Für den Brandenburger Geschiebesammler ist ein Besuch des Geröllstrands von Skeldekobbel im Broager Land (Dänemark) eine willkommene Abwechslung. Hier, am nördlichen Ufer der Flensburger Förde, bietet sich eine durch den Einfluss eines von Norden kommenden Eisstroms deutlich anders zusammengesetzte Geschiebegemeinschaft. Zwar finden sich auch die üblichen „Verdächtigen“, z. B. Rapakiwigesteine von Åland, Vulkanite und Granite aus Småland und Dalarna, auffällig ist aber der hohe Anteil SW-schwedischer saurer und mafischer Granulite, Granatamphibolite und Charnockite; Oslogesteine sind etwas seltener vertreten.
Die Gelegenheit für diese Sammeltour ergab sich im Rahmen des von Dr. Frank Rudolph veranstalteten Geschiebesammlertreffens vom 13.-15.10.2023 in Flensburg. Das Eiszeit-Haus in Flensburg beherbergt eine umfangreiche und unbedingt sehenswerte Sammlung von Geschiebefossilien und Kristallingeschieben, die immer weiter ausgebaut wird.
Der riesige Pectunculus-Sandstein wurde bei Baggerarbeiten aus dem Hafenbecken von Flensburg geborgen. Das mittelmiozäne Gestein (Reinbek) ist voll von Muschelschalen der Gattung Glycimeris (vormals Pectunculus) und wird vor allem an der dänischen Grenze gefunden, Sandsteine mit Muschelpflastern von Glycimeris-Schalen sind auch aus einer Kiesgrube östlich von Lüneburg oder vom Schaal-See bei Zarrentin belegt (SCHULZ 2003: 424-427).
An Geröllstränden lassen sich immer wieder Ansammlungen dunkler, meist basischer (SiO2-armer) Gesteine sowie der metamorphen Äquivalente (Metabasite) beobachten. Bei Bewegung durch Wellenschlag kommen die basischen Gesteine aufgrund ihrer im Vergleich zu SiO2-reichen Gesteinen höheren spezifischen Dichte schneller zur Ruhe und reichern sich lokal an. In solchen Akkumulationen findet sich eine Reihe ganz unterschiedlicher Geschiebetypen (Abb. 7-26). Unter den als Leitgeschiebe geeigneten basischen Gesteinen treten in Skeldekobbel vor allem Kinne-Dolerit, aber auch Schonen-Basanit und Schonen-Lamprophyr häufig auf.
Gesteine aus dem Oslograben sind am Strand von Skeldekobbel nicht so häufig, wie es die zahlreichen Funde SW-schwedischer Gesteine erwarten ließen. Lediglich einige Rhombenporphyre, zwei Larvikite sowie ein Oslobasalt (Abb. 14) konnten aufgelesen werden.
Leitgeschiebe aus Dalarna (Abb. 28-31) sowie Gesteine aus Småland (Abb. 32) und Östergötland treten ebenfalls eher vereinzelt auf.
Zu den Höhepunkten der Sammeltour gehört sicherlich der Fund eines großen Rödö-Wiborgit-Geschiebes. Typisch für den Rödö-Wiborgit sind neben seiner leuchend orangeroten Gesamtfärbung einzelne Alkalifeldspat-Ovoide über 2 cm, einige davon mit einem dicken Saum aus gelbgrünem Plagioklas (Abb. 37, unten im Bild), weiterhin die großen und hellen, wenig magmatisch korrodierten Quarze.
Aus einem Rapakiwi-Vorkommen könnte auch das folgende Mischgestein stammen, eine Vermengung von basischem und felsischem („saurem“) Magma (magma mingling). Die Grundmasse zeigt ein doleritisches Gefüge und ist stark alteriert (Grünfärbung!). Darüber hinaus sind als „saure“ Bestandteile größere rundliche Quarze und Partien mit rötlichem (Alkali?-)feldspat erkennbar. Denkbar ist auch, dass das Gestein ein basischer Xenolith aus einem sauren Wirtgestein ist.
Ein weiteres Highlight am Strand von Skeldekobbel ist der Fund eines migmatitischen Paragneises mit Granat-Porphyroblasten bis 6,5 cm Größe. Der Gesteinstyp ähnelt den Gneisen vom Sörmland-Typ. Zu denken gibt aber die Beobachtung, dass er recht häufig zu finden ist, andere Gesteine des östlichen Mittelschwedens (z. B. Uppland-Granite) hingegen fehlen. Die Literaturrecherche ergab bisher kein weiteres mögliches Herkunftsgebiet für diese migmatitischen Granat-Cordierit-Paragneise.
Ein außergewöhnliches Gestein, einen Skarn, entdeckte Frank Rudolph. Skarne sind metasomatische Gesteine, die im Kontaktbereich von einem aufsteigenden plutonischen Körper mit einem z. B. Ca-reichen Sedimentgestein entstehen. Dabei kommt es zu einem intensiven Stoffaustausch und der Neubildung von Ca- und Fe-reichen Silikatmineralen innerhalb des Sedimentgesteins. Typisch für Skarne aus Ca-reichen Sedimentgesteinen sind Neubildungen von Ca-reichem Klinopyroxen (Diopsid als Endglied), Fe-reichem Ca-Klinopyroxen (Hedenbergit als Endglied) und Granat (gelbgrüner bis dunkelgrüner Grossular, roter Almandin).
Zum Schluss noch einige Funde von Sedimentgesteinen.
Literatur
SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 446+42 meist farb. kapitelweise num. Abb., 1 Kte. als Beil., Schwerin (cw Verlagsgruppe).
Die Gegend um Västervik im nordöstlichen Småland bietet neben landschaftlichen Reizen eine interessante geologische Geschichte. Wie im gesamten kristallinen Grundgebirge Schwedens finden sich hier sehr alte, als Besonderheit aber ganz unterschiedliche Gesteine in enger Nachbarschaft. Zum einen sind dies Metamorphite, die aus der svekofennischen Gebirgsbildung vor etwa 1,9 Ga hervorgegangen sind, zum anderen Granite und Vulkanite, die zum Ende der gebirgsbildenen Vorgänge vor etwa 1,7 Ga entstanden.
Die „kleine“ Differenz zwischen den 1,9 und 1,7 Ga alten Gesteinen entspricht in etwa der Zeitspanne, die eine „normale“ Gebirgsbildung in Anspruch nimmt, von der Faltung und Metamorphose von Gesteinen, dem Aufdringen von Granitkörpern sowie der Abtragung, ggf. auch vollständigen Einebnung des Gebirges (Wilson-Zyklus, etwa 250 Millionen Jahre). Im Västervik-Gebiet lassen sich Gesteine aus den unterschiedlichen Phasen dieser Gebirgsbildung an zahlreichen Aufschlüssen studieren.
Das Västervik-Gebiet ist zugleich die Heimat einiger Gesteinstypen, die für die Geschiebekunde als Leitgeschiebe bedeutsam sind (Abb. 2). Auf mehreren Reisen konnten eine Reihe von Anstehendproben gesammelt werden. Ihre Beschreibung findet sich in ausführlichen Einzeldarstellungen an anderer Stelle:
Dieser Exkursionsbericht vermittelt einen Einblick in die komplexe Geologie des Västervik-Gebietes. Die genannten Leitgeschiebe nehmen nur einen kleinen Teil der Fläche ein. Darüber hinaus finden sich eine Reihe weiterer interessanter und auffälliger Gesteine, die zwar nicht als Leitgeschiebe in Frage kommen, aber aufzeigen, mit welcher Gesteinsvielfalt innerhalb eines einzigen kleinen Gebietes im nordischen Grundgebirge zu rechnen ist. Alle besuchten Lokalitäten sind mit Koordinaten (WGS84DD) referenziert und ermöglichen dem geologisch Interessierten eine individuelle Tourenplanung. Einige der Aufschlüsse wurden dem Exkursionsführer von PRUß 2008 und der Arbeit von GAVELIN 1984 entnommen.
Die Landschaft in der Umgebung von Västervik ist weitgehend flach, das Küstengebiet stark geklüftet und in zahlreiche Inseln, Halbinseln und Schären gegliedert. Hier lassen sich gerundete, häufig auch in Richtung der Gletscherbewegung gekritzte Felsen beobachten (Abb. 3). Fossile Strandwälle (Abb. 4) und die heutige Schärenlandschaft (Abb. 1) sind das Ergebnis der Landhebung sowie eines gesunkenen Meeresspiegels seit dem Ende der letzten Vereisung vor etwa 10.000 Jahren.
2. Geologie des Västervik-Gebiets
Einen ersten Überblick über die verschiedenen Gesteinsformationen im Västervik-Gebiet vermittelt die Kartenskizze in Abb. 5. Im Einzelnen sind die geologischen Verhältnisse natürlich deutlich verwickelter. Eine detailierte geologische Karte (1:100.000) findet sich in GAVELIN 1984.
Die ältesten Gesteine im Västervik-Gebiet sind die Metasedimente der Västervik-Formation (hellblaue Signatur in Abb. 5). Sie entstanden während der svekofennischen Gebirgsbildung vor etwa 1,9 – 1,75 Ga und bilden die südlichsten Ausläufer einer geologischen Großprovinz, die sich vom Västervik-Gebiet aus viele hundert Kilometer bis nach Nordschweden erstreckt und große Gebiete einnimmt (sog. svekofennische Domäne).
Magmatische Gesteine, die sog. „älteren Granitoide“ (grün, rosa), grenzen im Norden und Nordosten an die Metasedimente und wurden noch während der Gebirgsbildung deformiert. Im Westen und Süden finden sich ausgedehnte Gebiete mit weitgehend undeformierten Graniten (rot) und Vulkaniten (orange), die zum Transkandinavischen Magmatitgürtel (TIB, Alter ca. 1,7 Ga) gehören und überwiegend nach Beendigung der gebirgsbildenden Vorgänge entstanden. Ein Teil der TIB-Granite sind Alkalifeldspat-Granite mit Blauquarz, wie man sie als Geschiebe aus Norddeutschland kennt („Smaland-Granite“).
Die geologische Geschichte des Västervik-Gebietes beginnt vor etwa 1,9 Ga mit der Ablagerung von sandigen bis tonig-sandigen Sedimenten, dem Abtragungsmaterial eines oder mehrerer alter Gebirge. Der Transport erfolgte durch Flüsse aus nördlichen Richtungen in ein flaches und von Gezeiten beeinflusstes Meeresbecken oder Deltasystem.
Während der svekofennischen Orogenese wurden die Sedimente an einer Subduktionszone mehrere Kilometer tief versenkt und einer Regionalmetamorphose unterworfen. Die Gesteinsumwandlung vollzog sich unter maximal amphibolitfaziellen Bedingungen und unter weitgehend statischen Bedingungen, d. h. ohne Verfaltung der Gesteine durch gerichteten Druck. So konnten sich primäre Sedimentstrukturen wie Schichtung und sogar Wellenrippel (Abb. 11) erhalten, wie sie heute noch in den Metasedimenten an vielen Stellen zu beobachten sind (s. die hervorragend illustrierte Arbeit von SULTAN L & PLINK-BJÖRKLUND P 2005). Sandige Sedimente wurden in Quarzite, Arkosen in Meta-Arkosen und tonhaltige Sedimente z. B. in glimmerführende Quarzite umgewandelt. Lokal kam es zur Neubildung von Mineralen wie Cordierit, Sillimanit und Andalusit.
In den Metasedimenten konnten mehrere Generationen von Zirkonen nachgewiesen werden. Zirkon ist ein besonders verwitterungsbeständiges Mineral, das geringe Mengen Uran enthält und eine Altersbestimmung über das U/Pb-Isotopenverhältnis ermöglicht. Die ältesten Zirkone (3,64 Ga) repräsentieren Relikte sehr alter Gesteine, die jüngsten weisen ein Alter von 2,12-1,87 Ga auf. Die Sedimentation der Västervik-Formation vollzog sich zwischen dem jüngstem Zirkon-Alter und der ältesten Granit-Intrusion (Loftahammar-Granitoide vor 1,859 Ga). Dieser Zeitraum vor 1,882–1,850 Milliarden Jahren umfasst also „lediglich“ 30 Millionen Jahre (Zahlen aus SULTAN et al 2005).
Annähernd zeitgleich zur Metamorphose der Sedimente begann in tieferen Krustenbereichen die Bildung von Schmelzen, die in der Folge als plutonische Körper in die höheren Stockwerke des Gebirges aufstiegen. Diese „älteren“ Loftahammar-Granitoide wurden in einer zweiten Faltungsphase deformiert. Mit ihrem Aufstieg ist eine Überprägung der Metasedimente durch Kontaktmetamorphose verbunden, bei der es zu einer „Migmatisierung“ sowie zur Fleckenbildung innerhalb der Metasedimente (Fleckengesteine) kam. Der Vorgang wiederholte sich einige Millionen Jahre später beim Aufstieg der „jüngeren“ Granitoide des Transskandinavischen Magmatitgürtels (TIB). Die Fleckengesteine des Västervik-Gebiets (Cordierit- und/oder Sillimanit-Granofelse) gingen also aus mehreren regional- und kontaktmetamorphen Episoden hervor.
Weitere mit der geologischen Geschichte des Västervik-Gebiets assoziierte Gesteinstypen, die in diesem kurzen Abriss unberücksichtigt blieben (verschiedene Generationen von Diabasen und Metabasiten bzw. Amphiboliten, Aplite, Pegmatite, Mylonite, Metavulkanite), werden bei der nachfolgenden Beschreibung von Aufschlüssen anhand von Geländebildern und Proben exemplarisch vorgestellt.
3. Metasedimente der Västervik-Formation
Nach Gavelin 1984 lassen sich die Metasedimente der Västervik-Formation in vier Gruppen einteilen: Quarzite, rote Meta-Arkosen (Quarzite mit erhöhtem Feldspat-Gehalt), graue (glimmerreiche) sowie rotgraue (glimmer- und feldspatreiche) Metasedimente. Weit verbreitet sind hellgraue und glimmerführende Quarzite (Abb. 9). Ein Teil der Quarzite im Västervik-Gebiet zeigt Sedimentstrukturen wie Schrägschichtung (Abb. 7) oder sogar Rippelmarken (Abb. 11). Im südlichen Teil des Västervik-Gebiets kommen vermehrt dunkelgraue Quarzite vor (Abb.10). Lokal finden sich grauviolette, rote, grünliche oder blaue Farbvarietäten. Vererzungen der Quarzite durch Anreicherungen von Schwermineralseifen (Fe-, Cu und Co-Vererzung) wurden bei Gladhammer seit dem 12. Jahrhundert abgebaut. Die Gruben gehören zu den ältesten in ganz Schweden (WILKE 1997: 38f).
3.1. Gneise, Migmatite, Fleckengesteine
Nur ein kleiner Teil der Sedimentgesteine wurde während der svekofennischen Orogenese verfaltet und migmatitisiert. Aufschlüsse dieser „echten Migmatite“ finden sich auf dem Campingplatz Blankaholm (Lok. 2). Sie zeigen Fließfalten, primäre sedimentäre Lagenstrukturen sind kaum erkennbar. Wahrscheinlich handelt es sich um vulkanoklastische Sedimente, die durch einen aufsteigenden Granitkörper migmatisiert wurden (PRUß 2008). Das granitische Material der Leukosome (orange) könnte die Sedimente auch ohne Teilaufschmelzung konkordant durchdrungen haben („Adergneis“, s. u.).
Während des Aufstiegs von Granitplutonen (ältere Loftahammar- und jüngere Småland-Granitoide) kam es zu einer kontaktmetamorphen Veränderung der Metasedimente und zur Bildung der sog. „Adergneise“ (veined gneiss). Streng genommen sind dies keine Gneise, sondern Granofelse, die von granitischen Leukosom-Adern lagenweise (konkordant) durchdrungen oder diskordant durchschlagen wurden (Abb. 7). Diese granitischen Schmelzen könnten direkt aus dem Granit-Magma stammen (Arterite) oder durch Aufschmelzung aus älteren Gesteinen (z. B. Metasedimenten) mobilisiert worden sein (Venite). GAVELIN 1984 nimmt an, dass es sich vorwiegend um Venite handelt (Abb. 26, 27), da im Gelände keine direkten räumlichen Beziehungen zwischen aufsteigenden Granitkörpern und der Entwicklung von Adergneisen zu beobachten sind. LOBERG 1963 verweist zudem auf die Möglichkeit der Entstehung leukokrater Partien in migmatitähnlichen Metamorphiten durch metamorphe Differentiation im festen Zustand.
Die Fleckengesteine des Västervik-Gebiets sind Metasedimente, in denen eine Neubildung von Mineralen in Gestalt von Granoblasten (Flecken) erfolgte. In älterer Literatur findet sich der Begriff „Fleckengneis“, weil sie eine den Gneisen ähnliche Lagentextur aufweisen. Diese ist in der Regel aber ein Relikt sedimentärer Schichtung und spiegelt unterschiedliche Mineralgehalte der Ausgangsgesteine wider (Abb. 29, 30). In den meisten Fällen handelt es sich bei den Fleckengesteinen ganz eindeutig um Granofelse.
Eine Fleckenbildung kann sowohl unter Bedingungen der Kontakt- als auch der Regionalmetamorphose erfolgt und von metasomatischen Vorgängen begleitet sein (LOBERG 1963). Unter geringem Druck und hohen Temperaturen (max. 650 Grad) kam es in Al- und Mg-reichen Ausgangsgesteinen lokal zur Neubildung von Mineralen wie Sillimanit, Andalusit und Cordierit in Gestalt von Flecken (Granoblasten). Während der retrograden Metamorphose wurden die neu gebildeten Minerale teilweise verändert, so dass heute nur noch Relikte vorliegen (Chloritisierung von Feldspat, Biotit, Andalusit, Cordierit). Cordierit, Andalusit und Sillimanit sind weit verbreitete metamorphe Neubildungen, Kyanit und Granat kommen in den Metasedimenten des Västervik-Gebiets praktisch nicht vor.
Unklar ist meist, ob die Form der Flecken durch vorherige, gleichzeitige oder nachfolgende Tektonik verursacht wurde. Nach GAVELIN 1984 erfolgte die Bildung von Flecken zu unterschiedlichen Zeiten und unterschiedlichen Bedingungen. Abfolgen metamorpher Zonen mit charakteristischen Mineralisationen lassen sich im Anstehenden über größere Areale nicht verfolgen. Weiterhin stehen die Vorkommen von Andalusit und Sillimanit in keiner Beziehung zu Granitkontakten, „Granitisierung“ oder Migmatisierung. Unterschiedliche Metamorphosegrade müssen vereinfacht auf variable Bedingungen wie die Aktivität wässriger Fluide, K-Metasomatose und pH-Wert zurückgeführt werden.
Die fleckenreichen Partien sind hier weitgehend undeformiert, lediglich im obersten Bildteil erkennt man zerdrückte Flecken. Beim bizarr geformten Bereich handelt es sich vermutlich um eine bereits während der Ablagerung vollzogene Veränderung der Sedimente (tidales Milleu, Verzahnung sandiger und toniger Schichten, s. SULTAN et al 2005). Die Kerne der Fleckengesteine von Casimirsborg enthalten nach RUSSELL 1969 Andalusit und Sillimanit. Im inneren Kern ist manchmal unalterierter (bläulicher) Cordierit erkennbar. Die Kerne könnten ursprünglich vollständig aus Cordierit bestanden haben.
Im Västervik-Gebiet wurden bisher zwei Geschiebe eines dunklen und biotitreichen Granofels mit orangefarbenen Alkalifeldspat-Porphyroblasten gefunden (Abb. 38). Ein Anstehendes konnte bisher nicht lokalisiert werden. Das Gestein wird an anderer Stelle näher beschrieben, weil sich mittlerweile in Norddeutschland mehrere Geschiebe dieses Typs fanden.
4. Granitoide Gesteine
Eine vereinfachte und auf Feldbeobachtungen gestützte Einteilung unterscheidet “ältere” und “jüngere” Granitoide. Neuere geochemische Untersuchungen (NOLTE et al 2011, KLEINHANNS et al 2014) ergaben ein differenziertes Bild von fünf verschiedenen Gruppen von Plutoniten. Das genetische Modell geht von einer Bildung von Granitplutonen während extensionaler Phasen der Gebirgsbildung aus. Dabei kam es zu einer Teilaufschmelzung von tief versenkten Metasedimenten durch Druckentlastung und mafic underplating. Für die magmatischen Schmelzen wird ein geringer Transportweg angenommen.
Zu den älteren Granitoiden gehören die Granite des Loftahammar-Massivs, die vor 1,86-1,84 Ga entstanden und nachfolgend in einer zweiten Faltungsphase deformiert wurden. Die Gesteine besitzen teilweise ein mylonitisches Gefüge (Abb. 39), können Xenolithe von Metasedimenten enthalten und wurden von zahlreichen jüngeren Diabasgängen durchschlagen (magma mingling mit mafischen Injektionen). Zu den älteren Granitoiden gehört auch ein Gürtel von Granodioriten, der den nördlichen und östlichen Teil der Metasedimente umgibt (s. Abb. 60-62). Eine Beschreibung des Geschiebetyps „Loftahammar-Augengneis“ findet sich hier.
Die jüngeren Granite des Transskandinavischen Magmatitgürtels („Småland-Granite“) im Süden und Westen des Västervik-Gebiets weisen makroskopisch nur geringe Anzeichen einer Deformation auf und besitzen ein Alter 1,84-1,77 Ga. Lokal finden sich fließende Übergänge von Graniten und Metasedimenten mit „Migmatiten“ oder „Adergneisen“. Manchmal ist der Kontakt auch scharf (Abb. 40). Zum Teil handelt es sich um „typische“ Småland-Granite mit viel rotem Alkalifeldspat und Blauquarz (Abb. 41, 44). Andere Granite sind eher unauffällige Gesteine, wie der Skaftet-Granit, einer heterogenen Mischung mit einem Fließgefüge aus granodioritischem und granitischem Magma (Abb. 45).
Zahlreich finden sich in den Aufschlüssen des Västervik-Gebiets Gänge und Adern aus Apliten, Pegmatiten (auch Turmalin-Pegmatite; Lok. 30, kein Foto) oder auch Blauquarz in den Metasedimenten.
Hierbei könnte es sich um ein Quarz-Plagioklas-Gestein handeln, das GAVELIN 1984 in ähnlicher Form aus einem Aufschluss in der Nähe beschreibt (500 m N der Abzweigung nach Blankaholm). Es durchdringt die Metasedimente in Form heller Adern mit gebleichter und 1-2 cm breiter Reaktionszone und kristallisierte aus Lösungen, die aus Metabasiten innerhalb der älteren Granite mobilisiert wurden (Na-Metasomatose, Anreicherung von Plagioklas). Eine Probenahme und sichere Bestimmung von Plagioklas war nicht möglich.
Am Badplats Gunnebo (Lok. 32) steht ein mittelkörniger und grauer bis rotgrauer Granit an, der Xenolithe von migmatitisierten Metasedimenten führt. Die dunklen Xenolithe weisen eine Lagentextur auf. Teilweise besitzen sie scharfe Konturen, teilweise sind sie weitgehend assimiliert. Die Fragmente könnten beim Magmenaufstieg in der Dachregion des Plutons in den viskosen Granit eingetragen und von der Schmelze nicht mehr vollständig „verdaut“ worden sein.
5. Mylonite
Minerale wie Quarz und Feldspat werden in der oberen Erdkruste bei Einwirkung von gerichtetem Druck zerbrochen und granuliert (Sprödbruch). Bei geeigneter Tiefe und entsprechend hohen Temperaturen kommt es innerhalb einer Scherzone jedoch zu einer duktilen Deformation, bei der die Gesteine feinkörnig zermahlen (Mylonit = Mahlstein) und gleichzeitig große und augenförmige Feldspat-Aggregate heranwachsen können (sog. Porphyroblasten). Ein Beispiel für einen mylonitischen Gneis mit großen Feldspat-Porphyroblasten ist der Loftahammar-Augengranit (Abb. 39), der innerhalb einer großen NW-SE streichenden Deformationszone entstand (Loftahammar-Linköping-Deformationszone, LLDZ). Die LLDZ trennt die Gesteine des TIB im Süden von den Gesteinen der svekofennischen Domäne und deformierte in der Zeit ihrer Aktivität vor 1,8-1,78 Ga Gesteine im Umkreis von 10-15 km.
Am Langsjön westlich von Ankarsrum (Lok. 33) befindet sich ein Aufschluss einer kleinen Mylonitzone, die etwas jünger ist und nicht im Zusammenhang mit der LLDZ steht. Hier lässt sich der Einfluss einer duktilen Scherzone auf die umgebenen Gesteine gut studieren. Zwei unterschiedliche Granite sind durch eine nur etwa 1,5 – 2 m breite Scherzone mit Ultramyloniten voneinander getrennt und zu beiden Seiten von einem mehrere Meter breiten Übergangsbereich begleitet.
6. Metavulkanite
Zeugen einer vulkanischen Aktivität, die den TIB-Vulkaniten vorausging, finden sich nur untergeordnet und als Relikte im südlichen Teil des Västervik-Gebiets. Durch metamorphe Überprägung ist von den Ausgangsgesteinen kaum noch etwas zu erkennen (z. B. Migmatite auf dem Campingplatz Blankaholm, Abb. 23-25).
In einem kleinen Gebiet nördlich von Ankarsrum stehen Vulkanite an, die zu den ältesten des TIB gerechnet werden (GAVELIN 1984). Neben Andesiten, Basalten und Rhyolithen finden sich hier auch leicht deformierte Pyroklastite mit Epiklasten von Västervik-Quarzit. Letztere weisen darauf hin, dass die Vulkanite in diesem Gebiet direkt auf den Gesteinen der Västervik-Formation abgelagert wurden und somit zur Basis des TIB gehören dürften.
7. Metabasite
Verschiedene Generationen von basischen Gesteinen durchziehen als Gänge oder Sills die Metasedimente und die älteren Granitoide. Auch eigenständige kleinere Massive kommen vor. Die ursprünglich basaltischen Gesteine wurden während der Metamorphose in Amphibolite umgewandelt (Metabasite).
Injektionen mafischer Gesteine kommen besonders zahlreich in den älteren Granitoiden vor. Scharfe Kontakte lassen auf ein Eindringen nach der Erstarrung schließen (Abb. 60).
Ein längerer Küstenabschnitt mit diversen Aufschlüssen bei Grimsvik (Lok. 37, Abb. 61-62) zeigt verschiedene Stadien von magma mingling zwischen älteren Granodioriten des zentralen Granodiorit-Gürtels und basischen Intrusionen (Metagabbro). Hier lässt sich beobachten, wie mafische Gesteine durch das mobile Magma zerrissen wurden, teilweise sind auch Auflösungsvorgänge erkennbar.
8. Verzeichnis der Lokalitäten
1 – Hafen von Östra Skälö – zahlreiche Aufschlüsse im Hafengebiet und an der Fahrstrecke; Västervik-Fleckengestein: orangefarbene und graue Variante; Quarzader im Metasediment; Metabasite. 57.58986, 16.63201
2 – Campingplatz Blankaholm – Migmatite aus Metavulkaniten der Västervik-Formation; gekritzte Felsen. 57.588476, 16.516876.
3 – Fossiler Strandwall an der Straße nach Händelöp, SSE Västervik – Nahgeschiebe (Quarzite, Fleckenquarzite, Feldspat-porphyroblastischer Glimmerquarzit). 57.718765, 16.671451 (Parkplatz).
4 – Nahgeschiebe als Einfassung auf dem Parkplatz des ICA-Stormarknat Västervik.
57.767546, 16.595644
5 – Alter Wasserturm Västervik, Repslagaregatan 5 – Großflächiger Aufschluss mit Quarzit in div. Farbvarianten: hell, rötlich bis dunkelgrau; keine Fleckenbildung. Größter Teil der Quarzite ist mit Flechten bewachsen. 57.753211, 16.647462.
6 – Frischer Straßenaufschluß an der 135, kurz hinter Gamleby- hellgrauer und glimmerarmer Västervik-Quarzit; Västervik-Fleckengestein; graue Quarzite. 57.91547, 16.36795.
7 – Aufschluss an der Piste von Blankaholm nach Skjorted; Dunkelgrauer Västervik-Quarzit m. granitischen Adern; Felsen an einem Bootsanleger, kurz vor Skjorted.
57.623770, 16.511087.
8 – Wellenrippel in dunkelgrauem Quarzit, Straßenaufschluss an der E4; 57.86080, 16.42724 (Parkplatz); vom Parkplatz 300 m nach N gehen.
9 – Straßenaufschluss an der 135 – rotfleckiger Quarzit, div. Västervik-Quarzite. 57.91458, 16.30901 (Parkplatz); vom Parkplatz Richtung Westen gehen.
10 – Straßenaufschluss an der E22, Abfahrt Segelrum – helle Quarzite mit sedimentärer Reliktschichtung; Fleckenbildung. 57.850582, 16.432278.
11 – Großflächige Baustelle auf Piperskärr, temporärer Aufschluss – heller und roter Quarzit; in den Quarzit eingeschalteter Amphibolitkörper (ca. 20x20m). 57.76751, 16.66553.
16 – Björnhuvud, SW Västrum – migmatitischer Gneis; wenige Aufschlüsse in diesem Gebiet. 57.626283, 16.528614.
17 – Straßenaufschluss an der E4, Abfahrt Nytorp – graue Quarzite, sedimentäre Reliktstrukturen. 57.86056, 16.42667.
18 – Pepparängsvägen S Västervik, Halde aus temporären Strassenbaumaßnahmen – Västervik-Fleckengestein, blaue Quarzite. 57.722189, 16.673201 (Fundstelle erloschen).
19 – Straßenaufschluss an der E4, Abfahrt Segelrum – Västervik-Quarzit. 57.850582, 16.432278.
20 – Felsen an der Küste bei Casimirsborg (Privatgelände!) – Västervik-Fleckengestein. 57.874100, 16.435327.
21 – Großflächige Aufschlüsse am Wegesrand und im Gebiet des Nordufer des Rummen, NW Gamleby – rotes Västervik-Fleckengestein. Etwa 57.937173, 16.285627.
22 – Schäre Grönö bei Västervik – rotes Västervik-Fleckengestein. Etwa 57.715250, 16.720567.
23 – Schäre Braviken; Bratviken – rote Metasedimente. Etwa 57.721625, 16.706725, Gebiet größtenteils Privatbesitz.
24 – Straßenaufschluss an der 213, ca. 1,5 km westlich von Loftahammar – Loftahammar-Augengneis. 57.90857, 16.65788.
25 – Straßenaufschluss am Skälövägen – Kontakt zwischen Västervik-Quarzit und jüngerem Småland-Granit“. 57.60534, 16.60882; Parken: Rävrompan.
26 – Straßenaufschluss an der 135 – roter TIB-Augengranit mit Blauquarz. 57.91006, 16.18458.
29 – Aufschluss in der Nähe der Kirche in Västrum – Skaftet-Granit, jüngerer Granit („Småland-Granit“). Mingling von zwei Granit-Sorten. Parken an der Kirche in Västrum, ca. 57.658305, 16.574750.
30 – Strassenanschnitt an der Hauptstrasse ca. 1 km S von Gunnebo – Pegmatit mit intensivem Blauquarz, Kleiner Aufschluss (30x30cm). Etwa 57.709298, 16.541656.
31 – Frische Straßenaufschlüsse auf dem Parkplatz an der Abfahrt Blankaholm von der E 22 – hellgraue Quarzite; Quarzite mit schwarzen Flecken (deformiert); Quarz-Feldspat-Adern im Quarzit (Plagioklas?). 57.588424, 16.486632.
32 – Badplats Gunnebo – metasedimentäre Xenolithe im Granit; Aufschluss stark verwachsen. 57.716333, 16.563139.
33 – Mylonitzone am Langsjön – duktile Scherzone mit Myloniten und Småland-Graniten am Langsjön, westlich von Ankarsrum. 57.696139, 16.286194. Parken am kleinen Campingplatz auf der anderen Strassenseite.
34 – Waldfläche nördlich Ankarsrum, 1 km E von Stormandebo (Wegweiser: Stormbo) – Vulkanite des TIB mit Quarzit-Epiklasten. 57.738264, 16.351129.
35 – Fahrweg vom Parkplatz Tjust Motell Richtung Falkhagen, Felsen im Wald – Amphibolit; Fleckenquarzit. 57.86883, 16.41978.
36 – Aufschlüsse hinter dem Hafen von Händelöp – mafische Adern im Granodiorit. Etwa 57.674075, 16.748323; Parkplatz: 57.675382,16.744969.
37 – Grimsvik; einzelne Aufschlüsse an der Küste auf 2,5- 3 km Länge – magma mixing von Granodiorit und Gabbro. Parkmöglichkeit: 57.690645, 16.700778; durch den Wald zur Küste (57.692793, 16.703750).
38 – Piperskärr, nordwestlich von Västervik, Ufer des Gamlebyviken – Geschiebefund eines Feldspat-porphyroblastischen Glimmerquarzits. 57.83064, 16.54737.
9. Literatur
BERGMAN, STEPHENS, ANDERSSON, KATHOL & BERGMAN 2012 Sveriges berggrund, skala 1:1 miljon. Sveriges geologiska undersökning K 423. https://apps.sgu.se/geolagret/
GAVELIN S 1983 The Västervik Area in South-eastern Sweden – SGU Ser. Ba No. 32, 172 S, Uppsala.
KLEINHANNS I C, WHITEHOUSE M J , NOLTE N, BAEROC W, WILSKYC F, HANSENC B T, SCHOENBERG R 2014 Mode and timing of granitoid magmatism in the Västervik area (SE Sweden, Baltic Shield): Sr–Nd isotope and SIMS U–Pb age constraints – Lithos 212–215 (2015) 321–337; Elsevier.
LOBERG B 1963 The Formation of a Flecky Gneiss and Similar Phenomena in Relation to the Migmatite and Vein Gneiss Problem, Geologiska Föreningen i Stockholm Förhandlingar, 85:1, 3-109, DOI: 10.1080/11035896309448874.
NOLTE N 2012 Paläoproterozoisches Krustenwachstum (2.0 – 1.8 Ga) am Beispiel der Västervik-Region in SE-Schweden und dem Kamanjab Inlier in NW-Namibia – Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universität Göttingen; 403 S., Göttingen 2012.
NOLTE N, KLEINHANNS IC, BAERO W & HANSEN BT 2011 Petrography and whole-rock geochemical characteristics of Västervik granitoids to syenitoids, southeast Sweden: constraints on petrogenesis and tectonic setting at the southern margin of the Svecofennian domain, GFF, 133:3-4, 173-196.
PRUß V 2008 The Geology of the Västervik Area in SE-Sweden – A Geological Field Guide – 93 S., Verlag Dr. Müller, Saarbrücken.
RUSSELL V 1969 Porphyroblastic differentiation in fleck gneiss from Västervik, Sweden. GFF Vol. 91/2, Nr. 637, S. 217 – 282.
SULTAN L & PLINK-BJÖRKLUND P 2005 Depositional environments at a Palaeoproterozoic continental margin, Västervik Basin, SE Sweden – Precambrian Research 145 (2006) 243–271, Elsevier.
SULTAN L, CLAESSON S & PLINK-BJÖRKLUND P 2005 Proterozoic and Archaean ages of detrital zircon from the Palaeoproterozoic Västervik Basin, SE Sweden: Implications for provenance and timing of deposition, GFF, 127:1, 17-24, DOI:10.1080/11035890501271017.
TROPPENZ U-M, VINX R & SCHMÄLZLE D 2016 Bemerkenswerte Sedimentstrukturen in der 1,88-1,85 Milliarden Jahre alten Västervik-Formation, Schweden – Mitteilungen der Naturforschenden Gesellschaft Mecklenburg, 16. Jg. (2016), H. 1: 3-9, 9 Abb., Ludwigslust.
Västervik Berggrundskarta 1:250 000, Sveriges geologiska undersökning (SGU), 2009.
WILKE R 1997 Die Mineralien und Fundstellen von Schweden – 200 S., 16 Farb-Taf., München (Christian Weise).
Fleckengestein ist eine
allgemeine Bezeichnung für feinkörnige Metamorphite mit einer Fleckentextur. Die
runden bis linsenförmigen und meist ebenfalls feinkörnigen Flecken unterscheiden
sich in Farbe und Mineralbestand von der Matrix (Grundmasse). Solche kleinkörnigen
lokalen Konzentrationen von Mineralen, die während der Gesteinsumwandlung neu
gebildet wurden, nennt man Granoblasten. Fleckentexturen können auch in
kleinkörnigen Plutoniten auftreten („Fleckengranite“). Eine grobe
Differenzierung von Fleckengesteinen lässt sich anhand der texturellen Merkmale
der Matrix vornehmen:
Fleckengneis (flecky gneiss): Metamorphite mit einem Gneisgefüge und meist ovalen bis länglichen Flecken (Abb. 1 und 3);
Flecken-Granofels: Metamorphite mit richtungslosem Mineralgefüge und runden bis ovalen Flecken (Abb. 2).
Flecken-Glimmerschiefer: überwiegend aus Glimmer bestehendes Gestein mit dunklen Flecken (Cordierit, Andalusit), Abb. 4.
Fleckengranit (spotted granite): kleinkörniger Granit mit regellos-gleichkörniger Matrix und einer Fleckentextur (Abb. 5); makroskopisch nicht immer sicher von metamorphen Granofelsen unterscheidbar. Die Flecken enthalten häufig Biotit oder Titanit.
Zur genaueren Bezeichnung der Metamorphite können die Texturmerkmale mit dem metamorphen Mineralbestand kombiniert werden, z. B. Cordierit-Granofels (Abb. 2) oder sillimanit-granoblastischer Gneis (Abb. 3).
Metamorphite mit einer Fleckentextur gehen vor allem aus Al-reichen Sedimentiten hervor (seltener auch aus Vulkaniten oder basischen Gesteinen). In Sedimentiten wird unter geeigneten Bedingungen die Bildung von Sillimanit, Andalusit oder Cordierit begünstigt. Die Flecken entstehen unter statischen Metamorphose-Bedingungen, das heißt durch Einwirkung von hohen Temperaturen, ohne maßgebliche Beteiligung von gerichtetem Druck. Häufig dürfte es sich dabei um kontaktmetamorphe Vorgänge im Rahmen einer Gebirgsbildung handeln, bei denen das Nebengestein (z. B. Gneise, Granofelse, Migmatite) durch einen aufsteigenden Pluton verändert wird. Relativ undeformierte Flecken (Granoblasten) in deformierten Gesteinen (z. B. Gneise) müssen also nach der tektonischen Deformation und der eigentlichen Gebirgsbildung entstanden sein. Kommt erneut mäßiger und gerichteter Druck hinzu, erhalten auch die Flecken eine elliptische oder augenförmige Gestalt. Permanenter gerichteter Druck zerstört die Fleckentextur.
Der Mechanismus der Fleckenbildung in plutonischen Gesteinen („Fleckengranite“) ist nicht vollständig geklärt. Wahrscheinlich handelt es sich um Schmelzen, die in einer Spätphase der Bildung von Granitplutonen entstehen, da die Flecken häufig Titanit als typisch spätmagmatische Ausscheidung enthalten. Fleckengranite sind aus dem Stockholm-Gebiet („Stockholm-Fleckengranit“) und aus Blekinge bekannt. Der Gesteinstyp wird in einem separaten Artikel besprochen.
Das dunkle und kleinkörnige Fleckengestein besteht aus einer Quarz-Feldspat-Biotit-Matrix und enthält helle Flecken aus Quarz und Feldspat (und sehr wenig Biotit). Wahrscheinlich sind noch weitere Minerale enthalten, von Hand aber nicht bestimmbar. Das Gestein besitzt eine Gneistextur, erkennbar an der Einregelung der Glimmerplättchen in der Matrix (Fleckengneis).
Bei der Untersuchung von Fleckengestein-Geschieben mit Lupe oder Bino wird man sich aufgrund der Feinkörnigkeit der Gesteine in vielen Fällen mit einer unvollständigen Mineralbestimmung begnügen müssen. Ist die Grundmasse quarzitisch zusammengesetzt oder enthält sie auch Feldspat in nennenswerter Menge? Wenn ja, welchen? Dunkle Flecken könnten Cordierit sein, der durch retrograd gebildeten Glimmer pigmentiert ist. Auch granoblastischer Andalusit kann in Form dunkler Flecken auftreten. Cordierit kann durch Alteration in grünlich-graue Folgeprodukte (Serizit, Chlorit) umgewandelt sein. Weiße Flecken mit einem feinfaserigen Interngefüge deuten auf Sillimanit hin. In anderen Fällen scheinen die weißen Flecken nur aus einem Quarz-Feldspat-Gemenge zu bestehen. Flecken können einen einfachen oder mehrfach zonaren Aufbau besitzen. Besteht der rote Kern aus Titanit? Genauere Aussagen zum Mineralbestand sind meist nur durch eine dünnschliffmikroskopische Untersuchung möglich.
2. Funde aus Schweden
Ausgehend von der Frage, ob es Doppelgänger der Västervik-Fleckengesteine in anderen Regionen gibt, konnten im Laufe mehrerer Exkursionen nach Schweden Fleckengesteine an zahlreichen Lokalitäten gefunden werden, als Geschiebe, Nahgeschiebe oder anstehend. Fast alle Fundorte liegen innerhalb des svekofennischen Grundgebirges. Insgesamt erstreckt sich das untersuchte Gebiet aber nur über einen kleinen Teil des südlichen Segments der Svekofenniden. Weiter nördlich sowie in anderen Regionen ist mit weiteren Vorkommen zu rechnen, zumal Geschiebefunde aus Norddeutschland eine größere petrographische Diversität aufweisen als die hier gezeigten Varianten (siehe Teil 2).
Als Leitgeschiebe eignen
sich nach derzeitigem Kenntnisstand nur einige Flecken-Granofelse aus dem
Västervik-Gebiet (Abb. 2). Sie werden an anderer Stelle ausführlich besprochen
und mit ähnlichen Fleckengesteinen aus anderen Gebieten verglichen:
– Västervik-Cordierit-Granofels (Västervik-Fleckengestein). Undeformierte und feinkörnige Varianten sind als Leitgeschiebe verwendbar. Ähnliche Fleckengesteine kommen in Östergötland (Kolmården, Linköping) und im westlichen Småland vor (Almesåkra-Formation).
– Västervik-Fleckenquarzit (ehemals „Stockholm-Fleckenquarzit“). Undeformierte und glimmerführende Quarzite bis Glimmerquarzite mit kleinen Sillimanit-Granoblasten finden sich anstehend sowie in großer Menge und Vielfalt als Nahgeschiebe im Västervik-Gebiet.
Die Einzigartigkeit und Unverwechselbarkeit der Västervik-Fleckengesteine erklärt sich aus ihren besonderen Bildungsbedingungen, einer weitgehend statischen Regionalmetamorphose. Unter vergleichbaren Bedingungen könnten auch Fleckengesteine in anderen Regionen entstanden sein, allerdings sind bisher keine größeren und lokal begrenzten Vorkommen bekannt. Abgesehen von den Västervik-Gesteinen dürften Fleckengesteine prinzipiell nicht als Leitgeschiebe geeignet sein, weil Fleckenbildung in metamorphen Gesteinskomplexen weit verbreitet ist und eine Vielzahl kleiner und weit verstreuter Vorkommen existiert. Zudem unterliegen die Gesteine einer hohen petrographischen Variabilität, wie die nächsten Bilder zeigen.
2.1. Kolmården
Im Gebiet von Kolmården in Östergötland, etwa 100 km nördlich von Västervik, fanden sich Fleckengesteine in beispielloser Menge und Variabilität als Geschiebe. In den meisten Fällen dürfte es sich um Nahgeschiebe handeln, da einige Gesteinstypen in der näheren Umgebung auch anstehend vorkommen. Die Funde stammen vom Geröllstrand am Ufer des Braviken am Campingplatz Kolmården (Lok. 2, Abb. 7-19).
Rote Fleckengesteine: Sehr häufig finden sich die sog. Gneise vom Marmorbruket-Typ. Die grauen Gneise enthalten gröber kristallisierte fleckige Partien aus rotem Feldspat und Quarz sowie einen dunklen Kern. Der Gesteinstyp ähnelt teilweise den Fleckengesteinen aus dem Västervik-Gebiet. Weitere Bilder sowie Anstehendproben siehe Abschnitt 3.2. im Artikel zum Västervik-Fleckengestein.
Auch graue Fleckengesteine kommen am Geröllstrand in Kolmården in großer Menge vor. Gefüge und Textur sind variabel, kaum ein Fund gleicht dem anderen. Zum einen handelt es sich um glimmerreiche Fleckengneise (Abb. 13-19; siehe auch Abb. 3) mit einer kleinkörnigen Matrix aus Quarz, Feldspat und Glimmer. Andere Fleckengesteine lassen keinen Feldspat in der Matrix erkennen und scheinen eine quarzitische Zusammensetzung zu besitzen (Abb. 10-12). Die Länge der Flecken beträgt wenige Millimeter bis 1 cm, im Ausnahmefall bis 5 cm (Abb. 18). Sie zeigen eine augen- bis linsenförmige oder schmale und längliche Gestalt, je nach Anschnitt der Flecken zur Foliationsrichtung. In manchen Flecken ist fibroblastischer Sillimanit erkennbar.
Ein vergleichbarer Gesteinstyp wird in Hesemann 1975 und in ZANDSTRA 1988 als feinkörnige Variante des „Stockholm-Fleckengranits“ angeführt. Offensichtlich stammt er aber aus zahlreichen Kleinvorkommen, die in Södermanland ein größeres Gebiet einnehmen. Im Stockholm-Gebiet wurden Geschiebe dieses Typs nur vereinzelt gefunden.
Anstehendproben aus dem Gebiet von Kolmården: Das Kartenblatt Katrineholm SO verzeichnet in den Metasedimenten der weiteren Umgebung von Kolmården lokale Anreicherungen von Sillimanit, Cordierit und Andalusit sowie Fleckentexturen (SGU 1960, Beschreibung Wikström 1979). Zwei Anstehendproben von roten Fleckengneisen werden im Artikel zum Västervik-Fleckengestein gezeigt (Abb. 31, 32 sowie 38). Im Dorf Snörom (Lokalität 3) fand sich ein grauer Fleckengneis in einem temporären Aufschluss (Baustelle).
Das Kartenblatt Katrineholm SO zeigt ein weiteres Vorkommen mit fleckigen Metasedimenten in unmittelbarer Nähe. Der Aufschluss konnte nicht lokalisiert werden, aber in Snörom fanden sich mehrere lose Gesteinsbrocken eines Fleckengneises, der vom anstehenden Typ abweicht und aus unmittelbarer Nähe stammen dürfte.
2.2. Sörmland
Bedeutend weniger Fleckengestein-Geschiebe, insgesamt etwa ein Dutzend, fanden sich in einer Kiesgrube bei Nyköping, etwa 20 km östlich von Kolmården (Lok. 4). Überwiegend handelte es sich um graue, kleinkörnige und biotitreiche Fleckengesteine mit weißen Flecken. Die Grundmasse aus Quarz, Feldspat und Biotit besitzt ein weitgehend regelloses Gefüge, die länglichen Flecken zeigen eine gerichtete Textur (Abb. 26). Vereinzelt kamen auch dunkle und feinkörnige Gneise mit Sillimanit-Flecken vor (Abb. 27). Etwa 30 km weiter nördlich, in einer Kiesgrube bei Flen, wurden überhaupt keine Fleckengestein-Geschiebe gefunden.
In der Kiesgrube fand sich auch ein kleinkörniger Granofels (Abb. 28) mit einer Quarz-Feldspat-Biotit-Matrix, der zahlreiche gelbbraune Granat-Granoblasten enthält, die von einem schmalen hellen Plagioklas-Saum umgeben sind. Dies ist der erste (und einzige) Fund eines granathaltigen Metasediments in diesem Gebiet. Weder im Västervik-Gebiet noch in der Umgebung von Kolmården kommt der Gesteinstyp vor.
Auch das nächste Fleckengestein-Geschiebe ist ein Einzelfund und stammt vom Campingplatz in Hölö (Lok. 5), etwa 45 km SW von Stockholm. Auch an weiter östlich gelegenen Lokalitäten sowie südlich von Stockholm fanden sich entweder nur einzelne oder gar keine Geschiebe von Fleckengesteinen: 1. Kiesgrube bei Järna, unmittelbar westlich von Stockholm (Lok. 6, 1 Fleckengranit); 2. Skansholmen, südlich von Stockholm (Lok. 7, 1 kleinkörniges Fleckengestein, vergleichbar mit dem Typ in Abb. 26); 3. Kiesgruben auf Nynäshamn, südlich von Stockholm (keine Geschiebe von Fleckengesteinen, pers. Mitteilung M. Bräunlich).
Die Flecken besitzen eine helle Saumzone und weiße oder grüne Kerne. Weiße Kerne enthalten fibroblastischen Sillimanit, grüne Kerne wahrscheinlich Chlorit als Alterationsprodukt von Cordierit. Die Vermutung stützt sich auf den Befund einer Dünnschliffuntersuchung eines ähnlichen Fleckengestein-Geschiebes (s. Teil 2).
2.3. Almesåkra-Formation
Im westlichen Småland, unmittelbar südlich der Almesåkra-Formation, finden sich vermehrt Geschiebe von Fleckengesteinen. Die Metasedimente zeigen teilweise noch Relikte des sedimentären Mineralgefüges (runde Quarzkörner). Mit einiger Wahrscheinlichkeit sind sie aus tonhaltigen Sedimenten hervorgegangen, die beim Aufstieg des Almesåkra-Diabas kontaktmetamorph verändert wurden. Anstehendproben liegen bisher nicht vor. Einige dieser Metamorphite ähneln dem Västervik-Fleckengestein und werden im betreffenden Artikel besprochen (Abschnitt 3.1.).
2.4. Linköping
In einer Kiesgrube bei Linköping (Lok. 9) fand sich ein einzelnes rotes Fleckengestein (s. Västervik-Fleckengestein, Abschnitt 3.3, Abb. 40) sowie ein grünliches Fleckengestein. Nördlich von Linköping ist demnach mit weiteren, bisher nicht näher untersuchten Vorkommen von Fleckengesteinen zu rechnen.
3. Verzeichnis der Lokalitäten
Lokalität 1: Geschiebe Västervik-Fleckengesteine; Böschung am Fahrradweg in Västervik Jenny, nahe der Autorennbahn (Motorbana); 57.768130, 16.585394. Lokalität 2: Geschiebe Fleckengesteine; Rollsteinstrand am Campingplatz Kolmården; 58.65718, 16.40712. Lokalität 3: Fleckengneis, anstehend; Snörom bei Kolmården, temporärer Aufschluss; 58.66476, 16.41711. Lokalität 4: Geschiebe Fleckengesteine; aktive Kiesgrube NW von Nyköping; 58.774022, 16.819400. Lokalität 5: Geschiebe Fleckengestein; Campingplatz Hölö/Norrvra; 59.00824, 17.53729. Lokalität 6: Geschiebe Fleckengranit; aktive Kiesgrube zwischen Järna und Nykvarn; 59.12040, 17.46764. Lokalität 7: Geschiebe Fleckengestein; Geröllstrand am Campingplatz Skansholmen/S Sandviken; 59.04647, 17.69313. Lokalität 8: Geschiebe Fleckengesteine; Kiesgrube bei Komstad, 3 km westlich Sävsjö; 57.391392, 14.616904. Lokalität 9: Geschiebe Fleckengesteine; Kiesgrube südlich Linköping; 58.329789, 15.631448.
4. Literatur
Gavelin S 1983 The Västervik Area in South-eastern Sweden – SGU Ser. Ba No. 32, 172 S, Uppsala.
Wikström A 1979 Beskrivning till berggrundskartan 1:50000 – Katrineholm SO – Sveriges Geologiska Undersökning (Af) 123: 101 S., 44 Abb., 14 Tab., 3 Ktn. in 1 Mappe, Stockholm.
Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).
Die folgenden Geschiebefunde aus Norddeutschland illustrieren die petrographische Vielfalt von Fleckengesteinen. Kaum ein Fund gleicht dem nächsten, kaum ein Geschiebe lässt sich einem näheren Herkunftsgebiet zuordnen. Mögen in einigen Fällen auch Ähnlichkeiten mit den Funden aus Schweden bestehen (siehe 1. Teil), ist der Umkehrschluss nicht zulässig, dass der betreffende Gesteinstyp nur an einer einzigen Lokalität vorkommt. – Das erste Geschiebe stammt aus einer Kiesgrube in Brandenburg (E. Fuchs leg.) und wurde freundlicherweise von Herrn U. Maerz dünnschliffmikroskopisch untersucht.
Die Dünnschliffuntersuchung ergab, dass die Matrix aus xenomorphen, teilweise polygonalen Kristallen von Quarz, Kalifeldspat (überwiegend Mikroklin) und Plagioklas sowie idiomorphen Biotit-Kristallen besteht. Die äußere Randzone der Flecken ist deutlich grobkörniger als die Matrix und enthält ebenfalls Quarz, Kalifeldspat und Plagioklas. Die helle Zwischenzone enthält zusätzlich Serizit, die dunklen Kerne Serizit und Chlorit. Diese Minerale dürften Alterationsprodukte von Cordierit sein, der durch wässrige Fluide instabil wurde. Unalterierter Cordierit konnte nicht beobachtet werden. In den Kernen wurde weiterhin feinnadeliger Sillimanit gefunden. Die grünen Umwandlungsprodukte von Cordierit finden sich auch außerhalb der Blasten und umschließen die Körner der Matrix.
Das Zentrum des Kerns bilden Büschel von wirrstrahlig angeordneten, mit Serizit verwachsenen Sillimanitnadeln. Rechts und links schließen sich Bereiche an, die von überwiegend feinst verwachsenem Serizit ausgefüllt werden. Der Randbereich mit den größeren Kristallen aus Quarz und Feldspat setzt sich gut von der feiner körnigen Matrix ab.
Die Flecken besitzen eine dunkelgrüne äußere Randzone, eine helle Zwischenzone und grüne oder weiße Kerne, teilweise aus feinfaserigem Sillimanit. Bei den grünen Mineralen könnte es sich ebenfalls um Chlorit als Alterationsprodukt von Cordierit handeln.
Bemerkenswert ist ein mehrphasiger Aufbau der Flecken: 1. Kernbereich mit einem einzelnen Biotit- und/oder hellem Feldspat-Korn, 2. quarzreicher Saum, umgeben von 3. gelben Mineralen mit stumpfem Glanz (angewitterter Feldspat?). 4. Heller und stärker ausgelängter Bereich aus Quarz und Feldspat, schließlich 5. eine biotitreichere Hülle, ohne klare Abgrenzung zur Matrix aus Quarz, Feldspat und Biotit (+Amphibol?).
Als Geschiebe weniger verbreitet sind Glimmerschiefer oder glimmerreiche Metasedimente mit einer Fleckentextur (Flecken- oder Knoten-Glimmerschiefer, Abb. 24-26). In den meisten Fällen dürfte es sich um Kontaktmetamorphite mit Andalusit oder Cordierit als Mineralneubildung handeln.
Ein seltener Geschiebefund
sind Vulkanite mit einer Fleckentextur. Die Neubildung von Mineralen könnte
bevorzugt von sekundär entstandenen Strukturen mit abweichender chemischer Zusammensetzung
ausgegangen sein (z. B. Lithophysen).
Mehrere Reisen nach Schweden lieferten nähere Erkenntnisse über das Västervik-Fleckengestein aus dem nordöstlichen Småland. So konnten im Västervik-Gebiet zahlreiche Anstehendproben gesammelt werden. Es zeigte sich, dass ganz ähnliche Gesteine auch an anderen Stellen vorkommen (Ålmeskra-Formation und Södermanland). Zur Bestimmung des Västervik-Fleckengesteins reicht keinesfalls ein schneller Blick aus – rotes Gestein mit schwarzen Flecken.
Als Leitgeschiebe geeignet sind Varianten, die eine feinkörnige und graue bis bräunlich-graue Grundmasse besitzen. Darin finden sich runde bis ovale und dunkle Flecken, die von orangeroten Säumen umgeben sind. Die Flecken sind 1-2 cm groß, die Breite der Säume ist variabel. Entscheidend ist, dass das Gestein bis auf die ovale Form der Flecken keiner durchgreifenden tektonischen Deformation unterlag oder etwa ein Gneisgefüge aufweist. Eine ausführliche Beschreibung des Västervik-Fleckengesteins und zahlreiche Proben aus dem Anstehenden sowie eine Darstellung der bisher bekannten Vorkommen ähnlicher Fleckengesteine findet sich auf kristallin.de.