Schlagwort-Archive: Sörmland

Geschiebesammeln auf der Halbinsel Wustrow

Die Halbinsel Wustrow bei Rerik war seit 1933 militärisches Sperrgebiet und erst 1993 nach dem Abzug der Roten Armee wieder zugänglich. Mittlerweile ist Wustrow teilweise Naturschutzgebiet, teilweise in Privatbesitz. Eine schmale Landzunge (Nehrung) verbindet die Halbinsel mit dem Festland, das Betreten ist nur mit Genehmigung möglich. Im Juli 2021 konnten die ausgedehnten Geschiebestrände der Halbinsel erkundet werden. Da hier wenig gesucht wird, sind gute Funde möglich.

Abb. 1: Alte Kasernengebäude auf Wustrow.
Abb. 2: Hinab zur Steilküste geht es mit Hilfe eines Seils.
Abb. 3: Die seeseitige Küste von Wustrow besteht aus Geschiebelehm und -mergel der Grundmoräne des Pommerschen Stadiums der Weichsel-Vereisung.

Auffällig ist das relativ häufige Vorkommen von Geschieben aus dem Gebiet des Oslograbens (Rhombenporphyre, Larvikit), während knapp 30 km weiter östlich, am Strand von Nienhagen, praktisch keine solchen Funde möglich sind. SW-schwedische Leitgeschiebe wurden nicht gefunden.

Abb. 4: Rhombenporphyr, Breite 10 cm.
Abb. 5: Rhombenporphyr, Breite 10 cm.
Abb. 6: Larvikit, Aufnahme unter Wasser.
Abb. 7: Nahaufnahme. Einige Feldspäte zeigen den für Larvikit typischen bläulichen Schiller.

Nicht selten trifft man auf Geschiebe von Schonen-Basalt und Schonen-Lamprophyr. Die Funde belegen eine Transportrichtung des Eises aus NNE.

Abb. 8: Schonen-Basalt mit gelbgrünen Olivin- sowie wenigen schwarzen Pyroxen-Einsprenglingen.
Abb. 9: Schonen-Lamprophyr mit zahlreichen hellen Mandeln.
Abb. 10: Nahaufnahme. Olivin verwittert gelblichbraun, die Pyroxen-Einsprenglinge sind grünlich gefärbt.
Abb. 11: Ein weiterer Schonen-Lamprophyr.
Abb. 12: Bruchfläche des gleichen Steins. Alterierter Olivin ist rötlich gefärbt, stellenweise auch hellgrün und weitgehend unverändert; Pyroxen ist schwarz bis flaschengrün.
Abb. 13: Das helle, teils radialstrahlige Mineral innerhalb der Mandeln ist sehr weich und zerfällt mit Salzsäure ohne Aufschäumen (Hinweis auf Zeolith).

Am Geschiebestrand von Wustrow finden sich auch Mandelsteine in großer Zahl.

Abb. 14: Grüner Mandelstein mit schwarzen Mandeln, Einsprenglingen von Plagioklas und einer durchlaufenden Ader, teils mit Achat, teils mit einem feinkörnigen blassgrünen Mineral verfüllt. Aufnahme unter Wasser, leg. S. Mantei.
Abb. 15: Nahaufnahme, nasse Oberfläche. Die Bänderung des Achats ist nur schwach ausgeprägt.
Abb. 16: Blasenreicher und stark alterierter Mandelstein. Aufnahme unter Wasser.
Abb. 17: Nahaufnahme der nassen Oberfläche.
Abb. 18: Grauer Mandelstein, Breite 15 cm.
Abb. 19: Grünstein, Breite 10 cm. Offenbar ist hier eine mit rotem Feldspat gefüllte Kluft angeschnitten.
Abb. 20: Der Feldspat (Plagioklas, polysynthetische Verzwilligung) bildet ungewöhnliche orthogonale Querschnitte aus.

Plutonite und Vulkanite des Transkandinavischen Magmatitgürtels (TIB) – die bunten Småland-Granite mit Blauquarz sowie Småland-Porphyre – sind am Strand von Wustrow nur in mäßiger Zahl vertreten.

Abb. 21: Roter Alkalifeldspatgranit. Einige Feldspäte weisen Risse auf, welche mit dunklen Mineralen verfüllt sind. Dunkle Minerale sind nur spärlich vorhanden und ungleichmäßig im Gestein verteilt (Ausschlusskriterium für Uthammar-Granit). Bildbreite 18 cm.
Abb. 22: Anorogener und undeformierter Granit mit etwas grünem Plagioklas, wahrscheinlich ein porphyrischer Rapakiwi. Aufnahme unter Wasser.

Gesteine aus Rapakiwi-Vorkommen treten regelmäßig, aber nicht besonders häufig auf. Ein besonderer Fund ist ein brauner Ignimbrit, der wahrscheinlich aus dem Vorkommen des Roten Ostsee-Quarzporphyrs stammt. Dafür sprechen die charakteristischen eckigen Hochquarz-Relikte mit Spuren magmatischer Korrosion.

Abb. 23: Roter Ostsee-Quarzporphyr-Ignimbrit, braune Variante. Aufnahme unter Wasser.
Abb. 24: Gleicher Stein, polierte Schnittfläche.
Abb. 25: Neben größeren gerundeten und trüben Quarzen finden sich auch einige eckige Quarze mit der gleichen Gestalt wie im Roten Ostsee-Quarzporphyr.
Abb. 26: Fragmente von Porphyren, einer davon ähnelt dem Roten Ostsee-Quarzporphyr.

Häufig finden sich graue Paragneise vom Sörmland-Typ. Diese enthalten in der Regel Granat und Cordierit, seltener auch reichlich Sillimanit.

Abb. 27: Granat-(Cordierit)-Sillimanitgneis (Sörmland-Gneis). Die Granat-Porphyroblasten liegen innerhalb eines Leukosoms aus Quarz und Feldspat. Aufnahme unter Wasser.
Abb. 28: Nahaufnahme. Das Gestein enthält größere Mengen an dunkelgrauem bis silbrig glänzendem Sillimanit. Cordierit (hellgrau bis graublau, zwischen den Sillimanitnadeln) ist nicht eindeutig identifizierbar.
Abb. 29: Cordierit-Sillimanit-Granofels. Solche undeformierten Quarzite mit schwarzen Cordierit- und weißen Sillimanitflecken sind anstehend aus dem Västervik-Gebiet bekannt.
Abb. 30: Porphyrischer Amphibolit. Die blastische Wuchsform der Amphibole ist ein Hinweis auf eine metamorphe Entstehung aus einem basischen Gestein, z. B. Gabbro, Dolerit oder Basalt. Breite 26 cm.

Sedimentite

Abb. 31: Feuerstein mit rhythmischer Bänderung. Breite 32 cm.
Abb. 32: Silurkoralle, Breite 11 cm.

Lias-Geschiebe (Limonitsandsteine, häufig mit Pflanzenresten) sind auf Wustrow regelmäßig anzutreffen. Das nächste Geschiebe ist ein konkretionärer Toneisenstein (von ungewisser stratigraphischer Stellung).

Abb. 33: Toneisenstein, Breite 15 cm.
Abb. 34: Konglomerat mit runden Toneisenstein-Klasten. Vergleichbare Gesteine kommen auch im Jura vor. Breite 24 cm.
Abb. 35: Postsilurisches Konglomerat, leg. K. Obst; polymikter Typ mit Klasten von rotem und grauem Beyrichienkalk, grünen Sandsteinen, Feinsandsteinen, Toneisenstein und Milchquarzgeröllen. Breite 15 cm.
Abb. 36: Rückseite des gleichen Geschiebes.
Abb. 37: Reste von rezenten Seepocken. Bildbreite ca. 7 cm.
Abb. 38: Mitten auf dem Strand eine Sonnenblume, der das salzhaltige Milieu offensichtlich nicht schadet.

Die folgenden Funde stammen aus der Nähe der Halbinsel Wustrow, von der Steilküste NE von Rerik. Gesammelt, geschnitten und poliert wurden die Geschiebe von T. Brückner (Hilter).

Abb. 39: Tektonische Brekzien sind ein häufiger Geschiebefund. Selten handelt es sich dabei um einen brekziierten geschichteten Hornstein.
Abb. 40: Das Gestein ist hälleflintartig dicht. Die feinen Wechsellagen bilden die Schichtung eines feinkörnigen Sediments oder vulkanischer Aschen ab.
Abb. 41: Nahaufnahme einer brekziierten Partie. Die Risse sind mit Quarz und einem hellgrünen Mineral verheilt.
Abb. 42: Cordierit-Sillimanit-Granofels, wahrscheinlich aus dem Västervik-Gebiet. Siehe auch Abb. 30.
Abb. 43: Nahaufnahme.
Abb. 44: Bornholm-Granit. Typisch für Bornholm-Granite ist ein verwaschenes Gefüge aus rotem Feldspat und Quarz sowie helle Plagioklase, teilweise mit dunklem Kern; dunkle Minerale bilden Flecken.
Abb. 45: Nahaufnahme. Innerhalb der dunklen Minerale findet sich reichlich Titanit.
Abb. 46: Eigenartiges zoniertes Syenit-Geschiebe. Das Gestein besteht fast vollständig aus Alkalifeldspat von grüner bis bräunlicher Farbe. Der Vaggeryd-Syenit führt in der Regel etwas Quarz und enthält mehr dunkle Minerale. Es könnte sich bei diesem Syenit auch um einen Larvikit in ungewöhnlicher Ausbildung handeln.
Abb. 47: Einige Feldspäte weisen einen bläulichen Schiller auf.
Abb. 48: Zwischen den Feldspäten und innerhalb von Rissen finden sich schmale orangefarbene Partien (Plagioklas-Entmischungen von Feldspat?).
Abb. 49: Orangefarbene Risse innerhalb schwarzgrüner Feldspäte.

Literatur

GERTH A 2008 GIS-gestützte 3D-Modellierung hochweichsel-zeitlicher Sedimente in Nordwest-Mecklenburg-Vorpommern – Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln. 196 S., Bautzen 2008.

Sörmland-Gneis

Abb. 1: Paragneis vom Sörmland-Typ. Aussichtspunkt Grießen am Tagebau Jänschwalde, Niederlausitz; Breite des Geschiebes ca. 1 m.
  1. Beschreibung
  2. Entstehung und Herkunft
  3. Anstehender Sörmlandgneis
  4. Weitere Paragneise aus Sörmland
  5. Cordieritgneis von Flen
  6. Geschiebefunde vom Typ Sörmland
  7. Granat-Cordierit-Sillimanit-Paragneis
  8. Verzeichnis der Lokalitäten
  9. Literatur

In ostschwedischen Geschiebegesellschaften finden sich regelmäßig größere Blöcke von Metamorphiten, die als Gneise vom Sörmland-Typ bezeichnet werden. Der Geschiebetyp ist ein grauer migmatitischer Paragneis mit großen Granat-Porphyroblasten und größeren Mengen an graublauem Cordierit. Optional kann auch Sillimanit enthalten sein. Solche Paragneise sind anstehend aus dem Sörmlandbecken bekannt. Ob der Gesteinstyp als Leitgeschiebe geeignet ist, bleibt zunächst offen, da sein Verbreitungsgebiet in Sörmland recht groß, zudem die Frage nach weiteren möglichen Heimatgebieten dieser Granat-Cordierit-Gneise nicht hinreichend beantwortet ist.

Abb. 2: Gleicher Stein, Nahaufnahme. Graue und feinkörnige Gneispartien wechseln sich mit linsenförmigen Leukosomen aus Quarz und Feldspat ab. Das Gestein enthält große Mengen von hellrotem Granat.
Abb. 3: Gleicher Stein, Nahaufnahme (Bildbreite 10 cm). Ein grobkörniges Leukosom enthält neben Granat- und Feldspat-Körnern auch graublauen Cordierit.

1. Beschreibung

Die migmatitischen Gneise vom Sörmland-Typ enthalten helle, häufig linsenförmige Partien mit einem grobkörnigen Gefüge aus Quarz und Feldspat (Leukosom), umgeben von dunklen feinkörnigen und glimmerreichen Bereichen (Melanosom bzw. Restit). Auch hellgraue Partien des gneisigen Ausgangsgesteins (Paläosom) sind meist erkennbar. Als Geschiebe finden sich sowohl Adergneise mit hellen und dunklen Partien, als auch stärker deformierte Gneise/Migmatite, in denen die Adertextur nur noch ansatzweise erkennbar ist. Die feinkörnigen und dunklen Partien des Paläosoms bestehen aus Biotit, Quarz und Feldspat mit einem Biotit-Anteil von 40-70%.

Hellroter bis rotvioletter Granat bildet Porphyroklasten, entweder unregelmäßig geformte Partien, aber auch kompakte runde Aggregate mit einem Durchmesser bis 5 cm. Diese sind ungleichmäßig im Gestein verteilt und durch Kataklase zerbrochen. In den Porphyroklasten können Einlagerungen grüner Minerale vorkommen (z. B. Chlorit).

Neben Granat ist reichlich Cordierit enthalten, sowohl in den feinkörnigen, dunklen und biotitreichen Bereichen (Matrix aus Biotit, Quarz und Feldspat), als auch „schwimmend“ in den Leukosomen. Cordierit ist grau, idealerweise bläulich-grau getönt und – im Gegensatz zu den quarzhaltigen Partien – von dunklen Glimmerplättchen durchsetzt. Das Erkennen von Cordierit in Metamorphiten setzt einige Übung voraus, s. kristallin.de. Abb. 13-15 zeigt sehr schön das Erscheinungsbild von Cordierit in einem Cordierit-Gneis.

Optional kann Sillimanit enthalten sein, entweder fein verteilt und makroskopisch kaum erkennbar oder in Form weißer bis silbrig-grauer und feinfaseriger Aggregate. Ein sillimanitreicher Geschiebetyp (Granat-Cordierit-Sillimanit-Gneis) wird weiter unten separat vorgestellt.

Gemäß den international empfohlenen Nomenklaturregeln lassen sich Metamorphite nach Textur-Merkmalen, Mineralbestand oder dem Ausgangsgestein benennen (FETTES & DESMONS 2007). Für unseren Geschiebetyp ergeben sich daher mehrere mögliche Bezeichnungen: „Migmatischer Paragneis“ (Textur), „Granat-Cordierit-Gneis“ (Mineralbestand) oder auch „Meta-Grauwacke“ (mögliches Ausgangsgestein). Daraus lässt sich das Wort-Ungetüm „migmatitischer Granat-Cordierit-Paragneis vom Sörmland-Typ“ zusammensetzen, eine präzise, aber unhandliche Bezeichnung. In Schweden heißt das Gestein (zusammen mit ähnlichen Metasedimenten ohne Granat und Cordierit) schlicht „Sörmland-Adergneis“. Der Gesteinstyp wird in VINX 2016: 118-120 beschrieben. Siehe auch MÖLLER & APPEL 2016, ALTENBURG 2011. HESEMANN 1975: 21 und ZANDSTRA 1988: 204 erwähnen das Gestein nur kurz, SMED P & EHLERS J 2002 führt es gar nicht auf.

2. Entstehung und Herkunft

Das Sörmland-Becken ist ein Teil des svekofennischen Orogens, das sich ungefähr in einem Dreieck zwischen den Städten Stockholm, Västerås und Norrköping erstreckt. In diesem Gebiet finden sich überwiegend graue Metasedimente (Paragneise), hervorgegangen aus Grauwacken und tonigen Sedimenten, die vor etwa 1,9 Ga in einem Meeresbecken zwischen einem Inselbogen und einem Kontinent abgelagert wurden. Während der Akkretion des Inselbogens vor etwa 1,77-1,83 Ga erfolgte die Subduktion und Metamorphose der Sedimente in einer Tiefe von etwa 10-20 km (Andersson 1991). Gleichzeitig kam es zum Aufstieg von Graniten (Stockholm-Granittyp), verbunden mit einer Aufarbeitung und Migmatisierung der Metasedimente. Granat, Cordierit und Kalifeldspat sind metamorphe Neubildungen in Al- und K-reichen Metapeliten unter Bedingungen der oberen Amphibolit- bis unteren Granulitfazies. Vorkommen von Granat-Cordierit-Gneisen scheinen im Sörmland-Becken nur eine begrenzte Ausdehnung zu besitzen, ebenso granatführende Gneise oder Cordierit-Gneise. Ein großer Teil der Metasedimente sind migmatitische Quarz-Feldspat-Gneise ohne signifikante Mengen an Granat oder Cordierit.

Granat-Cordierit-Gneise vom Sörmland-Typ finden sich mitunter gehäuft in ostschwedischen Geschiebegesellschaften, zusammen mit Vänge-, Uppsala- und Sala-Granit. Die graue Signatur in der Übersichtskarte (Abb. 4) zeigt die Verbreitung von Meta-Grauwacken, Meta-Argilliten und Paragneisen im Sörmland-Becken. Innerhalb dieses Gebietes, das für ein mögliches Leitgeschiebe eine respektable Ausdehnung besitzt, ist mit Vorkommen von Granat-Cordierit-Gneisen und den weiter unten vorgestellten Varianten mit viel Sillimanit zu rechnen.

Kleinere Vorkommen ähnlicher Gesteine finden sich nördlich von Gävle im Bottnischen Becken (Andersson et al 2006: 679-697). Granatführende Paragneise (ohne Cordierit) kommen auch weiter nördlich vor: ein riesiges Becken mit Metasedimenten verläuft von Westfinnland aus quer durch die Bottensee bis in die Mitte Nordschwedens (pers. Mitteilung M. Bräunlich, s. Probe aus diesem Gebiet in Abb. 9). Aus dem Schärengarten von Turku in Südfinnland sind granatführende Paragneise (auch Granat-Cordierit-Gneise?) bekannt. Spielen Geschiebe vom finnischen Festland in Norddeutschland auch nur eine sehr untergeordnete Rolle, ist unklar, ob sich diese Vorkommen am Grund der Ostsee nach Westen fortsetzen bzw. weitere Unterwasser-Vorkommen mit Granat-Cordierit-Gneisen existieren.

Abb. 4: Verbreitung von Meta-Grauwacken, Meta-Argilliten und Paragneisen in Sörmland (mögliches Verbreitungsgebiet der Granat-Cordierit-Gneise), graue Signatur. Im Text genannte Fundlokalitäten sind gelb markiert. Karte nach STEPHENS et al 2009.

3. Anstehender Sörmlandgneis

Bisher liegen nur wenige Vergleichsproben von Sörmland-Gneisen mit Granat und Cordierit vor (s. a. skan-kristallin.de). Die folgenden Proben stammen von der Insel Oaxen, wo der Sörmland-Gneis als Umgebungsgestein eines Marmorvorkommens gut aufgeschlossen ist (Lok. 1).

Abb. 5: Anstehender grauer Paragneis auf der Insel Oaxen; große Linse eines Leukosoms aus Feldspat und Quarz, umgeben von einem dunklen Melanosom. Höhe am rechten Bildrand ca. 3 m.
Abb. 6. Granat-Cordierit-Paragneis (Sörmland-Gneis), Block mit frischer Bruchfläche aus einer Uferbefestigung auf der Insel Oaxen.
Abb. 7: Handstück von der gleichen Lokalität, Aufnahme unter Wasser. Bläulicher Cordierit ist u. a. rechts der Bildmitte in den feinkörnigen Gneispartien erkennbar.
Abb. 8: Weitere Probe von der gleichen Lokalität mit rotem Granat sowie graublauem Cordierit in den dunklen und feinkörnigen Gneispartien. Die cordierithaltigen Partien sind von feinen Glimmerplättchen durchsetzt. Im grobkörnigen Leukosom ist zusätzlich bläulicher Alkalifeldspat (perthitische Entmischung) und bläulicher Quarz enthalten.

Die nächste Probe ist ein grauer und migmatischer Paragneis mit Granat (augenscheinlich ohne Cordierit) aus Nordschweden.

Abb. 9: Granatführender Paragneis (ohne Cordierit), Anstehendprobe von Hudiksvall, östlich vom See Dellen (Lok. 2). Foto: M. Bräunlich, kristallin.de.

4. Weitere Paragneise aus Sörmland

Auf mehreren Reisen in das Gebiet des Sörmland-Beckens konnte ein kleiner Eindruck von den variantenreichen Paragneisen dieses Gebietes gewonnen werden, im Anstehenden und anhand von Nahgeschieben. Ein größerer Teil der Metasedimente sind Adergneise bis stark migmatitische Gneise aus Biotit, Quarz und Kalifeldspat, die auf den ersten Blick keine größeren Mengen von Granat oder Cordierit enthalten (gewöhnliche Sörmland-Adergneise, Abb. 10,11). Lokal treten auch migmatitische und granatführende Paragneise mit viel weißem Alkalifeldspat (Abb. 12) auf. An einer weiteren Lokalität fanden sich ausschließlich cordierithaltige Gneise (Cordieritgneis, Abb. 13-15). Die mineralische Zusammensetzung der Metasedimente (mit oder ohne Granat und Cordierit) hängt von der Zusammensetzung (Fe- und Mg-Gehalt) der Ausgangsgesteine und dem Grad ihrer metamorphen Umwandlung ab.

Abb. 10: Adergneise und migmatitische Gneise ohne Granat und Cordierit, Nahgeschiebe am Geröllstrand von Skansholmen, S Stockholm (Lok. 3).
Abb. 11: Grauer Sörmland-Adergneis, Nahgeschiebe am Geröllstrand von Skansholmen; Breite 24 cm.
Abb. 12: Paragneis mit Granat-Porphyroblasten und reichlich weißem Kalifeldspat, Aufnahme unter Wasser. Abschlag von einem großen Block aus der Uferbefestigung am Campingplatz Skansholmen (Lok. 3).

5. Cordieritgneis von Flen

Cordieritgneise kommen verbreitet im nordischen Grundgebirge vor. Geschiebefunde lassen sich keiner näheren Herkunft zuordnen. Die folgenden Proben aus der Nähe von Flen stammen aus einem Kiesabbau, in dem gleichzeitig anstehender Cordieritgneis in einem Steinbruch abgebaut wurde (Lok. 4). Solche kombinierten Lagerstätten sind in Schweden häufiger anzutreffen, wenn die glazialen Deckschichten über dem kristallinen Grundgebirge nur eine geringe Mächtigkeit aufweisen.

Abb. 13: Cordieritgneis aus einem Steinbruch bei Flen. Das Gestein enthält neben weißem Feldspat und Biotit große Mengen an bläulichem Cordierit.
Abb. 14: Nahaufnahme unter Wasser. Die bläulichen Cordierit-Partien sind von feinen Biotit-Plättchen durchsetzt.
Abb. 15: Nahaufnahme, nasse Bruchfläche.
Abb. 16: In der Kiesgrube fanden sich große Nahgeschiebe von Adergneisen und Cordieritgneisen, aber keine granathaltigen Metasedimente. Das Bild zeigt einen grobkörnigen Paragneis mit größeren Mengen an bläulichem Cordierit (Breite 29 cm).

6. Geschiebefunde vom Sörmland-Typ

Die nächsten Bilder zeigen Geschiebe von Granat-Cordierit-Paragneisen aus Norddeutschland. Als Sörmland-Typ können die Adergneise bis migmatitischen Gneise in Abb. 1-3, 17 und 20-21 angesehen werden. Sie dürften teilweise, möglicherweise aber nicht ausschließlich aus dem Sörmland-Becken stammen.

Abb. 17: Migmatitischer Granat-Cordierit-Gneis vom Sörmland-Typ. Graublauer Cordierit findet sich in der Nähe der Granatkörner und innerhalb der biotitreichen Partien. Polierte Schlifffläche eines Geschiebes im Findlingspark Nochten (Niederlausitz).
Abb. 18: Migmatitischer Paragneis, Großgeschiebe aus dem Tagebau Welzow-Süd, Findlingslager Steinitz bei Drebkau (Niederlausitz). Breite 56 cm.
Abb. 19: Nahaufnahme der nassen Oberfläche. Farblose bis hellgraue und von Biotit durchsetzte Partien deuten auf Cordierit hin.
Abb. 20. Granat-Cordierit-Paragneis, Kiesgrube Penkun (Brandenburg); schwach bläulich-graue Cordierit-Partien sind mit Biotit durchsetzt.
Abb. 21: Paragneis mit Granat und grauem Cordierit; Aufnahme einer Bruchfläche unter Wasser. Kiesgrube Teschendorf bei Oranienburg.
Abb. 22: Feinkörniger Adergneis mit großen Granat-Porphyroblasten; Cordierit ist nicht erkennbar. (Findlingslager Steinitz bei Drebkau, Niederlausitz).
Abb. 23: Granat-Cordierit-Gneis, Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 24: Gleicher Stein, polierte Schnittfläche. Die Granate weisen teilweise sechseckige Umrisse und nur geringe Spuren einer Kataklase auf.
Abb. 25: Nahaufnahme; dunkle Partien mit blaugrauem Cordierit.
Abb. 26: Grünlicher Granat-Cordierit-Gneis, Aufnahme unter Wasser. Kiesgrube Hoppegarten bei Müncheberg.
Abb. 27: Nahaufnahme. Neben etwas graublauem Cordierit sowie Biotit sind größere Mengen eines grünen und glimmerähnlichen Minerals enthalten (vermutlich Chlorit als Alterationsprodukt von Cordierit).

7. Granat-Cordierit-Sillimanit-Paragneis

Ein eher seltener Geschiebefund sind Gneise vom Sörmland-Typ, die neben Granat und Cordierit weiße oder silbrig-graue und feinfaserige Aggregate von Sillimanit in bedeutender Menge enthalten. MÖLLER & APPEL 2016 beschreiben einen Geschiebefund von der Eckernförder Bucht, rekonstruieren seine Metamorphosegeschichte anhand mikroskopischer Untersuchungen und diskutieren eine mögliche Herkunft aus dem Sörmland-Becken. Die Paragenese aus Kalifeldspat, Cordierit und Sillimanit ist kennzeichnend für eine granulitfazielle Metamorphose (750 Grad, 4,5-5,5 Kbar). Damit lässt sich das mögliche Herkunftsgebiet dieses Gneis-Typs auf eine etwa 150 x 70 km große Fläche in Sörmland einschränken, nach Ansicht der Autoren ein zu großes Gebiet für ein Leitgeschiebe.

Das von MÖLLER & APPEL 2016 beschriebene Geschiebe enthält rosarote, linsenförmige und xenomorphe Porphyroblasten von Granat, die größer sind als alle anderen Minerale. Die Porphyroblasten enthalten Einlagerungen von grünlichem Chlorit, besitzen einen hellen Saum von Feldspat oder Cordierit und werden von Partien mit Sillimanit und Biotit „umflossen“. Sillimanit ist eng mit Biotit verwachsen und kommt in zwei Generationen vor: fibrolithisch und in Gestalt dickerer Nadeln.

Abb. 28: Migmatitischer Granat-Cordierit-Paragneis mit länglichen und faserigen Aggregaten von weißem bis dunkelgrauem Sillimanit. Kiesgrube Teschendorf bei Oranienburg (Brandenburg), Aufnahme unter Wasser.
Abb. 29: Grauer Granat-Cordierit-Sillimanit-Paragneis. Kiesgrube Althüttendorf (Brandenburg), Aufnahme unter Wasser.
Abb. 30: Gleicher Stein, Anschnitt eines grobkörnigen Leukosoms mit rotem Granat und graublauem Cordierit.
Abb. 31: Nahaufnahme der feinkörnigen Matrix mit parallel orientierten Aggregaten aus faserigem Sillimanit und schwach graublauem Cordierit.

8. Verzeichnis der Lokalitäten

Lok. 1: Insel Oaxen; Sörmland-Gneis in der Umgebung des Marmorvorkommens; Anstehendprobe aus dem NW der Insel (etwa 58.974057, 17.711479).

Lok. 2: Hudiksvall; Baustelle E vom See Dellen (etwa 61.716382, 17.049936).

Lok. 3: Skansholmen, S Stockholm: Nahgeschiebe; Uferbefestigung aus Granatgneis am Campingplatz (59.04647, 17.69313).

Lok. 4: Kiesgrube und Steinbruch SW von Flen; Nahgeschiebe und anstehender Cordieritgneis (59.015037, 16.583747).

9. Literatur

ALTENBURG H-J 2011 Findling Trissow – Neubrandenburger Geologische Beiträge 11 (2011) S. 9-16; Geowissenschaftlicher Verein Neubrandenburg.

ANDERSSON UB 1991 Granitoid episodes and felsic magma interactions in the Svecofennian of the Fennoscandis Shield, with main emphasis on the ca. 1,8 Ga plutonics – Precambrian Research 51: 127-149, 9 Abb., Amsterdam.

ANDERSSON UB et al 2006 Multistage growth and reworking of the paleoproterozoic crust in the Bergslagen area, southern Sweden: evidence from U-Pb geochronology – Geol. Mag. 143 (5): 679-697, 4 Abb., Cambridge.

FETTES DJ, DESMONS J 2007 Metamorphic rocks a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks – Cambridge University Press.

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – GLA Nordrhein-Westfalen.

KOPP G, THOMSEN K-H & HALFMANN B o. J. [um 2008] Findlingsgarten Tarp ; Steinreiches Tarp – Faltblatt: (6 S.), 5 farb. Abb., 1 Tab., Tarp (Druckzentrum Tarp). [Tarp (Bl. 1322 Eggebek) südlich von Flensburg; Findlingsgarten zwischen Flensburg und Schleswig mit 72 Findlingen überwiegend aus der Kiesgrube e Oeversee (1323 Ulsby); am Rande des Treenetals und unweit einer Insel saalezeitlicher Altmoräne; Fröruper Berge im Osten als Teil der weichselzeitlichen Endmoräne; u. a. Sörmlandgneis; Paläoporellenkalk mit 18 t (Harder Schneeball), Kiskelund-Gestein]

MAGNUSSON NH 1934 Nagrå åldersförhållanden inom det mellansvenska urberget – Geologiska Föreningens i Stockholm Förhandlingar 56 (1): 65-76, Stockholm.

MAGNUSSON NH 1950 The origin of the Sörmland gneisses, International Geological Congress, 18. session, 19.

MAGNUSSON NH 1970 The origin of the iron ores in central Sweden and the history of their alterations – Part 1: Text – Sveriges Geologiska Undersökning, Avhandlingar och uppsatser C 643 [Årsbok 63 (6)]: 127 S., unnum. Tab. + separat. Bd. (293 Abb. + Index), Stockholm. Sörmland-Gneis

MÖLLER S & APPEL P 2016 Granat-Cordierit-Sillimanit-Gneis (Sörmland-Granatgneis) von der Eckernförder Bucht- ein Leitgeschiebe? – Der Geschiebesammler 49 (1) 15-37; 10 Abb., 1 Tab., Wankendorf.

RUDOLPH F 2017 Das große Buch der Strandsteine ; Die 300 häufigsten Steine an Nord- und Ostsee – 300 S., zahlr. farb. Abb., Neumünster (Wachholtz Murmann Publishers), Sörmland-Gneis 42 + 43 + 194.

RUDOLPH F, BAYER B, BARTHOLOMÄUS W & LOGA S VON 2015 Steine an Fluss, Strand und Küste sammeln und bestimmen – Kosmos Naturführer: 221 S., 247 Farb-Fot., 8 Übersichts-Ktn., 1 geol. Zeittafel, Stuttgart (Franckh-Kosmos Verlags-GmbH & Co. KG.), ISBN 978-3-440-13531-0. Sörmland-Gneis /Granat-Gneis S. 75.

SMED P & EHLERS J 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage (2002).

STEPHENS M B, RIPA M, LUNDSTRÖM I, PERSSON L, BERGMAN T, AHL M, WAHLGREN C-H, PERSSON P-O, WICKSTRÖM L Synthesis of the bedrock geology in the Bergslagen region, Fennoscandian Shield, south-central Sweden – Sveriges geologiska undersökning Ba 58, 259 S., Uppsala 2009; ISBN 91-7158-883-8.

STÅLHÖS G 1962 Nya synpunkter på Sörlandsgnejsernas geologi med särskild hänsyn till Stockholmstrakten [Aspects of the Sörmland gneisses in Eastern Sweden]. – Sveriges Geologiska Undersökning C587 [Årsbok 56 (3)]: 137 S., 25 Abb., 1 Falt-Taf. (Kte.), Stockholm.

VINX R 2008 Gesteinsbestimmung im Gelände – 2. erweit. Aufl., XI+469 S., 4 S/W-Taf., 399 Abb.(davon 390 in Farbe), 14 Tab., 5 Kästen, München (Spektrum, Akademischer Verl.). Migmatitischer Paragneis mit dem Lokalnamen Sörmland-Gneis von NW-Mecklenburg mit Herkunft Södermanland in SE-Schweden Foto-Abb. 10.8.

VINX R 2016 Steine an deutschen Küsten ; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.), ISBN 978-3-494-01685-6. Sörmlandgneis; Sörmlandgneis-Findling von Naturdenkmal Liether Kalkgrube in Klein-Nordende bei Elmshorn Abb. 113; Sörmlandgneis als Insel Mörkö s Södertälje Abb. 114.

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).

Fleckengesteine

1. Allgemeine Beschreibung
2. Funde aus Schweden
2.1. Kolmården
2.2. Sörmland
2.3. Almesåkra-Formation
2.4. Linköping
3. Verzeichnis der Lokalitäten
4. Literatur

Teil 2: Geschiebefunde aus Norddeutschland
Fleckengranite

1. Allgemeine Beschreibung

Fleckengestein ist eine allgemeine Bezeichnung für feinkörnige Metamorphite mit einer Fleckentextur. Die runden bis linsenförmigen und meist ebenfalls feinkörnigen Flecken unterscheiden sich in Farbe und Mineralbestand von der Matrix (Grundmasse). Solche kleinkörnigen lokalen Konzentrationen von Mineralen, die während der Gesteinsumwandlung neu gebildet wurden, nennt man Granoblasten. Fleckentexturen können auch in kleinkörnigen Plutoniten auftreten („Fleckengranite“). Eine grobe Differenzierung von Fleckengesteinen lässt sich anhand der texturellen Merkmale der Matrix vornehmen:

  • Fleckengneis (flecky gneiss): Metamorphite mit einem Gneisgefüge und meist ovalen bis länglichen Flecken (Abb. 1 und 3);
  • Flecken-Granofels: Metamorphite mit richtungslosem Mineralgefüge und runden bis ovalen Flecken (Abb. 2).
  • Flecken-Glimmerschiefer: überwiegend aus Glimmer bestehendes Gestein mit dunklen Flecken (Cordierit, Andalusit), Abb. 4.
  • Fleckengranit (spotted granite): kleinkörniger Granit mit regellos-gleichkörniger Matrix und einer Fleckentextur (Abb. 5); makroskopisch nicht immer sicher von metamorphen Granofelsen unterscheidbar. Die Flecken enthalten häufig Biotit oder Titanit.

Zur genaueren Bezeichnung der Metamorphite können die Texturmerkmale mit dem metamorphen Mineralbestand kombiniert werden, z. B. Cordierit-Granofels (Abb. 2) oder sillimanit-granoblastischer Gneis (Abb. 3).

Metamorphite mit einer Fleckentextur gehen vor allem aus Al-reichen Sedimentiten hervor (seltener auch aus Vulkaniten oder basischen Gesteinen). In Sedimentiten wird unter geeigneten Bedingungen die Bildung von Sillimanit, Andalusit oder Cordierit begünstigt. Die Flecken entstehen unter statischen Metamorphose-Bedingungen, das heißt durch Einwirkung von hohen Temperaturen, ohne maßgebliche Beteiligung von gerichtetem Druck. Häufig dürfte es sich dabei um  kontaktmetamorphe Vorgänge im Rahmen einer Gebirgsbildung handeln, bei denen das Nebengestein (z. B. Gneise, Granofelse, Migmatite) durch einen aufsteigenden Pluton verändert wird. Relativ undeformierte Flecken (Granoblasten) in deformierten Gesteinen (z. B. Gneise) müssen also nach der tektonischen Deformation und der eigentlichen Gebirgsbildung entstanden sein. Kommt erneut mäßiger und gerichteter Druck hinzu, erhalten auch die Flecken eine elliptische oder augenförmige Gestalt. Permanenter gerichteter Druck zerstört die Fleckentextur.

Der Mechanismus der Fleckenbildung in plutonischen Gesteinen („Fleckengranite“) ist nicht vollständig geklärt. Wahrscheinlich handelt es sich um Schmelzen, die in einer Spätphase der Bildung von Granitplutonen entstehen, da die Flecken häufig Titanit als typisch spätmagmatische Ausscheidung enthalten. Fleckengranite sind aus dem Stockholm-Gebiet („Stockholm-Fleckengranit“) und aus Blekinge bekannt. Der Gesteinstyp wird in einem separaten Artikel besprochen.

Abb. 1: Fleckengestein, Strandgeröll von Hökholz bei Eckernförde, Slg. E. Figaj.

Das dunkle und kleinkörnige Fleckengestein besteht aus einer Quarz-Feldspat-Biotit-Matrix und enthält helle Flecken aus Quarz und Feldspat (und sehr wenig Biotit). Wahrscheinlich sind noch weitere Minerale enthalten, von Hand aber nicht bestimmbar. Das Gestein besitzt eine Gneistextur, erkennbar an der Einregelung der Glimmerplättchen in der Matrix (Fleckengneis).

Abb. 2: Metamorphe Fleckengesteine (Flecken-Granofelse), Nahgeschiebe aus dem Västervik-Gebiet (Lok. 1). Links unten ein Västervik-Fleckengestein (Cordierit-Granofels), rechts zwei Västervik-Fleckenquarzite (glimmerführender Quarzit mit Sillimanit-Granoblasten). Links oben ein rotfleckiger Västervik-Quarzit.
Abb. 3: Fleckengneise mit einer Matrix aus Quarz, Feldspat und Biotit sowie länglichen Flecken, teilweise mit feinfaserigem Sillimanit. Nahgeschiebe aus Kolmården in Östergötland (Lok. 2).
Abb. 4: Flecken-Glimmerschiefer („Knoten-Glimmerschiefer“); hauptsächlich aus Glimmer bestehendes Gestein mit dunklen Flecken (Cordierit oder Andalusit). Geschiebe von Altenteil/Fehmarn.
Abb. 5: Blekinge-Fleckengranit, kleinkörniger Plutonit mit einer Quarz-Feldspat-Biotit-Matrix und zoniert aufgebauten Flecken. Der Saum der Flecken besteht aus Quarz und Feldspat, der Kern enthält roten Titanit und Feldspat. Anstehendprobe vom Yasjön in Blekinge, Aufnahme unter Wasser.

Bei der Untersuchung von Fleckengestein-Geschieben mit Lupe oder Bino wird man sich aufgrund der Feinkörnigkeit der Gesteine in vielen Fällen mit einer unvollständigen Mineralbestimmung begnügen müssen. Ist die Grundmasse quarzitisch zusammengesetzt oder enthält sie auch Feldspat in nennenswerter Menge? Wenn ja, welchen? Dunkle Flecken könnten Cordierit sein, der durch retrograd gebildeten Glimmer pigmentiert ist. Auch granoblastischer Andalusit kann in Form dunkler Flecken auftreten. Cordierit kann durch Alteration in grünlich-graue Folgeprodukte (Serizit, Chlorit) umgewandelt sein. Weiße Flecken mit einem feinfaserigen Interngefüge deuten auf Sillimanit hin. In anderen Fällen scheinen die weißen Flecken nur aus einem Quarz-Feldspat-Gemenge zu bestehen. Flecken können einen einfachen oder mehrfach zonaren Aufbau besitzen. Besteht der rote Kern aus Titanit? Genauere Aussagen zum Mineralbestand sind meist nur durch eine dünnschliffmikroskopische Untersuchung möglich.

2. Funde aus Schweden

Ausgehend von der Frage, ob es Doppelgänger der Västervik-Fleckengesteine in anderen Regionen gibt, konnten im Laufe mehrerer Exkursionen nach Schweden Fleckengesteine an zahlreichen Lokalitäten gefunden werden, als Geschiebe, Nahgeschiebe oder anstehend. Fast alle Fundorte liegen innerhalb des svekofennischen Grundgebirges. Insgesamt erstreckt sich das untersuchte Gebiet aber nur über einen kleinen Teil des südlichen Segments der Svekofenniden. Weiter nördlich sowie in anderen Regionen ist mit weiteren Vorkommen zu rechnen, zumal Geschiebefunde aus Norddeutschland eine größere petrographische Diversität aufweisen als die hier gezeigten Varianten (siehe Teil 2).

Als Leitgeschiebe eignen sich nach derzeitigem Kenntnisstand nur einige Flecken-Granofelse aus dem Västervik-Gebiet (Abb. 2). Sie werden an anderer Stelle ausführlich besprochen und mit ähnlichen Fleckengesteinen aus anderen Gebieten verglichen:

– Västervik-Cordierit-Granofels (Västervik-Fleckengestein). Undeformierte und feinkörnige Varianten sind als Leitgeschiebe verwendbar. Ähnliche Fleckengesteine kommen in Östergötland (Kolmården, Linköping) und im westlichen Småland vor (Almesåkra-Formation).

Västervik-Fleckenquarzit (ehemals „Stockholm-Fleckenquarzit“). Undeformierte und glimmerführende Quarzite bis Glimmerquarzite mit kleinen Sillimanit-Granoblasten finden sich anstehend sowie in großer Menge und Vielfalt als Nahgeschiebe im Västervik-Gebiet.

Die Einzigartigkeit und Unverwechselbarkeit der Västervik-Fleckengesteine erklärt sich aus ihren besonderen Bildungsbedingungen, einer weitgehend statischen Regionalmetamorphose. Unter vergleichbaren Bedingungen könnten auch Fleckengesteine in anderen Regionen entstanden sein, allerdings sind bisher keine größeren und lokal begrenzten Vorkommen bekannt. Abgesehen von den Västervik-Gesteinen dürften Fleckengesteine prinzipiell nicht als Leitgeschiebe geeignet sein, weil Fleckenbildung in metamorphen Gesteinskomplexen weit verbreitet ist und eine Vielzahl kleiner und weit verstreuter Vorkommen existiert. Zudem unterliegen die Gesteine einer hohen petrographischen Variabilität, wie die nächsten Bilder zeigen.

Abb. 6: Besuchte Fundlokalitäten mit Fleckengesteinen in Schweden. Das Gebiet mit der höchsten Funddichte und Vielfalt an Fleckengesteinen liegt im südlichen Södermanland und östlichen Östergötland (Kolmården und Umgebung). Nach Norden und Osten werden Geschiebefunde seltener, südlich und westlich von Stockholm finden sich kaum noch Fleckengesteine.

2.1. Kolmården

Im Gebiet von Kolmården in Östergötland, etwa 100 km nördlich von Västervik, fanden sich Fleckengesteine in beispielloser Menge und Variabilität als Geschiebe. In den meisten Fällen dürfte es sich um Nahgeschiebe handeln, da einige Gesteinstypen in der näheren Umgebung auch anstehend vorkommen. Die Funde stammen vom Geröllstrand am Ufer des Braviken am Campingplatz Kolmården (Lok. 2, Abb. 7-19).

Rote Fleckengesteine: Sehr häufig finden sich die sog. Gneise vom Marmorbruket-Typ. Die grauen Gneise enthalten gröber kristallisierte fleckige Partien aus rotem Feldspat und Quarz sowie einen dunklen Kern. Der Gesteinstyp ähnelt teilweise den Fleckengesteinen aus dem Västervik-Gebiet. Weitere Bilder sowie Anstehendproben siehe Abschnitt 3.2. im Artikel zum Västervik-Fleckengestein.

Abb. 7: Graues Metasediment mit roten Flecken am Geröllstrand in Kolmården, Breite 41 cm.
Abb. 8: Kleine Gerölle von Fleckengesteinen vom Marmorbruket-Typ (Geröllstrand Kolmården), Aufnahme unter Wasser.
Abb. 9: In einigen der roten Fleckengneise sind die Flecken etwas grobkörniger als die Grundmasse. Neben grauem Cordierit und dunklem Glimmer finden sich grünlichbraune, teilweise rot alterierte Mineralkörner (möglicherweise Andalusit).

Auch graue Fleckengesteine kommen am Geröllstrand in Kolmården in großer Menge vor. Gefüge und Textur sind variabel, kaum ein Fund gleicht dem anderen. Zum einen handelt es sich um glimmerreiche Fleckengneise (Abb. 13-19; siehe auch Abb. 3) mit einer kleinkörnigen Matrix aus Quarz, Feldspat und Glimmer. Andere Fleckengesteine lassen keinen Feldspat in der Matrix erkennen und scheinen eine quarzitische Zusammensetzung zu besitzen (Abb. 10-12). Die Länge der Flecken beträgt wenige Millimeter bis 1 cm, im Ausnahmefall bis 5 cm (Abb. 18). Sie zeigen eine augen- bis linsenförmige oder schmale und längliche Gestalt, je nach Anschnitt der Flecken zur Foliationsrichtung. In manchen Flecken ist fibroblastischer Sillimanit erkennbar.

Abb. 10: Feinkörniger Flecken-Granofels (Kolmården) mit quarzitischer Grundmasse und weißen Sillimanit-Flecken. Im Zentrum einiger Flecken ist ein einzelnes größeres Biotitkorn erkennbar. Die bräunlichen Flecken könnten Alterationsprodukte von Cordierit sein (Chlorit).
Abb. 11: Feinkörniges quarzitisches Fleckengestein (Kolmården) mit augenförmigen weißen Flecken und dunklen Schlieren (Cordierit?).
Abb. 12: Gleicher Stein, Nahaufnahme. Die feinkörnigen hellen Flecken enthalten Quarz und Feldspat. In der Matrix ist kein Feldspat erkennbar.
Abb. 13: Grauer Fleckengneis mit Sillimanit-Granoblasten (Kolmården). Der Blick auf die Foliationsebene zeigt breite und ovale Flecken, in der Seitenansicht (unterer Bildteil) sind sie flach und linsenförmig ausgebildet.
Abb. 14: Nahaufnahme, radialstrahlig ausgebildete Aggregate von feinfaserigem (fibroblastischem) Sillimanit.
Abb. 15: Hellgrauer und feinkörniger Fleckengneis (Kolmården). In den gelb- bis rötlich-braunen Kernen der Flecken sind Kristalle von keilförmiger Gestalt erkennbar (Hinweis auf Titanit).
Abb. 16: Feinkörniger Fleckengneis mit stark ausgelängten weißen Flecken. Geröllstrand Kolmården, Breite des Steins 10 cm.
Abb. 17: Grauer Quarz-Feldspat-Biotit-Gneis. Die länglichen Flecken enthalten einen gelblichbraunen Kern (Titanit?) und eine helle Randzone aus Quarz und Feldspat.

Ein vergleichbarer Gesteinstyp wird in Hesemann 1975 und in ZANDSTRA 1988 als feinkörnige Variante des „Stockholm-Fleckengranits“ angeführt. Offensichtlich stammt er aber aus zahlreichen Kleinvorkommen, die in Södermanland ein größeres Gebiet einnehmen. Im Stockholm-Gebiet wurden Geschiebe dieses Typs nur vereinzelt gefunden.

Abb. 18: Grauer Fleckengneis (Quarz-Feldspat-Biotit-Gneis) mit ungewöhnlich großen augenförmigen Flecken bis 5 cm Länge. Kolmården, Breite des Steins 32 cm.
Abb. 19: Gleicher Stein, nass fotografiert. Biotit fehlt innerhalb der weißen und roten Quarz-Feldspat-Flecken und tritt vermehrt in der schmalen Randzone auf.

Anstehendproben aus dem Gebiet von Kolmården: Das Kartenblatt Katrineholm SO verzeichnet in den Metasedimenten der weiteren Umgebung von Kolmården lokale Anreicherungen von Sillimanit, Cordierit und Andalusit sowie Fleckentexturen (SGU 1960, Beschreibung Wikström 1979). Zwei Anstehendproben von roten Fleckengneisen werden im Artikel zum Västervik-Fleckengestein gezeigt (Abb. 31, 32 sowie 38). Im Dorf Snörom (Lokalität 3) fand sich ein grauer Fleckengneis in einem temporären Aufschluss (Baustelle).

Abb. 20: Anstehender Fleckengneis mit hellen Flecken bis 2 cm Länge (Snörom, Lokalität 3), Bildbreite 22 cm.
Abb. 21: Die weißen Bereiche der Flecken bestehen aus Quarz und Feldspat. Die hellgrauen Kerne, ein feinkörniges und unbestimmtes Mineralgemisch, treten nur beim Anschnitt des Gesteins zur Foliationsebene in Erscheinung. Bildbreite 15 cm.
Abb. 22: Polierte Schnittfläche einer Probe aus dem gleichen Aufschluss, ein Quarz-Feldpat-Biotit-Gneis mit eingeregelten Glimmerblättchen, hellen Quarz-Feldspat-Flecken und größeren dunklen Flecken (wahrscheinlich Cordierit).

Das Kartenblatt Katrineholm SO zeigt ein weiteres Vorkommen mit fleckigen Metasedimenten in unmittelbarer Nähe. Der Aufschluss konnte nicht lokalisiert werden, aber in Snörom fanden sich mehrere lose Gesteinsbrocken eines Fleckengneises, der vom anstehenden Typ abweicht und aus unmittelbarer Nähe stammen dürfte.

Abb. 23: Brauner Fleckengneis mit weißen und dunklen Flecken. Die dunklen Flecken sind im Vergleich zur Matrix gröber kristallisiert und von roten Quarz-Feldspat-Partien umgeben. Nahgeschiebe von Snörom, Bildbreite 36 cm.
Abb. 24: Gleicher Stein, polierte Schlifffläche.
Abb. 25: Nahaufnahme. Die hellen Säume der Flecken bestehen aus Quarz und Feldspat, der Kern aus einem unbestimmten Mineralgemisch. Unten rechts der Anschnitt eines roten Flecks mit dunklem Kern (wahrscheinlich Cordierit).

2.2. Sörmland

Bedeutend weniger Fleckengestein-Geschiebe, insgesamt etwa ein Dutzend, fanden sich in einer Kiesgrube bei Nyköping, etwa 20 km östlich von Kolmården (Lok. 4). Überwiegend handelte es sich um graue, kleinkörnige und biotitreiche Fleckengesteine mit weißen Flecken. Die Grundmasse aus Quarz, Feldspat und Biotit besitzt ein weitgehend regelloses Gefüge, die länglichen Flecken zeigen eine gerichtete Textur (Abb. 26). Vereinzelt kamen auch dunkle und feinkörnige Gneise mit Sillimanit-Flecken vor (Abb. 27). Etwa 30 km weiter nördlich, in einer Kiesgrube bei Flen, wurden überhaupt keine Fleckengestein-Geschiebe gefunden.

Abb. 26: Kleinkörniges Fleckengestein mit einer Quarz-Feldspat-Biotit-Matrix (Kiesgrube Nyköping). Breite 12 cm.
Abb. 27: Feinkörniger Gneis mit weißen Sillimanit-Flecken (Kiesgrube Nyköping).

In der Kiesgrube fand sich auch ein kleinkörniger Granofels (Abb. 28) mit einer Quarz-Feldspat-Biotit-Matrix, der zahlreiche gelbbraune Granat-Granoblasten enthält, die von einem schmalen hellen Plagioklas-Saum umgeben sind. Dies ist der erste (und einzige) Fund eines granathaltigen Metasediments in diesem Gebiet. Weder im Västervik-Gebiet noch in der Umgebung von Kolmården kommt der Gesteinstyp vor.

Abb. 28: Granat-Granofels (Kiesgrube Nyköping).

Auch das nächste Fleckengestein-Geschiebe ist ein Einzelfund und stammt vom Campingplatz in Hölö (Lok. 5), etwa 45 km SW von Stockholm. Auch an weiter östlich gelegenen Lokalitäten sowie südlich von Stockholm fanden sich entweder nur einzelne oder gar keine Geschiebe von Fleckengesteinen: 1. Kiesgrube bei Järna, unmittelbar westlich von Stockholm (Lok. 6, 1 Fleckengranit); 2. Skansholmen, südlich von Stockholm (Lok. 7, 1 kleinkörniges Fleckengestein, vergleichbar mit dem Typ in Abb. 26); 3. Kiesgruben auf Nynäshamn, südlich von Stockholm (keine Geschiebe von Fleckengesteinen, pers. Mitteilung M. Bräunlich).

Abb. 29: Geschiebe eines Fleckengesteins von Hölö mit polierter Schnittfläche. Die fleckig-inhomogene Matrix besteht im Wesentlichen aus Quarz und Feldspat sowie grünen und dunklen, nicht näher bestimmbaren Mineralen.
Abb. 30: Gleicher Stein, Nahaufnahme.

Die Flecken besitzen eine helle Saumzone und weiße oder grüne Kerne. Weiße Kerne enthalten fibroblastischen Sillimanit, grüne Kerne wahrscheinlich Chlorit als Alterationsprodukt von Cordierit. Die Vermutung stützt sich auf den Befund einer Dünnschliffuntersuchung eines ähnlichen Fleckengestein-Geschiebes (s. Teil 2).

2.3. Almesåkra-Formation

Im westlichen Småland, unmittelbar südlich der Almesåkra-Formation, finden sich vermehrt Geschiebe von Fleckengesteinen. Die Metasedimente zeigen teilweise noch Relikte des sedimentären Mineralgefüges (runde Quarzkörner). Mit einiger Wahrscheinlichkeit sind sie aus tonhaltigen Sedimenten hervorgegangen, die beim Aufstieg des Almesåkra-Diabas kontaktmetamorph verändert wurden. Anstehendproben liegen bisher nicht vor. Einige dieser Metamorphite ähneln dem Västervik-Fleckengestein und werden im betreffenden Artikel besprochen (Abschnitt 3.1.).

Abb. 31: Fleckengestein-Geschiebe aus einer Kiesgrube bei Komstad, westlich von Sävsjö, Lok. 8.
Abb. 32: Fleckengestein-Geschiebe (Kiesgrube bei Komstad). Unregelmäßig geformte dunkle Flecken sind von roten Säumen aus Quarz und Feldspat umgeben. Die Matrix enthält größere Mengen Hellglimmer.

2.4. Linköping

In einer Kiesgrube bei Linköping (Lok. 9) fand sich ein einzelnes rotes Fleckengestein (s. Västervik-Fleckengestein, Abschnitt 3.3, Abb. 40) sowie ein grünliches Fleckengestein. Nördlich von Linköping ist demnach mit weiteren, bisher nicht näher untersuchten Vorkommen von Fleckengesteinen zu rechnen.

Abb. 33: Feinkörniges Fleckengestein mit länglichen hellen Flecken.
Abb. 34: Gleicher Stein, Nahaufnahme. Der Mineralbestand ist bis auf ein blaues Quarzkorn und feine Flitter eines glimmerähnlichen Minerals nicht näher bestimmbar.

3. Verzeichnis der Lokalitäten

Lokalität 1: Geschiebe Västervik-Fleckengesteine; Böschung am Fahrradweg in Västervik Jenny, nahe der Autorennbahn (Motorbana); 57.768130, 16.585394.
Lokalität 2: Geschiebe Fleckengesteine; Rollsteinstrand am Campingplatz Kolmården; 58.65718, 16.40712.
Lokalität 3: Fleckengneis, anstehend; Snörom bei Kolmården, temporärer Aufschluss; 58.66476, 16.41711.
Lokalität 4: Geschiebe Fleckengesteine; aktive Kiesgrube NW von Nyköping; 58.774022, 16.819400.
Lokalität 5: Geschiebe Fleckengestein; Campingplatz Hölö/Norrvra; 59.00824, 17.53729.
Lokalität 6: Geschiebe Fleckengranit; aktive Kiesgrube zwischen Järna und Nykvarn; 59.12040, 17.46764.
Lokalität 7: Geschiebe Fleckengestein; Geröllstrand am Campingplatz Skansholmen/S Sandviken; 59.04647, 17.69313.
Lokalität 8: Geschiebe Fleckengesteine; Kiesgrube bei Komstad, 3 km westlich Sävsjö; 57.391392, 14.616904.
Lokalität 9: Geschiebe Fleckengesteine; Kiesgrube südlich Linköping; 58.329789, 15.631448.

4. Literatur

Gavelin S 1983 The Västervik Area in South-eastern Sweden – SGU Ser. Ba No. 32, 172 S, Uppsala.

Wikström A 1979 Beskrivning till berggrundskartan 1:50000 – Katrineholm SO – Sveriges Geologiska Undersökning (Af) 123: 101 S., 44 Abb., 14 Tab., 3 Ktn. in 1 Mappe, Stockholm.

Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim    tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).