Archiv der Kategorie: Allgemein

Järeda-Granit

Abb. 1: Järeda-Granit mit blassrotem Alkalifeldspat und schlierigen Blauquarz-Aggregaten. Anstehendprobe aus einem Straßenaufschluss bei Järeda (S41), Aufnahme unter Wasser.

Nur wenige Gefügevarianten unter den Småland-Graniten lassen sich einem näheren Herkunftsgebiet zuordnen. Ein Leitgeschiebe für das mittlere Småland ist der Järeda-Granit (HOLST 1885, VINX 1999). Der grobkörnige Granit besteht im Wesentlichen aus Blauquarz und blassrotem bis graurotem Alkalifeldspat, wobei die Färbung im Handstück weitgehend einheitlich ist. Die Alkalifeldspäte sind von annähernd parallel verlaufenden, mit dunklen Mineralen verfüllten Rissen durchzogen, ein charakteristisches Erkennungsmerkmal des Järeda-Granits. Sie entstanden in Folge einer tektonischen Deformation, die sich auch insgesamt durch ein gerichtetes, manchmal fast gneisartiges Mineralgefüge („Gneisgranit“) äußert.

Alkalifeldspat erreicht eine Größe von 1 cm und ist undeutlich, teils augenförmig konturiert. Neben hellroten Farbtönen kommen auch gelblichbraune und klar rote Granite vor (Abb. 5). Quarz, meist milchig blau, seltener weiß oder hellgrau, bildet schlierige Aggregate und ist stellenweise zuckerkörnig ausgebildet. Plagioklas ist unauffällig und auf der Außenseite von Geschieben weiß. Er findet sich eingewachsen im Kalifeldspat, gelegentlich auch als partieller oder vollständiger Saum um einzelne Alkalifeldspäte (Abb. 6). Risse innerhalb der Alkalifeldspäte können zahlreich oder nur in einzelnen Individuen auftreten. Sie sind mit feinschuppigem Biotit verfüllt (VINX 2016). Teilweise lässt sich ein intensiver Glanz dieser dunklen Minerale auf der Bruchfläche beobachten, was auf zusätzlich enthaltene Hornblende hinweisen könnte. Darüber hinaus findet sich Biotit in kleineren Ansammlungen im Gestein.

Abb. 2: Die Nahaufnahme der Probe in Abb. 1 zeigt die feinen, subparallelen Risse innerhalb der Alkalifeldspäte und die trüben und xenomorphen Blauquarz-Aggregate.

Die in SMED & EHLERS 2002 verwendete Bezeichnung Mariannelund-Granit ist missverständlich. Das etwa 500 km2 große Järeda-Massiv liegt 20 km südlich davon, zwischen Järnforsen, Pauliström, Hultsfred und Målilla. Zudem kommen um Mariannelund andere Granite vor. Der Järeda-Granit ist ein häufiger Fund in Geschiebevergesellschaftungen mit viel SE-schwedischem Material. Verwechslungsmöglichkeiten mit anderen Småland-Graniten bestehen nicht. Allerdings treten Granite, in denen Alkalifeldspäte mit mafischen Mineralen gefüllte Risse aufweisen, vereinzelt auch an anderen Lokalitäten auf (Abb. 14).

Abb. 3: Das Massiv des Järeda-Granits im Westen von Kalmar län. Geologische Übersichtskarte, verändert nach WIK et al 2005.
Abb. 4: Järeda-Granit mit hellgrauem Quarz, Anstehendprobe (S113), Aufnahme unter Wasser.
Abb. 5: Roter Järeda-Granit vom nordwestlichen Rand des Järeda-Granitgebiets (See Linden). Bild und Probe T. Langmann.

Geschiebefunde

Abb. 6: Järeda-Granit, großer Block im Findlingslager Steinitz (Tagebau Welzow-Süd, Brandenburg).
Abb. 7: Järeda-Granit, Kiesgrube Teschendorf bei Oranienburg. Bildbreite 22 cm.
Abb. 8: Järeda-Granit; nur wenige Alkalifeldspäte sind von mafitgefüllten Rissen durchzogen. Kiesgrube Althüttendorf (Brandenburg). Breite 13 cm.
Abb. 9: Järeda-Granit mit rotem Alkalifeldspat vom Strand bei Misdroy (PL), Aufnahme unter Wasser.
Abb. 10: Järeda-Granit mit lebhaftem Blauquarz am Strand von Westermarkelsdorf/Fehmarn.
Abb. 11: Järeda-Granit, Kiesgrube Teschendorf bei Oranienburg, Breite 15 cm.
Abb. 12: Im Findlingsgarten Nochten befindet sich ein großer Block eines Järeda-Granits, der geschnitten, aber nicht poliert wurde.
Abb. 13: Erst nach dem Anfeuchten zeigt sich das charakteristische Gefüge. Bildbreite 14 cm.
Abb. 14: Mit Mafiten gefüllte Risse innerhalb der Alkalifeldspäte treten auch in Graniten aus anderen Gebieten auf. Detailaufnahme eines Nahgeschiebes aus Eldstorp (N Eksjö) im nördlichen Småland, nass fotografiert.

Probenverzeichnis

S41: Järeda-Granit, Straßenaufschluss an der Straße 47, 7 km E Järeda, 4 km WNW Mållila (57.39972, 15.71805).

S113: Järeda-Granit, Straßenaufschluss an der Strecke Kvillfors-Pauliström; 2,5 km N Kvillfors; T. Langmann leg. (57.42935, 15.49602).

Literatur

HOLST N O 1885 Beskrifning till kartbladet Hvetlanda. SGU. Ser Ab. N. 8. Stockholm.

SMED P & EHLERS 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage 2002.

VINX R 1999 Der Järeda-Granit als Leitgeschiebe: Ein roter Småland-Granit mit spezifischen Merkmalen [Järeda-Granite as Glacial Indicator: A Red Småland Granite with Specific Characteristics] – Archiv für Geschiebekunde 2 (9): 687-696, 3 Abb., 1 Tab., Hamburg.

WIK NG, BERGSTRÖM U, BRUUN A et al 2005 Berggrundskartan Kalmar län – 1:250 000, Sveriges geologiska undersökning serie Ba nr 66.

Einschlussführende Diabase

Abb. 1: Einschlussführender Diabas mit feinkörniger Grundmasse. Das Gestein enthält abgerundete Xenolithe von Alkalifeldspat und eckige Quarz-Feldspat-sowie Quarz-Fragmente. Polierte Schnittfläche eines Geschiebes aus der Kiesgrube Niederlehme bei Berlin.
AAbb. 2: Die runden Feldspäte sind stark alteriert, teilweise auch zoniert durch wechselnde Anteile dunkler Minerale, die vermutlich infolge von Reaktionen mit dem heißen basischen Magma entstanden.

1. Beschreibung
2. Anstehendproben
2.1. Brevik
2.2. Ålsarp
2.3. Björbo
2.4. Södregården
2.5. Forserum
2.6. Värlebo
3. Geschiebefunde
4. Lokalitäten
5. Literatur

1. Beschreibung

Beim Aufstieg basaltischer Magmen aus dem Erdmantel oder von der Mantel-Kruste-Grenze können Teile des Nebengesteins mitgerissen und als Einschlüsse im basischen Gestein konserviert werden. Im nordischen Grundgebirge und als Geschiebe sind solche „einschlussführenden Diabase“ weit verbreitet. Sie besitzen eine feinkörnige oder doleritische, selten auch für das bloße Auge dicht erscheinende und mittel- bis dunkelgraue, manchmal auch etwas grünliche Grundmasse.

Menge, Art und Größe der Xenolithe (Gesteinsfragmente oder Einzelkristalle) sind variabel. Abgerundete Einschlüsse weisen auf eine teilweise Assimilation durch das basische Magma hin, dessen Temperatur deutlich über dem Schmelzpunkt quarz- und feldspatreicher Gesteine liegt. Runde Einschlüsse führten in der Vergangenheit wahrscheinlich zu der unglücklichen Bezeichnung „Gerölldiabas“. Nur in wenigen Fällen dürfte es sich tatsächlich um Geröll-Horizonte handeln, die in eine basaltische Schmelze eingetragen wurden.

Einschlussführende Diabase können monomikt (nur eine Gesteinsart als Fremdeinschluss) oder oligomikt/polymikt (mehrere Gesteinsarten) zusammengesetzt sein. Als Einschluss finden sich Plutonite und Gneise aller Art, Sandsteine und Quarzite (bzw. durch den Kontakt zum heißen basaischen Magma in Quarzite umgewandelte Sandsteine) sowie einzelne Quarze und Feldspäte. Häufiger als Fremdgesteins-Einschlüsse in Diabasen ist übrigens das umgekehrte Phänomen zu beobachten: Xenolithe feinkörniger basaltischer Gesteine in basischen bis sauren Plutoniten (Abb. 3).

Abb. 3: Basische Xenolithe (Basaltoide, Gabbro) in einem dioritischen Gestein. Kiesgrube Arendsee/Weggun, Brandenburg.

Die Geschiebekunde unterscheidet mehrere Typen einschlussführender Diabase: Björbo-Diabas, Brevik-Gerölldiabas und Ålsarp-Diabas. Neben diesen Typlokalitäten (Abb. 4) sind rund ein Dutzend weitere Vorkommen aus Blekinge, Mittelschweden (Grängesberg), von Bornholm sowie aus Norwegen und Finnland bekannt (HESEMANN 1975, KORN 1927, MEYER 1981, BARTOLOMÄUS & HERRENDORF 2003). Zu bedenken ist, dass einschlussführende Partien lokal begrenzt und ausschließlich in kleiner Ausdehnung innerhalb verschieden alter Gangschwärme in einem großen Gebiet zwischen Bornholm bis nach Dalarna auftreten. Die tatsächliche Anzahl der Vorkommen dürfte also bedeutend höher sein und es ist kaum möglich, spezifische Gesteinstypen mit einem begrenzten Herkunftsgebiet herauszustellen. Einschlussführende Diabase sind daher nicht als Leitgeschiebe geeignet. Dies gilt auch für den markanten Brevik-Typ mit Sandstein- bzw. Quarzit-Xenolithen (s. a. BARTOLOMÄUS & HERRENDORF 2003). Allenfalls eine grobe Typ-Bestimmung nach Art der Einschlüsse und/oder Beschaffenheit der Grundmasse ist möglich. So ähneln sich Björbo- und Alsarp-Typ hinsichtlich der Einschlüsse, der Ålsarp-Diabas besitzt eine ophitische, der Björbo-Diabas eine feinkörnige Grundmasse.

Abb. 4: Übersichtskarte einiger postorogener Diabas-Gangschwärme sowie im Text genannter Lokalitäten.

2. Anstehendproben

2.1. Brevik (West-Småland)

Abb. 5: „Brevik-Gerölldiabas“, Anstehendprobe, polierte Schnittfläche, Foto aus skan-kristallin.de.

Der „Brevik-Gerölldiabas“ enthält eckige bis schwach gerundete Einschlüsse von Sandsteinen sowie bis zu 10 % Granit- und Porphyr-Lithoklasten. Im Schwedischen heißt das Gestein diabaskonglomerat. Vorkommen dieses Gesteinstyps sind nicht auf das Gebiet von Brevik beschränkt (BARTOLOMÄUS & HERRENDORF 2003). Diabase dieses Typs haben Sandsteine jotnischen Alters (Lokalbezeichnung: Almesåkra-Sandstein) aufgenommen und besitzen „postjotnisches“ Alter (jünger als ca. 1.200 Millionen Jahre). Zur Zeit des Aufstiegs dieser basaltischen Magmen dürften die Sedimentgesteine der Almesåkra-Formation eine wesentlich größere Fläche eingenommen haben als heute, vgl. Anstehendprobe von Lokalität 2.4. (Abb. 11).

2.2. Ålsarp

Abb. 6: Alsarp-Diabas, Anstehendprobe mit polierter Schnittfläche, K.-D. Meyer leg., Foto aus skan-kristallin.de.

Der einschlussführende Ålsarp-Diabas besitzt eine ophitische Grundmasse und führt gerundete Xenolithe von roten Feldspäten. Für eine ausführliche Beschreibung und weitere Anstehendproben vgl. skan-kristallin.de und HESEMANN 1975:176. Der Besuch eines Straßenaufschlusses in der Nähe der Typlokalität Ålsarp in Ost-Småland (Lokalität 4) verlief eher enttäuschend, weil der anstehende Diabasgang keine Einschlüsse von runden Feldspäten enthielt. Lediglich der benachbarte Småland-Granit wies zahlreiche basische Xenolithe sowie unterschiedliche Stadien einer Vermengung mit basischen Gesteinen auf. Nach MEYER KD 1981 liegt der Aufschluss mit den einschlussführenden Partien 650 m weiter südwestlich (etwa 57.52943, 16.02641).

Abb. 7: Småland-Granit mit Diabas-Einschlüssen vom Straßenaufschluss bei Ålsarp. Breite des Abschlags ca. 15 cm.
Abb. 8: Anstehender Småland-Monzogranit mit teilweise assimilierten Diabas-Xenolithen (dunkle und feinkörnige Partien); Aufnahme unter Wasser.

2.3. Björbo

Abb. 9: Björbo-Diabas aus Dalarna (4 km westlich von Björbo, K.-D. Meyer leg.) , Foto aus skan-kristallin.de.

Der Björbo-Diabas besitzt eine feinkörnige bis dichte Grundmasse und enthält runde und eigentümlich korrodierte Xenolithe aus rotem Feldspat. Quarz fehlt in dieser Probe, kann aber in Diabasen dieses Typs zusätzlich enthalten sein. Beschreibung eines Aufschlusses in MEYER 1981.

2.4. Södregården

Nördlich von Växjö wurde ein Diabasgang mit einer ungewöhnlichen Kombination von Einschlüssen aus Anorthosit und Sandstein/Quarzit beprobt (Lokalität 1). Nach WIKMAN 2000 (Kartenblatt Växjö NO, SGU) existieren in diesem Gebiet weitere Aufschlüsse mit ähnlichen Gesteinen.

Abb. 10: Große Anorthosit-Xenolithe und quarzitartige Einschlüsse in einem Diabas an der Lokalität Södregården. Bildbreite 30 cm.
Abb. 11: Probe aus dem gleichen Aufschluss; Bruchfläche eines feinkörnigen Diabas mit doleritischem Gefüge sowie milchig-trüben Quarz-Einschlüssen. Aufnahme unter Wasser.

Die Xenolithe in Abb. 11 sind Sandsteine der Almesåkra-Formation, die bei der Aufnahme in das basaltische Magma in Quarzit umgewandelt wurden. Die in etwa zeitlich mit dem jotnischen Sandstein gebildeten Sedimentite der Almesåkra-Formation dürften einst ein wesentlich größeres Gebiet eingenommen haben, weil sie in einschlussführenden Diabasen weit außerhalb ihrer heutigen Verbreitung gefunden wurden. Die Lokalität Södregården liegt über 40 km südlich davon.

2.5. Forserum

In der Nähe der Lokalität Brevik fand sich ein einschlussführender Diabas mit gerundeten Feldspat-Xenolithen im Kontakt zu einem Småland-Granit (Lokalität 2). Es war nicht erkennbar, ob es sich dabei um die Grenze zu einem basischen Gang oder einen Xenolith im Granit handelt.

Abb. 12: Einschlussführender Diabas im Småland-Granit (Lokalität 2).

2.6. Värlebo

Einige Vorkommen von Gangporphyren im östlichen Småland werden von Diabasen begleitet, die den gleichen Aufstiegsweg nutzten und bevorzugt an den Flanken der sauren Gänge auftreten (bimodaler Magmatismus). Im Kontakt zu einem Påskallavik-Porphyr fand sich in der Nähe der Ortschaft Värlebo ein grüner Diabas, der gerundete Feldspäte und Blauquarz als Xenolithe führt (Lokalität 3).

Abb. 13: Graugrüner Diabas mit runden Einschlüssen von Feldspat und Blauquarz, die aus dem benachbarten Påskallavik-Porphyr stammen. Aufnahme unter Wasser.
Abb. 14: Gleicher Stein, nasse Bruchfläche.

3. Geschiebefunde

Einschlussführende Diabase vom Brevik-Typ fallen manchmal durch ihr eigentümliches Verwitterungsverhalten auf: die quarzitischen Xenolithe widerstehen der Verwitterung stärker als das basische Gestein und treten als Relief auf der Geschiebeoberfläche hervor.

Abb. 15: Einschlussführender Diabas, Typ Brevik, trocken fotografiert, Geschiebe von den Spargelfeldern bei Schlunkendorf (S Potsdam), Slg. D. Lüttich.
Abb. 16: Nahaufnahme der quarzitischen Klasten.
Abb. 17: Brevik-Typ, nass fotografiert, Kiesgrube Hohensaaten (Brandenburg), Breite 19 cm.
Abb. 18: Einschlussführender Diabas, Brevik-Typ, Geschiebefund mit polierter Schnittfläche. Die feinkörnige, graue und basaltartige Matrix führt eckige bis schwach gerundete Einschlüsse von Sandstein und ist leicht magnetisch, der Sandstein nicht. Fundort: Kiesgrube Fresdorfer Heide bei Potsdam, leg. G. Engelhardt.
Abb. 19: Nahaufnahme. Auffällig sind die schwarzen Reaktionsränder um die Sandsteinfragmente, eine Folge mineralischer Veränderung des basaltischen Gesteins durch Stoffaustausch mit dem Sandstein (oder darin enthaltenen Fluiden), wahrscheinlich eine Umwandlung von Pyroxen in Amphibol.
Abb. 20: Einschlussführender Diabas, Björbo-Typ mit feinkörniger Grundmasse. Geschiebe aus der Kiesgrube Penkun bei Stettin, Aufnahme unter Wasser.
Abb. 21: Nahaufnahme, runde Einschlüsse mit orangerotem Alkalifeldspat, grauem Quarz und wenigen dunklen Mineralen.
Abb. 22: Einschlussführender Diabas, polierte Schnittfläche, Kiesgrube Niederlehme bei Berlin (D. Lüttich leg.).
Abb. 23: Runde und eckige Feldspäte sowie bläulichgraue Quarzkörner als Einschlüsse in einem feinkörnigen Diabas. Strandgeröll von Westermarkelsdorf, Fehmarn, Aufnahme unter Wasser.
Abb. 24: Grenze eines feinkörnigen basaltischen Gesteins zu einem Quarzporphyr, ähnlich dem Åland-Quarzporphyr. Mitten im Basalt befindet sich ein einzelnes Porphyr-Fragment. Während basische Xenolithe in Rapakiwi-Graniten, z. B. Granitporphyren, regelmäßig zu finden sind, kommen basaltische Gesteine mit Rapakiwi-Einschlüssen wesentlich seltener vor. Strandgeröll von Misdroy in Westpolen, Aufnahme unter Wasser.
Abb. 25: Einschlussführender Diabas aus der Kiesgrube Hohensaaten (Brandenburg), Aufnahme einer frischen Bruchfläche unter Wasser.

Das Gestein enthält runde Feldspat- und Blauquarz-Einschlüsse sowie feinkörnige basaltische Xenolithe. Die Einschlüsse, besonders gut erkennbar ist dies an den Quarzen, weisen einen dunklen Reaktionssaum auf. Solche Säume, wie sie auch vom Åland-„Ringquarzporphyr“ bekannt sind, weisen auf Mineralumwandlungen an der Grenzfläche zweier Minerale hin. In diesem Fall dürfte es sich um Pyroxen und Quarz handeln, die aus chemischer Sicht „Antagonisten“ sind und für gewöhnlich nicht nebeneinander existieren, sondern ein chemisches Gleichgewicht anstreben (Bildung von Hornblende, die dunklen Säume um die Quarze).

Abb. 26: Einschlussführender Diabas mit großen Alkalifeldspat-Xenokristallen und runden Blauquarzen. Kiesgrube Niederlehme bei Berlin.
Abb. 27: Einschlussführender Diabas, Großgeschiebe vom Rand des Tagebaus Welzow-Süd in Brandenburg, Höhe 90 cm.
Abb. 28: Das Gestein enthält schwach gerundete Fragmente von Gneisen, Graniten und quarzreichen Partien.
Abb. 29: Diabas mit Xenolithen bis 20 cm Größe. Einige der Xenolithe dürften Anorthosite sein, einige der größeren Feldspat-Xenokristalle wurden als Plagioklas bestimmt. Kiesgrube Hohensaaten, Breite des Steins 80 cm.
Abb. 30: Gleicher Stein, Feldspat-Megakristall von ca. 12 cm Länge.

Gelegentlich finden sich Geschiebe einschlussführender basischer Gesteine, die deutliche Spuren einer tektonischen und metamorphen Überprägung aufweisen (Abb. 31-34). Sie stammen mit Sicherheit nicht aus postorogenen Dolerit-Gangschwärmen (Abb. 4), sondern dürften bedeutend älter sein.

Abb. 31: Einschlussführender Metabasit, Kiesgrube Niederlehme, Aufnahme unter Wasser.
Abb. 32: Gleicher Stein, Detail der trockenen Geschiebeoberfläche.
Abb. 33: Einschlussführender Metabasit oder Metakonglomerat mit basischer Matrix und Lithoklasten basischer bis intermediärer Gesteine, Breite 50 cm, Tagebau Profen, ca. 20 km S Leipzig.
Abb. 34: Detailaufnahme der nassen Oberfläche.

4. Lokalitäten

Lokalität 1: Einschlussführender Diabas mit Anorthosit- und quarzitähnlichen Sandstein-Fragmenten; Diabasgang 850 m OSO Södregården, Kartenblatt Växjö NO; WGS84DD 57.20566, 14.73403.

Lokalität 2: Småland-Granit mit Partien einschlussführender Diabase; lose Steine vom Anstehenden am Wegesrand; Waldweg bei Olstorp, SW Forserum; 57.67967, 14.44153.

Lokalität 3: Einschlussführender Diabas im Kontakt zum Påskallavik-Porphyr; Bahnanschnitt 1 km NW des ehemaligen Bahnhofs Värlebo; 57.06050, 16.19424.

Lokalität 4: Diabasgang und Diabas-Xenolithe im Småland-Granit; Aufschluss an der Straße von Alsarp nach Sjunnarp (57.53253, 16.03591), Typlokalität liegt ca. 650 m weiter südwestlich (57.52943, 16.02641).

5. Literatur

BARTHOLOMÄUS WA & HERRENDORF G 2003 Ein großes Gerölldiabas-Geschiebe von Varel in Oldenburg – Geschiebekunde aktuell 19 (1): 1-15, 2 Taf., 6 Abb., 1 Tab., Hamburg / Greifswald.

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 8 Taf. (1 Taf. im Anh.), 44 Abb., 29 Tab., 1 Kte., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

KORN J 1927 Die wichtigsten Leitgeschiebe der nordischen kristallinen Gesteine im norddeutschen Flachlande ; Ein Führer für den Sammler kristalliner Geschiebe – VI+64 S., 48 farb. Abb. auf Taf. 1-6, 8 Farb-Ktn. auf Taf. 7-14, 1 Tab., Berlin (Preußische geologische Landesanstalt).

MEYER K-D 1981 Ein Vorkommen einschlußführender Diabase bei Björbo, 60 km WSW Falun, Dalarna / Mittelschweden – Der Geschiebesammler 15 (3): 93-98 (-106), 3 Taf., 3 Abb., Hamburg.

WIKMAN H 2000 Berggrundskartan 5E Växjö NO, skala 1:50 000. Sveriges geologiska undersökning Af 201.

Helsinkit

Abb. 1: Helsinkit-Geschiebe von Aluksne (Lettland), leg. O. Mellis. Sammlung Bennhold im Museum Fürstenwalde. Originalgestein zu MELLIS 1928.

Helsinkit ist eine Lokalbezeichnung für Albit-Epidot-Gesteine, die zuerst aus Finnland beschrieben wurden und dort an mehreren Lokalitäten vorkommen („Albit-Epidot-Pegmatit“ in LAITAKARI 1918; Analyse eines Gesteins von der Insel Suursaari in TRÖGER 1969). Helsinkit-Geschiebe finden sich verbreitet im Baltikum. Nach einem Fundbericht aus Lettland (MELLIS 1928) setzte in Deutschland eine rege Sammeltätigkeit und Diskussion der Gesteine ein (MELLIS 1931, 1932). Der Helsinkitbegriff wurde im Laufe der Zeit erweitert, dabei auch quarz- oder mikroklinführende Gesteine einbezogen. Aus petrographischer Sicht ist die Bezeichnung heute veraltet. In LE MAITRE 2004 werden sie als magmatische Gesteine klassifiziert, in FETTES & DESMONS 2007 nicht erwähnt.

Abb. 2: Nahaufnahme: weißer Feldspat bis 5 mm, umgeben von einer rotbraunen und feinkörnigen Matrix; Quarz fehlt.

Nach HYTÖNEN 1980: 26 ist Helsinkit ein mittel- bis grobkörniges, manchmal auch pegmatitisches Gestein aus größeren weißen bis hell rosafarbenen Albit-Kristallen (5 mm – 2 cm) und einer feinkörnigen und rot- bis violettbraunen Matrix aus Epidot. Als Nebengemengteile können Mikroklin, Quarz, Chlorit und Biotit auftreten. Das Gefüge der Albit-Kristalle ist mehr oder weniger kataklastisch (zerbrochene Feldspäte, unregelmäßige Formen), meist ungleichkörnig, bisweilen auch gneisig. Durch Hämatit rotbraun gefärbter Epidot bildet die Füllmasse in den Zwickeln. Helsinkit entsteht bei Metamorphose bei tiefen Temperaturen und Metasomatose, im Zusammenhang mit der Bewegung von Krustenblöcken.

Bei der Bestimmung von Geschieben ist zu bedenken, dass weder der Feldspat als Albit (Na-Plagioklas) ein ggf. vorhandener zweiter Feldspat als Mikroklin, noch die feine Grundmasse als Epidot von Hand sicher bestimmbar sind. Die handliche und kurze, zudem veraltete Bezeichnung Helsinkit wird allein wegen der Ähnlichkeit hinsichtlich Gefüge und Farbe mit den finnischen Gesteinen verwendet. Zwei Helsinkit-Geschiebe beschreiben MEYER K-D 1987 und BURGATH & MEYER 1989.

Helsinkit-Geschiebe lassen sich keiner näheren Herkunft zuordnen. Sie scheinen bevorzugt in ostschwedisch-baltischen Geschiebegemeinschaften aufzutreten und stammen zum größten Teil nicht aus Finnland. Es ist mit zahlreichen und weit verstreuten Vorkommen im gesamten nordischen Grundgebirge zu rechnen, insbesondere am Grund der Ostsee (Geschiebe auf Öland, Abb. 8). Auf die Leitgeschiebe-Problematik weist bereits MELLIS 1925 hin, trotz weitgehender Übereinstimmungen von Geschiebefunden mit finnschen Anstehendproben. Abb. 1-10 zeigt „typische“ Helsinkit-Geschiebe, Abb. 11-14 Funde mit etwas abweichenden Merkmalen.

Abb. 3: Helsinkit-Geschiebe, Kiesgrube Teschendorf bei Oranienburg, Breite 17 cm.
Abb. 4: Nahaufnahme der nassen Oberfläche.
Abb. 5: Polierte Schnittfläche. Stellenweise ist etwas grüner Epidot erkennbar.
Abb. 6: Relativ gleichkörniges Helsinkit-Geschiebe, Breite 9,5 cm, Kiesgrube Hoppegarten bei Müncheberg.
Abb. 7: Kleines Helsinkit-Geschiebe mit etwas hellgrünem Epidot. Kiesgrube Althüttendorf (Brandenburg), Aufnahme unter Wasser.
Abb. 8: Quarzführender Helsinkit; Geschiebefund aus Schweden, Geröllstrand bei Eskilslund, NW-Öland.
Abb. 9: Ungleichkörniger Helsinkit mit rot- bis violettbraunen Sekundärmineralen, Aufnahme unter Wasser; Kiesgrube Buchholz bei Prenzlau.
Abb. 10: Grobkörniges, quarzfreies und helsinkitartiges Gestein mit aplitischer Partie (unten). Strandgeröll von Gdynia (PL), nass fotografiert.

Abb. 11-13 ist ein gleichkörniger Metasomatit, ähnlich dem Helsinkit, aus weißem bis cremefarbenem, teils transparentem Feldspat und einer feinkörnigen rosa Matrix. Die gelbe Farbe ist nur auf der verwitterten Außenseite zu sehen. Keilförmige Umrisse einiger gelber Mineralkörner sprechen für (alterierten) Titanit. Die Feldspäte scheinen teilweise perthitische Entmischung aufzuweisen (kein Albit).

Abb. 11: Helsinkit?, Kiesgrube Waddeweitz/Kröte (Wendland, Niedersachsen), Aufnahme unter Wasser.
Abb. 12: Polierte Schnittfläche
Abb. 13: Nahaufnahme; epidotisierte Mineralkörner (Chlorit?), etwas Quarz in den Zwickeln zwischen den Feldspäten.
Abb. 14: Alteriertes granitoides Gestein, Kiesgrube Oderberg-Bralitz (Brandenburg), Aufnahme unter Wasser.

Die roten Feldspäte sind teilweise Karlsbader Zwillinge und damit kein Albit, sondern Kalifeldspat. Das Gestein ist ein alteriertes granitoides Gestein (kein Helsinkit) mit einer feinkörnigen rotbraunen, wahrscheinlich größtenteils aus Epidot bestehenden Grundmasse.

Epidotisierte Granitoide

Abb. 15: Epidotisierter Granitoid („Helsinkit, schwedischer Typ“), Geschiebe aus einer Kiesgrube bei Fürstenwalde/Spree, leg. 10.9.1911 W. Bennhold (Sammlung im Museum Fürstenwalde); Nach MELLIS 1931 besteht das Gestein aus Mikroklin, Albit und Epidot sowie Spuren von Chlorit und Quarz.

Kein besonders seltener Geschiebefund sind grobkörnige, teilweise kataklastische granitoide Plutonite (augenscheinlich oft Quarzsyenite) aus rotem Alkalifeldspat und einer feinkörnigen Zwischenmasse aus grünem Epidot. Quarz fehlt oder tritt in wechselnden Mengen auf, meist ist auch etwas Chlorit enthalten. Solche Gesteine sind weit verbreitet, in Schweden, Finnland, Norwegen (MELLIS 1931) oder im Bohuslän-Gebiet (ASKLUND 1947: 74).

Es dürfte sich dabei nicht um metasomatische Bildungen im engeren Sinne handeln, da hydrothermale Überprägung im Randbereich von Plutonen regelmäßig zu beobachten ist. Kataklase schafft Wegbarkeiten für epidotreiche hydrothermale Fluide, die bei der hydrothermalen Zersetzung von Ca-Plagioklas entstehen und in den Zwickeln der von der Alteration nicht betroffenen Minerale (v. a. Kalifeldspat) zur Abscheidung kommen. Statt „metasomatischer Granit“ spricht man besser schlicht von einem epidotisierten, genauer: saussuritisierten Granit bzw. Granitoid. Als Saussuritisierung bezeichnet man die Alteration von Ca-Plagioklas in ein feinkörniges weißes, grünes oder graues Mineralgemisch aus Klinozoisit, Zoisit, Albit, Epidot und weiteren Mineralen (FETTES & DESMONS 2007:192). Welche Minerale in der feinkörnigen Zwischenmasse tatsächlich vorhanden sind, ließe sich nur durch genauere Untersuchungen zu klären. Eine hellgrüne Färbung spricht für einen signifikanten Epidot-Anteil.

Solche alterierten Plutonite können ein weitgehend geregeltes magmatisches bis kataklastisches Gefüge (irreguläre Umrisse und zerbrochene Feldspäte) aufweisen. Offenbar können durch hydrothermale Überprägung auch Teile des primär magmatischen Quarzes mobil geworden sein, da dieser häufig nur in geringer Menge enthalten ist. Viele Geschiebe besitzen daher eine augenscheinlich quarzsyenitische Zusammensetzung, allerdings können zusätzliche Anteile von granuliertem Quarz in der feinkörnigen Grundmasse verborgen sein.

Von historischem Interesse und nicht mehr zur Verwendung empfohlen ist die veraltete Bezeichnung „Helsinkit, schwedischer Typ“ (Abb. 15) für solche alterierten Plutonite. Auch besteht eine Überschneidung mit der Bezeichnung „Unakit“ im Sinne des Erstbeschreibers (s. Unakit).

Abb. 16: Epidotisierter Granitoid (Quarzsyenit), Geschiebefund von Älekinta auf Öland. Breite des Steins 18 cm.

Das Gestein besteht im Wesentlichen aus rotem Alkalifeldspat, teilweise imprägniert durch ein rotbraunes Pigment. Auch geringe Anteile eines zweiten Feldspats (weiß) sowie etwas Quarz sind erkennbar. Die feinkörnige Grundmasse enthält wechselnde Mengen von hellgrünem Epidot, chloritisierte dunkle Minerale sowie gelblichen Titanit.

Abb. 17: Kataklastischer Plutonit (Quarzsyenit) mit rosa Alkalifeldspat, etwas Quarz und reichlich hellgrünem Epidot. Kiesgrube Hoppegarten, Aufnahme unter Wasser.
Abb. 18: Nahaufnahme, nass fotografiert.
Abb. 19: Riesenkörniger Granitoid mit blassrotem Alkalifeldspat bis 5 cm Länge und einer schwarzgrünen Grundmasse. Großgeschiebe aus dem Tagebau Jänschwalde, Breite 36 cm.
Abb. 20: Handstück mit frischer Bruchfläche, Aufnahme unter Wasser.
Abb. 21: Nahaufnahme: Die feinkörnige Grundmasse besteht im Wesentlichen aus schwarzem Glimmer und/oder Chlorit Mineral und hellgrünem Epidot. Vereinzelt sind hellgraue Quarzkörner erkennbar. Der Zusammensetzung nach handelt es sich um einen Quarzsyenit.

Das nächste Beispiel ist ein Granit mit Blauquarz, weißen Feldspäten und roten Hämatit-Pigmenten. Die Feldspäte sind durch tektonische Einwirkung zerbrochen, teilweise weisen sie staffelartige, mit Quarz oder dunklen Mineralen verfüllte Risse auf. Epidot als sekundäre Bildung fehlt.

Abb. 22: Kataklastischer Granit mit Blauquarz und undeutlich konturierten, von subparallelen Klüften durchzogenen Feldspäten. Kiesgrube Hoppegarten (Brandenburg).
Abb. 23: Epidotisierter Granitoid, Kiesgrube Niederlehme bei Berlin, Breite des Steins 9,5 cm.
Abb. 24: Epidotisiertes Band in einem Monzogranit, Kiesgrube Fresdorfer Heide bei Potsdam.

Hier erkennt man sehr schön die Auswirkung hydrothermaler Alteration auf die einzelnen Mineralbestandteile: in einem begrenzten Bereich wurden die gelblichen Plagioklase kräftig epidotisiert und auch die wenigen dunklen Minerale weitgehend umgewandelt, während der rote Alkalifeldspat und hellgrauer Quarz unverändert erscheinen.

Abb. 25: Grobkörniger Plutonit mit feinkörniger Grundmasse, Bruchfläche, Aufnahme unter Wasser, Kiesgrube Niederlehme bei Berlin.

Die weißen Feldspäte weisen klare Formen auf, sind nicht zerbrochen und teilweise als Karlsbader Zwilling entwickelt. Dies sowie perthitische Entmischungen und Einschlüsse von rotbraun-grünlichem Epidot innerhalb der Feldspäte weist auf Kalifeldspat hin.

Abb. 26: Nahaufnahme. Die Grundmasse enthält grünliche bis rötlichbraune feinkörnige Anteile (Epidot), neben etwas grauem Quarz, kleineren Feldspäten und dunklen Mineralen.

Literatur

www.kristallin.de

www.skan-kristallin.de

ASKLUND B 1923 Petrological studies in the neighbourhood of Stavsjö – SGU Arsbok. 17, 1923, S.40.

ASKLUND B 1947 Svenska Stenindustriomraden I-II Gatsten och Kantsten – Arsbok 40 (1946) No. 3, Sveriges Geologiska Undersökning Ser. C, No. 479; 187 S., 9 Abb., 8 Tafeln. Stockholm 1947

BURGATH KP & MEYER K-D 1989 Zwei Syenit-Geschiebe von Volksdorf bei Lüneburg – Archiv für Geschiebekunde 1 (1): 5-8, 1 Taf., Hamburg.

ECKERMANN H V 1925 A find of boulders of Helsinkite in the Parish of Alfta – Geologiska Föreningens i Stockholm Förhandlingar 47 (4): 504-511, Taf. 18-20, 2 Tab., Stockholm.

FETTES D & DESMONS J 2007 Metamorphic Rocks: A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks – 258 S., Cambridge University Press, Cambridge 2007, ISBN 0521868106.

HESEMANN J 1929 Beiträge zur Kenntnis kristalliner Geschiebe – Zeitschrift für Geschiebeforschung 5 (3): 137-143, Berlin.

HESEMANN J 1930 Über einige neuere petrographische Arbeiten aus Schweden und Finnland (Helsinkite, Rapakiwi) – Zeitschrift für Geschiebeforschung 6 (4): 176-180, Berlin.

HYTÖNEN K (editor) 1980 Precambrian bedrock of southern and eastern Finland. Guide to excursions 001 A + C. 26th International Geological Congress, Paris, 1980.
Geological Survey of Finland, Espoo 1980

LAITAKARI A 1918 Einige Albitepidotgesteine von Südfinnland. Bulletin de la Commission géologique de Finlande, Vol. 51.

LEMAITRE et al 2004 Igneous Rocks: A Classification and Glossary of Terms. Edited by R. W. Le Maitre and A. Streckeisen and B. Zanettin and M. J. Le Bas and B. Bonin and P. Bateman – 252 S., Cambridge University Press, ISBN 0521619483.

MELLIS O 1928 Über das Vorkommen von Helsinkitgeschieben in Lettland – Zeitschrift für Geschiebeforschung 4 (4): 145-150, 3 Abb., Berlin.

MELLIS O 1931 Beitrag zur Kenntnis deutscher Helsinkitgeschiebe – Zeitschrift für Geschiebeforschung 7 (4): 160-173, 4 Abb., Berlin.

MELLIS O 1931 Einige Ergänzungen zu J. HESEMANNs Aufsatz: „Über einige neuere petrographische Arbeiten aus Schweden und Finnland (Helsinkite, Rapakiwi)”. – Zeitschrift für Geschiebeforschung 7 (1): 34-37, Berlin.

MELLIS O 1932: Zur Genesis des Helsinkits. Vorläufige Mitteilung – Geologiska Föreningens i Stockholm Förhandlingar 54: 419-435, 8 Abb., Stockholm.

MEYER K-D 1987 Ein Helsinkit-Geschiebe von Volksdorf – Geschiebekunde aktuell 3 (3): 69-72, 1 Taf., Hamburg.

PREEDEN U, MERTANEN S, ELMINEN T, PLADO J 2009 Secondary magnetizations in shear and fault zones in southern Finland. Tectonophysics 479, 3-4, S. 203-213.

SIMONEN A 1948: On the petrochemistry of the infracrustal rocks in the Svecofennidic territory of southwestern Finland. Govt. Press Vol. 141

SIMONEN A 1971 Das finnische Grundgebirge – Geologische Rundschau, 1971, Bd. 60, S. 1406-1420.

TRÖGER E 1935 Spezielle Petrographie der Eruptivgesteine; Nr. 199, S. 92. Unveränderter Nachdruck 1969, Verlag der Deutschen Mineralogischen Gesellschaft.

ZANDSTRA J G 1988 Noordelijke kristallijne gidsgesteenten, E. J. Brill 1988

Siljan-Granit und Doppelgänger im nördlichen Småland

Abb. 1: Siljan-Granit, Anstehendprobe aus dem Gebiet nördlich von Dala-Floda, Nahaufnahme einer polierten Schnittfläche. P. Kresten leg.; Sgl. SGU Uppsala 1987, © Sveriges geologiska undersökning; Foto: H. Wilske (skan-kristallin.de).

Der gleichkörnige Granit zeigt klare Korngrenzen und eine weitgehend gleichmäßige Verteilung der Minerale: roter Alkalifeldspat, etwas kleinere Körner von gelblichem Plagioklas und bläulich-trübe Quarze. Der Quarz besitzt weder eine besondere Tendenz zur Eigengestaltlichkeit, noch bildet er größere Anhäufungen wie in den Småland-Graniten (s. u.).

  1. Siljan-Granit als Leitgeschiebe?
  2. Herkunft des Siljan-Granits
  3. Beschreibung des Siljan-Granits
  4. Anstehendproben des Siljan-Granits
  5. Bunte Monzogranite („Bunter Växjö-Granit“) aus dem nördlichen Småland
  6. Beispiele aus dem Geschiebe
  7. Verzeichnis der Lokalitäten und Proben
  8. Literatur

1. Siljan-Granit als Leitgeschiebe?

Der Siljan-Granit galt bisher als ausgezeichnetes Leitgeschiebe, leicht erkennbar an einem gleichkörnigen Gefüge aus rotem Alkalifeldspat, gelbem Plagioklas und grauem oder blauem Quarz. Es gibt jedoch ähnliche Granite im nördlichen Småland mit weitgehend übereinstimmenden Merkmalen, denen bisher zu wenig Beachtung geschenkt wurde. Dieser Artikel gibt eine umfassende Beschreibung des Siljan-Granits nach derzeitigem Kenntnisstand. Die Doppelgänger aus Småland werden vorgestellt und kommentiert. Zuletzt wird eine vergleichende Betrachtung von einigen Geschiebefunden vorgenommen. Da bis heute zu wenige Anstehendproben des Siljan-Granits vorliegen, ist die Bestimmung von Geschieben nach wie vor mit Unsicherheiten behaftet.

Abb. 2: Lage der Siljan-Impaktstruktur in Mittelschweden und Herkunftsgebiet der „Doppelgänger“ des Siljan-Granits im nördlichen Småland.

2. Herkunft des Siljan-Granits

Das ausgedehnte Vorkommen der etwa 1,8 – 1,7 Ga alten Dala-Granitoide in Mittelschweden umfasst drei Haupttypen: Järna-, Garberg- und Siljan-Granit. Die beiden letztgenannten sind sog. primitive anorogene Granite, entstanden also zeitlich außerhalb einer Gebirgsbildungsphase und sind von entsprechenden Deformationen frei (HÖGDAHL et al 2004). Teile des Siljan-Granits wurden allerdings durch den Impakt eines Meteoriten im Silur beeinflusst. Zeugnis dieses Ereignisses ist die kreisförmige, etwa 65 km durchmessende Anordnung von Seen um den Zentralbereich des Impakts. Als Leitgeschiebe geeignete Varianten sind nicht von einer Impaktmetamorphose betroffen und machen auch nur einen kleinen Teil der undeformierten Siljan-Granite aus.

3. Beschreibung des Siljan-Granits

Die Beschreibungen weichen in der Geschiebeliteratur (HESEMANN 1975, ZANDSTRA 1988, SMED & EHLERS 2002 und VINX 2016) teilweise deutlich voneinander ab. Dies betrifft die Farbe des Alkalifeldspats, Form und Farbe der Quarze und die Ausbildung der dunklen Minerale. Es wurden vor allem die Angaben in SMED & EHLERS 2002, VINX 2016 und pers. Mitteilung R. Vinx herangezogen, die sich auf Beobachtungen im Gelände und Anstehendproben stützen.

Der leitgeschiebetaugliche Siljan-Granit ist ein mittel- bis grob- sowie gleichkörniges Gestein mit einem kontrastreichen Gefüge, klaren Farben, scharfen Korngrenzen und einem geringen Anteil dunkler Minerale. Die Mineralbestandteile im Einzelnen sind:

  • Alkalifeldspat (Anteil ca. 50 Vol.%): rot, seltener hell ziegelrot. Wenige größere rote Feldspäte können einen vollständigen oder unvollständigen Saum aus gelbem oder weißem Plagioklas aufweisen.
  • Plagioklas (ca. 20%): gelblich-weiß bis gelb, vereinzelt auch grüne Plagioklase mit hellerem Rand. Alkalifeldspat und Plagioklas neigen zur Idiomorphie.
  • Quarz (ca. 30-35%): grau, zuweilen violett, selten schwach hellblau; 2-5 mm große idiomorphe oder regelmäßig abgerundete Körner neben kleinen Individuen. Einzelne runde Quarzaggregate können auch größer sein. Insgesamt besitzen die Quarze eine Tendenz zur Ausbildung idiomorpher Umrisse. Gelegentlich finden sich auch innerhalb der Alkalifeldspäte einzelne kleine und idiomorphe Quarzkörner (Unterschied zu den bunten Småland-Graniten).
  • Biotit: in kleinen Nestern konzentrierte, wenige Millimeter große Plättchen oder schwarzgelbe bis schwarzgrüne Aggregate.
  • Hornblende/Amphibol bildet schwarze, längliche und stängelige Aggregate. Zusätzlich finden sich mitunter Ansammlungen (Xenolithe?) aus grünem Plagioklas und schwarzem Amphibol. Sowohl Hornblende als auch diese Xenolithe treten in den Doppelgängern aus N-Småland nur gelegentlich auf.
  • Als Nebengemengteile können Titanit, Hornblende und Fluorit auftreten.

Bei der Bestimmung sollten die Minerale Quarz und Biotit sorgfältig betrachtet werden. Die ähnlichen Granite im nördlichen Småland weisen immer eine gewisse interne Deformation auf, die im Siljan-Granit fehlt. Die Doppelgänger werden von Zandstra und Smed zwar erwähnt, beide geben aber unbefriedigende Hinweise zur Unterscheidung. Folgende Hinweise stammen von R. Vinx (pers. Mitteilung):

„Die Quarz-Bruchflächen im Siljan-Granit sehen unter der Lupe oder besser unter dem Stereomikroskop sauber muschelig aus, die Quarze sind transparent (Abb. 8). Wenn sie zu rauem Bruch tendieren oder sogar intern granuliert („zuckerkörnig“) sind, kann es sich auch um Småland-Granite handeln. Ähnliches gilt für den Biotit. Im Siljan-Granit sollten die Plättchen nicht gebogen sein. In Småland-Graniten lässt sich u. U. die Biegung vieler Biotite oder auch ihre Anhäufung in kleinen Ketten und Massen erkennen.“

Für eine Bestimmung des Siljan-Granits benötigt man möglichst eine Bruchfläche. Auf abgerollten Geschieben mit angeschlagenen Quarzen sind die genannten Eigenschaften schlecht oder gar nicht zu erkennen. Gibt es keine Bruchfläche, kann man notfalls an tiefer sitzenden Quarzen auf der Außenseite des Geschiebes versuchen zu beurteilen, ob überwiegend einzelne, individuelle Quarzkörner (Siljan-Granit) oder eher zusammenhängende, xenomorphe Quarzmassen (Småland-Granite) vorliegen.

4. Anstehendproben des Siljan-Granits

Einige Bilder von Anstehendproben aus dem Siljan-Gebiet geben einen Einblick in die Variabilität des Siljan-Granits (Probenverzeichnis am Ende des Artikels). Für eine hinreichende Beschreibung des Gesteins wäre allerdings eine Vielzahl weiterer Proben wünschenswert.

Abb. 3: Blasser, leicht rötlicher Siljan-Granit mit einem ausgeprägt ungleichkörnigem Mineralgefüge. Loser Stein aus dem Siljan-Ring; Lokalität 9.
Abb. 4: Nahaufnahme

Im Detail ist vor allem der hellgraue und nur leicht trübe Quarz interessant, der einzelne kleine Körner und Ansammlungen bildet, aber keine besondere Tendenz zur Eigengestaltlichkeit besitzt. Einige Quarze scheinen zudem randliche magmatische Korrosionserscheinungen aufzuweisen, erkennbar an den kleinen, hellen „Feldspatfischchen“. Sechseckige Formen des Biotits sind hier nicht zu erkennen, als dunkles Mineral kommen zusätzlich schwarze, längliche und stängelige Hornblende/Amphibol sowie kleine Ansammlungen (Xenolithe) aus grünem Plagioklas und schwarzem Amphibol vor.

Abb. 5: Die zweite Probe ist ein loser Stein aus dem Siljan-Gebiet (Lokalität 10) mit rotem Alkalifeldspat, gelblich-weißem Plagioklas und dunklen Mineralen. Quarz ist nur in geringer Menge vorhanden. Das Gestein ist der Zusammensetzung nach kein Granit, sondern ein Quarz-Monzonit.
Abb. 6: Detailbild der trockenen Bruchfläche: Die wenigen erkennbaren Quarzkörner sind klar begrenzt und transparent.
Abb. 7: Diese Anstehendprobe eines Siljan-Granits (Lokalität 8) illustriert den muscheligen Bruch der transparenten Quarzkörner. Die Farben der Feldspäte weichen allerdings von der obigen Beschreibung des Leitgeschiebes ab. Das Gestein wird von einigen Geologen auch als Järna-Granit bezeichnet.
Abb. 8: Gleicher Stein, Aufnahme unter Wasser: heller Granit mit teilweise orange pigmentierten Feldspäten und individuell ausgebildeten rauchgrauen Quarzkörnern. Manche von ihnen sind idiomorph und besitzen sechseckige Umrisse.

5. Bunte Monzogranite („Bunter Växjö-Granit“) aus dem nördlichen Småland

Im Gebiet nördlich von Eksjö im nördlichen Småland gibt es Granite, die mit dem Siljan-Granit verwechselbar sind. Es handelt sich um gleichkörnige Monzogranite (Granite mit nennenswerter Menge an Plagioklas) mit einem kontrastreichen Gefüge aus rotem Alkalifeldspat, gelbem Plagioklas und grauem oder blauem Quarz. Sie treten in zahlreichen Varianten auf und scheinen eine größere Fläche einzunehmen, da sie lokal gehäuft als Nahgeschiebe zu finden sind.

Gleichkörnige Varianten des Småland-Granits werden von einigen schwedischen Geologen als „Växjö-Typ“ bezeichnet. Dieser „Sackname“ charakterisiert lediglich ein gleich- sowie mittel- bis grobkörniges Gefüge von Graniten des Transkandinavischen Magmatitgürtels (TIB). Besteht ein Granit hauptsächlich aus rotem Alkalifeldspat, kann man ihn kompakt als „Roten Växjö-Granit“ bezeichnen. Enthält er zusätzlich noch weißen, gelben oder grünen Plagioklas in bedeutender Menge, kann man ihn „Bunten Växjö-Granit“ nennen. Diese Bezeichnungen sind informell und von einer gewissen Handlichkeit. Granite vom „Växjö-Typ“ besitzen eine weite Verbreitung innerhalb des TIB und sind natürlich keine Leitgeschiebe.

Das erste Beispiel (Abb. 9-10) aus dem nördlichen Småland zeigt einen Monzogranit vom Växjö-Typ, auch wenn er durch den blassroten Alkalifeldspat nicht besonders „bunt“ erscheint. Eine Verwechslung mit dem Siljan-Granit ist bei diesem Typ kaum zu befürchten, aber er ist ein typischer Vertreter der farb- und formenreichen Småland-Monzogranite. Leichte Deformationserscheinungen deuten sich durch eine unregelmäßige Verteilung von dunklen Mineralen in Haufen oder Bändern an.

Abb. 9: Monzogranit vom Växjö-Typ, Nahgeschiebe N von Eksjö, Lokalität 6.
Abb. 10: Die Vergrößerung zeigt einige von Plagioklas umsäumte Alkalifeldspäte. Schwach bläulicher Quarz kommt in größeren, trüben Ansammlungen bis 1 cm Durchmesser sowie in kleineren Körnern vor.
Abb. 11: „Bunter Växjö-Granit“ mit wesentlich kräftigeren Farben als im vorigen Beispiel. Das Gefüge besteht aus fleckig hell- bis dunkelrotem Alkalifeldspat, der von etwas weniger gelbem bis grünem Plagioklas begleitet wird. Diese Granitvariante zeigt eine starke Ähnlichkeit mit dem Siljan-Granit bzw. unseren Vorstellungen davon (vgl. mit Abb. 1). Geschiebefund von Lokalität 2.
Abb. 12: Detailaufnahme des Gefüges.

Quarz ist milchig-blau und xenomorph ausgebildet und sieht etwas granuliert aus. Dunkle Minerale (Biotit) sind nur in geringer Menge vorhanden, etwas rechts der Bildmitte jedoch in einem Streifen angehäuft (Hinweis auf leichte Deformation). Einzelne Plagioklase zeigen neben gelben und grünen Farben stellenweise eine rote Pigmentierung. Unter der Lupe ist etwas gelblicher Titanit erkennbar.

Abb. 13: Ein ähnlicher Granittyp fand sich anstehend in einem alten Steinbruch mit der passenden Bezeichnung „Rödberget“ („roter Berg“, Lokalität 3). Die angewitterte Oberfläche zeigt intensiv roten Alkalifeldspat, gelben Plagioklas und hellgrauen, etwas getrübten Quarz.
Abb. 14: Detailbild einer frischen Bruchfläche, Aufnahme unter Wasser.

Der hellgraue bis schwach bläuliche und trübe Quarz bildet unklar konturierte, rissige Aggregate, ein deutlicher Hinweis auf Deformationserscheinungen. Auch der gelbe Plagioklas besitzt teilweise undeutliche Korngrenzen und ist an manchen Stellen von rotem Pigment durchsetzt. Roter Plagioklas ist von einigen Östergötland-Graniten aus dem Gebiet zwischen Linköping und Vätternsee bekannt, vom Siljan-Granit hingegen nicht (vgl. SMED & EHLERS 2002: 148).

Abb. 15: Vier Nahgeschiebe von bunten (Monzo)-Graniten aus dem nördlichen Småland. Das Anstehende liegt vermutlich nur wenig weiter nördlich, da sie an ihrem Fundort den Hauptteil der Geschiebe ausmachen. Lokalität 1, westlich vom Västra Lägern.
Abb. 16: Abschlag vom Nahgeschiebe in Abb. 15, oben links: Granit bis Quarz-Syenit mit rotem Alkalifeldspat, gelbem Plagioklas und mäßig vielen dunklen Mineralen (Biotit). Wenig schwach bläulicher Quarz bildet kleine Körner und rundliche Ansammlungen.
Abb. 17: Die Detailaufnahme zeigt Deformationserscheinungen in Gestalt von nahezu parallel verlaufenden Rissen in den Feldspäten. Diese Risse wurden später (ähnlich wie im Järeda-Granit) durch dunkle Minerale oder hellgrünen Epidot „verheilt“. In Partien mit dunklen Mineralen ist wieder etwas gelber Titanit zu erkennen.
Abb. 18: Detail des Geschiebes in Abb. 15 oben rechts. Dieser Granit ist recht hell und nicht „bunt“. Er enthält Ansammlungen (Xenolithe?) aus hellgrünem Plagioklas und Hornblende. Die Quarze bilden überwiegend Einzelkörner und weniger massige Ansammlungen.
Abb. 19: Nahgeschiebe eines titanitführenden Småland-Granits (Lokalität 6) mit unregelmäßigen Korngrenzen der Minerale.

Das unruhige Gefüge und Ansammlungen dunkler Minerale weisen auf interne Deformationserscheinungen hin. In der unteren Bildmitte ist ein Plagioklassaum um einen roten Alkalifeldspat erkennbar. Säume von Plagioklas und auch Titanit (gelb) treten in diesen bunten Småland-Graniten regelmäßig auf.

Abb. 20: Die Bruchfläche dieses Geschiebefundes (Lokalität 5) zeigt einen gleichkörnigen Granit mit einzelnen, von Plagioklas gesäumten Alkalifeldspäten. Die Färbung des Gesteins erinnert an den Garberg-Granit aus Dalarna.
Abb. 21: Im Detailbild erkennt man größere und unregelmäßig körnige Haufen von offenbar zerdrücktem Quarz. Für eine Deformation/Granulierung spricht die xenomorphe Gestalt der kleineren Quarze. Zwei verschiedene Erscheinungsformen von Quarz (große, trübe und xenomorphe Quarze sowie kleine und gelegentlich eckige Quarze) treten gelegentlich in den Graniten des nördlichen Smålands auf.

Zusammenfassung der Unterscheidungsmerkmale der bunten Växjö-Granite vom Siljan-Granit:

  • Leichte interne Deformationserscheinungen, erkennbar an unruhigem Korngefüge bzw. unregelmäßigen Korngrenzen, optional an ketten- oder netzartigen Anhäufungen und Kumulationen dunkler Minerale.
  • Trübe, bläuliche oder graue Ansammlungen von Quarz über 5 mm Durchmesser, die auf Bruchflächen rau oder granuliert aussehen. Kleinere, eigengestaltliche Quarze können trotzdem vorkommen.
  • Biotit ist meist verbogen oder bildet unregelmäßige Anhäufungen und kommt nur selten in sechseckigen Plättchen vor. Hornblende (Amphibol) fehlt meist.
  • Alkalifeldspat kann Risse durch Kataklase aufweisen, die durch grüne oder dunkle Minerale verheilt wurden.
  • Plagioklas ist gelegentlich rot pigmentiert.

6. Beispiele aus dem Geschiebe

Eine Reihe von Geschiebefunden aus Norddeutschland wird mit den Beschreibungen nach bisherigem Erkenntnisstand verglichen. Die Unterscheidung der bunten Växjo-Granite von den Siljan-Typen und zusätzlich ähnlichen bunten Graniten mit undeformiertem Gefüge (z. B. aus dem Rätan-Massiv oder aus Rapakiwi-Vorkommen) ist eine anspruchsvolle Aufgabe und seine sichere Bestimmung mit Unsicherheiten behaftet. Abb. 22-31 zeigt Geschiebe, die anhand der Beschreibungen als Siljan-Granit angesprochen werden, Abb. 32-33 Funde, die eher nach N-Småland passen. Abb. 34-45 sind bunte Granite oder Monzogranite mit undeformiertem Gefüge, die nur bedingt mit der Beschreibung des Siljan-Granits übereinstimmen und auch aus anderen Vorkommen stammen könnten.

Abb. 22: Gleichkörniger Granit (Siljan-Granit) mit klarem Gefüge; Quarz kommt sowohl in größeren Ansammlungen als auch in kleineren, eigenständigen und runden bis eckigen Körnern vor. Manche der tiefer liegenden Quarze sind rauchgrau und transparent. Fund aus der Kiesgrube Niederlehme bei Berlin.
Abb. 23: Die nasse Oberfläche zeigt größere, transparente Quarzpartien, die nicht milchig-trüb sind, wie es in den Växjö-Typen häufig der Fall ist, sondern transparent.
Abb. 24: Gleich- und mittelkörniger Granit (Siljan-Granit?) mit blassrotem Alkalifeldspat, hellgrauem Quarz und schwach gelblichem Plagioklas. Fundort: Kiesgrube Horstfelde, südlich von Berlin.
Abb. 25: Die Nahaufnahme zeigt neben xenomorphen Ansammlungen von Quarz auch kleinere und eckige Einzelkörner in Millimetergröße. Auf der Bruchfläche sind diese glasklar und weisen einen muscheligen Bruch auf. Der Granit lässt keine Deformationserscheinungen erkennen, es könnte sich um eine blassrote Variante des Siljan-Granits handeln.

Abb. 26-29 ist ein bunter Monzogranit, wahrscheinlich ein Siljan-Granit. Er enthält größere xenomorphe und kleinere idiomorphe Quarze. In Abb. 29 sind am rechten Bildrand in roten Alkalifeldspat eingeschlossene idiomorphe Quarze erkennbar. Kiesgrube Niederlehme bei Berlin.

Abb. 30: Blassroter und gleichkörniger Monzogranit (Siljan-Granit) ohne erkennbare Deformationserscheinungen. Kiesgrube Hohensaaten, Aufnahme unter Wasser.
Abb. 31: Quarz bildet hellgraue und transparente Einzelkörner. Biotit zeigt gelegentlich sechseckige Umrisse und scheint nicht verbogen zu sein. Daneben kommt etwas Hornblende vor. Auch dieser Fund stimmt mit den Beschreibungen des Siljan-Granits weitgehend überein.
Abb. 32: Ein Strandfund von Klein-Zicker/Rügen zeigt bereits auf den ersten Blick leichte Deformationserscheinungen: undeutliche Korngrenzen, längliche Anhäufungen von dunklen Mineralen und parallele Risse in den Alkalifeldspäten. Der Granit ähnelt der Anstehendprobe aus Abb. 7 und ist ein „Bunter Växjö-Granit“.
Abb. 33: Bunter Monzogranit vom Växjö-Typ. Die Quarze sind weitgehend xenomorph ausgebildet. Breite 12,5 cm, Kiesgrube Althüttendorf/Brandenburg.
Abb. 34: Grobkörniger Monzogranit mit leuchtend gelbem Plagioklas, ganz rechts im Bild auch als Saum um einen einzelnen Alkalifeldspat. Fundort: Kiesgrube Horstfelde, Aufnahme unter Wasser.
Abb. 35: Detailaufnahme, nass fotografiert.

Auch hier sind wieder die Quarze interessant: Sie sind hell- bis mittelgrau, klar und bilden unregelmäßige Anhäufungen, aber kaum Einzelkörner. Die Herkunft dieses Fundes ist ungewiss. Weder scheint es sich um einen Siljan-Granit zu handeln noch besitzt der Fund Ähnlichkeit mit Graniten im nördlichen Småland. Dies nährt den Verdacht, dass es weitere Vorkommen von Graniten mit ähnlichen Merkmalen gibt.

Abb. 36: Kräftig roter und grobkörniger Granit mit deutlich weniger gelbem bis grünem Plagioklas als in den vorigen Beispielen. Biotit und etwas Hornblende sind in kleinen Nestern konzentriert. Fundort: Kiesgrube Horstfelde.
Abb. 37: Nahaufnahme, nass fotografiert.

Die Vergrößerung Abb. 37 zeigt Quarze in (mindestens) zwei Generationen: Größere Ansammlungen von violettblauem Quarz zeigen Risse, die u. a. mit rotem Feldspat gefüllt sind. Kleine und eckige Quarze weisen teilweise Spuren magmatischer Korrosion auf und stecken auch mitten in den Alkalifeldspäten. Graphische Verwachsungen sind nicht erkennbar. Das Gefüge erscheint insgesamt undeformiert und ähnelt denen mancher Rapakiwi-Granite. Ob das Gestein aus dem Siljan-Gebiet stammt, wo auch rapakiwiartige Varianten vorkommen sollen (SMED & EHLERS 2002), bleibt ohne entsprechende Anstehendproben Spekulation.

Abb. 38: Blassroter Monzogranit mit größeren runden und kleineren idiomorphen Quarzen. Kiesgrube Penkun (Vorpommern), Aufnahme unter Wasser.
Abb. 39: Nahaufnahme, nass fotografiert.
Abb. 40: Monzogranit, teilweise hellem Plagioklas-Saum um einige der blassroten Alkalifeldspat-Einsprenglinge. Kiesgrube Horstfelde bei Berlin, Aufnahme unter Wasser.
Abb. 41: Nahaufnahme, nass fotografiert: größere rundliche sowie zahlreiche winzige und idiomorphe (eckige) Quarze in der Grundmasse.
Abb. 42: Heller Monzogranit (vgl. Abb. 3). Kiesgrube Niederlehme, Aufnahme unter Wasser.
Abb. 43: Nahaufnahme.
Abb. 44: Porphyrischer Granit aus größeren roten und kleineren gelben Feldspäten, grauem Quarz und wenig dunklen Mineralen. Auf der Außenseite des Geschiebes waren auch von Plagioklas umsäumte Alkalifeldspäte erkennbar. Kiesgrube Niederlehme bei Berlin, Aufnahme unter Wasser.
Abb. 45: Die Vergrößerung zeigt mehrere Generationen Quarz: große und runde, leicht trübe Quarze sowie eine Menge wesentlich kleinerer und eckiger Quarze. Stellenweise sind kleine Bereiche mit graphischen Verwachsungen aus Quarz und Feldspat erkennbar. Der Fund besitzt rapakiwiähnliche Merkmale. Ein ähnliches Gestein kommt im Rätan-Batholith vor.

Schon HOLMQUIST 1906 weist darauf hin, dass im Rätan-Batholith ganz ähnliche Granite wie im Gebiet der „jüngeren Granite aus Dalarne“ vorkommen, zu denen auch der Siljan-Granit zählt. Die Proben in Abb. 46-48 zeigen, dass weitere mögliche Liefergebiete (Rätan, Rapakiwi-Vorkommen?) bisher vielleicht zu wenig Berücksichtigung fanden.

Abb. 46: Polierte Fläche eines losen Steins aus dem Gebiet des Rätan-Granits (Lokalität 7).
Abb. 47: In der Vergrößerung sind mehrere Quarz-Generationen erkennbar: große und runde sowie zahlreiche kleine und eckige Quarze; graphische Verwachsungen von Quarz und Feldspat fehlen.
Abb. 48: Rätan-Granit (Lokalität 7), ein mittelkörniger und mafitarmer Granit mit kontrastreichem Gefüge aus rotem, durch perthitische Entmischung teilweise braun getöntem Alkalifeldspat, schneeweißem Plagioklas und individuellen, glasklaren bis leicht trüben Quarzkörner von hellgrauer, teilweise bläulicher Farbe. Es bestehen Ähnlichkeiten zum Siljan-Granit, lediglich die Farben der Feldspäte weichen ab (vgl. Geschiebefund Abb. 38).

7. Verzeichnis der Lokalitäten und Proben

LokalitätGesteinFundortKoordinaten (WGS84DD)
1Geschiebe, u.a. bunte Småland-MonzograniteSteinbruch 26, Vid Lertorp am Västra Lägern, E Askeryd.57.808822, 15.064211
2Geschiebe, u.a. bunte Småland-MonzograniteStraßenanschnitt NE Eksjö, etwa Höhe Älghult57.68151, 15.01129
3Anstehender rot-gelber Småland-MonzogranitAufgelassener Steinbruch Rödberget57.778243, 14.910449
4Geschiebe, u.a. bunte Småland-MonzograniteKiesgrube, ca. 3 km NW Eksjö57.69015, 14.93066
5Geschiebe, u.a. bunte Småland-MonzograniteKiesgrube, ca. 8 km S Rydsnäs57.74888, 15.16735
6Geschiebe, u.a. bunte Småland-MonzograniteKiesgrube Nödavägen57.720532, 15.172286
7Rätan-Granit; M. Bräunlich leg.; Nummer 1044Nördlich Älvros62.06268, 14.65344
8Siljan- oder Järna-Granit; D. Pittermann leg. (Probenr. S 37)Steinbruch östlich Mora61.01989, 14.66898
9Siljan-Granit; D. Pittermann leg. (Probenr. S 34)Loser Stein aus dem Siljan-Ring61.11879, 14.98958
10Siljan-Granit; D. Pittermann leg. (Probenr. S 36)Loser Stein, Lokalität Hättberg61.06137, 14.81564

8. Literatur

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 8 Taf. 1 Taf. im Anh.), 44 Abb., 29 Tab., 1 Kte., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

HOLMQUIST P J 1906 Studien über die Granite von Schweden – Bulletin of the Geological Institutions of the University of Upsala 1906.

HÖGDAHL K ET AL 2004 The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution – Geological Survey of Finland, Espoo 2004, Special Paper 37.

SMED P & EHLERS J 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage (2002).

VINX R 2016 Steine an deutschen Küsten – Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.).

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van uim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – III+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. te., Leiden etc.(Brill).

Funde von Elbgeröllen aus Südbrandenburg und Sachsen

Abb. 1: Sphärolithischer Jaspis, Kiesgrube Großgrabe (Senftenberger Elbelauf), Aufnahme unter Wasser.

1. Einleitung

In den Kiesgruben im südlichen Südbrandenburg und in Sachsen finden sich regelmäßig Gesteine sächsischer und böhmischer Herkunft. Diese „südlichen Gerölle“ sind die Gesteinsfracht alter Elbeläufe und treten an manchen Lokalitäten lediglich als Beimengung zu nordischen Geschieben auf, an anderen Orten überwiegen sie und in den älteren Flussablagerungen finden sich gar keine Geschiebe. Der Geschiebesammler betritt hier mitunter eine „andere Welt“, wenn die vertrauten Gesteine nordischer Herkunft fehlen und ganz ungewohnte Lithologien die Aufmerksamkeit wecken.

Die Heimatgebiete der Elbgerölle liegen in Sachsen (Erzgebirge, Tharandter Wald, variszische Einheiten innerhalb der Elbezone, Meißener Gebiet, Döhlener Becken, Elbsandsteingebirge etc.) und in Nordböhmen (Riesengebirgsvorland, Erzgebirge, Böhmisches Mittelgebirge, Barrandium, permokarbonische Becken usw.). Für den Zeitraum Miozän bis Holozän wurden mehrere alte Elbeläufe nachgewiesen werden, jeweils mit charakteristischen Geröllgemeinschaften. Während der nordischen Inlandvereisungen und der Interglaziale erfolgte mehrfach eine Verlegung der Flussläufe. Durch das vorrückende Inlandeis und periglaziale Prozesse wurden die Elbschotter teilweise abgetragen, umgelagert und mit Glazialablagerungen vermengt. Auf den Tertiärhochflächen der Niederlausitz treten Ablagerungen der älteren „Senftenberger Elbeläufe“ (Pliozän und Altpleistozän) zu Tage, in Süd-Brandenburg die des mittelpleistozänen „Berliner Elbelaufs“ (Spätelster bis Frühsaale) sowie holozäner Elbeläufe.

Dieser Artikel ergänzt die Dokumentation von Elbgeröllen aus dem Gebiet zwischen Teltow und Fläming, südwestlich von Berlin, an und zeigt Funde von ausgewählten Lokalitäten in Südbrandenburg und Sachsen. Dabei wurde bevorzugt in der Überkorn-Fraktion (5-25 cm) gesucht, was eine gewisse Selektion der Funde hinsichtlich ihrer Häufigkeit bedingt. So sind Einzelgerölle von Amethyst und Chalcedon oder die beliebten Achatgerölle oftmals recht klein und im Überkorn kaum zu finden. Die Bestimmung der Gerölle erfolgte nach den Beschreibungen von Kurt Genieser (GENIESER 1953a, 1955, 1957, 1962, GENIESER & MIELECKE 1957), die durch SCHWARZ et al 2012, SCHWARZ & LANGE 2013, 2017, SCHWARZ & RIEDRICH 2010 und SCHWARZ 2021 teilweise revidiert und erweitert wurden.

2. Fundlokalitäten

Im Zusammenhang mit der Dokumentation von Geröllfunden aus dem Berliner Gebiet sind Kiesgruben mit Ablagerungen des mittelpleistozänen Berliner Elbelaufs von besonderem Interesse, die Fundbeschreibungen aus den Gruben Mühlberg und Altenau daher besonders umfangreich. Für einen Einblick in die Petrographie der Elbgerölle liegt ein Besuch der Elbufer in Dresden und Meißen nahe. Weitere Lokalitäten mit Ablagerungen älterer Elbeläufe wurden nur sporadisch aufgesucht (Senftenberger Elbeläufe). Lokalsammler halten hier bevorzugt Ausschau nach Elbgeröllen von Achat, Jaspis oder paläozoischen Kieselhölzern, auch Moldavite vom Nördlinger-Ries-Impakt wurden hier gefunden.

Abb. 2: Übersichtskarte der Fundlokalitäten im südlichen Brandenburg und in Sachsen (ohne Dresden und Meißen).

1 – Kiesgrube Mühlberg (51.442307, 13.242926) – Berliner Elbelauf
2 – Kiesgrube Altenau (51.423500, 13.270685) – Berliner Elbelauf
3 – Kiesgrube Dixförda (51.818749, 13.027673)
5 – Kiesgrube Hennersdorf (51.636578, 13.658026)
6 – Kiesgrube Rückersdorf (51.572294, 13.587336)
7 – Kiesgrube Buchwäldchen (51.714272, 13.982248) – Senftenberger Elbelauf
8 – Kiesgrube Saalhausen (51.589816, 13.908524) – Senftenberger Elbelauf
9 – Kiesgrube Neukollm (51.416207, 14.152319) – Senftenberger Elbelauf
10 – Kiesgrube Großgrabe (51.354547, 14.012828) – Senftenberger Elbelauf

2.1. Kiesgrube Altenau und Mühlberg

In den Kiesgruben Mühlberg und Altenau dominieren klar Gesteine südlicher Herkunft („südliche Gerölle“ bzw. „Elbgerölle“), nordische Geschiebe sind nur zu einem geringen Prozentsatz vertreten. Die Kiese an diesen Lokalitäten sind Ablagerungen des mittelpleistozänen Berliner Elbelaufs, in Mühlberg auch jünger (STEDING 1996, WOLF & ALEXOWSKY 1998). Es bietet sich ein vielfältiges Geröllinventar mit Gesteinsmaterial aus dem Barrandium in Böhmen, der sächsischen und böhmischen Seite des Erzgebirges, Döhlener Becken und Meißener Massiv. Gesteine aus dem Riesengebirge und dem Nordwestsächsischen Vulkanitkomplex sowie Gerölle aus dem Muldesystem besitzen hier nur einen sehr geringen Anteil (EISSMANN 1975). Alle folgenden Funde stammen aus Altenau, nur die Funde aus Mühlberg werden eigens gekennzeichnet. Aufgrund der Fülle des Materials aus diesen beiden Gruben wurde eine grobe Sortierung nach Gerölltyp, Herkunft oder petrographischen Merkmalen vorgenommen.

Abb. 3: Überkornhalde in der Kiesgrube Altenau.
Abb. 4: Dem Besucher fällt schnell der hohe Anteil grauer Alkalivulkanite aus der Eruptivprovinz des Egergrabens auf.

Der Anteil nordischer Geschiebe in der Überkorn-Fraktion wird auf maximal 1-2% geschätzt. Vereinzelt finden sich Feuersteine, unterkambrische Skolithos-Sandsteine oder Rapakiwi-Granite.

Abb. 5: Unterkambrischer Skolithos-Sandstein, Geschiebe.

Quarzreiche Gerölle: In der Grobkies-Fraktion ist der Milchquarz-Anteil sehr hoch, im Überkorn treten sie zurück. Typisch „südliche“ Milchquarz-Varianten sind gehäufte Funde von „streifig durchscheinenden Quarzen“ und „zellig-zerfressenen Gangquarzen“. Gelegentlich treten Kasten-, Zellen-, Gerüst- und Strahlenquarze auf; ein Teil davon sind typisch osterzgebirgische Bildungen, insbesondere in Paragenese mit Amethyst, Rauchquarz, Jaspis oder Achat.

Abb. 6: Kasten- oder Zellenquarz, Breite 12 cm
Abb. 7: Strahlenquarz; große gelbe Pseudomorphosen von Quarz nach Baryt sind aus dem Mittelerzgebirge bekannt.
Abb. 8: Kastenquarz, angefeuchtete Schnittfläche.
Abb. 9: Quarzreiche Störungsbrekzie mit Milchquarzbändern und hell orange-farbenen Achat-Fragmenten (osterzgebirgischer „Trümmerachat“); Breite 11 cm.

Cherts und Hornsteine, „Kieselschiefer“ und „Lydite“: Sehr häufig sind die als „Lydit“ bezeichneten schwarzen Hornsteine und Cherts, die mit Milchquarz gefüllte Risse aufweisen. Darüber hinaus findet sich eine Vielfalt ähnlicher quarzreicher und sehr harter Gesteine mit grauer, grüner und gelber Färbung. „Kieselschiefer“ ist eine verbreitete Bezeichnung für geschichtete Hornsteine. Auffällig ist das gehäufte Auftreten roter Hornsteine, ein Teil davon könnte aus dem Döhlener Becken stammen.

Abb. 10: Schwarzer, landläufig als „Lydit“ bezeichneter Hornstein. Im vermuteten Hauptliefergebiet dieser schwarz-weißen Kieselgerölle (Brdy) konnten bislang allerdings keine Radiolarien nachgewiesen werden, daher sind die Gesteine auch nicht als Lydite anzusehen.
Abb. 11: Sich kreuzende Kluftstaffeln in einem dunkelgrauen Hornstein, Breite 11 cm.
Abb. 12: Grünlicher Hornstein mit roten Flecken, Breite 9 cm.
Abb. 13: Silifizierter Vulkanit (Tuffit) mit gelben, grünen und roten Farbanteilen, Breite 15 cm.
Abb. 14: Orangeroter Hornstein mit undeutlich entwickelter Lagentextur (geschichteter Hornstein); Breite 7,5 cm.
Abb. 15: Quarzreiche tektonische Brekzie mit roten Farbanteilen (roter Hornstein, Jaspis).
Abb. 16: Fein laminierter geschichteter Hornstein mit Milchquarzadern und etwas rotem Achat, Aufnahme unter Wasser.

Känozoische Alkalivulkanite (Tephrite, Ol-Px-Basanite, Phonolithe): Die Alkalivulkanite aus der Eruptivprovinz des Egergrabens stellen den häufigsten Gerölltyp auf den Überkornhalden in Altenau und Mühlberg. Entsprechend lässt sich eine große Variationsbreite an Tephriten, Basaniten (Olivin-Pyroxen-Basaniten, auch Ankaramite) und Phonolithen sammeln. Eine Bestimmung der Gesteine anhand äußerliche Merkmalen ist eingeschränkt möglich, für eine exakte Ansprache ist man auf Laboruntersuchungen angewiesen.

Abb. 17: Alkalivulkanite in der Kiesgrube Altenau; die hellen, feinkörnigen Gesteine werden (unter Vorbehalt) als Phonolithe, Vulkanite mit Pyroxen-Einsprenglingen als Tephrite und Olivin-Pyroxen-Vulkanite als Basanite angesprochen. In der Bildmitte ein helles syenitisches Gestein mit körniger Grundmasse.

Tephrite weisen eine graue bis bläuliche Verwitterungsrinde und eine feinkörnige Grundmasse auf. Als Einsprengling tritt idiomorpher und glasglänzender Klinopyroxen auf, gelegentlich ist auch amygdaloides Gefüge (Mandelsteingefüge) zu beobachten.

Abb. 18: Tephrit, Kiesgrube Mühlberg.
Abb. 19: Tephrit, teilweise mit sternförmigen Durchkreuzungen der schwarzen Pyroxen-Kristalle.
Abb. 20: Tephrit mit amygdaloidem Gefüge, Breite 17 cm, Mühlberg.
Abb. 21: Tephrit? mit feinkörnigen und schwach kantengerundeten Lapilli, Breite 23 cm.

Xenolithe von Erdmantelgesteinen (Peridotiten) treten in den känozoischen Alkalivulkaniten nur vereinzelt auf. Bemerkenswert ist der Fund eines Tephrits mit einem großen dunklen Peridotit-Xenolith (Olivin-Klinopyoxenit bzw. Olivin-Websterit) oder Pyroxen-Olivin-Kumulat. 

Abb. 22: Tephrit mit dunklem Peridotit-Xenolith (Olivin-Pyoxenit) und weiteren feinkörnigen Xenolithen.
Abb. 23: Nahaufnahme des Peridotit-Xenoliths aus schwarzem Klinopyroxen, gelblich verwitterndem Olivin und einer hellen, nicht näher bestimmbaren Zwischenmasse (HCl-Test negativ).

Basanite: basaltähnliche Gesteine mit Olivin- und Pyroxen-Einsprenglingen werden zunächst als Basanite bezeichnet. Olivin verwittert auf der Gesteinsoberfläche meist gelblich, im Bruch ist er flaschengrün gefärbt. Der Anteile an Einsprenglingen schwankt, besonders Ol-Px-reiche Varianten können auch als Ankaramit bezeichnet werden. In der Grundmasse fein verteilte Foide bewirken die leichte Verwitterbarkeit der Gesteine, mit dem bloßen Auge sind sie nicht sichtbar, Foid-Einsprenglinge nur selten zu beobachten.

Abb. 24: Basanit mit löchriger Oberfläche durch ausgewitterte Olivin-Einsprenglinge; etwas weniger schwarzer Pyroxen. Mühlberg, Breite 14 cm.
Abb. 25: Einsprenglingsarmer Basanit mit feinkörniger Grundmasse und Olivin-Einsprenglingen, wenig Pyroxen. Isometrische, teils 6-eckige Umrisse der Löcher sind ein Hinweis auf ausgewitterte Foid-Einsprenglinge; Mühlberg, Breite 11,5 cm.
Abb. 26: Bruchfläche eines ankaramitischen Basanits mit reichlich gelbgrünen Olivin- und dunkelgrünen Pyroxen-Einsprenglingen. Mühlberg, Breite 9 cm.
Abb. 27: Säulenförmiger Alkalivulkanit ohne Einsprenglinge; Breite 12 cm.

Hin und wieder lässt sich die für Alkalivulkanite typische Sonnenbrenner-Verwitterung sowie bizarre kugelförmige Verwitterungserscheinungen beobachten.

Abb. 28: Alkalivulkanit mit Sonnenbrenner-Verwitterung, Breite 19 cm.
Abb. 29: Alkalivulkanit mit kugeliger Verwitterungstextur, Breite 13,5 cm.

Phonolithe besitzen eine hellgraue bis grünliche Verwitterungsrinde, eine feinkörnige bis dichte Grundmasse und enthalten wenige, teilweise sehr kleine Einsprenglinge von schwarzem Klinopyroxen oder nadeligem Ägirin sowie wenige Alkalifeldspat-Einsprenglinge (Sanidin). Eine Verwechslungsmöglichkeit besteht mit den Trachyten.

Abb. 30: Alkalivulkanit (Phonolith) mit schwarzgrünen Einsprenglingen dunkler Minerale, einer feinkörnigen Grundmasse und einigen größeren hellen Feldspat-Einsprenglingen (Sanidin), Breite 21 cm.
Abb. 31: Heller Alkalivulkanit (Phonolith) mit säuligen Pyroxen, nadeligen Ägirin- und durchscheinenden Sanidin-Einsprenglingen. Breite 9 cm.

Ein auffälliger Typ Alkalivulkanit besitzt eine helle, körnige und feldspatreiche Grundmasse und enthält zahlreiche Pyroxen-Einsprenglinge. Es dürfte sich um ein trachytisches bis phonolithisches bzw. syenitisches bis foidsyenitischesGanggestein oder einen Subvulkanit handeln. Foide sind makroskopisch nicht erkennbar.

Abb. 32: Trachytischer bis phonolithischer Alkalivulkanit (Ganggestein oder Subvulkanit), trocken fotografiert, Breite 14 cm.
Abb. 33: Die Nahaufnahme der nassen Oberfläche zeigt Klinopyroxen-Einsprenglinge in sternförmiger Verzwilligung sowie einen perfekt sechseckigen Querschnitt.

Böhmisches Quarz-Lydit-Konglomerat: Das Elbeleitgeröll aus den Brdy (Mittelböhmisches Waldgebirge) tritt gelegentlich im Berliner Elbelauf auf. Eine Verwechslungsmöglichkeit besteht u. U. mit den böhmischen Tertiärquarziten. Typische Merkmale sind eine grünlichgraue Gesamtfarbe, weiße und meist gut gerundete Milchquarz-, etwas weniger schwarze „Lydit“-Lithoklasten sowie eine ähnlich zusammengesetzte Matrix.

Abb. 34: Böhmisches Quarz-Lydit-Konglomerat, Breite 20 cm.
Abb. 35: Böhmisches Quarz-Lydit-Konglomerat, Breite 17 cm.
Abb. 36: Böhmisches Quarz-Lydit-Konglomerat, Breite 14 cm.
Abb. 37: Böhmisches Quarz-Lydit-Konglomerat mit rötlicher Matrix, Breite 13 cm.
Abb. 38: Wahrscheinlich Böhmisches Quarz-Lydit-Konglomerat; dunkle Chert-Klasten sind nur innerhalb der Matrix erkennbar, Breite 12 cm.

Aus dem Kambrium oder Ordovizium des Barrandiums könnten auch plattige und gelblichgrüne bis rötliche Sandsteine stammen, die nur untergeordnet dunkle Cherts enthalten.

Abb. 39: Gelblichgrüner und roter Sandstein mit dunklen Chert-Lithoklasten, Breite 16 cm.

„Skolithos“-Sandsteine: Als böhmisches Leitgeröll gelten verkieselte Sandsteine mit einer Skolithos-Ichnofauna („Dabrowquarzit“, „Skalkaquarzit“, GENIESER 1955, Abb. in SCHWARZ & LANGE 2013). Aus dem Ordovizium des Prager Beckens sind mehrere Formationen mit Sandsteinen mit quarzigem, teils eisenschüssigem Bindemittel bekannt, in denen vertikale Gänge von Skolithos und Monocraterion auftreten (Lokalbezeichnungen Skalka-Quarzit und Revnice-Quarzit). Die von CHLUPAC et al 1993 als Tigilites vertebralis bezeichneten Spuren gehören wohl zur Skolithos-Ichnofauna. Seltener sind komplexe, in tieferen Teilen sich verzweigende Gänge von Pragichnus fascis CHL aus der Skolithos-Ichnofazies (HAVLICEK et al 1958:28, CHLUPAC 1993:57-58, CHLUPAC et al 1998). Ein Geröllfund mit Pragichnus fascis CHL (Abb. 45) aus Altenau wird von TORBOHM & HOFFMANN 2024 (Publikation in Vorb.) beschrieben.

Elbgerölle der böhmischen Quarzsandsteine mit Skolithos-Röhren sind sehr feinkörnig, besitzen eine gelbgraue, hellgraue oder bräunliche Färbung und können durch Verkieselung eine große Härte und Zähigkeit aufweisen. Sie führen feine Hellglimmerblättchen, Röhren der Skolithos-Ichnofazies treten vereinzelt auf, einige von ihnen auch schräg zur Schichtung. Schwierigkeiten ergeben sich bei der Unterscheidung von Geschieben der weit verbreiteten unterkambrischen Sandsteine mit Skolithos-Ichnofauna. Die südlichen Skolithos-Sandsteine sind aber offenbar deutlich feinkörniger, stark verkieselt, hellglimmerführend und enthalten nur wenige Röhren.

Abb. 40: Brauner und silifizierter Skolithos-Sandstein.

Ein regelmäßiger Fund und auffälliger Lithotyp sind ockerfarbene, silifizierte und sehr harte Feinsandsteine mit roten Flecken (eisenschüssiges Bindemittel). Eine Schichtung ist kaum erkennbar, hin und wieder eine Skolithos-Ichnofauna zu beobachten. Aus den unterordovizischen red beds des Barrandiums in Böhmen werden ähnliche Gesteine beschreiben.

Abb. 41: Silifizierter Feinsandstein mit roten Flecken, Breite 19 cm.
Abb. 42: Ähnlicher Lithotyp, Breite 10 cm.
Abb. 43: Silifizierter Feinsandstein mit Skolithos-Ichnofauna; Breite 15 cm.
Abb. 44: Nahaufnahme der nassen Oberfläche.
Abb. 45: Sich verzweigende Gänge von Pragichnus fascis CHL in einem hellen und silifiziertem Sandstein, Blick auf die Schichtebene, Breite 10 cm.

Paläozoische Kieselhölzer: Silifizierte paläozoische Hölzer finden sich regelmäßig, wenn auch nur vereinzelt im Berliner Elbelauf und können geschnitten und poliert sehr reizvoll aussehen. Mögliche Herkunftsgebiete sind die permokarbonischen Becken in Böhmen und das Döhlener Becken. Die Kieselhölzer des Döhlener Beckens weisen im Allgemeinen eine schlechte, die böhmischen Hölzer eine gute Strukturerhaltung auf.

Abb. 46: Paläozoisches Kieselholz, Aufnahme unter Wasser.
Abb. 47: Dunkles paläozoisches Kieselholz, polierte Schnittfläche.
Abb. 48: In der Nahaufnahme sind die gut erhaltene Holzstruktur und roter Bandachat als Umrandung mit Quarz gefüllter Hohlräume erkennbar.
Abb. 49: Paläozoisches Kieselholz, Kiesgrube Mühlberg, Aufnahme unter Wasser.
Abb. 50: Gleicher Stein, polierte Schnittfläche.
Abb. 51: Nahaufnahme.

Die weichen Kreidesandsteine (Elbsandstein) sind als Elbgeröll offenbar nicht besonders erhaltungsfähig und treten nur vereinzelt auf. Hin und wieder sind Faunenreste enthalten.

Abb. 52: Kreidesandstein mit Inoceramen-Fragment? Breite 23 cm (Mühlberg).

„Tertiärquarzite“, „Knollensteine“: Die Erosion der Kreidesandsteine im Tertiär führte zu kiesig-konglomeratischen Ablagerungen, die nachfolgend teilweise der Verkieselung unterlagen. Durch konzentrische Ausbreitung von Kieselsäure im Sediment bildeten sich konkretionäre, als „Knollenstein“, „Tertiärquarzit“ oder „Dinasquarzit“ bezeichnete Formen, meist schlecht sortierte und matrixgestützte Übergänge zwischen Brekzien und Konglomeraten (Diamiktite). Sie weisen ein breites Korngrößenspektrum aus eckigen bis gerundeten und milchigen bis durch-scheinenden Quarz-Lithoklasten sowie eine feinsandige bis tonige und verkieselte Matrix auf. Der Lithoklasten-Bestand kann monomikt (nur Quarze) oder polymikt (+ Lydite/Cherts, Sandsteine etc.) sein. Knollensteine und Tertiärquarzite sind meist gelblichweiß gefärbt, treten aber in vielfältigen Farben, Gefügen und Zusammensetzungen auf (GENIESER & MIELECKE 1957, SCHWARZ & LANGE 2013). Sie sind in Böhmen weit verbreitet, Vorkommen auch aus Sachsen bekannt. Geröllfunde lassen sich nicht näher lokalisieren, allerdings scheinen Tertiärquarzite mit bunten proterozoische Chert-Lithoklasten aus Böhmen zu stammen, aus den Einzugsgebieten der Berounka und Moldau (GENIESER & MIELECKE 1957), vergleichbare Vorkommen sind aus Sachsen unbekannt. Der „böhmische“ Gerölltyp tritt im Berliner Elbelauf nur vereinzelt auf.

Abb. 53: „Tertiärquarzit“, Breite 10 cm.
Abb. 54: „Tertiärquarzit“, Breite 17 cm.

Osterzgebirgische Geröllgemeinschaft: Ein weitläufiges Störungssystem mit quarzreichen Gang- und Störungsbrekzien im Osterzgebirge ist Lieferant von Geröllen mit charakteristischen Paragenesen aus Quarz, Amethyst, Rauchquarz, Jaspis und/oder Achat. Die Gesteine gelangten über die Müglitz, von tschechischer Seite über die Eger in die Elbe. Störungsbrekzien mit Amethyst werden auch als „Trümmerkristallquarz“, mit Fragmenten von Bandachat als „Trümmerachat“ bezeichnet. Sie können von Kastenquarzen und Strahlenquarz-Pseudomorphosen (nach Baryt) begleitet sein, ihr gemeinsames Auftreten kennzeichnet die osterzgebirgische Geröllgemeinschaft.

Abb. 55: Osterzgebirgische Quarz-Amethyst-Brekzie, polierte Schnittfläche. Quarz- und Amethyst-Bänder wurden durch erneute tektonische Überprägung geklüftet und gegeneinander verstellt.
Abb. 56: Osterzgebirgische Gangfolge aus Quarz, schwach violettem Amethyst und rotem Hornstein, Aufnahme unter Wasser.
Abb. 57: Quarz-Achat-Gangbrekzie, Aufnahme unter Wasser.
Abb. 58: Nahaufnahme des Bandachats, nasse Oberfläche.
Abb. 59: Quarz-Achat-Gangbrekzie („Trümmerachat“), Aufnahme unter Wasser.
Abb. 60: Nahaufnahme der polierten Schnittfläche.

Weniger typisch und nur bedingt auf das Osterzgebirge zurückführbar sind tektonische Brekzien ohne die charakteristischen Amethyst-Achat-Paragenesen sowie Quarz-Brekzien mit Jaspis/rotem Hornstein.

Abb. 61: Gang- oder Störungsbrekzie mit Bergkristall und teilweise von dunklem Hornstein umgebenen Fragmenten; polierte Schnittfläche.
Abb. 62: Gang- oder Störungsbrekzie mit orangerotem Jaspis, Aufnahme unter Wasser.
Abb. 63: Gleicher Stein, Nahaufnahme der polierten Schnittfläche mit gebänderten und ooidartigen Jaspis-Partien.
Abb. 64: Quarz-Jaspis-Brekzie, trocken fotografiert.
Abb. 65: Gleicher Stein, Nahaufnahme unter Wasser. Neben rotem Hornstein/Jaspis ist auch dunkler Hämatit erkennbar.

Postvariszische Vulkanite (Rhyolithe): Intensive vulkanische Aktivität in der Spätphase der variszischen Orogenese zwischen Oberkarbon und Perm führte zur Ablagerung ausgedehnter Komplexe von Eruptivgesteinen. Im sächsischen Einzugsgebiet der Elbe spielt das Osterzgebirge, der Tharandter Wald und das Gebiet von Meißen eine wichtige, der annähernd zeitgleich entstandene Nordwestsächsische Eruptivkomplex nur eine untergeordnete Rolle als Geröll-Lieferant. Ein Teil der sauren bis intermediären Vulkanite (Rhyolithe, Porphyrite, Pechsteine, porphyrartige Tuffe, Tuffite und intrusive Granitporphyre) ist als Elbgeröll erkennbar. Funde lassen sich in der Regel aber keinem bestimmten Vorkommen zuordnen, weil die Gesteine im Anstehenden eine gewisse petrographische Gleichförmigkeit aufweisen und an verschiedenen Lokalitäten ganz ähnlich aussehen können (SCHÜLLER & MÜLLER 1937). Wegen ihrer weiten Verbreitung wurden sie früher allgemein als „Neovulkanite“ bezeichnet, in Abgrenzung zu den „Paläovulkaniten“ nordischer Herkunft. Eine zeitgemäße Sammelbezeichnung ist „postvariszische Vulkanite

In den Kiesgruben Mühlberg und Altenau finden sich postvariszische Vulkanite in großer Zahl und Vielfalt. Charakteristisch sind blasse Farben, feinkörnige bis dichte, teilweise auch kaolinisierte Grundmassen und wenig Quarz- und Feldspat-Einsprenglinge. Die Quarze haben noch die eckige Gestalt der ehemaligen Hochquarz-Modifikation bewahrt und weisen Spuren magmatischer Korrosion auf.

Abb. 66: Zusammenstellung von postvariszischen Vulkaniten, Kiesgrube Altenau, Aufnahme unter Wasser.
Abb. 67: Postvariszischer Vulkanit (Rhyolith) mit fleckiger, durch Kaolinisierung partiell gebleichter Grundmasse. Breite 11 cm.

Abb. 68-73 zeigt weitere Beispiele aus der Kiesgrube Altenau.

Abb. 74: Einige Vulkanite lassen eutaxitisches Gefüge erkennen, ein klarer Hinweis auf ihre Ablagerung als Ignimbrit.
Abb. 75: Aschentuff? mit fluidaler Lagentextur und synsedimentärer(?) Faltung, Breite 15 cm.
Abb. 76: Rhyolith mit sphärolithischer Textur, Aufnahme unter Wasser.

Ein weiteres primär vulkanisches Gefüge in den postvariszischen Vulkaniten sind runde bis eiförmige, teilweise konzentrisch aufgebaute Lithophysen oder Sphärolithe, die manchmal auch als „Wilde Eier“ bezeichnet werden.

Abb. 77: Rhyolith mit konzentrisch aufgebauten, teilweise mit bläulichem Chalcedon gefüllten Lithophysen, polierte Schnittfläche.
Abb. 78: Nahaufnahme; innerhalb der konzentrisch aufgebauten Lithophyse am rechten Bildrand sind hellere, radialstrahlig-faserige Partien (Sphärolithe) erkennbar.

Der nächste Fund, ein rötlichgrauer Rhyolith, weist auf einer Seite einen Besatz mit cremefarbenen runden Aggregaten auf (Lithophysen und/oder Spärolithe).

Abb. 84: Gelblichgrüner Vulkanit mit perlitischer Textur und zahlreichen hellen, wahrscheinlich im Zuge der Entglasung zerbrochenen Lithophysen, teilweise gefüllt mit blauem Chalcedon; polierte Schnittfläche. Das Gestein könnte aus dem Gebiet des Teplitzer Rhyoliths (Osterzgebirge) stammen (SCHWARZ & LANGE 2013).
Abb. 85: Nahaufnahme; grüne Grundmasse mit perlitischer Textur und weiße Lithophysen.

Ebenfalls zu den postvariszischen Vulkaniten dürften Tuff-Brekzien mit grünlicher und dichter Tuffmatrix und Vulkanoklasten mit fluidaler Textur gehören. Ihr Herkunftsgebiet könnte im Meißener Vulkanitgebiet oder im Döhlener Becken zu suchen sein (pers. Mitteilung Dr. Schwarz/Cottbus). Der folgende Fund stammt allerdings nicht aus Südbrandenburg, sondern aus der Kiesgrube Niederlehme bei Berlin, in der zeitweilig Material aus Mühlberg gelagert wurde.

Abb. 86: Tuffbrekzie mit grüner Matrix und eckigen Vulkanoklasten, teils mit feinschichtiger oder fluidaler, teils mit sphärolithischer Textur. Das Gestein ist durch seine nachträgliche Verkieselung sehr hart und zäh. Polierte Schnittfläche.
Abb. 87: Nahaufnahme; überwiegend eckige Vulkanoklasten sprechen für einen kurzen Transportweg.

Braune bis rotbraune Gang- oder Granitporphyre bilden ein System von Gängen und kleinen Massiven im Osterzgebirge und sind ebenfalls zu den postvariszischen Vulkaniten zu rechnen. Einige dieser Gesteine, z. B. der Altenberger Granitporphyr oder der Gangporphyr an der Burg Frauenstein weisen ein charakteristisches Erscheinungsbild auf und könnten als Elbeleitgeröll geeignet sein. In Mühlberg und Altenau gehören die osterzgebirgischen Gang- bzw. Granitporphyre zu den regelmäßigen Funden. Sie weisen eine feinkörnige bis körnige Grundmasse auf und enthalten neben runden Quarz- auch 1-3 cm große Feldspat-Einsprenglinge, die nicht selten eine ausgeprägte Zonierung aufweisen.

Abb. 88: Osterzgebirgischer Gangporphyr, Breite 11,5 cm.
Abb. 89: Osterzgebirgischer Gangporphyr, Breite 11 cm.

Der blassrote und mittel- sowie gleichkörnige Meißener Granit besteht im Wesentlichen aus cremefarbenem bis hellrotem Alkalifeldspat sowie mittelgrauem, hypidiomorphem bis idiomorphem Quarz. Die Feldspäte sind durch Hämatitpigment stellenweise rötlich gefärbt, dunkle Minerale nur in geringer Menge enthalten. Granite aus dem Meißener Massiv sind ein häufiger Fund in Mühlberg und Altenau.

Abb. 90: Meißener Granit, Breite 11 cm.
Abb. 91: Hellroter Meißener Granit; Quarz erscheint durch (wahrscheinlich nur äußerlich) fein verteiltes Hämatitpigment dunkelrot gefärbt; Breite 23 cm.

Vereinzelt finden sich massige oder foliierte Plutonite und Metamorphite mit granitischer Zusammensetzung, die als einziges dunkles Mineral schwarzen Turmalin enthalten (sog. „Turmalingranit“). Mehrere kleine Vorkommen im Einzugsgebiet der Elbe sind bekannt, der Gesteinstyp tritt auch als Geschiebe auf.

Abb. 92: „Turmalingranit“, Quarz-Feldspat-Gneis mit größeren schwarzen Turmalin-Einsprenglingen (Mühlberg).
Abb. 93: „Turmalingranit“, Quarz-Feldspat-Gestein mit schwarzem Turmalin, Breite 11 cm.

Eine Reihe von Funden ließ sich bislang keinem näheren Vorkommen zuordnen, in manchen Fällen wird dies auch gar nicht möglich sein. Die südliche Herkunft der Gesteine steht aber außer Frage. Regelmäßig finden sich rote bis rotviolette Gesteine mit stumpfem Glanz, die im Wesentlichen aus Jaspis bzw. rotem Hornstein bestehen. Teils sind es massige Hornsteine, teils tektonische Brekzien („Jaspisbrekzien“) oder durch jaspisartige Ausscheidungen überprägte Vulkanite. Die Herkunft der meisten Funde dürfte mangels weiterer charakterisierender Merkmale kaum zu klären sein, als mögliche Liefergebiete kommen das Osterzgebirge, Döhlener Becken oder Vorkommen in Böhmen in Frage.

Abb. 94: Massiger roter und jaspisartiger Hornstein mit Fragment einer quarzreichen tektonischen Brekzie, Aufnahme unter Wasser. Das Gestein könnte aus dem Osterzgebirge stammen.
Abb. 95: Massiger roter Hornstein (Jaspis), trocken fotografiert, Breite 19 cm.
Abb. 96: Brekzie mit orangeroten Vulkanit-Lithoklasten und einer jaspisartigen roten und dichten Matrix, Breite 17 cm.
Abb. 97: Nahaufnahme unter Wasser.

Mehrere Funde von schwach metamorphen und klastengestützten, fast ausschließlich aus dunklen Cherts und geschichteten Hornsteinen bestehenden Konglomeraten weisen Ähnlichkeiten zu den Kulm-Konglomeraten von Kummersdorf im Görlitzer Antiklinorium auf, können aber kaum von dort stammen. Ihre Herkunft ist bislang ungeklärt, vermutet wird ein oberkarbonisches Alter und eine Sedimentation während der variszischen Gebirgsbildung.

Abb. 98: Klastengestütztes Chert-Hornstein-Konglomerat, Kiesgrube Mühlberg, Aufnahme unter Wasser.
Abb. 99: Nahaufnahme.

In Mühlberg fanden sich mehrfach grünliche Metakonglomerate mit hellen Vulkanit-Lithoklasten, in Altenau wurde der Gesteinstyp bisher gar nicht beobachtet.

Abb. 100: Grünliches Metakonglomerat, trocken fotografiert, Kiesgrube Mühlberg.
Abb. 101: Nahaufnahme der nassen Oberfläche.
Abb. 102: Tektonische Brekzie mit teilweise hämatitimprägnierten Lithoklasten eines fein geschichteten Sedimentgesteins (geschichteter Hornstein), verbunden durch einen transparentem Quarz-Zement, Herkunft unbekannt, Aufnahme unter Wasser.
Abb. 103: Nahaufnahme unter Wasser.
Abb. 104: Tektonische Brekzie mit teils gneisigen Lithoklasten, die von einem dunklen und hornsteinartig dichtem Saum umgeben sind; von diesen Bruchstücken radialstrahlig ausgehend kristalliner Quarz als Zement. Im unteren Teil eine Grenze zu einem grünlichen Hornstein. Aufnahme unter Wasser.
Abb. 105: Quarzreiche Brekzie mit unbekannter Mineralisation der Klüfte, Breite 13 cm.
Abb. 106: Nahaufnahme der Bruchfläche unter Wasser.

Typische Gerölle des Berliner Elbelaufs, die aber bisher weder in Mühlberg, noch in Altenau gefunden wurden, sind Grauwacken, Knotengrauwacken (graue Kontaktmetamorphite mit dunklen Flecken von Cordierit o. ä.) und die ohnehin seltenen Erdbrandgesteine („Porzellanite“). Wenig beachtet wurden auch die meist merkmalsarmen hellen Gneise, Glimmerschiefer und Metabasite. Ein Teil von ihnen dürfte aus dem Erzgebirge oder variszischen Einheiten stammen, die Gesteine unterscheiden sich aber nur wenig von ihren „Verwandten“ nordischer Herkunft.

Ein auffälliger und für den Berliner Elbelauf typischer Gerölltyp sind grüne und glimmerreiche Schiefer („Serizitschiefer“). In den älteren Elbeläufen tritt er nicht auf, seine Herkunft ist allerdings ungeklärt.

Abb. 109: Hellgrüner „Serizitschiefer“, Breite 16 cm.

Veränderungen im Einzugsgebiet der Elbe und somit der Liefergebiete von Geröllen spiegeln sich in einer unterschiedlichen Vergesellschaftung von Geröllen wieder. Als Beispiel seien mehrfache Funde von „Fleckengraniten“ sowie des Metakonglomerats in Abb. 100-101 in der Kiesgrube Mühlberg angeführt, in der Kiesgrube Altenau fehlen diese Gesteine. Die Ablagerungen in Altenau stammen aus der Zeit des Berliner Elbelaufs, in Mühlberg werden auch holozäne Schotter gefördert. Die kleinkörnigen Fleckengranite enthalten dunkle und mehrere cm große Flecken, wahrscheinlich granoblastische Mineralneubildungen im Zuge (kontakt?)-metamorpher Überprägung.

Abb. 110: Fleckengranit, Mühlberg, trocken fotografiert.
Abb. 111: Nahaufnahme der nassen Oberfläche. In der Grundmasse ist eine leichte Einregelung der Mineralbestandteile erkennbar. Die Mineralkörner innerhalb der Flecken (Quarz, Cordierit?, Feldspat, Amphibol?) erscheinen undeformiert.
Abb. 112: Ein weiterer Fleckengranit aus Mühlberg, nass fotografiert, Breite 20 cm.
Abb. 113: Überkornhalde in der Kiesgrube Mühlberg.

2.2. Kiesgrube Dixförda

Der einzige Fund aus der Kiesgrube Dixförda (Sachsen-Anhalt) ist eine exotische Jaspis-Variante, ein Elbeleitgeröll aus dem Gebiet von Raum Hořovice. Das sphärolithische Gefüge ist wahrscheinlich auf die Tätigkeit von Mikroorganismen zurückzuführen (SCHWARZ et al 2012).

Abb. 114: Sphärolithischer rot-gelber Jaspis, Kiesgrube Elbekies Dixförda, ca. 20 km südlich Jüterbog; Aufnahme unter Wasser, Slg. G. Engelhardt (Potsdam).

Fortsetzung Teil 2

Funde von Elbgeröllen aus Südbrandenburg und Sachsen 2

2.3. Dresden und Meißen

Der Besuch der Elbufer in den Städten Meißen oder Dresden bietet eine gute Gelegenheit zum Studium der Elbgerölle. Insbesondere nach Hochwasser-Lagen bestehen gute Fundmöglichkeiten. Zur stratigraphischen Herkunft lassen sich natürlich keine Aussagen treffen, teilweise handelt es sich um rezente Gerölle, transportiert worden, teilweise dürften sie aus Anschnitten älterer Flussterrassen stammen.

Abb. 1: Gerölle am Elbstrand in der Nähe vom „Blauen Wunder“ (Dresden), Bildbreite 35 cm: Milchquarze und graue Cherts, hellgraue Alkalivulkanite mit schwarzen Pyroxen-Einsprenglingen aus dem Böhmischen Mittelgebirge, postvariszische Vulkanite und ein Knollenstein („Tertiärquarzit“).
Abb. 2: „Tertiärquarzit“ aus voriger Abbildung, wahrscheinlich aus Nordböhmen stammend.
Abb. 3: Hornstein mit gradierter Schichtung („anchimetamorphe“ Grauwacke?), Elbgeröll von Meißen, Aufnahme unter Wasser.
Abb. 4: Kontaktmetamorphit („Knotenschiefer“), Elbgeröll von Meißen, Aufnahme unter Wasser.
Abb. 5: Monzonit aus dem Meissener Massiv, gehäufter Fund in einer Kiesgrube bei Sönitz, ca. 8 km SSW von Meißen (51.106041, 13.426419), Aufnahme unter Wasser.

Das nächste Gestein stammt aus Abraum von einem Tunnelbau in Pirna. In den sandig-lehmigen Ablagerungen fanden sich sowohl südliche Gerölle, als auch Geschiebe (Feuersteine). Es handelt sich um einen postvariszischen Vulkanit mit Lithophysen, die mit bläulichem Chalcedon gefüllt sind. In Vulkaniten nordischer Herkunft konnten sich solche primären vulkanischen Gefüge in der Regel nicht erhalten.

Abb. 6: Postvariszischer Vulkanit mit Kugeltextur, Außenseite, Aufnahme unter Wasser.
Abb. 7: Gleicher Stein, polierte Schnittfläche.
Abb. 8: Die Nahaufnahme zeigt die undeutlich konzentrisch aufgebauten, mit bläulichem Chalcedon gefüllten Lithophysen.

Nachfolgend werden Funde von Elbgeröllen von den Lokalitäten 5-10 gezeigt, sowohl aus dem mittelpleistozänen Berliner, als auch aus dem Senftenberger Elbelauf (Miozän bis Altpleistozän).

Abb. 9: Lage der Fundorte im südlichen Brandenburg und in Nordost-Sachsen.

5 – Kiesgrube Hennersdorf (51.636578, 13.658026)
6 – Kiesgrube Rückersdorf (51.572294, 13.587336)
7 – Kiesgrube Buchwäldchen (51.714272, 13.982248) – Senftenberger Elbelauf
8 – Kiesgrube Saalhausen (51.589816, 13.908524) – Senftenberger Elbelauf
9 – Kiesgrube Neukollm (51.416207, 14.152319) – Senftenberger Elbelauf
10 – Kiesgrube Großgrabe (51.354547, 14.012828) – Senftenberger Elbelauf

2.4. Kiesgrube Hennersdorf

In der Kiesgrube Hennersdorf werden Vor- und Nachschüttungen der Saale-1-Kaltzeit mit fluviatilen Resten des Berliner Elbelaufs abgebaut (SCHWARZ 2021). Funde von Achaten aus dem Böhmischen Riesengebirgsvorland und Moldavit-Funde sprechen eher für ein Geröllspektrum des Senftenberger Elbelaufs. GENIESER 1962:145 erwähnt einen von Finsterwalde bis nach Schlieben verlaufenden Kiessandzug („Hennersdorfer Kiese“) mit Geröllen des Senftenberger Elbelaufs, der auch nordische Geschiebe enthält; die Elbgerölle könnten auch aus elsterzeitlichen Ablagerungen stammen.

Abb. 10: Gemischte Geschiebe-/Geröllgemeinschaft in der Kiesgrube Hennersdorf: überwiegend Milchquarz und graue Cherts, vereinzelt nordische Feuersteine; Bildbreite 42 cm.
Abb. 11: Graue Cherts/Hornsteine und ein Jaspis-Geröll, Aufnahme unter Wasser.
Abb. 12: Links zwei Böhmische Quarz-Lydit-Konglomerate, unten rechts ein streifig durchscheinender Gangquarz, Aufnahme unter Wasser.

2.5. Kiesgrube Rückersdorf

Die Kiesgrube Rückersdorf, etwa 4 km südlich von Doberlug-Kirchhain, baut laut geologischer Karte (www.geo.brandenburg.de) elsterzeitliche Schmelzwasser-Ablagerungen ab. GENIESER 1953 beschreibt Geröllfunde aus dem Gebiet von Doberlug.

Abb. 13: Hornsteine/Cherts, oben rechts ein Exemplar mit eigenwilligem Kluftmuster; Aufnahme unter Wasser.
Abb. 14: „Tertiärquarzit“, nass fotografiert.

Knotengrauwacken“ (kontaktmetamorphe Grauwacken) wurden in Rückersdorf mehrfach beobachtet. Der Gerölltyp tritt nach GENIESER 1957 vermehrt im Berliner Elbelauf auf.

Abb. 17: „Knotengrauwacke“ mit erkennbarer Schrägschichtung, Aufnahme unter Wasser.

2.6. Kiesgrube Buchwäldchen

Während eines Besuches im Juni 2023 bestanden nur eingeschränkte Fundmöglichkeiten. Es konnten einige streifig durchscheinende Gangquarze, schwarze Cherts, lackglänzende Gerölle, zwei konglomeratische Sandsteine (böhmisches Quarz-Lydit-Konglomerat) und ein roter Kastenquarz aufgelesen werden. Die Gerölle sind hier kaum größer als 4 cm und gut gerundet, Cherts oftmals nur kantengerundet.

Abb. 18: Typische Zusammensetzung reiner Elbeschotter: überwiegend Milchquarz, neben einigen dunklen Cherts; Bildbreite 40 cm.
Abb. 19: „Tertiärquarzit“ aus der Kiesgrube Buchwäldchen; Varianten mit dunklen Chert-Lithoklasten stammen wahrscheinlich aus Vorkommen in Nordböhmen. Foto: M. Bräunlich (kristallin.de).

2.7. Kiesgrube Saalhausen

Funde aus der Kiesgrube Saalhausen (Senftenberger Elbelauf) wurden mir freundlicherweise von Herrn St. Schneider (Berlin) überlassen.

Abb. 20: Geröllgemeinschaft aus der Kiesgrube Saalhausen.
Abb. 21: Lackglänzende, in aridem Klima eingekieselte und mit Chalcedon überzogene Gerölle, ähnlich den Geröllen aus den „Kiesen vom Buchwäldchen-Typ“.
Abb. 22: Sedimentgesteine; rechts unten ein Böhmisches Quarz-Lydit-Konglomerat, oben rechts und unten links „Tertiärquarzite“.

Zu den seltenen Funden im Senftenberger Elbelauf gehören verkieselte Hölzer des Baumfarns Psaronius.

Abb. 27: Luftwurzeln des Baumfarns Psaronius, leg. und coll. B. Mekiffer (Berlin).

2.8. Kiesgrube Neukollm

In Neukollm stehen laut GUEK 4750 glazial gestauchte saalezeitliche Ablagerungen an, die nach der Karte in LANGE 2012: 33 Gerölle des Senftenberger Elbelaufs aufgenommen haben. Bei einem Besuch fanden sich Tertiärquarzite und Böhmische Quarz-Lydit-Konglomerate in größerer Anzahl, ebenso Jaspis-Gerölle mit ooidartiger Textur.

Abb. 28: Streifiger Gangquarz, nass fotografiert.
Abb. 29: Dunkle „Lydite“/Cherts.
Abb. 30: Rote Cherts und Hornsteine, Aufnahme unter Wasser.
Abb. 31: Links ein geschichteter Hornstein, rechts eine osterzgebirgische Quarz-Amethyst-Achat-Gangbrekzie, Aufnahme unter Wasser.
Abb. 34: Diverse „Tertiärquarzite“, oben rechts ein Böhmisches Quarz-Lydit-Konglomerat.
Abb. 35: „Tertiärquarzit“, Diamiktit mit überwiegend eckigen Quarz-Lithoklasten und einer feinkörnigen und verkieselten Grundmasse.
Abb. 36: Rötlicher „Tertiärquarzit
Abb. 37: „Tertiärquarzit“ mit Chert-Geröllen, wahrscheinlich böhmischer Herkunft, nass fotografiert.
Abb. 38: Böhmisches Quarz-Lydit-Konglomerat mit der typisch graugrünen Farbe, Aufnahme unter Wasser.
Abb. 39: Postvariszischer Vulkanit mit eckigen Quarz-Einsprenglingen, Aufnahme unter Wasser.

2.9. Kiesgrube Großgrabe

In der Kiesgrube Großgrabe, etwa 12 km südwestlich von Neukollm, werden glazifluviatile Ablagerungen eines jüngeren elsterzeitlichen Vorstoßes abgebaut.

Abb. 40: Anschnitt sandiger bis kiesiger fluviatiler Sedimente in der Kiesgrube Großgrabe, Höhe der Abbauwand etwa 5 m.
Abb. 41: Zellige Gangquarze und ein rötlich-gelber Kastenquarz.
Abb. 42: Rötlich-gelber Kastenquarz, Aufnahme unter Wasser.
Abb. 43: Böhmisches Quarz-Lydit-Konglomerat, Aufnahme unter Wasser.
Abb. 44: „Turmalingranit“, heller Quarz-Feldspat-Magmatit mit schwarzen Turmalin-Kristallen.

In der Grobkiesfraktion konnten zahlreiche Jaspis-Gerölle aufgesammelt werden, einige mit ooidartigem oder sphärolithischem Gefüge.

Abb. 45: Jaspis-Gerölle, Aufnahme unter Wasser.
Abb. 46: Sphärolithischer Jaspis, Aufnahme unter Wasser (Rückseite vgl. Abb. 1, Teil 1).

Darüber hinaus fanden sich in der Grube bunte und tonige, schluffige bis feinsandige Lockergesteine (Ton- bis Siltsteine), die wahrscheinlich aus unmittelbarer Nähe, aus den nördlich ausstreichenden Vorkommen der unter- bis mittelmiozänen Brieske-Formation stammen.

Abb. 47: Bunte Ton- und Siltsteine, Nahgeschiebe.

3. Literatur

CHLUPÁČ I 1993 Geology of the Barrandium – A field trip guide – 163 S, Senckenberg-Buch 69, Verlag Waldemar Kramer Frankfurt am Main.

CHLUPÁČ I et al 2002 Geologická minulost České Republiky – Praha (Academia) 2002.

CHLUPÁČ I, HAVLÍČEK V, KŘÍŽ J, KUKAL Z & STORCH P 1998 Palaeozoic of the Barrandian (Cambrian to Devonian) – Czech Geological Survey Prague 1998, ISBN 80-7075-246-7.

EISSMANN L 1975 Das Quartär der Leipziger Tieflandsbucht und angrenzender Gebiete um Saale und Elbe. – Schriftenr. geol. Wiss., 2: 1–263; Berlin.

GENIESER K 1953 Einheimische und südliche Gerölle in den Deckgebirgsschichten von Dobrilugk. – Geologie, 2(1): 35–57, Berlin.

GENIESER K 1955 Ehemalige Elbeläufe in der Lausitz. – Geologie, 4(3): 223–279, Berlin.

GENIESER K & MIELECKE W 1957 Die Elbekiese auf der Teltowhochfläche südlich von Berlin. – Sonderheft Berichte d. Geolog. Gesellschaft, Bd II, Heft 4, S. 242-263, Berlin 1957.

GENIESER K 1957 Neue Beobachtungen im böhmischen Quartär. – Geologie, 6(3): 331–337, Berlin.

GENIESER K 1962 Neue Daten zur Flussgeschichte der Elbe. – Eiszeitalter u. Gegenwart 13: 141–156, Öhringen/Württ.

GRYGAR R 2016 Geology and Tectonic Development of the Czech Republic. In: PÁNEK T & HRADECKÝ J (eds.) Landscapes and Landforms of the Czech Republic, World Geomorphological Landscapes, 422 S., 294 SW-Abb., 36 Abbildungen in Farbe; Springer International Publishing, Switzerland 2016.

HAVLÍČEK V, HORNY R, CHLUPAC I & SNAJDR M 1958 Führer zu den geologischen Exkursionen in das Barrandium – Nakladatelstvi Ceskoslovenske Akademie VED, Praha 1958.

LANGE JM, ALEXOWSKY W & HORNA F 2009 Neogen und Quartär im Elbtal und in der Westlausitz. – In: Lange JM, Linnemann UG & Röhling HG (Hrsg.): GeoDresden 2009. Geologie der Böhmischen Masse – Regionale und Angewandte Geowissenschaften im Zentrum Mitteleuropas. Exkursions- führer u. Veröff. dt. Ges. Geowiss. 241: 151–164; Hannover.

LANGE J M 2012 Die Elbe im östlichen Sachsen. – Begleitband zur Sonderaus- stellung „Klimawandel im Tertiär. Tropenparadies Lausitz“, Museum der Westlausitz, 18–55; Kamenz.

LANGE J M, JANETSCHKE N, KADEN M & PREUSSE M 2015 Landschaftsentwicklung
in der Umgebung von Dresden – Sedimentation, Vulkanismus und Tektonik
im Känozoikum (Exkursion D am 9. April 2015) – Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins Band 97 (2015), S. 69 – 102; 22 Abb., 1 Tab., Stuttgart 2015.

LANGE J M, GAITZSCH B & BREITKREUZ C 2015 Der frühe Elbstrom – Architektur und Rekonstruktion des Senftenberger Laufes. Fallstudie Ottendorf-Okrilla. – Jber. Mitt. oberrhein. geol. Ver., N.F. 97, ??–??, 5 Abb., 5 Taf., 1 Tab.; Stuttgart 2015.

LE BAS MJ et al 1986 A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. – Journal of Petrology, Vol. 27, Issue 3: 745– 750, Oxford University Press.

PÄLCHEN W & WALTER H 2008 Geologie von Sachsen – 537 Seiten, 161 Abb., 16 Tab.; Schweizerbartsche Verlagsbuchhandlung Stuttgart.

REICHEL W & LANGE JM 2007 Cherts (Hornsteine) aus dem Döhlener Becken bei Dresden – Geologica Saxonica, Journal of Central European Geology 52/53 (2007): 117–128.

REICHEL & SCHAUER 2006 Das Döhlener Becken bei Dresden – Geologie und Bergbau. – Bergbau in Sachsen 12, 384 S., Herausgeber: Sächsisches Landesamt für Umwelt und Geologie (LfUG), Freiberg/Sachsen.

SCHWARZ D, LANGE JM & RIEDRICH G 2012 Elbeleitgerölle aus den Brdy (Mittel- böhmisches Waldgebirge) – Veröff. Museum für Naturkunde Chemnitz 35 (2012) 61-72.

SCHWARZ D & LANGE JM 2013 Leitgerölle in den pleistozänen Elbeterrassen zwischen Riesa und Torgau. – Veröff. Museum für Naturkunde Chemnitz 36 (2013): 143-156.

SCHWARZ D & LANGE JM 2017 Gravitationsgebänderte Achate in Elbeschottern nördlich von Dresden – Veröff. Museum für Naturkunde Chemnitz 40 (2017): 167-178.

SCHWARZ D & RIEDRICH G 2010 Neue südliche Gerölle in Ostsachsen und Süd- brandenburg – Ein Beitrag zur Frage nach dem Ursprung fluviatilen Gerölls aus Böhmen. – Der Aufschluss, 61: 187–193; Heidelberg.

SCHWARZ D 2021 Funde südlichen Gerölls in Südbrandenburg und Ostsachsen von der Neiße bis zum nördlichen sächsischen Elbtal – www.agates.click

STACKEBRANDT W & FRANKE D 2015 Geologie von Brandenburg. – 805 S., 313 Abb., 60 Tab.; Schweizerbartsche Verlagsbuchhandlung Stuttgart.

STACKEBRANDT W & MANHENKE V (Hrsg.) 2002 Atlas zur Geologie von Brandenburg – Landesamt für Geowissenschaften und Rohstoffe Brandenburg (heute Landesamt für Bergbau, Geologie und Rohstoffe Brandenburg, LBGR) 2002, 2. Aufl., 142 S., 43 Karten.

STEDING 1996 Geologische Karte der eiszeitlich bedeckten Gebiete von Sachsen 1:50000, Blatt 2567 Riesa. – Sächsisches Landesamt für Umwelt und Geologie Freiberg; Freiberg.

SWATON B 2005 Gangförmige Achat- und Amethystvorkommen im Erzgebirge Geologie – Geschichte – Verwendung, 205 S.; Unveröff. Diplomarbeit (TU Dresden).

WOLF L 1980 Die elster- und präelsterkaltzeitlichen Terrassen der Elbe – Z. geolo. Wiss. Berlin 8 (1980) 10, S. 1267-1280.

WOLF & ALEXOWSKY 1998 Geologische Karte der eiszeitlich bedeckten Gebiete von Sachsen 1:50000, Blatt 2467 Bad Liebenwerda. – Sächsisches Landesamt für Umwelt und Geologie Freiberg; Freiberg.

WOLF L & SCHUBERT G 1992 Die spättertiären bis elstereiszeitlichen Terrassen der Elbe und ihrer Nebenflüsse und die Gliederung der Elstereiszeit in Sachsen – Geoprofil 4: 1–49, Freiberg.

Kugelsandstein

Abb. 1: Hellglimmerführender Kugelsandstein, Strandgeröll von Misdroy (Westpolen).

Sandsteine mit kugeligen, auf der verwitterten Gesteinsoberfläche als Relief hervortretenden Konkretionen, werden als Kugelsandstein bezeichnet. Die Konkretionen sind Bereiche mit einer lokal verstärkten Zementierung der Sandstein-Matrix durch Calcit. Geschiebefunde von Kugelsandsteinen werden häufig den baltischen Devon-Vorkommen zugeordnet. Ähnliche Gesteine sind auch aus anderen geologischen Zeitaltern bekannt (Kambrium, Devon, Trias, Jura, Kreide). Geschiebefunde aus Brandenburg und von der polnischen Ostseeküste bei Misdroy (Westpolen) illustrieren die vielfältigen Ausprägungen dieses Gesteinstyps.

Abb. 2: Gleicher Stein, Rückseite.
  1. Verbreitung der Kugelsandstein-Geschiebe
  2. Beschreibung
  3. Vorkommen
  4. Weitere Geschiebefunde
  5. Literatur
Abb. 3: Kugelsandstein, Kiesgrube Gusow (Brandenburg).
Abb. 4: Matte Reflektion eines Kalzit-Netzkristalls („Calcitspiegel“).

Ein auffälliges Merkmal der Kugeln ist der sog. „Calcitspiegel“: auf der Bruchfläche reflektiert ein Teil oder der gesamte Kugel-Anschnitt das einfallende Licht und zeigt eine matte Spiegelung (Abb. 4). Dies verrät, dass es sich um Einkristalle oder einen Zusammenschluss weniger größerer Kristalle handelt, eine Zementierung, die als poikilotopisch oder poikilitisch bezeichnet wird. Dabei werden die kleinen Quarzkörner der Sandsteinmatrix von großen Calcit-„Netzkristallen“ umschlossen. Der Calcitspiegel ist in devonischen Kugelsandsteinen, aber z. B. auch in Sandsteinen aus dem Keuper von Bornholm zu beobachten (Risebaek-Sandstein, Abb. 20).

1. Verbreitung der Kugelsandstein-Geschiebe

Kugelsandstein-Geschiebe sind im Baltikum weit verbreitet und dürften mehrheitlich den nahegelegenen Vorkommen des Mittel- bis Oberdevons entstammen (JENTZSCH 1882). Auch in weichselzeitlichen Ablagerungen im nördlichen und östlichen Brandenburg treten Kugelsandsteine häufiger auf (SCHNEIDER 1997), an den Stränden der westlichen Ostsee sind sie nur selten zu finden (RUDOLPH 2017). Die nördliche Verbreitungsgrenze liegt in Nord-Holstein und in Schonen (Abb. 5). Vereinzelte Funde sind auch aus Holland bekannt.

Offenbar wurden Kugelsandstein-Geschiebe aus devonischen Vorkommen zu Zeiten der Weichsel- und Warthe-Vereisung vermehrt aus ihrem östlichen Herkunftsgebiet Richtung Westen transportiert. Warthezeitliche Ablagerungen, insbesondere die sog. „Vastorfer Geschiebegemeinschaft“ (GAUGER & MEYER 1970, SCHULZ 2003: 297f) zeichnen sich durch erhöhte Anteile von Gesteinen aus östlichen Liefergebieten aus. Diese „ostbaltische“ Geschiebegemeinschaft kennzeichnet ein hoher Anteil an Aland-Kristallin und rotem Ostsee-Quarzporphyr sowie Sedimentgesteinen aus dem Baltikum und dem angrenzenden Ostseeraum: Dolomite (vermutlich aus dem Grenzbereich Obersilur/Unterdevon) sowie „Old-Red“-Sandsteine (glimmerreicher Rotsandstein aus dem Unterdevon).

Abb. 5: Kartenskizze mit der Verbreitung von Mittel- und Oberdevon im Baltikum (nach SCHULZ 2003) sowie ausgewählten Fundorten von Kugelsandstein-Geschieben.

2. Beschreibung

Eine ausführliche Darstellung zu Vorkommen, Petrographie sowie eine Untersuchung von mehr als 260 Geschiebefunden ist der Arbeit von BARTOLOMÄUS et al 2004, eine ergänzende Beschreibung SCHULZ 2003: 295-296 zu entnehmen.

Der häufigste Geschiebetyp sind hellgraue und fein- bis mittelkörnige Sandsteine, die überwiegend aus klaren Quarzkörnern bestehen und mitunter reichlich Hellglimmer führen (Abb.1-4, 6-9). Eine klare Schichtung ist meist nicht erkennbar. Grünlicher Glaukonit kommt regelmäßig vor und kann durch Oxidation gelbliche bis bräunliche Verfärbungen auf der Gesteinsoberfläche hinterlassen. Hin und wieder sind Tongallen, Toneisenstein-Gerölle, Limonitkonkretionen, selten Phosphoritkonkretionen sowie Anreicherungen von Schwermineralen (Granat, Zirkon) zu beobachten.

Die Calcit-Konkretionen treten auf der verwitterten Geschiebeoberfläche gewöhnlich als halbkugelige Aggregate reliefartig hervor. Ihr Durchmesser variiert von Fund zu Fund (2-20 mm, ausnahmsweise auch größer), ist innerhalb eines einzelnen Geschiebes aber recht einheitlich, ebenso die Dichte der Kugelpackung. Die Kugeln können perlenkettenartig entlang oder senkrecht zur Schichtung angeordnet sein. Auch Funde von Einzelkugeln oder Kugelpaaren bis Walnussgröße bekannt (Abb. 12). Gering verfestigte Sandsteine mit ausgewitterter Matrix können ausschließlich aus diesen kugeligen Konkretionen bestehen (Abb. 6).

Ein zweiter Geschiebetyp ist gelblichbraun gefärbt und enthält kleinere, häufig zonierte bzw. konzentrisch aufgebaute Kugeln (Abb. 23-30). Eine Reliefbildung dieser Kugeln durch selektive Auswitterung weist auf eine Änderung der Zusammensetzung des Zements während der Diagenese hin. Die Kugelzentren können konvex (leichter verwitterbar) oder konkav (z. B. bei kieselig gebundenen Zwickeln) ausgebildet sein. Rostbraun verwitternde Ringe lassen auf eine Hydrolyse anteilig enthaltener Fe-Karbonate schließen, die rostbraune Gesamtfärbung der Gesteine auf eine Verwitterung enthaltenen Glaukonits (Abb. 28). Glaukonitische Sandsteine mit „Calcitspiegel“ bzw. poikilotopischem Zement sind nicht nur aus dem Devon, sondern auch aus dem Unterkambrium bekannt. Weisen die kugeligen Konkretionen statt Calcitspiegel glitzernde Flächen aus vielen kleinen Calcit-Kristallen auf, handelt es sich um einen sparitischen Zement, wie er aus den Kugelsandsteinen aus dem Lias von Schonen oder dem Stettiner Gestein bekannt ist (s. u.).

Rote Kugelsandsteine sind selten („Old-Red“-Sandstein). Abb. 18-19 zeigt einen glimmerreichen, auf der Vorderseite hellen Sandstein mit kugeligen Konkretionen, auf der Rückseite ist er gelblich-rot gefärbt.

Abb. 6: Großes Kugelsandstein-Geschiebe (Breite 24 cm). Der Sandstein zwischen den Calcit-Konkretionen war offenbar nur locker zementiert und wurde vollständig ausgewittert. Kiesgrube Niederlehme, Slg. St. Schneider.
Abb. 7: Heller Sandstein mit viel Hellglimmer und undeutlich entwickelter Kugeltextur. Breite 16 cm, Kiesgrube Niederlehme bei Berlin.
Abb. 8: Bruchfläche eines gelblichgrünen und glaukonitführenden Kugelsandsteins, Kiesgrube Glöwen (NW-Brandenburg).
Abb. 9: Geschichteter Sandstein mit kugeligen Kalzit-Konkretionen. Kiesgrube Teschendorf bei Oranienburg.
Abb. 10: Mäßig verfestigter Sandstein mit kugeligen Aggregaten, Kiesgrube Hoppegarten (Brandenburg).
Abb. 11: Gelblicher Kugelsandstein, Kiesgrube Glöwen (NW-Brandenburg).
Abb. 12: Kugelsandstein-Geschiebe als Kugelpaar (Kiesgrube Horstfelde, Brandenburg).
Abb. 13: Kugel-Drilling mit limonithaltigen Lithoklasten. Kiesgrube Hohensaaten (Ostbrandenburg).
Abb. 14: Kugelsandstein, Oderberg-Bralitz, leg. W. Bennhold, Geschiebesammlung im Museum Fürstenwalde.
Abb. 15: Kugelsandstein-Geschiebe, Fundort: Karlekau, Kreis Putzig (ehem. Westpreußen, heute województwo pomorskie), etwa 20 km nördlich von Danzig. W. Bennhold leg., Sammlung im Museum Fürstenwalde.

Die Erwartung, im Gebiet der Danziger Bucht vermehrt auf Kugelsandstein-Geschiebe zu treffen, bestätigte sich bei einem Besuch vor Ort nicht, lediglich ein einziger Fund konnte dokumentiert werden (Abb. 16).

Abb. 16: Sandstein aus dem Gebiet der Danziger Bucht mit Ansätzen einer kugeligen Verwitterung. Strandgeröll von Jastrzębia Góra (PL), Breite 11 cm.
Abb. 17: Kugelsandstein, Geschiebe aus Südschweden vom Geröllstrand in Kåseberga (SE-Schonen, vgl. Abb. 5). Breite 21 cm.
Abb. 18: Hellgrauer Sandstein mit kugeliger Verwitterung. Fundort Müssenthin, Breite 13 cm, Slg. S. Mantei.
Abb. 19: Der gleiche Stein ist auf der Rückseite rotbraun gefärbt und weist Ansätze von Rippelmarken auf. Auffällig ist der hohe Hellglimmer-Anteil, wie er aus den devonischen Old-Red-Sandsteinen bekannt ist.

3. Vorkommen

Kugelsandsteine sind vor allem aus dem Mittel- und Unter-Devon des Baltikums bekannt (Abb. 5). Anstehendes Devon mit mehreren Horizonten von Kugelsandstein streicht in den Erosionstälern der großen Flüsse in Estland und Lettland aus. Die Vorkommen setzen sich am Boden der Ostsee in südwestlicher Richtung bis etwa in den Raum nördlich von Danzig fort, bevor sie unter jüngeren Sedimentschichten abtauchen. In Lettland finden sich anstehend kaum glaukonitische und keine kieselig zementierten Kugelsandsteine. „Deshalb ist anzunehmen, dass die Kugelsandsteine eher von petrographisch unbekannten untermeerischen Ausstrichen des mittleren Devons in der östlichen Ostsee abzuleiten sind.” (BARTOLOMÄUS et al 2004).

Merkmale des devonischen Kugelsandsteins sind neben dem Calcitspiegel ein hoher Glimmergehalt sowie ggf. enthaltene Wühlspuren (BARTOLOMÄUS et al 2004). Calcit kann zusätzlich in Form von Röhren oder Nestern enthalten sein. Auch Tongallen sollen bevorzugt im devonischen Kugelsandstein auftreten. Apatitische Reste von Fischen oder Fischartigen (weiß, meist aber gelblich, rötlich, bräunlich bis sehr dunkel) sind in der Regel nur mikroskopisch erkennbar. Sowohl die beschriebene helle (Abb. 1-4, 6-9), als auch die limonitreiche zweite Variante (Abb. 23-30) dürften aufgrund gehäufter Funde in Ost-Brandenburg dem Devon zuzurechnen sein. Ein Vergleich mit Anstehendproben ist bislang noch nicht erfolgt.

Kugelige Verwitterungsformen sind auch vom Risebaek-Sandstein (RUDOLPH 2017: 272) aus dem Keuper von Bornholm bekannt. Der Risebaek-Sandstein soll einen sparitischen Zement besitzen, die vorliegenden Lesesteine von Bornholm (Abb. 20-22) weisen allerdings einen Calcitspiegel auf. Die Schichtflächen der oftmals mürben Sandsteine können kohlige Pflanzenreste enthalten.

Abb. 20: Kugelsandstein mit Calcit-Spiegel, Strandgeröll, einige 100 m westlich von Risegard (Bornholm), leg. S. Mantei.
Abb. 21: Risebaek-Sandstein mit undeutlicher kugeliger Verwitterung. Risegard (Bornholm), leg. S. Mantei.
Abb. 22: Gleicher Stein, Nahaufnahme; Quarzsandstein mit kohligen Pflanzenresten.

BARTOLOMÄUS et al 2004 nennen weitere Vorkommen von Kugelsandsteinen:

  • aus dem Lias von Schonen (sparitischer Zement);
  • kugelige Verwitterungsformen und poikilotopischer Zement im Paradoxissimus-Sandstein, in mittel- und oberkambrischen Sandsteinen und im seltenen ordovizischen Obolus-Sandstein.
  • Mesozoische Kalksteine bilden meist nur undeutliche Halbkugeln aus: sandige Rhät/Lias-Gesteine (mit Fe- und Mn-reichem Calcit), Unterkreide-Sandsteine (Wealden), mesozoische Gesteine (meist mit Fossilresten wie Muschelschalen), Oberkreide-Sandstein mit Phosphoriten (fossilfrei).
  • weitere Geschiebe mit ungewisser stratigraphischer Stellung;
  • Dolomite mit angedeutet kugelförmigem Relief.
  • In einer Variante des „Postsilurischen Konglomerats“ wurden Gerölle von Kugelsandstein gefunden (Schulz 2003: 315).

Aus Ost-Brandenburg sind Funde fein- bis mittelkörniger oligozäner Kugelsandsteine mit 0,2 – 0,5 cm großen Knollen und sparitischem Zement bekannt (SCHULZ 2003). Rund um die Oderbucht finden sich bis dm-große, kugelig-knollige Konkretionen aus dem mitteloligozänen Stettiner Gestein („Stettiner Kugeln“), die Fossilien enthalten können (z. B. Fischotolithe, s. HUCKE & VOIGT 1967:106, PITTERMANN 2010). Eine Kuriosität sind die sog. „Kartoffelsteine“ (höheres Mitteloligozän), fein- bis mittelkörnige Sandsteine mit kugeligen bis wulstigen Konkretionen, die eine Größe von 20-50 cm erreichen können und den mitteloligozänen Stettiner Sanden entstammen sollen (Abb. 46). Sie weisen einen limonitischen und calcitischen Zement, aber keinen Calcitspiegel auf (vgl. SCHULZ 1964, HUCKE & VOIGT 1967:106). Ein Großgeschiebe eines „Kartoffelsteins“ ist im Müritzeum in Waren (Müritz) ausgestellt (KÜSTER & GÜNTHER 2023).

4. Weitere Geschiebefunde

Abb. 23-30 zeigen Geschiebefunde des oben beschriebenen zweiten Kugelsandstein-Typs mit brauner Gesamtfärbung und/oder braunen, häufig auch mehrfach zonierten Kugeln.

Abb. 23: Kugelsandstein mit zonar aufgebauten Kugeln. Kiesgrube Hohensaaten (Ost-Brandenburg).
Abb. 24: Nahaufnahme. Der helle und kugelförmige Kern der runden Aggregate, gelegentlich mit einem dunklen Mineralkorn in ihrem Zentrum, ist von einem rostig-braunen Ring umgeben. Das Bindemittel ist hier offenbar leichter verwitterbar, z. B. durch Beimengungen von Fe-Karbonaten, während die umgebende Matrix wiederum reliefartig hervortritt.
Abb. 25: Gelblich-grüner und glaukonithaltiger Kugelsandstein, links mit halbkugeligen, rechts mit konzentrisch aufgebauten, in der Mitte konkav ausgewitterten Konkretionen. Kiesgrube Hoppegarten (Brandenburg).
Abb. 26: Rostfarbener Kugelsandstein mit ringförmiger Limonit-Konkretion. Kiesgrube Niederlehme bei Berlin.
Abb. 27: Kugelsandstein, Breite 10 cm, Kiesgrube Horstfelde bei Berlin.
Abb. 28: Die grünliche Färbung auf der Bruchfläche dieses Fundes weist auf enthaltenen Glaukonit hin. Kiesgrube Althüttendorf (Brandenburg).
Abb. 29: Kugelsandstein, Kiesgrube Glöwen bei Havelberg (NW-Brandenburg).
Abb. 30: Gleicher Stein, Seitenansicht.

An der polnischen Ostseeküste bei Misdroy und in der näheren Umgebung konnten während eines einzigen Besuchs etwa ein Dutzend verschiedene Typen von Kugelsandsteinen gesammelt werden, vor allem limonithaltige Typen (Abb. 31-39). Die stratigraphische Stellung der Funde ist teilweise ungewiss, sie könnten aus den zahlreichen Jura-Schollen in dem Gebiet stammen, aber auch Rhät-Lias kommt in Frage.

Abb. 37: Geschichteter glaukonitischer Sandstein mit halbkugeligen Verwitterungsformen auf der Schichtebene. Kiesgrube Miodowice II, Polen.
Abb. 38: Gleicher Stein, Blick auf die Schichtfläche.

Wahrscheinlich aus einer Dogger-Scholle auf der polnischen Insel Gristow (Wyspa Chrząszczewska) stammt ein Limonit-Sandstein, der kugelige Verwitterungsformen mit konkaven Vertiefungen aufweist. Unbestimmbare Schalenreste sind erkennbar, ein Calcitspiegel fehlt (Abb. 39).

Abb. 39: Limonitsandstein (Dogger?) mit konkaven ausgewitterten und eher schaligen als kugeligen Konkretionen. Loser Stein aus einer Jurascholle auf der Insel Gristow/Polen.

Bisweilen finden sich helle Sandsteine mit runden, verstärkt durch Kalzit zementierten, aber nicht kugeligen Aggregaten. Möglicherweise ist die Verwitterung nicht weit genug fortgeschritten oder die Zementierung der Matrix außerhalb der Konkretionen ähnlich fest. Die Gesteine reagieren auf HCl, die runden Aggregate weisen auf der Bruchfläche einen Calcitspiegel auf.

Kugelige, karbonatzementierte Konkretionen, entstanden durch radiale Ausbreitung zementierender Lösungen im Sediment, lassen sich auch in sandigen Glazialablagerungen beobachten (ELBRACHT & SCHÖNING 2011). Diese Bildungen sind meist nur gering verfestigt.

Abb. 43: Gering verfestigter, rezenter Kugelsandstein aus der Grube Vastorf bei Lüneburg, Breite 20 cm.
Abb. 44: Rezente Kugelbildung in einem geschichteten Sandstein (Schichtebene im Bild senkrecht). Höhe etwa 17 cm, Slg. S. Mantei.
Abb. 45: Kugelige Sandstein-Konkretion am Strand von Dwasieden (Rügen), Breite 35 cm.
Abb. 46: Große wulstige Konkretionen in einem limonitischen Sandstein, wahrscheinlich ein oligozäner „Kartoffelstein“; Geschiebe in der Kiesgrube Arendsee-Weggun (Brandenburg), Breite 50 cm.
Abb. 47: Wulstige Sandstein-Konkretion. Kiesgrube Groß-Ziethen, Sammlung Bennhold, Museum Fürstenwalde. Solche nur leicht verfestigten gelblichbraunen konkretionären Sandsteine ließen sich bislang stratigraphisch nicht näher zuordnen (Dogger, Oligozän?).

5. Literatur

BARTOLOMÄUS WA, REINHOLD C & SOLCHER J 1997 Ein devonisches Sandsteingeschiebe des Old Red 1. Petrographie und Diagenese – Archiv für Geschiebekunde 2 (3): 121-139, 1 Taf., 5 Abb., 3 Tab., Hamburg.

BARTOLOMÄUS WA, STINKULIS G, ELBRACHT J, LAGING P & SCHNEIDER S 2004 Petrographie und Fossilbestand erratischer Kugelsandsteine (Devon) – Archiv für Geschiebekunde 3 (8/12) [Schallreuter-Festschrift]: 557-594, 8 Taf., 8 Abb., 4 Tab., Greifswald.

ELBRACHT J & SCHÖNING H 2011 Karbonatzementierte Schmelzwasser-Ablagerungen an der Vossegge bei Bad Iburg (Südwest-Niedersachsen) – Geschiebekunde aktuell, Sonderheft 9: 67-78, 1 Taf., 8 Abb., Hamburg/Greifswald, Oktober 2011.

GAUGER W & MEYER K-D 1970 Ostbaltische Geschiebe (Dolomite, Old Red-Sandsteine) im Gebiet zwischen Lüneburg und Uelzen – Der Geschiebesammler 5 (1): 1-12, 1 Abb., 2 Tab., Hamburg.

HUCKE K 1967 Einführung in die Geschiebeforschung (Sedimentärgeschiebe) – Nach dem Tode des Verfassers herausgegeben und erweitert von Ehrhard Voigt (Hamburg) – 132 S., 50 Taf., 24 Abb., 1 Bildnis, 5 Tab., 2 Ktn., Oldenzaal (Nederlandse Geologische Vereniging).

JENTZSCH A 1882 Ueber Kugelsandsteine als charakteristische Diluvialgeschiebe – Jahrbuch der Königlich Preußischen Geologischen Landesanstalt und Bergakademie [2] (für 1881): 571-582, Taf. 18, 2 Tab., Berlin.

KÜSTER M & GÜNTHER A 2023 Der „Kartoffelstein“ im Müritzeum in Waren (Müritz) – Geschichte und Bedeutung eines sedimentären Findlings in Mecklenburg-Vorpommern – Geschiebekunde aktuell 39 (1): 25-31, 3 Abb. – Hamburg/Greifswald Februar 2023.

PITTERMANN D 2010 Soldiner und Stettiner Gestein – Oligozäne Geschiebe aus dem Gebiet der Neumark und Pommerns [Soldin and Stettin Rocks – Oligocene Geschiebes (glacial erratic boulders) of Neumark and Eastern Pomerania] – Geschiebekunde aktuell, Sonderheft 8: 41-50, 6 farb. Abb., Hamburg / Greifswald.

RUDOLPH F 2017 Das große Buch der Strandsteine; Die 300 häufigsten Steine an Nord- und Ostsee – 300 S., zahlr. farb. Abb., Neumünster (Wachholtz Murmann Publishers), ISBN 978-3-529-05467-9.

SCHNEIDER S 1997 Devon-Geschiebe aus der Umgebung von Berlin – ZWANZIG M & LÖSER H (Hrsg.) Berliner Beiträge zur Geschiebeforschung: 73-79, Taf. 12-14, 2 Tab., Dresden (CPress Verl.).

SCHULZ W 1964 Die Findlinge Mecklenburgs als Naturdenkmäler – Archiv für Naturschutz und Landschaftsforschung 4 (3): 99-130, 11 Abb., 3 Tab., Berlin.

SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 446+42 meist farb. kapitelweise num. Abb., 1 Kte. als Beil., Schwerin (cw Verlagsgruppe).

Trias-Konglomerat / „Caliche“-Konglomerat

Abb. 1: Trias-Konglomerat, Außenseite löchrig durch ausgewitterte Lithoklasten. Fundort: Nienhagen bei Rostock; leg. G. Engelhardt.

In den Kiesgruben Brandenburgs findet sich nicht selten ein bestimmter Lithotyp monomikter Konglomerate mit bunten Mergel-Lithoklasten, sandiger Matrix und sparitischem Kalzit-Zement. Einige Lithoklasten weisen kalzitgefüllte Risse auf, die als Caliche-Konkretionen aus aufgearbeiteten ariden Bodenhorizonten interpretiert wurden. Die Gesteine sind fossilfrei, eine stratigraphische Zuordnung dadurch erschwert. Es bestehen aber lithologische Übereinstimmungen mit Gesteinen aus der Kågerød-Formation/ Risebæk-Member (Ober-Trias) von Bornholm. Konglomerate in ähnlicher Fazies könnten auch aus dem Devon zu erwarten sein, diese dürften als Geschiebe aber viel seltener auftreten. Der vorliegende Beitrag schließt an die Arbeit von TORBOHM & BARTOLOMÄUS 2018 an und stellt eine Reihe weitere Funde vor.

  1. Beschreibung
  2. Entstehung
  3. Herkunft und Alter
  4. Weitere Geschiebefunde
  5. Trias-Sandstein
  6. Buntes Konglomerat mit Fischresten (Devon)
  7. Literatur
Abb. 2: Gleicher Stein, Bruchfläche; bunte Mergelstein-Lithoklasten mit gedämpften Farben.
Abb. 3: Die Matrix besteht aus hellen Quarzkörnern, gebunden durch einen sparitischen Kalzit-Zement.

1. Beschreibung

Geschiebefunde dieses Konglomerat-Typs unterscheiden sich etwas in Bezug auf Farbgebung und Gefüge, weisen aber einige gemeinsame Eigenschaften auf. Auf der Außenseite, manchmal auch auf der Bruchfläche, können Hohlräume durch ausgewitterte Lithoklasten erkennbar sein (Abb. 1). Sowohl Lithoklasten als auch Zement reagieren heftig mit verdünnter (10%iger) Salzsäure. An den Lithoklasten ist ein „Absanden“ von braunem Feinsand oder Schluff zu beobachten. Der sparitische (=kristalline) Kalzitzement besteht aus durchsichtigem bis durchscheinendem Kalzit. In manchen Konglomeraten ist der kristalline Kalzit direkt sichtbar (z. B. Abb. 3, 5), seltener kommt auch mikritischer Zement vor. Reichlich kantige bis mäßig gerundete und durchscheinende klastische Quarzkörner der Fein- bis Mittelsandfraktion bilden die Matrix.

Die kantengerundeten bis gut gerundeten und relativ gleichkörnigen Lithoklasten besitzen gedämpfte Farben (gelblich, orange, rot, grün, braun) und unterscheiden sich in Farbgebung und Komposition von Stück zu Stück. Es handelt sich überwiegend um Mergelstein-Lithoklasten, die gelegentlich kleine detritische Quarzkörner enthalten; untergeordnet kommen auch Sandstein-Lithoklasten vor. Einige Mergelsteine weisen randliche Umfärbungen von gelb nach rot auf (Abb. 5), die offenbar nach ihrer Ablagerung als Geröll erfolgten und einen Hinweis auf ein semiarides Klima geben. Andere Lithoklasten lassen tangential umlaufende und zentral angelegte Schwundrisse erkennen, die mit Kalzit verfüllt wurden und konkretionären Caliche-Bildungen ähneln (z. B. oben rechts in Abb. 8).

Gelegentlich sind gradierte Schichtung und Übergänge in konglomeratischen Sandstein zu beobachten (Abb. 7). Adern aus kristallinem Kalzit können das Gestein durchziehen (Abb. 9). Fossilien oder Reste davon sollen laut der Beschreibung von KNAUST 1997 zwar vorkommen, konnten aber in keinem der vorliegenden Funde entdeckt werden.

2. Entstehung

Die Beschreibung der Konglomerate verrät bereits etwas über ihre Entstehung. Rot- und gelbbraune Färbungen der intraformationalen Mergelstein-Lithoklasten und ihre randlichen, nach der Ablagerung entstandenen Umfärbungen sind ein Hinweis auf ein semiarides, fluviatiles Environment. Das Auftreten von Caliche-Konkretionen als Relikte einer kalzitzementierten semiariden Bodenbildung spricht für ein terrestrisches bis flachmarines Ablagerungsmillieu. Sowohl überwiegend aus flachmarinen Karbonatsystemen stammende devonische Konglomeratbildungen als auch terrestrisch-fluviatile Calcretes (= kalzitzementierte Bodenhorizonte) der Trias besitzen eine ähnliche Entstehungsweise und Ausprägung.

Als Caliche (auch Calcrete oder Duricrust) bezeichnet man Bodenhorizonte, in dem die Zwischenräume der Partikel (oft poröses Material) durch einen Karbonat-Zement miteinander verbunden sind. Meist handelt es sich um Kalziumcarbonat, aber auch Zemente aus Magnesiumcarbonat, Gips, Eisenoxiden, kieseligen Zementen oder Kombinationen sind bekannt. Der Bodentyp ist in aridem oder semiaridem Klima verbreitet und entsteht durch Anreicherung von CaCO3, ausgelaugt in den oberen Bodenschichten, versickert und wieder ausgefällt in tieferen Bodenschichten – zuerst als kleine Körner oder Überzüge (coatings) auf Mineralkörnern, später als kompakte, bis 1 m mächtige Schicht. Auch die Aufwärtsbewegung von Wässern kann zur Ausfällung von Karbonaten führen – durch Verdunstung und Übersättigung oder mit Hilfe der Vegetation, die Wasser aus dem Boden zieht, wobei nicht benötigte Minerale ausgeschieden werden (vgl. geology.com).

Abb. 4: Klastengestütztes Trias-Konglomerat, Schlifffläche, Aufnahme unter Wasser; Geschiebe aus der Kiesgrube Fresdorfer Heide (G. Engelhardt leg.), Abmessungen 67×43×26 mm.
Abb. 5: Nahaufnahme; Quarzkörner als Matrix treten stark zurück, der sparitische (kristalline) Kalzit-Zement ist deutlich erkennbar. Lithoklasten mit kalzitgefüllten Schwundrissen werden als Caliche-Knollen interpretiert.
Abb. 6: Ein weiteres Trias-Konglomerat aus der Kiesgrube Fresdorfer Heide (G. Engelhardt leg.), Abmessungen 68×47×31 mm, Teilstück eines größeren Geschiebes, Aufnahme einer Schnittfläche unter Wasser.
Abb. 7: Trias-Konglomerat (Kiesgrube Fresdorfer Heide, G. Engelhardt leg.), ursprüngliche Größe etwa 112×85×54mm, Aufnahme unter Wasser. Von rechts nach links Übergang von einem klastengestützten Konglomerat in einen konglomeratischen Sandstein.
Abb. 8: Gleicher Stein, Nahaufnahme unter Wasser; an einigen Lithoklasten (v. a. rechts oben) sind die kalzitgefüllten Schrumpfungsrisse gut erkennbar.
Abb. 9: Trias-Konglomerat, Kiesgrube Fresdorfer Heide (G. Engelhardt leg.), polierte Schnittfläche. Deutlich ist eine Einregelung der Lithoklasten erkennbar; nach unten Übergang in einen konglomeratischen Sandstein. Kalzitadern mit verschiedenen Zementgenerationen durchziehen das Gestein.
Abb. 10: Nahaufnahme.

3. Herkunft und Alter

Das Erscheinungsbild der Konglomerate deckt sich mit Beschreibungen von Mittel-/Obertrias-Konglomeraten der Südküste Bornholms (Kågerød-Formation/ Risebæk-Member). Die Schichten werden ins Untere Karnium bis Obere Ladinium gestellt, dies entspricht in etwa dem Übergang zwischen Oberem Muschelkalk und Unterem Keuper. KNAUST 1997 stellt drei Lithotypen von Trias-Geschieben vor: Caliche-Bildungen, Konglomerate und Sandsteine. Die vorliegenden Konglomerat-Proben von Bornholm (Abb. 11-15) weichen lithologisch etwas von den bisher gezeigten Geschiebefunden ab; sie enthalten überwiegend helle oder graue, nur vereinzelt rote oder gelbliche Lithoklasten, zudem sind die Gesteine recht weich und zerfallen leicht. Aber auch dieser Lithotyp ist als Geschiebe zu finden (Abb. 16); ferner konnte ein Übergang desselben in den bunten Lithotyp an einem Großgeschiebe beobachtet werden (Abb. 19-26).

Abb. 11: Anstehendprobe vom Risebækken/Bornholm (J. Kalbe leg.)
Abb. 12: Nahaufnahme; weiße und graue, nur wenig „bunte“ Lithoklasten.
Abb. 13: Ähnlicher Lithotyp, Strandgeröll von Risegard/Bornholm (S. Mantei leg.).

Ein Abschlag von einem größeren kantigen Block am Risebækken auf Bornholm sieht schon etwas „bunter“ aus.

Abb. 14: Loser Stein vom Risebaekken (T. Wehrend leg.), Schnittfläche.
Abb. 15: Nahaufnahme; sparitischer Kalzit-Zement, sandige Matrix, bunte Mergelsteinklasten sowie eine Caliche-Knolle mit kalzitgefüllten Schwundrissen.

Es bestehen Ähnlichkeiten der Trias-Konglomerat-Geschiebe mit devonischen Konglomeraten, z. B. das „Bunte Konglomerat mit Fischresten“ in HUCKE 1967. RUDOLPH 2008 (Farbfoto S. 208) bildet ein Geschiebe ab, das sich petrographisch von den hier gezeigten nicht unterscheiden lässt. Die devonischen Konglomerate scheinen aber überwiegend dolomitisch gebunden zu sein und weisen eine rötliche Grundfarbe sowie blassere Farben der Lithoklasten auf (Abb. 54). Das Fehlen von Fossilien macht die Einordnung von Geschiebefunden problematisch, hilfreich wären schwarz- bis hellglänzende Fischreste. So gab es in der Triaszeit keine Hautzähne führenden Agnathen/ Acanthodier mehr. Fossilien, darunter Fischreste (Knochen, Wirbel und vor allem Mundzähne), können zwar auch in den Triaskonglomeraten vorkommen, sind aber wohl sehr selten. Zur Abgrenzung von bunten Trias- und Devonkonglomeraten sei hier verkürzt eine Unterscheidungshilfe aus KNAUST 1997: 64 ff) wiedergegeben:

Devonkonglomerate:

  • Komponenten und Matrix und Zement vorwiegend dolomitisch.
  • vereinzelte Caliche-Knollen.
  • Mikrobenmatten (Biolaminit-Intraklasten) vorhanden, vermutlich aber selten zu beobachten.
  • schwarz- bis hellglänzende Fischreste: vorw. Schuppen (=Hautzähne) von Placodermi.
  • Detritische Minerale: Dolomit, Evaporite.
  • Verwitterungserscheinung: vorwiegend limonitisiert. (Anmerkung: den Verfassern bekannte schuppenführende Geschiebe sind dunkel, aber nicht limonitisiert.)

Triaskonglomerate der Kågerød-Formation:

  • Komponenten mergelig, Matrix sandig, Zement kalzitisch.
  • Caliche-Knollen häufig.
  • Fossilien auch im Anstehenden selten: gelegentlich fossile Mollusken- und Wirbeltierreste; Pflanzenreste, vereinzelt kleine Fischschuppen in Caliche-Horizonten angereichert.
  • Detritische Minerale: Quarz, Feldspat, Glimmer.
  • Verwitterung: vorwiegend Hämatitisierung.

Die Differentialdiagnose von Devon- und Triasgeschieben gelingt in der Praxis nur bedingt. Die Gründe liegen in der weiten faziellen Verzahnung bekannter Konglomerat-Vorkommen sowie der möglichen Existenz bisher nicht bekannter oder beschriebener Vorkommen mit unbekannter Lithofazies. Zudem können Devongeschiebe durchaus als detritische Minerale Quarz, Feldspat und Glimmer führen. Als Komponenten können ebenso silikatische Gesteine vorkommen, als Zement Kalzit statt Dolomit. HUCKE 1967: S. 67f + Abb. 10 beschreibt das „bunte Konglomerat mit Fischresten“ mit grauem, kalzitischem, z.T. sandigem Bindemittel, „in dem vorwiegend braune, rotbraune und hellgelbe Gerölle und rote Letten in dichter Lagerung eingebettet sind“. Auch offene oder verfüllte Hohlräume im Bindemittel können in beiden Konglomerattypen vorkommen. Die devonischen Konglomerate scheinen aber ein ausgesprochen seltener Geschiebefund zu sein. So lassen sich im östlichen Brandenburg regelmäßig bis häufig devonische Geschiebe beobachten (Dolomite, Kugelsandsteine, SCHNEIDER 1997), ein eindeutig als devonisch bestimmtes „buntes Konglomerat mit Fischresten“ war bisher nicht darunter (pers. Mitteilung St. Schneider, Berlin).

Die hier gezeigten Funde werden aufgrund der hohen Übereinstimmung mit den Beschreibungen von KNAUST 1997 sowie nach Abgleich mit Beschreibungen von devonischen Konglomeraten anderer Autoren (BROTZEN 1933-34, SCUPIN 1928 HEIDRICH 1964, HUCKE 1967, KIESOW 1884, LOEWE 1912) als Triaskonglomerate angesehen, wie sie an der Südküste von Bornholm auftreten. Ein Abgleich mit der umfangreichen Literatur zu anstehendem konglomeratischem Rhätolias im südschwedischen Schonen ergab keine Hinweise auf vergleichbare Gesteinstypen. Konglomerate der Oberkreide mit sandiger Matrix und kreidigem Zement enthalten überwiegend Quarz-Lithoklasten, untergeordnet Tonsteine oder kristalline Gesteine, aber keine Mergelsteine, zudem keinen sparitischen Zement.

Der Geschiebetyp gehört keineswegs zu den seltenen Geschiebefunden in Brandenburg, Mecklenburg und Vorpommern (BUCHHOLZ et al 2015). In Schleswig-Holstein ist er möglicherweise weniger verbreitet (pers. Mitteilung F. Rudolph). Als Hauptverbreitungsgebiet nennt KNAUST 1997 die Ablagerungen der Brandenburger Randlage, vermutlich auch schon des saalekaltzeitlichen Warthe-Stadiums. Die Einstufung der Triaskonglomerate als Leitgeschiebe ist allerdings kritisch zu sehen, da es über die untermeerische Fortsetzung der mesozoischen Aufschlüsse von Bornholm im weiter südlich gelegenen Ostseeraum (Rønne-Graben) keine gesicherten Erkenntnisse gibt. KNAUST 1997 begründet den Status als Leitgeschiebe mit Fundhäufungen auf der Greifswalder Oie, untergeordnet auf Rügen, also Landgebieten, die dem Anstehenden am nächsten liegen. Allerdings ist eine hinreichende stratigraphische Ansprache von Funden, allein anhand der Lithologie und ohne mesozoischen Fossilbestand, kaum möglich.

4. Geschiebefunde

In mehrjähriger Sammeltätigkeit konnten bislang etwa 30 Funde aus Brandenburg zusammengetragen werden. Sie stammen zumeist aus weichselkaltzeitlichen Schmelzwasserablagerungen des Brandenburger Stadiums, mit der höchsten Funddichte in der südlich von Potsdam gelegenen Kiesgrube Fresdorfer Heide (7 Funde), gefolgt von 4 Funden aus der Kiesgrube Borgsdorf/Velten, nördlich von Berlin.

Das Konglomerat in Abb. 16 weist eine relativ weiche, helle und feinsandige Matrix auf und ähnelt den Proben von Bornholm. Matrix und Lithoklasten reagieren deutlich mit verdünnter Salzsäure.

Abb. 16: Trias-Konglomerat mit rötlichen und ockerfarbenen Lithoklasten (Kiesgrube Fresdorfer Heide).
Abb. 18: Trias-Konglomerat (Fundort: Lüttow bei Zarrentin), 100×100×90 mm; Foto und Slg. D. Pittermann.

Ein interessantes Studienobjekt zur kleinräumigen und engen Faziesverzahnung in Konglomerathorizonten bot sich auf einer Findlingshalde im Tagebau Jänschwalde (Niederlausitz). Das etwa 50 cm breite Großgeschiebe weist eine Abfolge verschiedener Konglomerat- und Sandstein-Horizonte auf. Konglomeratische Lagen mit sandiger Matrix und sparitischem Kalzit-Zement enthalten sowohl Partien mit bunten, stellenweise aber auch weitgehend hellen und monoton gefärbten Mergelstein-Lithoklasten.

Abb. 19: Trias-Konglomerat, Tagebau Jänschwalde, Breite ca. 50 cm.
Abb. 20: Helle, rötliche und violett gefärbte Sandstein-Lagen, durchzogen von kalzitzementierten Rissen.
Abb. 21: Bruchfläche; Konglomeratlage mit gradierter Schichtung und rötlichen, grauen und ockerfarbenen Lithoklasten; nach oben Übergang in einen konglomeratischen Sandstein.
Abb. 22: Aufsicht auf eine Konglomeratlage mit hellen und wenigen ockerfarbenen Lithoklasten; vgl. mit der Anstehendprobe von Bornholm Abb. 11-12.
Abb. 23: Abschlag vom Block, verwitterte Außenseite.
Abb. 24: Handstück mit frischer Bruchfläche; Konglomeratlagen wechseln sich mit Sandstein-Lagen ab.
Abb. 25: Gleiche Probe, Detailaufnahme unter Wasser; einige ockerfarbene Lithoklasten besitzen einen hellen Rand (erste Generation Kalzitzement?).
Abb. 26: Probe vom gleichen Block mit braunen Lithoklasten.

Abb. 27-35 zeigt weitere Geschiebefunde des bunten Lithotyps.

Zwei historische Funde aus der Geschiebesammlung W. Bennhold (Museum Fürstenwalde) ergänzen das Bild. Beide Stücke wurden als devonische Konglomerate bestimmt, dürften aber ebenfalls zum triassischen Lithotyp gehören.

Abb. 36: Trias-Konglomerat v. d. Liebchenbergen bei Potsdam (Saarmund), gesammelt von Hermann Müller (Friedenau).
Abb. 37: Trias-Konglomerat; Originaletikett: „Devon. Konglom. Dil. Gesch. v. Malow-Blankenfelde s. Berlin. – Orig. z. Z. f. Gesch.-Forsch. 30 S.30 (Jessen) leg. 28 Zinkernagel“. (JESSEN 1930)

Einige Geschiebefunde weichen lithologisch etwas ab von den bisher gezeigten Beispielen. Gemeinsame Merkmale der nächsten Beispiele sind eine sandige Matrix, sparitischer Kalkzement und bunte Mergelstein-Lithoklasten. Unter Vorbehalt werden sie ebenfalls der Trias zugeordnet.

Der folgende Fund aus Borgsdorf-Velten (St. Schneider leg.) zeigt eine gute Übereinstimmung mit den Trias-Konglomeraten. Zu den gut gerundeten bunten Mergelstein-Lithoklasten gesellen sich größere, nur kantengerundete Sand- und Feinsandstein-Lithoklasten.

Abb. 38: Trias-Konglomerat, Kiesgrube Borgsdorf-Velten, Aufnahme unter Wasser.
Abb. 39: Abschlag vom gleichen Stein, trockene Bruchfläche.

Aus der Kiesgrube Hohensaaten an der Oder stammt ein helles und matrixgestütztes Konglomerat mit sandiger Matrix, sparitischem Zement und cremefarbenen bis blassroten Mergelstein-Lithoklasten, einige von ihnen mit kalzitzementierten Schwundrissen (Caliche-Knollen).

Abb. 40: Matrixgestütztes Konglomerat mit Mergelstein-Lithoklasten, Kiesgrube Hohensaaten.
Abb. 41: Nahaufnahme einer rötlichen Caliche-Knolle.

Ein auf der Außenseite recht dunkler Mergelstein wird von einem Netz kalzitzementierter Risse durchzogen. Auf der Bruchfläche sind im unteren Teil eine konglomeratische Lage mit bunten Mergelstein-Lithoklasten sowie eine sandige Matrix mit sparitischem Zement erkennbar.

Konglomerat mit Sandstein-Matrix und auf der Außenseite braun, auf der Bruchfläche rötlichbraun und grünlich gefärbten Lithoklasten. Die Probe mit verdünnter Salzsäure fällt an den Lithoklasten positiv, an der Matrix jedoch negativ aus.

Abb. 45: Konglomerat mit braunen Lithoklasten, Kiesgrube Borgsdorf-Velten, leg. St. Schneider.
Abb. 46: Bruchfläche.

Das nächste Konglomerat-Geschiebe besteht aus gelblichen Lithoklasten (Mergelsteine und Sandsteine) in dichter Packung, die durch einen sparitischen Zement miteinander verbunden sind; es fehlt die sandige Matrix. Eine undeutliche Bänderung des Kalzit-Zements sowie grobkristalliner und transparenter Kalzit als letzte Ausscheidung weist auf mehrere Zement-Generationen hin.

Abb. 47: Trias-Konglomerat (?), Kiesgrube Damsdorf-Bochow, leg. D. Lüttich.
Abb. 48: Polierte Schnittfläche.
Abb. 49: Nahaufnahme; gebänderter Kalzit-Zement, im Zentrum der Zwickel transparente Kalzit-Kristalle.

Ein letztes Geschiebe ist ein Rotsandstein mit knolligen und intraformationell entstandenen Partien, die aus einem Calcrete-Horizont stammen könnten. Die Sandstein-Matrix reagiert nur träge auf verdünnte Salzsäure (dolomitische Matrix?), die weißen Risse brausen deutlich stärker auf (anteilig kalzitischer Zement). Eine stratigraphische Zuordnung ist nicht möglich, Calcrete– bzw. Dolicrete-Paläoböden (Duricrusts) sind aus dem Devon und der Trias bekannt.

Abb. 51: Rotsandstein, subparallel zur Schichtung durchzogen von einem Netzwerk aus Rissen mit anteilig kalzitischem Zement (Calcrete?). Kiesgrube Niederlehme b. Berlin, Abmessungen 136x147x105mm.
Abb. 52: Gleicher Stein, Seitenansicht.
Abb. 53: Nahaufnahme der Intraklasten.

5. Trias-Sandstein

Aus der Trias, insbesondere der Kågerød-Formation, sind rote und grüne, oftmals nur gering verfestigte Sandstein-Wechsellagen bekannt (GRAVESEN 1993:87f). Allein anhand der Lithologie, ohne Fossilien, ist eine stratigraphische Zuordnung von Geschiebefunden mit großen Unsicherheiten verbunden.

Abb. 50: Keuper-Sandstein(?); an Hellglimmer reiche Lagen aus rotem und grünem Sandstein. Kiesgrube Borgsdorf-Velten, leg. St. Schneider.

6. Buntes Konglomerat mit Fischresten (Devon)

Der Geschiebefund von Max Hanzo lässt sich aufgrund der enthaltenen Fischreste eindeutig dem Devon zuordnen und weicht auch lithologisch von den Trias-Konglomeraten ab: die Matrix ist feinkörnig und rötlich, der Kontrast zu den Lithoklasten nicht besonders ausgeprägt, ein sparitischer Zement nicht sichtbar.

Abb. 54: Buntes Konglomerat mit Fischresten (Devon); in der Bildmitte ein Zahnknochen. Berlin (Tegel), Kiesgrube am Flughafen, 1968; Sammlung des Naturwissenschaftl. Museums Flensburg im Eiszeit-Haus, Slg.-Nr 547 der Slg. Hanzo; Foto: F. Rudolph.

In Gesellschaft mit Devon-Geschieben finden sich gelegentlich brekziöse bis konglomeratische Dolomite, die eine gewisse Ähnlichkeit mit dem „Bunten Konglomerat“ aufweisen, aber keine Fischreste enthalten. Der Lithotyp mit heller bis rötlicher Matrix enthält schwach rötliche intraformationelle Lithoklasten und dürfte aus dem obersten Silur bis Devon stammen.

Abb. 55: Brekziöser Dolomit; Strausberg, leg. W. Bennhold (Sammlung Bennhold, Museum Fürstenwalde).
Abb. 56: Andere Geschiebe sehen auf den ersten Blick aus wie Dolomite, reagieren aber kräftig mit verdünnter Salzsäure, wie dieser Fund aus der Kiesgrube Horstfelde.

7. Literatur

BUCHHOLZ A, BECKERT W & GRIMMBERGER G 2015 Trias-Geschiebe aus Vorpommern (Nordostdeutschland) [Triassic Geschiebes (Glacial Erratics) from Western Pomerania (Northeast Germany)] – Archiv für Geschiebekunde 7 (4): 209-226, 12 farb. Abb., Hamburg / Greifswald (Verl. R. Schallreuter).

BROTZEN F 1933-34 Erster Nachweis von Unterdevon im Ostseegebiete durch Konglomeratgeschiebe mit Fischresten (2 Teile) – Zeitschrift für Geschiebeforschung, Erster Teil – 9 (2): 55-63, 3 Abb.; Zweiter Teil (Paläontologie) – 10 (1): 1-66, 6 Abb., 3 Taf., Leipzig.

ENGELHARDT G 2016 Geschiebe aus der Kiesgrube „Fresdorfer Heide“ südlich von Potsdam (Teil I) – Der Geschiebesammler 48 (4): 98-115, 2 Taf., 8 Abb., 2 Taf., Wankendorf.

GRAVESEN P 1993 Fossiliensammeln in Südskandinavien – 248 S., Weinstadt: Goldschneck Verlag, ISBN 3-926129-14-X.

HEIDRICH H 1964 Über Funde von Sediment-Geschieben in West-Berliner Aufschlüssen – der Aufschluss, Sonderheft 14 [Metz R (Hrsg.) Funde und Fundmöglichkeiten in Niederdeutschland]: 117-127, 1 Kte., Heidelberg (VFMG).

HUCKE K 1967 Einführung in die Geschiebeforschung (Sedimentärgeschiebe) Nach dem Tode des Verfassers herausgegeben und erweitert von Ehrhard Voigt (Hamburg) – 132 S., 50 Taf., 24 Abb., 1 Bildnis, 5 Tab., 2 Ktn., Oldenzaal (Nederlandse Geologische Vereniging).

JESSEN W 1930 Über ein konglomeratisches Muschelkalkgeschiebe vom Alter des Trigonodus-Dolomites und weitere neue Triasgeschiebe aus Norddeutschland – Zeitschrift für Geschiebeforschung 6 (1): 25-30, 1 Abb., Berlin.

KIESOW J 1884 Ueber silurische und devonische Geschiebe Westpreussens – Schriften der Naturforschenden Gesellschaft in Danzig (N.F.) 6 (1884) (1): 205-300, Taf. 2-4, Danzig.

KING H M Caliche – Also known as calcrete, hardpan, and duricrust https://geology.com/rocks/caliche.shtml

KNAUST D 1997 Triassische Leitgeschiebe im pleistozänen Vereisungsgebiet Nordostdeutschlands und deren Beziehung zur Kågerød-Formation von Bornholm (Dänemark) – Zeitschrift der Deutschen Geologischen Gesellschaft 148 (1): 51-69, 3 Taf., 5 Abb., 1 Tab., Stuttgart.

LOEWE H 1912 Die nordischen Devongeschiebe Deutschlands. – Inaugural-Dissertation zur Erlangung der Doktorwürde bei der Hohen philosophischen Fakultät der Kgl. Albertus-Universität zu Königsberg [Separat-Abdruck aus dem Neuen Jahrbuch für Mineralogie etc. XXXV] – 118 + 1 S., 4 Abb., 4 Taf., Lebenslauf, Stuttgart (Schweizerbart‘sche).

RUDOLPH F 2008 Noch mehr Strandsteine ; Sammeln & Bestimmen von Steinen an der Nord- und Ostseeküste – 224 S., 277 farb. Abb., Neumünster (Wachholtz).

SCHNEIDER S 1997 Devon-Geschiebe aus der Umgebung von Berlin – ZWANZIG M & LÖSER H (Hrsg.) Berliner Beiträge zur Geschiebeforschung: 73-79, Taf. 12-14, 2 Tab., Dresden (CPress Verl.).

SCUPIN H 1928 Ostbaltikum (I. Teil) – Algonkium, Paläozoikum und Mesozoikum – Die Kriegsschauplätze 1914-1918 geologisch dargestellt 9: 270 S., 3 Taf., 13 Abb., 3 Tab., 2 Kartenbeil., Ortsverzeichnis am Schluss vom III. Teil, Berlin (Gebr. Borntraeger).

TORBOHM M & BARTOLOMÄUS W 2017 Funde monomikter Konglomerat-Geschiebe aus der Kiesgrube Fresdorfer Heide bei Potsdam – Geschiebekunde aktuell 34 (2): 34 – 41, 6 Abb., Hamburg/Greifswald, Mai 2018, ISSN 0178-1731.

Geschiebesammeln im Broager Land (DK)

Abb. 1: Geröllstrand bei Skeldekobbel, südöstlich von Broager (DK).

Für den Brandenburger Geschiebesammler ist ein Besuch des Geröllstrands von Skeldekobbel im Broager Land (Dänemark) eine willkommene Abwechslung. Hier, am nördlichen Ufer der Flensburger Förde, bietet sich eine durch den Einfluss eines von Norden kommenden Eisstroms deutlich anders zusammengesetzte Geschiebegemeinschaft. Zwar finden sich auch die üblichen „Verdächtigen“, z. B. Rapakiwigesteine von Åland, Vulkanite und Granite aus Småland und Dalarna, auffällig ist aber der hohe Anteil SW-schwedischer saurer und mafischer Granulite, Granatamphibolite und Charnockite; Oslogesteine sind etwas seltener vertreten.

Die Gelegenheit für diese Sammeltour ergab sich im Rahmen des von Dr. Frank Rudolph veranstalteten Geschiebesammlertreffens vom 13.-15.10.2023 in Flensburg. Das Eiszeit-Haus in Flensburg beherbergt eine umfangreiche und unbedingt sehenswerte Sammlung von Geschiebefossilien und Kristallingeschieben, die immer weiter ausgebaut wird.

Abb. 2: Das Eiszeit-Haus in Flensburg.
Abb. 3: Pectunculus-Sandstein von etwa 2 m Durchmesser vor dem Eiszeit-Haus.

Der riesige Pectunculus-Sandstein wurde bei Baggerarbeiten aus dem Hafenbecken von Flensburg geborgen. Das mittelmiozäne Gestein (Reinbek) ist voll von Muschelschalen der Gattung Glycimeris (vormals Pectunculus) und wird vor allem an der dänischen Grenze gefunden, Sandsteine mit Muschelpflastern von Glycimeris-Schalen sind auch aus einer Kiesgrube östlich von Lüneburg oder vom Schaal-See bei Zarrentin belegt (SCHULZ 2003: 424-427).

Abb. 4: Exponate im Eiszeit-Haus Flensburg.
Abb. 5: Gneis mit schälchenförmigen Vertiefungen („Opferstein“) auf dem Museumsberg in Flensburg, Breite ca. 50 cm.
Abb. 6: Steilufer aus Geschiebemergel am Strand von Skeldekobbel.

An Geröllstränden lassen sich immer wieder Ansammlungen dunkler, meist basischer (SiO2-armer) Gesteine sowie der metamorphen Äquivalente (Metabasite) beobachten. Bei Bewegung durch Wellenschlag kommen die basischen Gesteine aufgrund ihrer im Vergleich zu SiO2-reichen Gesteinen höheren spezifischen Dichte schneller zur Ruhe und reichern sich lokal an. In solchen Akkumulationen findet sich eine Reihe ganz unterschiedlicher Geschiebetypen (Abb. 7-26). Unter den als Leitgeschiebe geeigneten basischen Gesteinen treten in Skeldekobbel vor allem Kinne-Dolerit, aber auch Schonen-Basanit und Schonen-Lamprophyr häufig auf.

Abb. 7: Basaltisches Gestein mit wenigen Plagioklas-Einsprenglingen, vermutlich ein Öje-Basalt aus Dalarna, Breite 14 cm.
Abb. 8: Basaltisches Gestein mit doleritischem Gefüge und zahlreichen Plagioklas-Einsprenglingen (kein „Öje-Diabasporphyrit“, vgl. Beitrag von M. Bräunlich auf kristallin.de); Breite 25 cm.
Abb. 9: Schonen-Basanit, basaltähnliches Gestein mit großen Peridotit-Xenolithen. Die flaschengrünen Erdmantelgesteins-Einschlüsse bestehen im Wesentlichen aus Olivin, Orthopyroxen und etwas Chromspinell.
Abb. 10: Schonen-Basanit; hier sind die Peridotit-Xenolithe bereits ausgewittert und hinterlassen Löcher auf der Gesteinsoberfläche.
Abb. 11: Schonen-Lamprophyr, ein Ganggestein aus Schonen mit orangeroten bis gelblichgrünen Olivin- und schwarzgrünen Klinopyroxen-Einsprenglingen.
Abb. 12: Kinne-Diabas (besser: Kinne-Dolerit), Leitgeschiebe für Västergötland, leicht erkennbar an seiner Verwitterungsrinde, Breite 14 cm.
Abb. 13: Ein weiterer Kinne-Dolerit, Breite 14 cm. An den ausgewitterten Stellen zwischen den Flecken erkennt man das doleritische Gefüge.
Abb. 14: Oslo-Basaltmandelstein, Leitgeschiebe aus dem Oslograben, erkennbar an seinen feinen länglichen Plagioklas-Einsprenglingen und mit apfelgrünem Epidot gefüllten Mandeln.
Abb. 15: Dolerit, wahrscheinlich vom Åsby-Ulvö-Typ, mit intergranularem Gefüge.
Abb. 16: Doleritischer Metabasit; die Plagioklas-Einsprenglinge sind durch hydrothermale Alteration grün gefärbt, die Pyroxene der Grundmasse teilweise in Amphibol (Hornblende) umgewandelt.
Abb. 17: Amphibol-porphyroblastischer Metabasit; während der Metamorphose, vermutlich eines doleritischen Ausgangsgesteins, kam es zur Bildung größerer rundlicher Amphibol-Porphyroblasten.
Abb. 18: Feinkörniger Amphibol-porphyroblastischer Metabasit mit Plagioklas-Einsprenglingen und grünen Epidot-Adern.

Die Metabasite in Abb. 19-25 entstammen den hochmetamorphen (obere Amphibolit- bis Granulitfazies) Einheiten in SW-Schweden. Weißschlieriger Granatamphibolit, mafischer Granulit und Granatcoronit sind als Leitgeschiebe geeignet.

Abb. 19: Granatamphibolit
Abb. 20: Weißschlieriger Granatamphibolit, Breite 14 cm.
Abb. 21: Mafischer Granulit, nass fotografiert.
Abb. 22: Gleicher Stein, Nahaufnahme. Unter granulitfaziellen Bedingungen, während einer „trockenen“ Hochdruck-Metamorphose bildeten sich an der Grenzfläche zwischen Pyroxen und hellem Plagioklas schmale Säume („Coronen“) von rotem Granat. Der grünlichschwarze Pyroxen wurde während der retrograden Metamorphose teilweise in schwarzen Amphibol umgewandelt.
Abb. 23: Verschiedene mafische Granulite vom Geröllstrand bei Skeldekobbel.
Abb. 24: Mafischer Granulit, trocken fotografiert. Beim Blick auf die Foliation sind die kleinen roten Granatkörner gut erkennbar.
Abb. 25: An mafischen Granuliten, die aus grobkörnigen Gesteinen hervorgegangen sind, tritt das coronitische Gefüge noch deutlicher hervor. Solche Gesteine werden auch als Granat-Coronit (besser: coronitischer mafischer Granulit) bezeichnet. Breite 15 cm.
Abb. 26: Der letzte Fund aus der Reihe basischer und metabasischer Gesteine ist ein einschlussführender Amphibolit. Breite 14 cm.

Gesteine aus dem Oslograben sind am Strand von Skeldekobbel nicht so häufig, wie es die zahlreichen Funde SW-schwedischer Gesteine erwarten ließen. Lediglich einige Rhombenporphyre, zwei Larvikite sowie ein Oslobasalt (Abb. 14) konnten aufgelesen werden.

Abb. 27: Einsprenglingsarmer Rhombenporphyr, Aufnahme unter Wasser.

Leitgeschiebe aus Dalarna (Abb. 28-31) sowie Gesteine aus Småland (Abb. 32) und Östergötland treten ebenfalls eher vereinzelt auf.

Abb. 28: Undeformierter einsprenglingsreicher Quarzporphyr, wahrscheinlich ein Särna-Quarzporphyr aus Dalarna, Aufnahme unter Wasser.
Abb. 29: Nahaufnahme der nassen Oberfläche.
Abb. 30: Garberg-Granit aus Dalarna.
Abb. 31: Venjan-Porphyrit, Aufnahme unter Wasser.
Abb. 32: Emarp-Porphyr, Leitgeschiebe aus dem mittleren Småland, Breite 12,5 cm.
Abb. 33: Blauquarzgranit mit braunem bis rötlichem Alkalifeldspat und gelbem bis rötlichem Plagioklas. Solche Granite mit rötlichem Plagioklas sind vor allem aus Östergötland bekannt (Askersund-Granit?). Aufnahme unter Wasser.
Abb. 34: Porphyrischer Monzogranit bis Granodiorit mit grünlichem bis rotbraunem Plagioklas. Vergleichbare Gesteine sind aus NE-Småland bekannt, aber nicht näher zuzuordnen. Breite 14 cm.
Abb. 35: Vaggeryd-Syenit, Aufnahme unter Wasser. Wie es sich für einen Syenit gehört, dominiert rotbrauner Alkalifeldspat; Plagioklas und Quarz sind nur in geringer Menge enthalten. Innerhalb der Ansammlungen dunkler Minerale erkennt man keilförmige gelbe Titanit-Kristalle.

Zu den Höhepunkten der Sammeltour gehört sicherlich der Fund eines großen Rödö-Wiborgit-Geschiebes. Typisch für den Rödö-Wiborgit sind neben seiner leuchend orangeroten Gesamtfärbung einzelne Alkalifeldspat-Ovoide über 2 cm, einige davon mit einem dicken Saum aus gelbgrünem Plagioklas (Abb. 37, unten im Bild), weiterhin die großen und hellen, wenig magmatisch korrodierten Quarze.

Abb. 36: Rödö-Rapakiwi mit Wiborgitgefüge, Breite des Steins 23 cm.
Abb. 37: Nahaufnahme des Gefüges.

Aus einem Rapakiwi-Vorkommen könnte auch das folgende Mischgestein stammen, eine Vermengung von basischem und felsischem („saurem“) Magma (magma mingling). Die Grundmasse zeigt ein doleritisches Gefüge und ist stark alteriert (Grünfärbung!). Darüber hinaus sind als „saure“ Bestandteile größere rundliche Quarze und Partien mit rötlichem (Alkali?-)feldspat erkennbar. Denkbar ist auch, dass das Gestein ein basischer Xenolith aus einem sauren Wirtgestein ist.

Abb. 38: Mischgestein mit doleritischer Grundmasse, Breite 16 cm.
Abb. 39: Nahaufnahme
Abb. 40: Blassroter Quarz-Feldspat-Gneis mit roten Flecken, möglicherweise ein Geschiebe von Bornholm. Breite 15 cm.
Abb. 41: SW-schwedischer Gneis aus hellrotem Alkalifeldspat, orangerotem Plagioklas; dunkle Minerale fehlen weitgehend (SW-schwedischer Granulit), Breite 16 cm.
Abb. 42: Gneis mit einer Flasertextur und einer grobkörnigen Partie im Top, dunkle Minerale fehlen. Das Gestein könnte ebenfalls ein SW-schwedischer Granulitgneis sein. Breite 11 cm.
Abb. 43: Gelbgrüner Magmatit, ein Charnockit, Leitgeschiebe für SW-Schweden. Unter der Lupe sind kleine rote Granatkörner erkennbar. Aufnahme unter Wasser.
Abb. 44: Charnockitisierter Gneis, Breite 13 cm. Solche grünen (charnockitisierten) Partien kommen regelmäßig in den rötlichen granulitfaziellen Gneisen SW-Schwedens vor.
Abb. 45: Grünschiefer (Chloritschiefer) mit roten Granat- und hellen Feldspat-Granoblasten. Das plattige Geschiebe besteht im Wesentlichen aus grünen Schichtmineralen (Chlorit). Die Anwesenheit von Granat lässt auf ein sedimentäres Ausgangsgestein schließen, z. B. dolomitischen Kalkmergel.
Abb. 46: Nahaufnahme der nassen Oberfläche.
Abb. 47: Metasediment (etwa quarzitischer Chloritschiefer) mit Lagen aus Segregationsquarz (= durch Fluide aus dem Sediment verdrängte und lokal angereicherte Quarzpartien).
Abb. 48: Nahaufnahme der nassen Oberfläche. Die strahligen Quarzaggregate wuchsen senkrecht zur Kluftebene. Das dunkelgrüne Mineral ist vermutlich Chlorit.
Abb. 49: Quarzit mit Partien aus rotem Alkalifeldspat, Breite 10 cm.

Ein weiteres Highlight am Strand von Skeldekobbel ist der Fund eines migmatitischen Paragneises mit Granat-Porphyroblasten bis 6,5 cm Größe. Der Gesteinstyp ähnelt den Gneisen vom Sörmland-Typ. Zu denken gibt aber die Beobachtung, dass er recht häufig zu finden ist, andere Gesteine des östlichen Mittelschwedens (z. B. Uppland-Granite) hingegen fehlen. Die Literaturrecherche ergab bisher kein weiteres mögliches Herkunftsgebiet für diese migmatitischen Granat-Cordierit-Paragneise.

Abb. 50: Migmatitischer Paragneis mit großen Granat-Porphyroblasten.
Abb. 51: Granat-Porphyroblast mit einem Saum aus Feldspat, Nahaufnahme unter Wasser.
Abb. 52: Rückseite des gleichen Steins, Aufnahme unter Wasser. Die schwach bläulichgrauen, von Dunkelglimmer durchsetzten Partien sind ein Hinweis auf Cordierit, der in diesem Gestein offenbar in erheblicher Menge enthalten ist.
Abb. 53: Ein ähnlicher migmatitischer Granat-Cordierit-Paragneis, Breite 38 cm.
Abb. 54: Leukosom eines migmatitischen Granat-Cordierit-Paragneises, Aufnahme unter Wasser.
Abb. 55: Nahaufnahme, roter Granat-Porphyroblasten, umgeben von hellgrauem Cordierit (?).
Abb. 56: Paragneis mit Fleckentextur, Breite 30 cm. Im schwindenden Tageslicht fotografiert, daher etwas unscharf: ein auffälliger Quarz-Feldspat-Biotit-Gneis mit grünen Flecken (retrograd aus Cordierit gebildeter Chlorit?), die einen schmalen hellen Saum aufweisen.
Abb. 57: Tektonische Brekzie; das dichte grüne und hornsteinartige Gestein ist in situ durch tektonische Einwirkung zerbrochen; die Risse wurden nachfolgend mit Quarz als Ausscheidung hydrothermaler Lösungen verfüllt.

Ein außergewöhnliches Gestein, einen Skarn, entdeckte Frank Rudolph. Skarne sind metasomatische Gesteine, die im Kontaktbereich von einem aufsteigenden plutonischen Körper mit einem z. B. Ca-reichen Sedimentgestein entstehen. Dabei kommt es zu einem intensiven Stoffaustausch und der Neubildung von Ca- und Fe-reichen Silikatmineralen innerhalb des Sedimentgesteins. Typisch für Skarne aus Ca-reichen Sedimentgesteinen sind Neubildungen von Ca-reichem Klinopyroxen (Diopsid als Endglied), Fe-reichem Ca-Klinopyroxen (Hedenbergit als Endglied) und Granat (gelbgrüner bis dunkelgrüner Grossular, roter Almandin).

Abb. 58: Stark angewitterter Skarn mit ausgeprägter Lagentextur, Breite ca. 30 cm. Das Gestein konnte nur mit Mühe, unter Zuhilfenahme eines schweren Hammers zerlegt werden.
Abb. 59: Frische Bruchfläche, Abschlag vom obigen Block. Lagenweise sind Partien mit grünen (Diopsid), schwarzgrünen (Hedenbergit) und roten Mineralen (Granat) erkennbar.
Abb. 60: Skarn, polierte Schnittfläche.
Abb. 61: Nahaufnahme; wolkige graue Partien bestehen aus Quarz.
Abb. 62: Nahaufnahme. Das Gestein wurde offensichtlich tektonisch überprägt; rechts unterhalb der Bildmitte reflektiert ein größeres grünes und gestreiftes Kristallaggregat das einfallende Licht.

Zum Schluss noch einige Funde von Sedimentgesteinen.

Abb. 63: Bioturbater heller Sandstein mit Algenbewuchs, Breite 23 cm.
Abb. 64: Intraformationelles Konglomerat, ein glaukonitischer Sandstein mit phosphoritisch (?) gebundenen Sandstein-Intraklasten, Breite 34 cm.
Abb. 65: Nahaufnahme, Breite des Intraklasts 8 cm.
Abb. 66: Kontakt eines Hanaskog-Flints mit einem feinkörnigen Kalksandstein.
Abb. 67: Eigenartige konkretionäre(?) Sedimentstrukturen in einem Limonitsandstein.
Abb. 68: Am Strand bei Skeldekobbel finden sich vereinzelt Limonitsandsteine mit meist nicht näher bestimmbaren Muscheln, die wohl dem Paläozän zuzuordnen sind (pers. Mitteilung F. Rudolph). Breite des Geschiebes 20 cm
Abb. 69: Paläozäner Limonitsandstein, Breite 14 cm
Abb. 70: Gleicher Stein; in der Aufsicht sind neben unbestimmbaren Muschelabdrücken zwei schwarze Haifischzähne erkennbar.
Abb. 71: Konglomerat mit Toneisenstein-Lithoklasten (Jura oder Lias?).
Abb. 72: Pyritisiertes Spurenfossil, üblicherweise als Ophiomorpha nodosa bezeichnet. Vermutlich haben callianasside Krebse diesen Wohnbau angelegt.
Abb. 73: Pyrit-Konkretion
Abb. 74: Am Ende des nördlichen Strandabschnitts fanden sich an einigen Baumstämmen, die offenbar längere Zeit im Wasser lagen, Spuren der Schiffsbohrmuschel (Teredo navalis). Bildbreite 30 cm.

Literatur

SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 446+42 meist farb. kapitelweise num. Abb., 1 Kte. als Beil., Schwerin (cw Verlagsgruppe).

Amphibol-porphyroblastische Gneise

Abb. 1: Heller und feinkörniger Metamorphit mit Amphibol-Porphyroblasten bis 2 cm Länge. Kiesgrube Niederlehme bei Berlin.
Abb. 2: Nahaufnahme der glänzenden Amphibol-Aggregate, teils in garbenförmiger Anordnung.

Feinkörnige Metamorphite (Gneise oder Granofelse) mit großen Amphibol-Porphyroblasten treten in zahlreichen Varianten als Geschiebe auf. Auffällige Vertreter besitzen ein kontrastreiches Gefüge aus heller Grundmasse und schwarzen und glänzenden Amphibolen bis 2 cm Länge. Typisch für metamorph gebildeten Amphibol sind einzelne schmale und längliche Leisten oder garbenförmig angeordnete Kristallaggregate. Der Gesteinstyp ist eine feinkörnige Gefügevariante aus der großen Gruppe der Amphibolgneise, Amphibol-Glimmerschiefer, Amphibol-Epidot-Gneise oder entsprechender Granofelse und kann aus magmatischen, seltener aus sedimentären Gesteinen hervorgegangen sein.

  1. Beschreibung
  2. Vorkommen
  3. Geschiebefunde
  4. Metamorphite mit abweichenden Merkmalen
    4.1. Hornblende-Garbenschiefer
    4.2. Amphibol-porphyroblastischer Quarzit
    4.3. Aktinolith
    4.4. Amphibol-porphyroblastischer Leptit
    4.5. Orthoamphibole (Anthophyllitgneis, „Gedrit-Leptit“)
  5. Literatur
Abb. 3: Garbenförmige Amphibole in einem amphibol-porphyroblastischem Gneis. Geschiebefund östlich von Strausberg, leg. Mai 1941 W. Bennhold, Slg. Bennhold im Museum Fürstenwalde.

1. Beschreibung

Die Matrix amphibol-porphyroblastischer Metamorphite ist oftmals feinkörnig. Nur manchmal erkennt man mit Hilfe einer Lupe ein klein- und weitgehend gleichkörniges Gefüge aus Quarz und Feldspat. Auffällige Varianten mit großen Amphibol-Porphyroblasten besitzen weiße bis hellgraue Grundmassen, aber auch Geschiebe mit fleckiger, grauer, grüner oder rötlicher Tönung kommen vor. Als Nebengemengteil kann dunkler Glimmer hinzutreten; apfelgrüne Färbungen weisen auf Epidot hin. Neben Amphibol finden sich gelegentlich größere Porphyroblasten von hellrotem Granat oder Andalusit (BARTOLOMÄUS et al 2011).

Die schwarzen Amphibole zeigen einen lebhaften Glanz und treten in Gestalt schlanker und leistenförmiger Kristalle auf. Sie können regellos im Gestein verteilt sein oder eine Einregelung entlang der Foliationsebene aufweisen. Ebenfalls häufig sind Gruppen garbenförmiger Amphibol-Aggregaten (Abb. 2, 3), Durchkreuzungen von Amphibol-Individuen kommen eher selten vor (s. aber Abb. 7).

Nicht immer lässt sich entscheiden, ob man es mit einem Gneis oder einem Granofels zu tun hat. Die Lagen- oder Flasertextur von Gneisen kann auch bei näherem Hinsehen schwer erkennbar sein. In Abb. 4-5 ist das anisotrope Gneisgefüge deutlich erkennbar. Andererseits können Granofelse eine mineralogisch oder lithologisch bedingte Lagentextur aufweisen und „foliiert“ erscheinen (FETTES & DESMONS 2007, pers. Korrespondenz M. Bräunlich), siehe z. B. Abb. 7. Geschiebefunde sind daher manchmal nicht eindeutig benennbar („amphibol-porphyroblastischer Metamorphit“). Bezeichnungen wie „Hornblende-Fels“ oder „amphibol-porphyroblastischer Fels“ sollten vermieden werden, weil „Fels“ ein petrographisch unscharfer Begriff ist.

Eine Untersuchung von über 90 Geschieben amphibol-porphyroblastischer Gneise durch BARTOLOMÄUS et al 2011 ergab, dass die meisten Funde eine Quarz-Plagioklas-Matrix besitzen und große Klinoamphibole enthalten (überwiegend Tschermakit). Allgemein bezeichnet man diese schwarzen Amphibole mit Glasglanz als „Hornblende“. Dabei handelt es sich nicht um einen eigenständigen Mineralnamen, sondern um eine Mischreihe aus verschiedenen Ca-haltigen Klinoamphibolen. Orthoamphibole (Anthophyllit, Gedrit) aus sedimentären Edukten treten viel seltener auf. Ein Hinweis auf Orthoamphibol sind büschelartig (Gedrit) oder sonnenförmig (Anthophyllit) entwickelte Aggregate.

Amphibole gelten als regelrechte „Mülleimer“-Minerale. Sie weisen eine große chemische Variabilität auf und können eine Vielzahl von Kationen und Anionen aufnehmen. Entsprechend groß ist die Mineralgruppe, die nach wikipedia.de allein 78 Basisnamen umfasst. Eine genaue Bestimmung der Amphibole mit makroskopischen Mitteln ist kaum möglich, dazu bedarf es mikroskopischer Untersuchungen. In spezifischer Ausbildung lassen sich wenigstens einige Amphibole vorläufig bestimmen, sei es nur aufgrund eines ähnlichen Erscheinungsbildes aus bekannten Gesteinsvorkommen.

Abb. 4: Anisotropes Gefüge eines amphibolporphyroblastischen Gneises, Blick auf die Foliationsebene, Gefüge erscheint regellos. Kiesgrube Borgsdorf/Velten, leg. St. Schneider (Berlin).
Abb. 5: Gleicher Stein, um 90º gedreht, Blick entlang der Foliation (Gneisgefüge).

2. Vorkommen

Gehäufte Geschiebefunde amphibol-porphyroblastischer Gneise mit sehr heller und feinkörniger Matrix sind aus N- und NW-Dänemark bekannt und an Ablagerungen des norwegischen Eisstroms gebunden. Das Heimatgebiet der Gesteine dürfte in der Telemark in Südnorwegen liegen, wo sie als kleine Einschaltungen in metamorphen Plutoniten intermediärer Zusammensetzung vorkommen (Diorite, Granodiorite). BARTOLOMÄUS et al 2011 nennen Geschiebe dieses Typs „südostnorwegisch-westschwedische klinoamphibol-porphyroblastische Gneise“ (Bilder auf skan-kristallin.de).

Auch aus Westschweden sind Geschiebefunde amphibol-porphyroblastischer Metamorphite bekannt, die auf weitere und bisher nicht lokalisierte Vorkommen verweisen. Eine Anstehendprobe mit grünlich-schwarzem Amphibol (Aktinolith?) beschreibt PETERSEN 1900 von Rudsbyn in Värmland („Rudsbyn-Gneis“, KORN 1927: 46). Auf der Insel Granön im See Stora Glan, etwa 35 km nördlich von Rudsbyn, befindet sich ein weiteres Vorkommen (Abb. in LINDH et al 1998: 380).

Die „Gneise vom Rudsbyn-Typ“ sowie alle anderen Varianten dieses Gesteinstyps sind nicht als Leitgeschiebe geeignet, da sie aus zahlreichen und wohl weitgehend unbekannten Klein- oder Kleinstvorkommen stammen dürften (s. a. HESEMANN 1975: 183); dafür spricht zumindest die Variabilität der Geschiebefunde. Die im Folgenden gezeigten Funde stammen hauptsächlich aus Brandenburg, wo der Geschiebetyp zwar nicht häufig, aber regelmäßig anzutreffen ist.

3. Geschiebefunde

Abb. 6: Amphibol-porphyroblastischer Gneis mit eingeregelten und leistenförmigen Amphibolen in einer weißen bis grünlichen (epidotreichen) Grundmasse. Geröllstrand bei Hohenfelde (Schleswig-Holstein), Aufnahme unter Wasser.
Abb. 7: Lagentextur aus verschieden großen, teilweise sich kreuzenden Amphibolen in einem feinkörnigen Granofels. Kiesgrube Dahmsdorf/Bochow, Brandenburg; Sammlung D. Lüttich (Neuseddin).
Abb. 8: Heller und feinkörniger Gneis mit büschelförmigen Amphibol-Aggregaten, Blick auf die Foliationsebene. Kiesgrube Dahmsdorf/Bochow, Brandenburg; Sammlung D. Lüttich (Neuseddin).
Abb. 9: Das Gestein enthält zusätzlich rote Granat-Porphyroblasten mit annähernd sechseckigen Umrissen.
Abb. 10: Stengelige und gedrungene Amphibole sowie hellrote Granat-Porphyroblasten in einem hellen Gneis. Kiesgrube Niederlehme bei Berlin, Aufnahme unter Wasser.
Abb. 11: Partie eines Amphibol-Granofelses in einem ca. 60 cm breiten Amphibol-Gneis am Südrand des ehemaligen Braunkohle-Tagebaus Cottbus-Nord.
Abb. 12: Detailansicht des Gefüges, Bildbreite ca. 10 cm.
Abb. 13: Abschlag vom Amphibol-Gneis, Aufnahme unter Wasser.

Das Gestein besteht aus Plagioklas, dunklem Glimmer und schwarzem bis grünlich-schwarzem Amphibol (Amphibol-Biotit-Gneis). Stellenweise gibt es Imprägnierungen von Erz (Pyrit). Quarz ist nicht erkennbar, Magnetit nicht nachweisbar. Das weiße Mineral innerhalb der roten Ader ist Calcit (HCl-Probe positiv).

Abb. 14: Feinkörniger grauer Gneis, schwach magnetisch, mit stengeligen Amphibol-Porphyroblasten. Kiesgrube Ruhlsdorf bei Bernau (Brandenburg), Aufnahme unter Wasser.
Abb. 15: Nahaufnahme der Bruchfläche.
Abb. 16: Grünlicher Amphibol-Granofels, Fundort: Buckow-West, Berlin; Geschiebesammlung H. Müller in der FU Berlin-Lankwitz (beschriftet als „Hornblende-Spessartit“).
Abb. 17: Gneis mit garbenförmigem Amphibol. Innerhalb der graugrünen Partien sind diese Aggregate nicht zu beobachten. Geschiebe aus der Kiesgrube Ladeburg bei Bernau (Brandenburg), nass fotografiert.
Abb. 18: Gleicher Stein, Nahaufnahme.

Neben feinkörnigen amphibol-porphyroblastischen Gneisen und Granofelsen finden sich auch Varianten mit körniger Grundmasse. Solange die Amphibole im Vergleich zu allen anderen Mineralkörnern größer sind, spricht dies für eine metamorphe Entstehung.

Abb. 19: Kleinkörniger Metamorphit mit stengeligen Amphibol-Porphyroblasten, kleinen roten Granat-Körnern und einem unbestimmten grünen Mineral (Chlorit?). Geröllstrand bei Hökholz, Schleswig-Holstein, nass fotografiert.
Abb. 20: Dioritähnliches Gestein mit körniger Grundmasse (nur Feldspat) und leistenförmigem Amphibol. Die rostbraunen Flecken sind auf zersetzten Pyrit zurückzuführen. Kiesgrube Niederlehme bei Berlin, nass fotografiert.
Abb. 21: Amphibol-porphyroblastischer Gneis mit Dunkelglimmer (goldfarben angewittert) und körniger Grundmasse. Steinbeck/Klütz, Aufnahme unter Wasser.
Abb. 22: Quarz-Feldspat-Gestein mit stengeligem Amphibol. Kiesgrube Waltersdorf bei Schönefeld (Brandenburg).

4. Metamorphite mit abweichenden Merkmalen

Neben den bisher gezeigten amphibol-porphyroblastischen Metamorphiten mit einer Quarz-Feldspat-Matrix und schwarzen, meist glasglänzenden und als Hornblende bezeichneten Amphibolen finden sich gelegentlich Geschiebe mit abweichender Zusammensetzung der Matrix (Glimmerschiefer, Quarzite) oder Beschaffenheit der Amphibole (Aktinolith, Orthoamphibole wie Anthophyllit, Gedrit oder Cummingtonit). Auf die Schwierigkeiten bei der Bestimmung von Amphibolen anhand äußerlicher Merkmale wurde bereits eingegangen. Bei spezifischer Ausbildung sind wenigstens einige Amphibole vorläufig bestimmbar, und sei es nur mittels Vergleichproben aus Vorkommen mit bekannter Mineralisation.

4.1. Hornblende-Garbenschiefer

Der Gesteinstyp ist bedeutend seltener als die amphibol-porphyroblastischen Metamorphite mit Quarz-Feldspat-Matrix. Seine Grundmasse besteht zum größten Teil aus Glimmer oder glimmerähnlichen Mineralen.

Abb. 23: Amphibol-Glimmerschiefer (Hornblende-Garbenschiefer). Kiesgrube Hohensaaten, Aufnahme unter Wasser.
Abb. 24: Nahaufnahme, nass fotografiert. Neben grünlichgrauem Hellglimmer (evtl. auch Chlorit) enthält die Matrix apfelgrünen Epidot.

4.2. Amphibol-porphyroblastischer Quarzit

Abb. 25: Quarzitischer Metamorphit mit Amphibol-Porphyroblasten, Kiesgrube Arkenberge bei Berlin. Geschiebesammlung der FU Berlin-Lankwitz, leg. Müldner 1958 (beschriftet als „Anthophyllitgneis, Typ Rudsbyn, SW-Värmland“).
Abb. 26: Gleicher Stein, Bruchfläche.

ZANDSTRA 1988: 272 beschreibt einen Cummingtonit-Quarzit mit 2 – 2,5 mm langen und grauen Cummingtonit-Stängeln (Mg-reicher Amphibol) mit auffälligem Glanz. Die mineralogische Zusammensetzung des Geschiebetyps wurde mikroskopisch ermittelt („Cummingtonit-Quarz-Plagioklas-Quarzit“). Von Hand ist Cummingtonit nicht sicher bestimmbar. Nach WILKE 1997 sind mehrere Fundstellen dieses Minerals in Schweden bekannt.

4.3. Aktinolith

Aktinolith („Strahlstein“), ein Ca-reicher Klinoamphibol, bildet in typischer Ausbildung grau- bis schwarzgrüne und stängelige, faserige oder radialstrahlige Porphyroblasten, die einen seidigen Glanz aufweisen.

Abb. 27: Aktinolith-Gneis („Strahlsteingneis“), Kiesgrube Niederlehme bei Berlin; Geschiebesammlung H. Müller in der FU Berlin-Lankwitz.
Abb. 28: Nahaufnahme leistenförmigen bis stengeligen Amphibol-Aggregate mit seidigem Glanz.

4.4. Amphibol-porphyroblastischer Leptit

Die Lagentextur des folgenden Geschiebefundes spricht für ein sedimentäres Ausgangsgestein. Die hellen Lagen besitzen eine quarzitische Zusammensetzung. Im mittleren Teil sind linsenförmige Mineralneubildungen („Flecken“) erkennbar (Cordierit o. ä.). Das Gestein wird von annähernd senkrecht verlaufenden Klüften durchzogen. In einer Lage im unteren Teil kam es zur Bildung von Amphibol-Porphyroblasten. Bei dieser Neubildung in einem sedimentären Edukt könnte es sich um einen Orthoamphibol handeln, der zunächst aber nicht näher bestimmbar ist.

Abb. 29: Bunter und feinkörniger Gneis aus sedimentärem Edukt („Leptit“); Kiesgrube Althüttendorf (Brandenburg), Aufnahme unter Wasser.
Abb. 30: Nahaufnahme der amphibol-porphyroblastischen Partie.
Abb. 31: Sehr feinkörniger heller Gneis („Leptit“) mit Amphibol-Porphyroblasten, Kiesgrube Hohensaaten (Brandenburg), Breite 95 mm.

4.5. Orthoamphibole (Anthophyllitgneis, „Gedrit-Leptit“)

Anthophyllit und Gedrit sind Mg-betonte Orthoamphibole. Sie entstehen bei der Metamorphose von Sedimentgesteinen, Gedrit kann auch in Meta-Rhyolithen auftreten. Orthoamphibolführende Gesteine sind aus den mittelschwedischen Eisenerz-Vorkommen bekannt (Referenzen in BARTOLOMÄUS et al 2011); WILKE 1997 nennt Dutzende Fundorte für Anthophyllit und Gedrit in Schweden. Geschiebefunde dieses Typs sind selten und nicht genauer lokalisierbar, daher auch nicht als Leitgeschiebe geeignet.

Antophyllitgneise und -quarzite, nach HESEMANN 1975: 183 kein seltener Geschiebefund, sind hellgraue und feinkörnige Gesteine mit einer zuckerkörnigen Grundmasse. Die grauschwarzen oder gelb- bis grünbraunen Anthophyllit-Aggregate weisen einen Regenbogenglanz auf und bilden dünne und sonnenförmig oder strahlig angeordnete Aggregate bis 6 cm Länge (vgl. Nr. 3 auf skan-kristallin.de).
Ein spezifisches Merkmal von Anthophyllit scheinen perlglänzende Spaltflächen zu sein, in anderen Amphibolen treten diese nicht auf. Tendenziell weist Anthophyllit helle Farbtöne auf (weiß, gelb, hellbraun, hellgrün).

Abb. 32: Anthophyllitgneis, Geschiebefund von Nörenberg (heute: Insko), Margarethenhof, Westpommern; ehem. Sgl. Hesemann, heute im Museum für Naturkunde Berlin, Mineralogische Sammlung. Bild aus skan-kristallin.de.
Abb. 33: Quarzitischer Metamorphit mit gelblichbraun angewitterten Porphyroblasten. Kiesgrube Penkun, Ostbrandenburg.
Abb. 34: Nahaufnahme der trockenen Oberfläche.
Abb. 35: Auf der polierten Schnittfläche ist zu erkennen, dass die Mineralneubildung auf Kosten der dunklen Minerale in der Grundmasse erfolgte, weil die Bereiche um die Porphyroblasten ausgebleicht sind.
Abb. 36: Nahaufnahme der grauen bis bräunlichgrauen Amphibol-Aggregate (für Anthophyllit vergleichsweise dunkel; zudem fehlt der Perlglanz).

Der nächste Fund zeigt auf der Außenseite strahlige schwarzgrüne Amphibol-Aggregate, die Aktinolith vermuten lassen. Auf der polierten Schnittfläche weisen sie allerdings ein außergewöhnliches Farbspiel auf, das eher von Anthophyllit bekannt ist.

Abb. 37: Granofels mit schwarzgrünen „Amphibol-Sonnen“, Außenseite eines Geschiebes aus der Kiesgrube Schweinrich (Slg. F. Wilcke, Wittstock).
Abb. 38: Nahaufnahme der Außenseite.
Abb. 39: Gleicher Stein, polierte Schnittfläche; schwarzgrüner Amphibol mit gelben und bläulichen Farbreflexen.
Abb. 40: Nahaufnahme.

Gedrit bildet strahlige und büschelförmige Aggregate aus feinen grauen bis schwarzen und haarförmigen Kristallen. Bekannte Fundorte gedritführender Gesteine sind Bamble/NOR, Getön/Mittelschweden und Skyshyttan/Bergslagen.

Abb. 41: Metasediment mit Gedrit, polierte Schnittfläche einer Anstehendprobe von Skisshyttan (Dalarna/Schweden), Slg. E. Figaj.
Abb. 42: Nahaufnahme der büschelförmigen Gedrit-Aggregate.

Ein als „Gedrit-Leptit“ bezeichneter, dem Gesteinstyp von Skisshyttan ähnlicher Geschiebetyp mit feinkörniger und sehr heller Matrix sowie büschelförmigen Gedrit-Aggregaten gehört zu den seltenen Funden.

Abb. 43: „Gedrit-Leptit“, Geschiebefund aus der Kiesgrube Hohensaaten (Brandenburg).
Abb. 44: „Gedrit-Leptit“, Geschiebefund aus der Kiesgrube Götschendorf (Brandenburg), Aufnahme unter Wasser.
Abb. 45: Gleicher Stein, polierte Schnittfläche.
Abb. 46: Nahaufnahme.
Abb. 47: Als Anthophyllit-Gneis „Typ Rudsbyn“ bezeichneter Geschiebefund aus der Kiesgrube Arkenberge bei Berlin (Geschiebesammlung der BGR in Berlin / Spandau, leg. A. Müldner 1958). Die büschelförmige Ausbildung und dunkle Farbe des Amphibols lässt eher Gedrit vermuten.
Abb. 48: Gleicher Stein, Nahaufnahme.

5. Literatur

BARTHOLOMÄUS WA, BURGATH K-P & MEYER K-D 2011 Amphibol-porphyroblastische Gneise aus Südostnorwegen und Westschweden als Geschiebe in Dänemark und Norddeutschland – Geschiebekunde aktuell 27 (2): 33-53, 5 Farb-Taf., 3 Abb., Hamburg / Greifswald.

FETTES DJ, DESMONS J 2007 Metamorphic rocks a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks – Cambridge University Press.

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – GLA Nordrhein-Westfalen, S. 191-192.

KORN J 1927 Die wichtigsten Leitgeschiebe der nordischen kristallinen Gesteine im norddeutschen Flachlande – Ein Führer für den Sammler kristalliner Geschiebe – VI + 64 S., 48 Farb-Abb. auf Taf. 1-6, 8 Farb-Karten auf Taf. 7-14, 1 Tab., Berlin (Preußische geologische Landesanstalt).

LINDH A, GORBATSCHEV R & LUNDEGARD PH 1998 Beskrivning till berggrundskartan över Värmland län – Västra Värmlands berggrund – Sveriges Geologiska Undersökning 45 (2): 392 S., 32 Abb., Uppsala.

PETERSEN J 1900 Geschiebestudien. Beiträge zur Kenntniss der Bewegungs-richtungen des diluvialen Inlandeises. Zweiter Theil. Mit zwei Originalkarten. – Mittheilungen der Geographischen Gesellschaft in Hamburg 16 (1): 67-156, 2 Ktn., Hamburg (L. Friederichsen & Co.).

WILKE R 1997 Die Mineralien und Fundstellen von Schweden – 200 S., 16 Farb-Taf., München (Christian Weise).

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).