Archiv für den Monat: April 2020

Skarn

Abb. 1: Grobkörniger Skarn aus weißem Kalkspat, transparentem Quarz, grünem Ca-Pyroxen (Diopsid bis Hedenbergit) und hellgrünem Epidot. Anstehendprobe von Sunnerskog in Småland.

Skarn ist ein alter schwedischer Bergmannsbegriff. Die petrographische Verwendung der Bezeichnung geht auf die Beschreibung erzführender Granat-Pyroxen-Gesteine in der Region Persberg durch den schwedischen Geologen Törnebohm zurück (TÖRNEBOHM 1875). Heute ist Skarn ist eine Sammelbezeichnung für eine variantenreiche Gruppe metasomatisch gebildeter und meist Fe- und Ca-reicher Gesteine, die eine wichtige Rolle als Erzlieferant spielen. Ihre Entstehung ist an eine sog. Kontakt-Metasomatose zwischen einem aufsteigenden magamtischen Körper (z. B. Granit oder Diorit) und karbonatischen Sedimentgesteinen gebunden.

Unter Metasomatose versteht man eine Gesteinsumwandlung unter maßgeblicher Beteiligung von Fluiden. Sie unterscheidet sich von der dynamischen Metamorphose, der Gesteinsumwandlung durch geänderte Temperatur- und Druckbedingungen, bei der Fluide nur in kleiner Menge mobilisiert werden und die Summe der chemischen Komponenten weitgehend erhalten bleibt (sog. isochemische Metamorphose). Metasomatose hingegen führt zu einer durchgreifenden Änderung der chemischen Zusammensetzung der Ausgangsgesteine durch anhaltenden Zu- und Abfluss von Ionen.

  1. Entstehung von Skarnen
  2. Vorkommen
  3. Skarnvorkommen von Sunnerskog
  4. Skarn als Geschiebe
  5. Literatur
Abb. 2: Nahaufnahme des Gefüges der Probe in Abb. 1.

1. Entstehung von Skarnen

Die Bildung von Skarnen ist subduktionsgebunden und erfolgt in mehreren Stufen während der sog. Kontakt-Metasomatose (EINAUDI & BURT 1982, MEINERT 1992, ausführliche Informationen und umfangreiches Literaturverzeichnis auf www.science.smith.edu):

  1. Subduzierte Kalksteine, Dolomite oder karbonathaltige Sedimentgesteine gelangen in die Nähe eines aufsteigenden Intrusivkörpers, z. B. ein Granit- oder Dioritpluton.
  2. Das Karbonatgestein wird durch den Intrusivkörper zunächst kontaktmetamorph bei ca. 500-700°C unter Bildung von Marmor oder Kalksilikatgesteinen verändert. Die Entstehung von Porenräumen infolge Volumenabnahme durch Dehydration und Dekarbonisierung bereitet Wegbarkeiten für Fluide für die nachfolgende Metasomatose.
  3. Die eigentliche Skarn-Bildung erfolgt bei etwa 400-600°C. Im sedimentären Ausgangsgestein kommt es durch Stoffaustausch mit dem aufsteigenden Pluton zur Bildung weiterer Silikatminerale. Ebenso wird der Plutonit durch Zufuhr von Ionen verändert. Unter bestimmten Bedingungen kann sich eine regelrechte Fluidkonvektion zwischen beiden Systemen entwickeln. Dabei werden fortwährend Wasser und CO2 aus den Kalksteinen sowie Fluide und Volatile (Cl, F) aus dem Pluton mobilisiert. Die aggressiven Fluide transportieren Fe-, Ca- und Si-Ionen, aber auch Cu und andere Buntmetalle in gelöster Form, und führen zu einer durchgreifenden Veränderung der Gesteine. Grad der Umwandlung und Mineralneubildungen sind abhängig von Temperatur, Druck und den variablen Fluidphasen, daher sind Skarne eine sehr heterogene Gesteinsgruppe mit einer Vielfalt möglicher Mineralparagenesen.
  4. Die Ausscheidung von Erzen erfolgt bei 300-500°C. Skarn-Vorkommen werden nach dem nutzbaren Erz als Fe-, W-, Cu-, Zn/Pb oder Sn-Skarne klassifiziert.
  5. Eine späte (retrograde) hydrothermale Alteration bei 200-400°C führt zur Bildung von Epidot, Quarz, Chlorit, Pyrit, Magnetit etc. durch Zerfall von Granat und Pyroxen.

Das umgewandelte Sedimentgestein wird als Exoskarn, das veränderte magmatische Intrusivgestein als Endoskarn bezeichnet. Exoskarne treten nach Wimmenauer 1985 im unmittelbaren Kontaktbereich bis in Entfernungen von mehreren hundert Metern vom Intrusivgestein auf. Am häufigsten sind kalzitische Exoskarne mit Ca-Mg-Fe-Al-Silikaten wie Wollastonit Ca3[Si3O9] (sehr heiß), grünen Ca-Fe-Mg-Pyroxenen (Endglieder Diopsid CaMg[Si2O6] und Hedenbergit CaFe[Si2O6]), rotem oder braunem Granat (Grossular Ca3Al2[SiO4] und Andradit Ca3Fe2[SiO4]3) sowie Ca-Amphibolen, Vesuvian, Epidot, Scheelit, evtl. Erzen und weitere Minerale. Granat und Pyroxen entstehen nicht simultan; Pyroxen kann unter oxidierenden Bedingungen in Granat umgewandelt werden, etwa:

          Hedenbergit + O2 = Andradit + Qz + Magnetit

Typische mineralische Neubildungen in Mg-reichen Sedimentgesteinen sind Foyait und Phlogopit. In der Nähe zum Intrusivkontakt können sehr grobkörnige Skarne entstehen. Mit zunehmendem Abstand zum Kontakt, abhängig von der Menge zugeführter Metallionen, verändert sich die Zusammensetzung der Mineralgemeinschaft (z. B. Granat proximal, Pyroxen distal). Gemeinsam sind den Exoskarnen ein granoblastisches (massiges) Mineralgefüge und zonierte Mineralabfolgen.

Endoskarne, also durch metasomatischen Zustrom von Stoffen aus dem Sedimentgestein veränderte Teile des aufsteigenden Plutons, enthalten oftmals Pyroxen als Neubildung. Dabei kann es ebenfalls zur Anreicherung seltener Metalle wie W und Mo kommen.

2. Vorkommen

Aus dem gesamten nordischen Grundgebirge, vor allem aus Mittelschweden ist eine Vielzahl von Skarn-Vorkommen bekannt (GEIJER & MAGNUSSON 1952). Die meisten von ihnen besitzen nur eine kleinräumige Ausdehnung, einige sind als Erzlagerstätte bedeutend. Im wichtigsten schwedischen Vorkommen in Falun (Dalarna) werden Cu-Skarne mit einer Cu-Zn-Ag-Au-Pb-Vererzung übertage abgebaut. Die Gesteine entstanden bei der Intrusion von Graniten und Doleriten in Metavulkanite (Leptite) mit eingeschalteten Kalkstein-/Dolomit-Lagen. Eine weitere bedeutende hydrothermal entstandene Magnetit-Hämatit-Apatit-Lagerstätte ist Kiruna (Nordschweden). W-Mo-führende Granite (Endoskarne) im Gebiet von Gasborn in West Bergslagen beschreiben BAKER et al 1988, DAMANN & KIEFT 1990. Einige schwedische Geologen bezeichnen Einschaltungen von metamorphen Kalksilikatgesteinen in Marmorvorkommen als „Skarngneis“ (s. Abb. 15 im Artikel „Marmorvorkommen in Mittelschweden“).

3. Skarnvorkommen von Sunnerskog

Abb. 3: Grubensohle der Skarngrube Sunnerskog.

Bei Sunnerskog, etwa 6 km südöstlich von Holsbybrunn in Småland, wurde periodisch vom 17. Jahrhundert bis 1894 ein Exoskarn mit einer Cu-(W-Mo)-Vererzung abgebaut. Die Grube liegt im etwa 1,8 Ga alten Oskarshamn-Jönköping-Gürtel (OJB), einer svekofennischen Exklave innerhalb der etwas jüngeren Gesteine des Transkandinavischen Magmatitgürtels (TIB). Der Skarn von Sunnerskog ist ein typisches Beispiel für die weit verbreiteten Ca-Fe-Skarne und entstand durch Metasomatose von Kalksteinen und kieselig-kalkigen Sedimenten in Nachbarschaft zu granitischen Intrusionen. Gesteinsbildende Minerale sind weißer Calcit, roter bis brauner Granat, grüner bis schwarzgrüner Pyroxen, Epidot (hellgrün), Quarz (milchig weiß bis klar) sowie evtl. Wollastonit (Abb. 11). In einigen Proben fanden sich spärliche Butzen mit Erzmineralen (Cu-Sulfide). Eine Untersuchung aller Proben auf Wolfram-Minerale (Scheelit, Ca[WO4], orange Fluoreszenz unter niederwelligem UV-Licht) verlief negativ.

An der alten Grube (57.40679, 15.22564), unterhalb des Hanges auf der gegenüberliegenden Straßenseite, lassen sich auf einer Halde zahlreiche Belege bunter Skarn-Gesteine mit unterschiedlichen Graden metasomatischer Umwandlung aufsammeln:

  • von Neubildungen augenscheinlich freie Metasedimente (Abb. 6),
  • quarzitische Metasedimente, mit oder ohne Granat und Pyroxen (Abb. 8),
  • mittelkörnige Skarne aus Calcit, Quarz, rotem Granat, grünem bis schwarzgrünem Pyroxen und hellgrünem Epidot,
  • grobkörnige Skarne aus Pyroxen und/oder Granat (Abb. 12, 15).
  • vom Abstand zum Intrusivkontakt abhängige Mineralzusammensetzungen: Gesteine, die nur roten Granat (proximaler Intrusivkontakt, Abb. 10), beide Minerale (Abb. 15) oder nur grünen Pyroxen (distaler Intrusivkontakt, Abb. 1) enthalten.
Abb. 4: Ausschnitt aus dem geologischen Kartenblatt Vetlanda SV (Quelle: SGU, s. a. PERSSON 1989). Metasedimente der Vetlanda-Formation (hellblau) mit tuffitischen Areniten, Metagrauwacken und Einschaltungen von phyllitischem Glimmerschiefer mit Muskovit und Biotit in unmittelbarer Nähe zu Graniten des OJB (hellbraune Signatur mit schwarzen Punkten).
Abb. 5: Feinkörniges, dem Augenschein nach kaum verändertes sedimentäres Nebengestein (Metasediment). Lediglich eine leichte Grünfärbung weist auf eine niedrig metamorphe oder metasomatische Überprägung hin. Mit verdünnter Salzsäure zeigt sich keine Reaktion.
Abb. 6: Ein häufiger Haldenfund sind quarzitische Kalksilikatgesteine mit scherbiger Bruchfläche. Sie bestehen im Wesentlichen aus Quarz und können geringe Mengen roter und grüner Ca-Silikate (Granat, Pyroxen) enthalten.
Abb. 7: Schnittfläche einer ähnlichen Probe (E. Figaj leg.), Aufnahme unter Wasser. Quarzitisches Gestein mit Bändern von Silikatmineralen: roter Granat, schwarzgrüner Pyroxen und hellgrüner Epidot.
Abb. Abb. 8: Hellgrüner Epidot, dunkelgrüner Pyroxen und etwas roter Granat im Kontakt zu einem feinkörnigen und rötlichen Nebengestein (Metasediment).
Abb. 9: Gebänderter Skarn. Das Gestein besteht im Wesentlichen aus feinkörnigem Calcit, wird von einigen Quarzadern durchzogen und zeigt die für Metasomatite typische Lagentextur. Die hellbraunen und roten Partien enthalten feinkörnige Einlagerungen von Silikatmineralen, z. B. Granat.
Abb. 10: Abb. 10: Gleicher Stein, Nahaufnahme. An der Grenze zwischen Kalkstein und einer Partie aus transparentem Quarz sind farblose und radialstrahlige Kristallnadeln erkennbar, vermutlich Wollastonit. Die Umwandlung von Calciumkarbonat (CaCO3) + SiO2-Phase zu Wollastonit (CaSiO3) + CO2 ist das klassische Beispiel einer kontaktmetamorphen Mineralneubildung. Für seine Bildung sind relativ hohe Temperaturen von etwa 600°C erforderlich.
Abb. 11: Grobkörniger bunter Skarn, Breite 15 cm. Links eine massige Partie aus rotem Granat, auf der rechten Seite runde Aggregate von Granat in Calcit, der durch Einschlüsse von Silikatmineralen hellgrün gefärbt ist. Die feinkörnigen apfelgrünen Beläge sind Epidot.
Abb. 12: Idiomorpher brauner Granat (Grossular) in Calcit.
Abb. 13: Skarn aus grün pigmentiertem Calcit und einem Erzmineral mit metallischem Glanz, wahrscheinlich Chalcosin (wichtigstes Kupfermineral in Sunnerskog).
Abb. 14: Grobkörniger Skarn aus grünem Pyroxen und rotem Granat sowie etwas Quarz und Epidot.
Abb. 15: Pyroxen-Megakristall in einem grobkörnigen Pyroxen-Granat-Skarn. Granat füllt die Zwickel zwischen den großen Pyroxen-Kristallen. Aufnahme unter Wasser.
Abb. 16: Bruchstück eines großen Pyroxen-Einkristalls. Gut erkennbar sind die deutliche Spaltbarkeit und die typischen Spaltwinkel von etwa 90º.

4. Geschiebefunde

Gesteine aus Skarn-Vorkommen sind auch als Geschiebe einigermaßen sicher identifizierbar, wenn es sich um mittel- bis grobkörnige Gesteine mit den typischen Paragenesen der Ca-Fe-Skarne handelt: roter Granat und/oder grüner Pyroxen, optional mit hellgrünem Epidot, Calcit und Quarz. Abb. 17-21 zeigt historische Funde aus Brandenburg. Bei der Bestimmung von grünem Pyroxen-Skarn besteht eine Verwechslungsmöglichkeit mit grobkörnigen grünen Amphiboliten. Amphibole zeigen aber häufig eine idiomorphe Ausbildung, eine faserige Internstrukur (Aktinolith) oder intensiven Glas- oder Seidenglanz (auch bei Orthopyroxenen!). Auf der Bruchfläche weisen sie Spaltwinkel von 120º auf.

Ein anderer Lithotyp sind feinkörnige, sehr schwere und quarzitische Gesteine mit ähnlicher Paragenese (roter Granat, grüner Pyroxen). Durch ihre rostbraun angewitterte Außenseite können die Gesteine ausgesprochen unattraktiv erscheinen (Abb. 24), fallen aber durch ihr hohes Gewicht auf und besitzen meist eine Lagentextur (Abb. 22-27).

Weitere Gesteine aus Skarn-Vorkommen ähneln in Erscheinungsbild und Zusammensetzung ihren metamorphen Äquivalenten (Marmor, Kalksilikatgesteine). Schwer erkennbar dürften auch die pyroxenhaltigen Endoskarne (metasomatisch veränderte Plutonite) sein. BÖSE & EHMKE 1996 erwähnen den Fund eines Skarn-Geschiebes, RIES 2005 diskutiert den Fund eines Cer-Orthit-haltigen quarzitischen Skarns.

Abb. 17: Pyroxen-Skarn aus grobkörnigem grünem Pyroxen und etwas rotem Granat in den Zwickeln (vgl. Abb 15). Fundort: bei Stahnsdorf, leg. Hermann Müller, Slg. Museum Fürstenwalde.
Abb. 18: Nahaufnahme.
Abb. 19: Pyroxen-Skarn, Fundort: Berlin-Buch, H. Müller leg. am 12.09.1935, Geschiebesammlung der FU in Berlin-Lankwitz.
Abb. 20: Pyroxen-Skarn, Fundort Saarmund bei Potsdam, leg. W. Boschann; Sammlung W. Bennhold im Museum Fürstenwalde.
Abb. 21: Nahaufnahme. W. Bennhold notiert: „Silikatische Zone aus Kontakt-(Ur-)Kalk. Quarz + grüner Diopsid + glänzende Körnchen (nicht Magnetit, Titaneisen, Turmalin) + Kalkspat (fein verteilt)“.

Ein feinkörniges und sehr schweres Geschiebe mit rostiger Verwitterungsrinde erschien auf den ersten Blick wenig attraktiv. Mit großer Mühe konnte eine Bruchfläche erzeugt werden, die ein quarzitartiges Gestein mit reichlich rotem Granat zeigt.

Abb. 22: Feinkörniger quarzitischer Granat-Pyroxen-Skarn aus der Kiesgrube Penkun (Vorpommern), Bruchfläche.
Abb. 23: Die Nahaufnahme der polierten Schnittfläche zeigt neben Quarz und rotem Granat ein grünes Mineral, vermutlich Pyroxen.

Während einer Sammeltour am Strand von Skeldekobbel (Broager/DK) entdeckte Dr. Frank Rudolph ein großes Skarngeschiebe, das nur mit Mühe, unter Zuhilfenahme eines schweren Hammers zerlegt werden konnte.

Abb. 24: Stark angewitterter Skarn (quarzitischer Granat-Pyroxen-Skarn) mit ausgeprägter Lagentextur, Breite ca. 30 cm.
Abb. 25: Die polierte Schnittfläche zeigt die typische lagenweise Zonierung von Metasomatiten mit Partien mit grünem Diopsid, schwarzgrünem Hedenbergit und rotem Granat.
Abb. 26: Nahaufnahme; wolkige graue Partien bestehen aus Quarz.
Abb. 27: Nahaufnahme. Das Gestein wurde offensichtlich tektonisch überprägt; rechts unterhalb der Bildmitte reflektiert ein größeres grünes und gestreiftes Kristallaggregat (Diopsid?) das einfallende Licht.
Abb. 28: Aus einem Geschiebeblock stammt ein grobkristallines Gestein, das wahrscheinlich aus einem Skarn-Vorkommen stammt. Es besteht aus dunkelgrünem Hedenbergit, hellgrünem Diopsid, weißem Skapolith, und bronze-metallischem Magnetkies (det. F. Mädler 1985). Fundort: Tagebau Jänschwalde, Rinne Gosda Klinge; leg. K. Baumann, R. Kloß; Geschiebesammlung im Museum Fürstenwalde.
Abb. 29: Nahaufnahme
Abb. 30: Als „Skapolithfels“ bezeichnetes Geschiebe vom Molkenberg bei Fürstenwalde, leg. 1927 W. Bennhold. Sammlung Bennhold, Museum Fürstenwalde.

Auf dem Etikett vermerkt Bennhold: „Heimat: wahrsch. Norwegen; v.d.L.: mit Kobaltnitrat blaues Email; H=5; In HCl ganz allmählich weißlich werdend. Blättr. Minerale: v.d.L. bläht sich nicht auf, brennt sich mit Kobaltnitrat nicht blassrot, schmilzt an den Kanten nicht, wird nicht hart; in H2SO4 unveränderlich; H> Biotit. Also nicht Talk sondern Muskovit.“

Walter Bennhold verwendet hier die sog. Lötrohrprobierkunst, eine einfache Methode zur qualitativen Analyse von Metallionen (v.d.L. = vor dem Lötrohr). Das blaue Email nach Behandlung mit Kobaltnitrat ist ein Nachweis für Aluminium. Bennhold bestimmt das grüne Mineral als Skapolith, ein Gerüst-Alumosilikat mit der Summenformel (Na, Ca)4(Si, Al)12O24(Cl, CO3). Es kommt sich in Kontaktmetamorphiten, Skarnen, Metabasiten und Gneisen vor. Die Anionen Cl und CO3 weisen auf eine Bildung unter metasomatischen Bedingungen hin.

Abb. 31: Nahaufnahme. Die Paragenese mit rotem Granat (links im Bild) spricht für eine Herkunft des Geschiebes aus einem Skarn-Vorkommen.

Die teilweise sechseckigen Anschnitte der großen grünen Porphyroblasten im letzten Geschiebefund sprechen für einen Amphibol mit Ca-Vormacht. Auch roter Granat tritt auf, vor allem im Kontakt zum grünen Silikatmineral. In der ungleichkörnigen, wahrscheinlich durch Kataklase überprägten Grundmasse ist transparenter Feldspat erkennbar (keine perthitische Entmischunge, keine polysynthetische Verzwilligung). Ein Säuretest mit HCl verlief negativ.

Abb. 32: Skarn? Geschiebe mit polierter Schnittfläche, Kiesgrube Schweinrich (N-Brandenburg), leg. F. Wilcke.
Abb. 33: Nahaufnahme.

5. Literatur

science.smith.edu

BAKER J H & HELLINGWERF R H 1988 The geochemistry of tungsten-molybdenum- bearing granites and skarns from western Berslagen, central Sweden- In ZACHRISSON E (Herausgeber) Proc. of the 7th Quadrennial IAGOD Symposium, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, S. 327-338.

BÖSE M & EHMKE G 1996 Geotope und ihre Unterschutzstellung in Berlin – Brandenburgische Geowissenschaftliche Blätter 3 (1): 155-159, 2 Tab., Kleinmachnow.

DAMMAN A H & KIEFT C 1990 W-Mo polymetallic mineralization and associated calc- silicate assemblages in the Gasborn area, West Bergslagen, central Sweden – Can. Mineralogist 28, S. 17-36.

EINAUDI M T & BURT D M 1982 A Special Issue Devoted to Skarn Deposits – Introduction Terminology, Classification, and Composition of Skarn Deposits. – Economic Geology. V77/4, Society of Economic Geologists, 1982.

GEIJER P & MAGNUSSON N H 1952 The iron ores of Sweden: International Geological Congress, 19th Algiers 1952, v. 2, S. 477-499.

MEINERT L D 1992 Skarns and skarn deposits – Geoscience Canada 19, S. 145-162.

PERSSON L 1989 Beskrivning till berggrundskartorna 1 : 50000 – Vetlanda SV och SO – Sveriges Geologiska Undersökning (Af) 170+171: 130 S., Uppsala.

RIES G 2005 Ein Cer-Orthit-haltiger Quarzit als Geschiebe – Geschiebekunde aktuell 21 (1): 29-30, 2 Abb., 1 Tab., Hamburg / Greifswald.

TÖRNEBOHM A E 1875 Geognostisk beskrifning öfver Persbergets grufvefält –
SGU C 14.

WIMMENAUER W 1985 Petrographie magmatischer und metamorpher Gesteine; 297 Abb., 106 Tab., Enke-Verlag, Stuttgart.

Vislanda-Granit

Die Bezeichnung Vislanda-Granit ist nur in der Geschiebekunde gebräuchlich und kann für klein- bis mittelkörnige Småland-Granite vom Växjö-Typ mit überwiegend zuckerkörnig ausgebildetem Quarz verwendet werden. Granite dieses Typs kommen wahrscheinlich an mehreren Lokalitäten innerhalb des Transskandinavischen Magmatitgürtels vor und sind nicht als Leitgeschiebe geeignet.

Abb. 1: Blassroter und mittelkörniger Smaland-Granit vom Vislanda-Typ (Steinbruch 211, westlich von Påskallavik; 57.16605, 16.43578).

Beschreibung nach Hesemann 1975 und Zandstra 1988: 283 (nicht in Zandstra 1999, s. a. skan-kristallin.de): Geschiebe vom Vislanda-Typ sehen rot-weiß gefleckt aus. Der weiße bis blauweiße und feinkörnig granulierte („zuckerkörnige“) Quarz bildet eine Masse zwischen blass- bis sattroten Alkalifeldspäten, die eine Länge von 3-5 mm erreichen. Auch die Alkalifeldspäte sind intensiv zerbrochen und zeigen keine klaren Umrisse. Gelegentlich lassen sich einzelne größere Körner von Blauquarz entdecken. Plagioklas, auf der Außenseite von Geschieben weiß getönt, kann in größerer Menge vorkommen und ist auf der Bruchfläche kaum identifizierbar. Dunkle Minerale finden sich nur untergeordnet.

Zuckerkörniger Quarz entsteht durch mäßige tektonische Einwirkung auf den bereits vollständig erstarrten Plutonit in den oberen Bereichen der Erdkruste. Dabei können Feldspäte zerbrochen und der Quarz zu einer zuckerkörnigen Masse granuliert werden (Abb. 2), ohne dass es zu einer erkennbaren Einregelung der Mineralbestandteile kommt („Gneisgranit“). Kleine Mengen an granuliertem Quarz finden sich als feinkörniger Saum um größere Mineralkörner in vielen Småland-Graniten (Abb. 6-8). Vollständig granulierte Quarze (Vislanda-Typ) sind eher selten. Die winzigen glitzernden Bruchflächen von gleichmäßig-feinkörnigem und zerdrücktem Quarz erkennt man am besten auf einer frischen Bruchfläche, da auf angeschlagenen Geröll-Oberflächen auch kompakte Quarze zuckerkörnig aussehen können. Im Bruch zeigen die kompakten Quarze dann einen muscheligen Bruch. Ein weiterer Typ Småland-Granit mit überwiegend zerdrückten Quarzaggregaten ist der Älö-Granit (Zandstra 1988: 280).

Nach einer mündlichen Mitteilung von A. P. Meyer (Berlin) ist die namensgebende Lokalität für den Vislanda-Granit nicht der gleichnamige Ort in Südschweden, sondern ein kleines Gehöft bei Påskallavik, das vor etwa 100 Jahren Vislanda hieß. Bei einem Besuch in diesem Gebiet wurde das Gehöft zwar nicht ausfindig gemacht. Westlich von Påskallavik konnte der Vislanda-Gesteinstyp aber bei einem Besuch der Steinbrüche 210-213 (beschrieben in Bruun et al 2005) zweimal beprobt werden (Steinbrüche 211 und 212).

Abb. 2: Nahaufnahme der trockenen Bruchfläche mit reichlich zuckerkörnigem Quarz.
Abb. 3: Nahaufnahme der angefeuchteten Bruchfläche. Auch der rote Alkalifeldspat ist kräftig deformiert und zeigt undeutliche Korngrenzen.
Abb. 4: Aufnahme unter Wasser. Quarz und Feldspat lassen keine Einregelung erkennen. Lediglich die wenigen dunklen Glimmerminerale besitzen eine Vorzugsrichtung.
Abb. 5: Nahaufnahme unter Wasser: die Quarze besitzen eine schwach bläuliche Farbe, helle Feldspatkörner sind Plagioklas.

Etwa 250 m Luftlinie vom ersten Steinbruch entfernt gibt es einen weiteren Aufschluss (Steinbruch 210; 57.16876, 16.43418). Hier steht ein gleichkörniger Blauquarz-Granit vom Växjö-Typ an, in dem nur ein kleinerer Teil der Quarze granuliert ist (kein Vislanda-Typ).

Abb. 6: Småland-Granit vom Växjö-Typ („Tuna-Granit“) mit Blauquarz, anteilig mit zuckerkörnigem Quarz (Steinbruch 210, westlich von Påskallavik).
Abb. 7: Gleicher Stein, Aufnahme unter Wasser.
Abb. 8: Gleicher Stein, Nahaufnahme der nassen Bruchfläche.
Abb. 9: Vislanda-Granit, Geschiebefund eines hellen Alkalifeldspat-Granits mit reichlich zuckerkörnigem Quarz und wenig dunklen Mineralen (Kiesgrube Tegel, Berlin; A. P. Meyer leg. und det.).

Literatur

Bruun Å, Kornfält K-A, Sundberg A. Wik N-G, Wikman H, Wikström A 2005 Beskrivning till regional berggrundskarta över Kalmar län – SGU Ba 66, 50 S., Sveriges Geologiska Undersökning (SGU), Uppsala.

Hesemann J 1975 Kristalline Geschiebe der nordischen Vereisungen – GLA Nordrhein-Westfalen.

Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).

„Bottnischer“ Gneisgranit

Der Geschiebetyp des „Bottnischen Gneisgranits“ kann in Norddeutschland gehäuft in baltischen Geschiebegemeinschaften mit einem hohen Anteil an Åland-Gesteinen auftreten. Ein anstehendes Vorkommen ist bisher nicht bekannt. Es dürfte jedenfalls nicht in der Bottensee, eher in der nördlichen Ostsee zu suchen sein, da Geschiebefunde auf Åland fehlen (pers. Mitteilung M. Bräunlich).

Abb. 1: Die Außenseite von Geschieben des „Bottnischen“ Gneisgranits zeigt häufig eine gelblich-rote Färbung. Fund aus der Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).

Der grobkörnige und leicht deformierte Alkalifeldspatgranit („Gneisgranit“) besitzt eine netzartige Textur aus rotem Alkalifeldspat sowie reichlich granuliertem Quarz in Form einer feinkörnigen und glitzernden („zuckerkörnigen“) Kristallmasse. Im Unterschied zum Quarz sind die Alkalifeldspäte weitgehend intakt und zeigen bei geeignetem Anschnitt nahezu rechteckige Umrisse. Auf der rauhen Bruchfläche des Gesteins lassen sich die Netztextur und der granulierte Quarz am besten beobachten. Die Alkalifeldspäte sind hier gleichmäßig leuchtend rot gefärbt. Dunkle Minerale sowie Plagioklas fehlen oder kommen nur in geringer Menge vor (Beschreibung in Hesemann 1939 und Zandstra 1988, 1999; s. a. skan-kristallin.de).

Abb. 2: „Bottnischer“ Gneisgranit. Gut erkennbar ist die netzartige Textur aus rotem Alkalifeldspat und zuckerkörnigem Quarz. Geschiebe aus der Kiesgrube Ziezow (Brandenburg).

Granite mit zuckerkörnigem Quarz sind auch aus Småland bzw. dem Transskandinavischen Magmatitgürtel (TIB) bekannt und werden in der Geschiebekunde als „Vislanda-Granit“ bezeichnet. Zwar unterscheiden sich die bisher vorliegenden Anstehendproben deutlich vom Habitus des „Bottnischen“ Gneisgranits, unklar ist aber, ob es nicht ganz ähnliche Granite auch innerhalb des TIB gibt. So ist der „Bottnische“ Gneisgranit zwar ein regelmäßiger Begleiter von Åland-Gesteinen, als Leitgeschiebe aber nicht geeignet.

Abb. 3: Gleicher Stein, Aufnahme unter Wasser.
Abb. 4: Gleicher Stein, frische Bruchfläche.
Abb. 5: Die Nahaufnahme der frischen Bruchfläche zeigt glitzernde Kristallmassen aus zerdrücktem („zuckerkörnigem“) Quarz.
Abb. 6: Ein weiterer Fund dieses Geschiebetyps mit frischer Bruchfläche aus der Kiesgrube Niederlehme bei Berlin.

Aplite

Aplite sind helle und feinkörnige magmatische Gesteine, die keine oder nur sehr wenig dunkle Minerale enthalten. Sie finden sich als cm- bis dm-dicke Gänge oder Adern in granitischen Plutoniten und in Gneisen (Abb. 1). Die meisten Aplitgänge besitzen blasse Farben (weiß, hellgrau, rosa oder fleischfarben) und bestehen aus einem gleichkörnigen Mineralgefüge hypidiomorpher Feldspat- und Quarzkörner, das mit Hilfe einer Lupe erkennbar ist. Einsprenglinge fehlen. Auch in den Rapakiwi-Gebieten kommen Aplite und aplitähnliche Gesteine vor. Sie besitzen kräftigere Farben und im Detail abweichende Gefügemerkmale (s. u.).

Abb. 1: Hellroter, etwa 5 cm hoher Aplitgang in einem grauen Granodiorit mit Blauquarz (Geschiebe im ehem. Tagebau Cottbus-Nord, Niederlausitz).

Nachdem ein plutonischer Gesteinskörper weitgehend erstarrt ist, entstehen Klüfte und Dehnungsspalten. Diese Risse können durch aufsteigende Restschmelzen verfüllt werden. Die Klein- und Gleichkörnigkeit der Aplite spricht für eine schnelle Abkühlung und Kristallisation. Am häufigsten treten Aplite mit einer granitischen Zusammensetzung auf, aber auch Syenit-, Diorit- und Gabbroaplite sind bekannt. Ein Exot ist z. B. der Lestiwarit, ein aegirinführender Syenit-Aplit aus dem Oslograben.

Abb. 2: Hellroter Aplit mit großen Hellglimmer-Xenokristallen (Findlingshalde Steinitz, Niederlausitz).
Abb. 3: Nahaufnahme vom gleichen Stein.

Auch in den Randzonen von Pegmatiten kommen aplitische Gesteine vor. Hier kann es zu einem Eintrag der grobkörnigen Pegmatit-Minerale in die aplitische Schmelze kommen. Abb. 2 und 3 zeigt ein kleinkörniges Gestein aus Quarz und rotem Alkalifeldspat, das große Hellglimmer- sowie Alkalifeldspat-Kristalle führt, wahrscheinlich Fremdkristalle aus einem benachbarten Pegmatit.

Götemar-Aplit

In Nordost-Småland, in unmittelbarer Nähe zum Götemar-Pluton, wurden in einem Straßenaufschluss etwa 20-30 cm breite Gänge eines Aplits und eines Pegmatits beobachtet, die zunächst parallel und scharf voneinander getrennt verliefen. In der Nähe eines Diabasganges fand eine Vermengung von Aplit und Pegmatit statt. Abb. 4 zeigt eine Probe dieses Mischgesteins. Es besitzt eine feinkörnige aplitische Grundmasse und führt große Feldspat- und Quarz-Kristalle, die aus dem benachbarten Pegmatit stammen.

Abb. 4: Götemar-Aplit mit großen Xenokristallen von Feldspat und Quarz; Straßenaufschluss unmittelbar südlich des Götemar-Plutons (57.45053, 16.63260).
Abb. 5: Nahaufnahme des gleichen Steins. Die großen Alkalifeldspat-Einsprenglinge mit perthitischer Entmischung und die abgerundeten, dunklen und zonierten Quarze stammen aus dem Pegmatit. Rechts unten im Bild etwas Pyrit mit bunten Anlauffarben, am rechten oberen Bildrand die Grenze zum Diabas-Gang.

Rapakiwi-Aplite und Porphyraplite

Gänge, aber auch eigenständige kleine Massive von Apliten und aplitähnlichen Gesteinen treten in großer Anzahl in den Rapakiwi-Gebieten auf. Abb. 6 zeigt die Grenze eines Åland-Granitporphyrs („Ringquarzporphyr“) zu einem roten und feinkörnigen Aplit, Abb. 7 einen anderen Rapakiwi-Aplitgranit mit frischer Bruchfläche. Der Gesteinstyp enthält zwei Generationen von Quarz und Feldspat. Die kleineren Körner sind nahezu idiomorph ausgebildet (Abb. 8). Rapakiwi-Gesteine mit aplitischer Grundmasse und wesentlich größeren Quarz- und Feldspat-Einsprenglingen werden als Porphyraplit (Aplite mit einem porphyrischen Gefüge)  bezeichnet (Abb. 9). Die Einsprenglinge besitzen überwiegend abgerundete Formen, einige Feldspäte einen Plagioklas-Saum. Aplite und Porphyraplite sind in den Rapakiwi-Vorkommen weit verbreitet, besitzen ein variables Erscheinungsbild und kaum Merkmale, die sie auf ein bestimmtes Vorkommen zurückführen ließen. Sie sind als Leitgeschiebe nicht verwendbar.

Abb. 6: Grenze eines Åland-Granitporphyrs („Ringquarzporphyr“) zu einem feinkörnigen Aplit. Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 7: Rapakiwi-Aplitgranit aus der Kiesgrube Damsdorf/Bochow bei Lehnin (Brandenburg).
Abb. 8: Eine Nahaufnahme des Gefüges zeigt deutlich die zwei Generationen von Quarz und Feldspat.
Abb. 9: Porphyraplit. Kleinkörnige und aplitische Grundmasse aus Alkalifeldspat und Quarz mit Einsprenglingen von gerundeten Quarzkörnern, grünem Plagioklas und größeren hellen Feldspat-Ovoiden mit schmalem Plagioklas-Saum. Strandgeröll von Hökholz bei Eckernförde.