Aufnahme unter Wasser.
Abb. 39: Nahaufnahme.
Abb. 40: Sehr grobkörniger Dolerit vom Åsby-Ulvö-Typ. Diese Variante ist aus Nordingrå (Ulvö) bekannt. Aufnahme unter Wasser.
Abb. 41: Gabbroides Gestein mit Glimmer. Breite 9 cm.
Abb. 42: Dioritisches Gestein mit länglichen Amphibolen und etwas Glimmer. Breite 16 cm.
Abb. 43: Porphyroblastischer Amphibolit. Die runden Amphibol-Blasten sind ein deutlicher Hinweis auf seine metamorphe Bildung aus einem Gabbro oder Dolerit. Das Gestein kein Hornblendegabbro, da dieser zu einem großen Teil aus magmatisch gebildetem Amphibol bestehen muss. Breite 85 mm.

Unter den Metamorphiten sind Paragneise vom Sörmland-Typ mit violettroten Granat-Porphyroblasten sehr häufig anzutreffen. Auch die Fundmöglichkeiten für Fleckengesteine aus dem Västervik-Gebiet scheinen in Nienhagen günstig zu sein. Allerdings treten die violetten Västervik-Quarzite nur selten auf, obwohl sie mengenmäßig die Fleckengesteine überwiegen müssten.

Abb. 44: Paragneis vom Sörmland-Typ mit violettroten Granat-Porphyroblasten; Breite 10 cm.
Abb. 45: Glimmerführender Quarzit mit weißen Sillimanit-Granoblasten. Solche Fleckenquarzite mit deformiertem Gefüge lassen sich nicht ausschließlich auf das Västervik-Gebiet zurückführen. Breite 14 cm.
Abb. 46: Västervik-Fleckengestein (Cordierit-Granofels), Breite 12 cm.
Abb. 47: Diverse Fleckengesteine aus der ehem. Sammlung Somann. Eine Erläuterung der Funde findet sich auf kristallin.de, Abb. 51.
Abb. 48: Rotfleckiger Quarzit, Breite 8,5 cm.
Abb. 49: Nahaufnahme.
Abb. 50: Rotfleckiger Quarzit. Dieser Typ kommt auch im Västervik-Gebiet vor. Polierte Schnittfläche. Ehem. Sammlung Somann.
Abb. 51: Silikatmarmor („Ophicalcit“), Breite 17 cm. Näheres zu Marmor.
Abb. 52: Nahaufnahme unter Wasser.
Abb. 53: Glimmerquarzit. Früher als „Weißer Glimmerschiefer von Schonen“ in KORN 1927 bezeichnetes Gestein kommt u. a. in Västana, aber auch an anderen Lokalitäten vor. Mitunter ist eine seltene Mineralisation phosphathaltiger Minerale zu beobachten. Kein Leitgeschiebe, Breite 13 cm.
Abb. 54: Epidotisierter Magmatit (Metasomatit) aus rotem Alkalifeldspat, hellgrünem Epidot, epidotisiertem Plagioklas sowie etwas Quarz. Breite 12 cm.
Abb. 55: Weitgehend aus Feldspäten bestehende Brekzie, Risse verfüllt mit feinkristallinem Quarz und Milchquarz. Breite 11 cm.
Abb. 56: Tektonische Brekzie. Das Wirtgestein besteht aus rotem Alkalifeldspat und Quarz und besitzt eine granitische Zusammensetzung. Die Risse wurden mit feinkristallinem Quarz und Milchquarz verfüllt. Breite 12 cm.
Abb. 57: Mylonitischer Augengneis mit hellen Feldspat-Porphyroblasten. Der als „Tännas-Augengneis“ bezeichnete Geschiebetyp dürften in vergleichbarer Ausbildung auch in anderen Mylonit-Vorkommen zu erwarten sein. Breite 9 cm.
Abb. 58: Feinkörniger gebänderter Gneis (Leptit). Aufnahme unter Wasser.
Abb. 59: Nahaufnahme der nassen Oberfläche. Die Grundmasse besteht aus einem gleichkörnigem Gefüge aus Quarz und Feldspat.
Abb. 60: Pegmatoide Quarz-Feldspat-Partie mit großen hellroten Granat-Porphyroblasten, wahrscheinlich Teil eines Leukosoms in einem Migmatit. Leg. Sebastian Mantei.
Abb. 61: Nahaufnahme des Granats, durchsetzt von schwarzer Hornblende.

Sedimentärgeschiebe

In Nienhagen finden sich sehr viele Feuersteine. Günstig scheinen die Fundmöglichkeiten für Lias-Geschiebe (Toneisensteine mit Pflanzenresten) zu sein, weiterhin Kambrische Geschiebe (BUCHHOLZ 2011, HINZ-SCHALLREUTER & KOPPKA 1996), Stinkkalke, Silur-Geschiebe mit Graptolithen (MALETZ 1995, 1996) Gelegentlich kommen Roter Beyrichienkalk sowie Unterkreide-Geschiebe vor.

Abb. 62: „Rhät-Lias“-Geschiebe, Feinsandstein mit kohligen Pflanzenresten, leg. Sebastian Mantei.
Abb. 63: Grünliche Sandstein-Konkretion (wahrscheinlich Unterkreide) mit phosphorischem Zement sowie Holzresten.
Abb. 64: Bruchfläche.
Abb. 65: Trias-Konglomerat („Caliche-Konglomerat“). Bunte Mergelklasten in einem sparitischen Zement. Leg. Georg Engelhardt (Potsdam).
Abb. 66: Bruchfläche.
Abb. 67: Nahaufnahme der Bruchfläche.
Abb. 68: Roter Beyrichienkalk, Aufnahme unter Wasser.
Abb. 69: Knolliger Dolomit mit Dolomit-Drusen.
Abb. 70: Druse mit würfelförmigen Dolomit-Kristallen. Der Nachweis von Dolomit gelingt mit verdünnter Salzsäure: Dolomit zeigt nur eine sehr schwache Reaktion unter Bildung von CO2-Bläschen.
Abb. 71: Sandstein-Konglomerat mit phosphoritisch gebundenen Klasten, Breite 13 cm.

Nach einem Hinweis von S. Mantei handelt es sich bei diesem Konglomerat nicht etwa um den unterkambrischen Rispeberg-Sandstein, vielmehr sprechen enthaltene Trilobitenreste von Agnostus pisiformis für das obere Mittelkambrium. Dies ist ungewöhnlich, da eine sandige Fazies in der A. pisiformis-Zone in der Literatur bisher nicht beschrieben wurde. Von hier bekannt sind entweder (Stink-)kalkige Konglomerate mit oder sandige Konglomerate ohne A. pisiformis.

Abb. 72: Steilufer und Geröllstrand bei Nienhagen.

Literatur

SCHULZ W & PETERSS K 1989 Geologische Verhältnisse im Steiluferbereich des
Fischlandes sowie zwischen Stoltera und Kühlungsborn – In: Mitteilungen der
Forschungsanstalt für Schiffahrt, Wasser- und Grundbau; Schriftenreihe Wasser- und
Grundbau 54. Berlin: Forschungsanstalt für Schiffahrt, Wasser- und Grundbau. S. 132-148.

BUCHHOLZ A 2011 Ein Geschiebe des A[ht]iella jentzschi-Konglomerates von Nienhagen, Mecklenburg (Norddeutschland) – Mitteilungen der Naturforschenden Gesellschaft Mecklenburg 11 (1): 24-30, 14 Abb., Ludwigslust.

BÜLOW K VON 1937 Grundmoränenbilder – Zeitschrift für Geschiebeforschung und Flachlandsgeologie 13 (1): 5-8, 3 Abb., Leipzig.

GEINITZ E 1910 Das Uferprofil des Fischlandes – Mitteilungen aus der Großherzoglichen Mecklenburgischen Geologischen Landesanstalt 21: 11 S., 11 Taf., Rostock (Leopold i. Komm.).

HINZ-SCHALLREUTER I & KOPPKA J 1996 Die Ostrakodenfauna eines mittelkambrischen Geschiebes von Nienhagen (Mecklenburg) [The Ostracod Fauna of a Middle Cambrian Geschiebe from Nienhagen (Mecklenburg)] – Archiv für Geschiebekunde 2 (1): 27-42, 5 Taf., Hamburg.

KLAFAK R 1996 Bericht über die Exkursion zur Steilküste Nienhagen – Geschiebekunde aktuell 12 (2): 61, Hamburg.

MALETZ J 1995 Dicranograptus clingani in einem Geschiebe von Nienhagen (Mecklenburg) – Geschiebekunde aktuell 11 (2): 33-36, 2 Abb., Hamburg.

MALETZ J 1996 Saetograptus cf. leintwardinensis in einem Geschiebe von Nienhagen – Geschiebekunde aktuell 12 (4): 111-116, 2 Abb., Hamburg.

PETERSS K 1990 Strukturtektonische Untersuchungen glazigener Sedimente im Raum Stoltera-Kühlung – Zeitschrift für geologische Wissenschaften 18 (12): 1093-1103, 10 Abb., Berlin (Verlag für Geowissenschaften).

Skarn

  1. Allgemeines
  2. Vorkommen
  3. Entstehung von Skarnen
  4. Das Skarnvorkommen von Sunnerskog
  5. Literatur

Skarne sind metasomatisch gebildete Gesteine. Als Metasomatose bezeichnet man eine Gesteinsumwandlung unter maßgeblicher Beteiligung von Fluiden. Sie unterscheidet sich von der dynamischen Metamorphose, der Gesteinsumwandlung durch geänderte Temperatur- und Druckbedingungen, bei der Fluide nur in kleiner Menge mobilisiert werden und die Summe der chemischen Komponenten weitgehend erhalten bleibt (sog. isochemische Metamorphose). Die Metasomatose hingegen führt zu einer durchgreifenden Änderung der chemischen Zusammensetzung der Ausgangsgesteine durch einen anhaltenden Zu- und Abfluss von Ionen, z. B. zwischen subduzierten Kalksteinen und einem aufsteigenden Granitpluton. Im sedimentären Ausgangsgestein kommt es zur Bildung von Silikatmineralen. Die Gesteinsumwandlung ist von zahlreichen Variablen abhängig, daher sind Skarne eine sehr heterogene Gesteinsgruppe mit einer Vielfalt möglicher Mineralparagenesen. Häufig sind Skarne mit Ca-reichen Silikaten, z. B. Gesteine mit einer ungewöhnlichen Kombination aus rotem oder braunem Granat und grünem Pyroxen.

Abb. 1: Grobkörniger Skarn aus weißem Kalkspat, transparentem Quarz, grünem Ca-Pyroxen (Diopsid bis Hedenbergit) und hellgrünem Epidot. Anstehendprobe von Sunnerskog in Smaland.
Abb. 2: Nahaufnahme des Gefüges.

Gesteine aus Skarn-Vorkommen dürften als Geschiebe nur im Ausnahmefall erkennbar sein, u. a. weil sie in Erscheinungsbild und Zusammensetzung den metamorphen Äquivalenten (Marmor, Kalksilikatgesteine) ähneln. Einigermaßen sicher als Skarn identifizierbar sind grobkörnige Gesteine mit charakteristischen Paragenesen aus Granat und/oder grünem Pyroxen, optional mit hellgrünem Epidot, Calcit und Quarz (Abb. 3). Da Pyroxen leicht zur Verwitterung neigt, sind solche Geschiebe möglicherweise wenig erhaltungsfähig. Der Fund eines Skarn-Geschiebes wird in Böse & Ehmke 1996 genannt. Ries 2005 diskutiert den Fund eines Ce-Orthit-haltigen quarzitischen Skarns.

Abb. 3: Geschiebefund eines Pyroxen-Skarns. Das Gestein besteht fast ausschließlich aus grünem Pyroxen sowie etwas Calcit. Der rote Pfeil verweist auf ein nicht identifiziertes Mineralkorn (Fundort: Berlin-Buch, H. Müller leg. am 12.09.1935. Geschiebesammlung der FU Berlin Lankwitz).

Vorkommen

Im nordischen Grundgebirge, vor allem in Mittelschweden, gibt es eine Vielzahl von Skarn-Vorkommen. Die meisten besitzen nur eine kleinräumige Ausdehnung, einige sind als Erzlagerstätte bedeutend. Im wichtigsten schwedischen Vorkommen in Falun (Dalarna) werden Skarne mit einer Cu-Zn-Ag-Au-Pb-Vererzung abgebaut. Der Begriff Skarn wird gelegentlich etwas weiter gefasst, zumal metasomatische und metamorphe Prozesse in relativer Nachbarschaft ablaufen können. So bezeichnen manche schwedische Geologen Einschaltungen von metamorphen Kalksilikatgesteinen in Marmorvorkommen als „Skarngneis“ (siehe Abb. 15 im Artikel „Marmorvorkommen in Mittelschweden“).

Entstehung von Skarnen

Kalksteine, Dolomite oder karbonathaltige Sedimentgesteine können durch Subduktion unter eine kontinentale Kruste in die Nähe von Intrusivkörpern gelangen. Das Karbonatgestein wird durch einen aufsteigenden Pluton, z. B. einen Granit-Pluton, zunächst nur kontaktmetamorph verändert (Bildung von Marmor oder Kalksilikatgesteinen). Unter bestimmten Bedingungen kann sich ein Stoffaustausch von Fluiden (Metasomatose), im weiteren Verlauf eine regelrechte Fluidkonvektion zwischen beiden Systemen entwickeln. Dabei werden fortwährend Wasser und CO2 aus den Kalksteinen sowie Fluide und Volatile (Cl, F) aus dem Plutonit mobilisiert. Die aggressiven Fluide transportieren Fe-, Ca- und Si-Ionen, aber auch Cu und andere Buntmetalle in gelöster Form und führen zu einer durchgreifenden Veränderung der Gesteine. Grad der Umwandlung und Mineralneubildungen sind abhängig von Temperatur, Druck und den variablen Fluidphasen. In der Nähe zum Intrusivkontakt können sehr grobkörnige Skarne entstehen. Mit zunehmendem Abstand zum Kontakt verändert sich die Zusammensetzung der Mineralgemeinschaft (z. B. Granat proximal, Pyroxen distal).

Das umgewandelte Sedimentgestein wird als Exoskarn, das veränderte magmatische Intrusivgestein als Endoskarn bezeichnet. Nach Wimmenauer 1985 sind die meisten Skarne Exoskarne und treten „im unmittelbaren Kontaktbereich bis in Entfernungen von mehreren hundert Metern vom Intrusivgestein“ auf. Als Neubildungen finden sich vor allem Ca-haltige Silikate wie Wollastonit Ca3[Si3O9], Ca-Fe-Mg-Pyroxene (Diopsid CaMg[Si2O6] bis Hedenbergit CaFe[Si2O6]), Granat (Grossular Ca3Al2[SiO4] und Andradit Ca3Fe2[SiO4]3), Ca-Amphibole, Vesuvian, Epidot, Scheelit sowie evtl. Erze und weitere Minerale.

Das Skarnvorkommen von Sunnerskog

Das Skarnvorkommen von Sunnerskog liegt etwa 6 km südöstlich von Holsbybrunn in Smaland (57.40679, 15.22564). Hier wurde periodisch vom 17. Jahrhundert bis 1894 ein Exoskarn mit einer Cu-(W-Mo)-Vererzung abgebaut. An der alten Grube befindet sich unterhalb des Hanges auf der gegenüberliegenden Straßenseite eine Halde mit bunten Skarn-Gesteinen.

Abb. 4: Grubensohle der Skarngrube Sunnerskog.

Die Grube liegt im etwa 1,8 Ga alten Oskarshamn-Jönköping-Gürtel (OJB), einer svekofennischen Exklave innerhalb der etwas jüngeren Gesteine des Transkandinavischen Magmatitgürtels (TIB). Der Skarn von Sunnerskog entstand durch Metasomatose von Kalksteinen und kieselig-kalkigen Sedimenten in der Nähe einer Granitintrusion. Auf den Halden und an der Grube lassen sich Gesteinsproben mit unterschiedlichen Graden von metasomatischer Umwandlung aufsammeln:

  • von Neubildungen augenscheinlich freie Metasedimente (Abb. 6),
  • quarzitische Metasedimente, mit oder ohne Granat und Pyroxen (Abb. 8),
  • mittelkörnige Skarne aus Calcit, Quarz, rotem Granat, grünem bis schwarzgrünem Pyroxen und hellgrünem Epidot,
  • grobkörnige Skarne aus Pyroxen und/oder Granat (Abb. 12, 15).

Auch die bereits angeführte Zonierung von Mineralgesellschaften, abhängig vom Abstand zum Intrusivkontakt, spiegelt sich an den Haldenfunden wieder. Manche Gesteine sind ausgesprochen grobkörnig, enthalten nur grünen Pyroxen (distaler Intrusivkontakt, Abb. 1), beide Minerale (Abb. 15) oder nur Granat (proximal, Abb. 10). Gesteinsbildende Minerale an der Lokalität Sunnerskog sind weißer Calcit, roter bis brauner Granat, grüner bis schwarzgrüner Pyroxen, Epidot (hellgrün), Quarz (milchig weiß bis klar) sowie evtl. Wollastonit (Abb. 11). In einigen Proben fanden sich spärliche Butzen mit Erzmineralen (Cu-Sulfide). Eine Untersuchung aller Proben auf Wolfram-Minerale (Scheelit, Ca[WO4], orange Fluoreszenz unter niederwelligem UV-Licht) verlief negativ.

Abb. 5: Ausschnitt aus dem geologischen Kartenblatt Vetlanda SV (Quelle: SGU, s. a. Persson 1989). Hellblau sind die Metasedimente der Vetlanda-Formation (tuffitische Arenite/ Metagrauwacken mit Einschaltungen von phyllitischem Glimmerschiefer mit Muskovit und Biotit). Die hellbraune Signatur mit schwarzen Punkten sind Granite des OJB.
Abb. 6: Feinkörniges, dem Augenschein nach kaum verändertes Nebengestein (Meta-Tuffit oder Meta-Grauwacke) von der Halde am Schacht. Lediglich eine leichte Grünfärbung weist auf eine niedrig metamorphe oder metasomatische Überprägung hin. Verdünnte Salzsäure zeigt keine Reaktion.
Abb. 7: Ein häufiger Haldenfund sind quarzitische Kalksilikatgesteine mit scherbiger Bruchfläche. Das Gestein besteht im Wesentlichen aus Quarz und enthält geringe Mengen roter und grüner Ca-Silikate (Granat, Pyroxen).
Abb. 8: Schnittfläche einer ähnlichen Probe (E. Figaj leg.), Aufnahme unter Wasser. Quarzitisches Gestein mit Bändern von Silikatmineralen: roter Granat, schwarzgrüner Pyroxen und hellgrüner Epidot.
Abb. 9: Hellgrüner Epidot, dunkelgrüner Pyroxen und etwas roter Granat im Kontakt zu einem feinkörnigen und rötlichen Nebengestein (Metasediment, ähnlich der Grauwacke in Abb. 6).
Abb. 10: Gebänderter Skarn. Das Gestein besteht im Wesentlichen aus feinkörnigem Calcit und wird von einigen kleinen Quarzadern durchzogen. Die hellbraunen und roten Färbungen sind feinkörnige Einlagerungen von Silikatmineralen, z. B. Granat.
Abb. 11: Gleicher Stein, Nahaufnahme. An der Grenze zwischen Kalkstein und einer Partie aus transparentem Quarz sind farblose und radialstrahlige Kristallnadeln erkennbar, vermutlich Wollastonit. Die Umwandlung von Calciumkarbonat (CaCO3) + SiO2-Phase zu Wollastonit (CaSiO3) + CO2 ist das klassische Beispiel einer metasomatischen Mineralneubildung.
Abb. 12: Grobkörniger bunter Skarn, Breite 15 cm. Links eine Partie aus massigem und derbem Granat, auf der rechten Seite größere, teilweise annähernd sechseckige Aggregate von Granat in Calcit, der durch Einschlüsse von Silikatmineralen hellgrün gefärbt ist. Die feinkörnigen apfelgrünen Anflüge dürften ein Mineral der Epidotgruppe sein.
Abb. 13: Idiomorpher brauner Granat (Grossular) in Calcit.
Abb. 14: Skarn aus grün pigmentiertem Calcit und einem Erzmineral mit metallischem Glanz, wahrscheinlich Chalcosin (wichtigstes Kupfermineral in Sunnerskog).
Abb. 15: Grobkörniger Skarn aus grünem Pyroxen und rotem Granat sowie etwas Quarz und Epidot.
Abb. 16: Pyroxen-Megakristall in einem grobkörnigen Pyroxen-Granat-Skarn. Granat füllt die Zwickel zwischen den großen Pyroxen-Kristallen. Aufnahme unter Wasser.
Abb. 17: Bruchstück eines großen Pyroxen-Einkristalls. Gut erkennbar sind die deutliche Spaltbarkeit und die typischen Spaltwinkel von etwa 90º.

Literatur

Ausführliche Informationen sowie ein umfangreiches Literaturverzeichnis über Skarn finden sich auf science.smith.edu sowie auf wikipedia.de und mineralienatlas.de.

Böse M & Ehmke G 1996 Geotope und ihre Unterschutzstellung in Berlin – Brandenburgische Geowissenschaftliche Blätter 3 (1): 155-159, 2 Tab., Kleinmachnow.

Persson L 1989 Beskrivning till berggrundskartorna 1 : 50000 – Vetlanda SV och SO  – Sveriges Geologiska Undersökning (Af) 170+171: 130 S., Uppsala.

Ries G 2005 Ein Cer-Orthit-haltiger Quarzit als Geschiebe – Geschiebekunde aktuell 21 (1): 29-30, 2 Abb., 1 Tab., Hamburg / Greifswald.

Wimmenauer W 1985 Petrographie magmatischer und metamorpher Gesteine; 297 Abb., 106 Tab., Enke-Verlag, Stuttgart.

Vislanda-Granit

Die Bezeichnung Vislanda-Granit ist nur in der Geschiebekunde gebräuchlich und kann für klein- bis mittelkörnige Småland-Granite vom Växjö-Typ mit überwiegend zuckerkörnig ausgebildetem Quarz verwendet werden. Granite dieses Typs kommen wahrscheinlich an mehreren Lokalitäten innerhalb des Transskandinavischen Magmatitgürtels vor und sind nicht als Leitgeschiebe geeignet.

Abb. 1: Blassroter und mittelkörniger Smaland-Granit vom Vislanda-Typ (Steinbruch 211, westlich von Påskallavik; 57.16605, 16.43578).

Beschreibung nach Hesemann 1975 und Zandstra 1988: 283 (nicht in Zandstra 1999, s. a. skan-kristallin.de): Geschiebe vom Vislanda-Typ sehen rot-weiß gefleckt aus. Der weiße bis blauweiße und feinkörnig granulierte („zuckerkörnige“) Quarz bildet eine Masse zwischen blass- bis sattroten Alkalifeldspäten, die eine Länge von 3-5 mm erreichen. Auch die Alkalifeldspäte sind intensiv zerbrochen und zeigen keine klaren Umrisse. Gelegentlich lassen sich einzelne größere Körner von Blauquarz entdecken. Plagioklas, auf der Außenseite von Geschieben weiß getönt, kann in größerer Menge vorkommen und ist auf der Bruchfläche kaum identifizierbar. Dunkle Minerale finden sich nur untergeordnet.

Zuckerkörniger Quarz entsteht durch mäßige tektonische Einwirkung auf den bereits vollständig erstarrten Plutonit in den oberen Bereichen der Erdkruste. Dabei können Feldspäte zerbrochen und der Quarz zu einer zuckerkörnigen Masse granuliert werden (Abb. 2), ohne dass es zu einer erkennbaren Einregelung der Mineralbestandteile kommt („Gneisgranit“). Kleine Mengen an granuliertem Quarz finden sich als feinkörniger Saum um größere Mineralkörner in vielen Småland-Graniten (Abb. 6-8). Vollständig granulierte Quarze (Vislanda-Typ) sind eher selten. Die winzigen glitzernden Bruchflächen von gleichmäßig-feinkörnigem und zerdrücktem Quarz erkennt man am besten auf einer frischen Bruchfläche, da auf angeschlagenen Geröll-Oberflächen auch kompakte Quarze zuckerkörnig aussehen können. Im Bruch zeigen die kompakten Quarze dann einen muscheligen Bruch. Ein weiterer Typ Småland-Granit mit überwiegend zerdrückten Quarzaggregaten ist der Älö-Granit (Zandstra 1988: 280).

Nach einer mündlichen Mitteilung von A. P. Meyer (Berlin) ist die namensgebende Lokalität für den Vislanda-Granit nicht der gleichnamige Ort in Südschweden, sondern ein kleines Gehöft bei Påskallavik, das vor etwa 100 Jahren Vislanda hieß. Bei einem Besuch in diesem Gebiet wurde das Gehöft zwar nicht ausfindig gemacht. Westlich von Påskallavik konnte der Vislanda-Gesteinstyp aber bei einem Besuch der Steinbrüche 210-213 (beschrieben in Bruun et al 2005) zweimal beprobt werden (Steinbrüche 211 und 212).

Abb. 2: Nahaufnahme der trockenen Bruchfläche mit reichlich zuckerkörnigem Quarz.
Abb. 3: Nahaufnahme der angefeuchteten Bruchfläche. Auch der rote Alkalifeldspat ist kräftig deformiert und zeigt undeutliche Korngrenzen.
Abb. 4: Aufnahme unter Wasser. Quarz und Feldspat lassen keine Einregelung erkennen. Lediglich die wenigen dunklen Glimmerminerale besitzen eine Vorzugsrichtung.
Abb. 5: Nahaufnahme unter Wasser: die Quarze besitzen eine schwach bläuliche Farbe, helle Feldspatkörner sind Plagioklas.

Etwa 250 m Luftlinie vom ersten Steinbruch entfernt gibt es einen weiteren Aufschluss (Steinbruch 210; 57.16876, 16.43418). Hier steht ein gleichkörniger Blauquarz-Granit vom Växjö-Typ an, in dem nur ein kleinerer Teil der Quarze granuliert ist (kein Vislanda-Typ).

Abb. 6: Småland-Granit vom Växjö-Typ („Tuna-Granit“) mit Blauquarz, anteilig mit zuckerkörnigem Quarz (Steinbruch 210, westlich von Påskallavik).
Abb. 7: Gleicher Stein, Aufnahme unter Wasser.
Abb. 8: Gleicher Stein, Nahaufnahme der nassen Bruchfläche.
Abb. 9: Vislanda-Granit, Geschiebefund eines hellen Alkalifeldspat-Granits mit reichlich zuckerkörnigem Quarz und wenig dunklen Mineralen (Kiesgrube Tegel, Berlin; A. P. Meyer leg. und det.).

Literatur

Bruun Å, Kornfält K-A, Sundberg A. Wik N-G, Wikman H, Wikström A 2005 Beskrivning till regional berggrundskarta över Kalmar län – SGU Ba 66, 50 S., Sveriges Geologiska Undersökning (SGU), Uppsala.

Hesemann J 1975 Kristalline Geschiebe der nordischen Vereisungen – GLA Nordrhein-Westfalen.

Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).

Siljan-Granit

Der Siljan-Granit stammt aus der Region um den Siljansee in Mittelschweden (Dalarna). Als Leitgeschiebe gelten gleichkörnige und quarzreiche Varianten mit roten und gelblichen Feldspäten. Allerdings gibt es sehr ähnliche Granite im südlicher gelegenen Småland. Da die Gesteine hier weit verbreitet sind, könnte ein größerer Teil der rot-gelben Granit-Geschiebe aus Småland stammen.

Die Unterscheidung bunter Småland-Granite vom anorogenen Siljan-Granit ist anspruchsvoll. Bei der Bestimmung von Geschieben muss die Ausbildung der Quarze genau geprüft und auf Deformationen geachtet werden. Der Artikel Siljan-Granit und seine Doppelgänger in Småland enthält eine ausführliche Beschreibung jener Varianten des Siljan-Granits, die als Leitgeschiebe verwendbar sind. Insgesamt liegen aber zu wenig Anstehendproben für eine abschließende Beurteilung vor. Weiterhin werden Nahgeschiebe und Anstehendproben aus dem nördlichen Småland gezeigt sowie eine Reihe von Geschiebefunden untersucht.

Siljan-Granit, Anstehendprobe von Dala-Floda (© Sveriges geologiska undersökning; Foto: H. Wilske, skan-kristallin.de).
Gleichkörniger Småland-Granit vom Typ „Bunter Växjö„, loser Stein aus einem Straßenanschnitt nordöstlich von Eksjö / Småland.
Geschiebefund aus der Kiesgrube Niederlehme bei Berlin. Das Fehlen von Deformationen und die transparenten und hypidiomorphen Quarzkörner sprechen für einen Siljan-Granit.