Schlagwort-Archive: Oslograben

Rhombenporphyr

Der Rhombenporphyr ist das bekannteste Leitgeschiebe aus dem Oslogebiet und für jedermann anhand der charakteristischen rhombenförmigen Feldspat-Einsprenglinge leicht erkennbar. Die Farbe der feinkörnigen bis dichten Grundmasse sowie Anzahl und Größe der Einsprenglinge variieren in weiten Grenzen (Abb. 2).

Abb. 1: Rhombenporphyr, Aufnahme unter Wasser. Geschiebe von Hanstholm (Dänemark), leg. T. Brückner.
Abb. 2: Rhombenporphyr-Nahgeschiebe von Slagen Tangen (Norwegen); Foto: D. Pittermann. Bildbreite ca. 40 cm.
  1. Vorkommen
  2. Beschreibung
  3. Verbreitung der Rhombenporphyr-Geschiebe
  4. Funde aus Berlin und Brandenburg
  5. Literatur

1. Vorkommen

Das Heimatgebiet der Rhombenporphyr-Geschiebe liegt im Oslograben in Süd-Norwegen. Vor etwa 280 Millionen Jahren stiegen entlang einer langgestreckten tektonischen Dehnungszone (Grabenbruch) magmatische Schmelzen auf. Während einer Phase intensiver vulkanischer Aktivität entstanden zahlreiche und unterschiedlich ausgebildete Lavadecken von Rhombenporphyren. Die Vorkommen setzen sich in südwestlicher Richtung am Boden von Oslofjord und Skargerrak fort. Im Zuge des Magmatismus im Oslograben kam es zur Bildung weiterer intrusiver und effusiver Gesteine, von denen einige aufgrund ihrer besonderen Entstehungsgeschichte sowie einzigartiger petrographischer Merkmale als Leitgeschiebe geeignet sind, u. a. Larvikit, Tönsbergit, Ekerit, Oslo-Basalt, Foyait und Nordmarkit.

Mit dem Aufdringen der Rhombenporphyr-Magmen ist die Entstehung eines Gangsystems aus intrusiven Rhombenporphyren verbunden, das entlang der Küste von Bohuslän in West-Schweden verläuft (KUMMEROV 1954, JACOBI 1997). Dieses Gebiet kommt ebenfalls als Lieferant von Rhombenporphyr-Geschieben in Frage, allerdings ist die Ausdehnung dieser Gänge vergleichsweise gering.

QUENSEL 1918 beschreibt ein kleines Vorkommen von (tektonisch deformierten) Rhombenporphyren aus dem Kebnekaise-Gebiet in Lappland. Ob aus diesem sehr weit nördlich gelegenen Gebiet Rhombenporphyr-Geschiebe nach Norddeutschland gelangten (und von den Rhombenporphyren des Oslo-Gebiets unterscheidbar sind), ist zweifelhaft.

Abb. 3: Rhombenporphyr, polierte Schnittfläche. Geschiebe von Hohenfelde, östlich von Schönberg, Schleswig-Holstein.
Abb. 4: Nahaufnahme. Neben rhombenförmigen Anschnitten von Feldspat-Einsprenglingen sind zwei mit Sekundärmineralen (u. a. Calcit und Epidot) verfüllte Blasenhohlräume erkennbar.

2. Beschreibung

Entscheidendes Erkennungsmerkmal der Rhombenporphyre sind die länglichen und manchmal spitz zulaufenden rauten- oder bootsförmigen Anschnitte von Feldspat-Einsprenglingen. Es handelt sich um Mischkristalle von Na-K-Ca-Feldspat, sog. ternären Feldspat, z. B. Anorthoklas (Albit+Orthoklas). Ihre Bildung ist an sehr heiße Magmen gebunden, in denen eine Entmischung der Feldspatkomponenten (Plagioklas und Alkalifeldspat) nicht oder nur unvollständig erfolgt. Diese speziellen Feldspäte sind ein charakteristischer Bestandteil der Vulkanite (und einiger Plutonite) des Oslograbens und von anderen Lokalitäten weitgehend unbekannt (s. u.). Petrographisch handelt es sich beim Rhombenporphyr um Latite, also SiO2-arme Vulkanite mit jeweils 35-65% Alkalifeldspat und Plagioklas. Latite sind das vulkanische Äquivalent der Monzonite.

Die Feldspat-Einsprenglinge weisen gelbliche, bräunliche oder graue Farben auf. Seltener sind blassgrüne, rote oder leuchtend orangefarbene Tönungen. Ihre Länge beträgt zwischen 5-30 mm. Die Feldspäte sind heller (selten dunkler) als die Grundmasse, können aber dunklere Kerne oder andersfarbige dünne Säume besitzen. Die Einsprenglingsdichte ist variabel. Nach OFTEDAHL 1967 lassen sich ein einsprenglingsreicher („klassischer“) Typ mit Feldspäten bis 2,5 cm Länge und ein einsprenglingsarmer Typ mit wenigen und kleinen Einsprenglingen bis 1,8 cm unterscheiden.

Als Folge von Entmischungsvorgängen ist manchmal eine unregelmäßig netz- oder tropfenförmige und wellige „Zeichnung“ in den Feldspäten erkennbar (Abb. 12, 27), die sich von der perthitischen Entmischung der Alkalifeldspäte und der polysynthetischen Verzwilligung der Plagioklase unterscheidet. Die Feldspäte neigen zur Bildung von Zwillingen, Mischkristalle aus mehreren Feldspat-Rhomben sind häufig. Durch Adhäsionskräfte in der Schmelze können die Feldspäte zu Kristallhaufen vereinigt sein (glomerophyrisches Gefüge, Abb. 28).

Neben rhombenförmigen können auch nahezu rechteckige Feldspat-Einsprenglinge auftreten. Eine seltene Variante ist der Rektangelporphyr mit ausschließlich rechteckigen Feldspat-Einsprenglingen und einer sehr feinkörnigen Grundmasse. Dieser Typ wird gelegentlich mit Diabasen verwechselt. Basaltische Gesteine mit rechteckigen Plagioklas-Einsprenglingen (=Diabase) besitzen häufig eine körnige Grundmasse sowie ein ophitisches Gefüge (kleine Plagioklasleisten in der Grundmasse). Die größeren Plagioklase zeigen in der Regel die typische polysynthetische Verzwilligung.

Abb. 5: Rotbrauner Rhombenporphyr; Kiesgrube Kreuzfeld, Aufnahme unter Wasser.
Abb. 6: Grünlicher Rhombenporphyr, Geschiebe von Presen/Fehmarn.
Abb. 7: Feldspat-Zwillinge in einem Rhombenporphyr aus der Kiesgrube Kröte (Wendland, Niedersachsen).
Abb. 8: Anorthoklas-„Drilling“; FO: Westermarkelsdorf/Fehmarn.
Abb. 9: Schnittfläche eines grauen Rhombenporphyrs mit dunklen Feldspäten, Aufnahme unter Wasser (FO: Steinbeck/Klütz).
Abb. 10: Rhombenporphyr; dunkle Feldspäte mit hellem Saum (Langtangen-Typ); Vigsö-Bucht (Dänemark), Slg. E. Figaj.
Abb. 11: Brauner Rhombenporphyr (oder Nordmarkit-Porphyr?) mit körniger Grundmasse und relativ viel dunklen Mineralen. Strandgeröll von Johannistal, Slg. E. Figaj, Aufnahme unter Wasser.
Abb. 12: Nahaufnahme.

Die Grundmasse der Rhombenporphyre ist feinkörnig bis dicht. Häufig sind bräunliche Farbtöne, auch mit grünlichem oder orangefarbenem Stich. Rote bis violette und sehr feinkörnige bis dichte Grundmassen finden sich vor allem in pyroklastischen Gesteinen (Abb. 13, 33). Seltener sind grüne, dunkelgraue oder sehr helle Farben (Abb. 42). Durch Verwitterung können die Gesteine oberflächlich stark ausbleichen.

Rhombenporphyre mit erkennbaren Einzelkörnern (über 1 mm) in der Grundmasse entstanden durch eine entsprechend langsame Abkühlung des Magmas und dürften subvulkanische Bildungen oder Gangporphyre sein. Solche intrusiven Typen sind sowohl aus dem Oslogebiet als auch von der westschwedischen Küste (Bohuslän) bekannt und der Herkunft nach nicht unterscheidbar. Für glaziostratigraphische Untersuchungen ist dies auch zweitrangig, da beide Vorkommen im Einzugsgebiet des norwegisch-westschwedischen Gletscherstroms liegen.

Dunkle Minerale sind nur in geringer Menge enthalten und von Hand kaum bestimmbar (Biotit, Augit und Erz nach ZANDSTRA 1988). Etwa ein Fünftel der Rhombenporphyr-Geschiebe reagiert auf einen Handmagneten, etwa jeder zehnte Geschiebefund ist deutlich bis stark magnetisch (statistische Erhebung an RP-Geschieben aus Brandenburg). Häufig sind gefüllte Blasenhohlräume (Mandeln) zu beobachten. Bei einem hohen Anteil an Mandeln kann man von einem Rhombenporphyr-Mandelstein sprechen. Als sekundäre Bildung treten Calcit oder Epidot auf, aber auch Mandelfüllungen mit glasklarem Quarz (Abb. 42).

Neben Porphyren mit weitgehend homogener Grundmasse finden sich blasenreiche Laven (weitgehend ohne Hohlraumfüllungen, meist einsprenglingsarmer Typ, Abb. 30) und aus Pyroklasten zusammengesetzte Vulkanite (Lapillisteine, Lapillituffe oder „Agglomeratlaven“, s. Abb. 13,14, 31-33). In älterer Literatur wurden letztere gelegentlich als „Rhombenporphyr-Konglomerat“ bezeichnet. Der Name sollte jedoch klastischen Sedimentgesteinen mit umgelagerten Vulkanitfragementen vorbehalten sein. Das Rhombenporphyr-Konglomerat (Krogskogen-Konglomerat), ein seltener Geschiebefund, besitzt eine sandige Matrix und enthält neben Klasten von Rhomben- und Quarz-Porphyren klastische Quarze, Sandstein und basaltische Klasten (s. skan-kristallin.de).

Abb. 13: Blasige Rhombenporphyr-Lava, Aufnahme unter Wasser; Steinbeck/Klütz.
Abb. 14: Nahaufnahme, Verzwilligung mehrerer rhombischer Feldspat-Einsprenglinge.
Abb. 15: Rhombenporphyr-Mandelstein (Hökholz bei Eckernförde).
Abb. 16: Rhombenporphyr-Mandelstein von der Vigsö-Bucht (Dänemark), Slg. E. Figaj.
Abb. 17: Rhombenporphyr, im unteren Teil eine Tufflage mit Feldspat-Bruchstücken. Polierte Schnittfläche eines Geschiebes von Westermarkelsdorf/Fehmarn (T. Brückner leg.).
Abb. 18: Spezielle Rhombenporphyr-Variante mit länglichen Feldspat-Einsprenglingen (Pipenhus-Typ); Geschiebe von Hökholz.
Abb. 19: Rhombenporphyr, Pipenhus-Typ, Breite 14 cm. Vigsö-Bucht (Dänemark), Slg. E. Figaj.

Zusammenfassung der unterschiedlichen Ausprägungen bzw. Geschiebetypen von Rhombenporphyren (Abbildungen in JENSCH 2013a und 2013b; allgemeine Beschreibung in HESEMANN 1975, SMED & EHLERS 2002, SCHULZ 2003):

  • gewöhnlicher Rhombenporphyr: einsprenglingsarmer und einsprenglingsreicher Typ
  • Rhombenporphyr-Mandelstein (Abb. 13-16)
  • blasige Laven, Pyroklastika (Lapillisteine, Lapillituffe oder „Agglomeratlaven“, Abb. 13-14, 31-33)
  • Intrusiver Rhombenporphyr (körnige Grundmasse, Abb. 39-41)
  • Rektangelporphyr (Abb. 35, s. a. kristallin.de)
  • Rhombenporphyr-Konglomerat (skan-kristallin.de).

Rhombenförmige Feldspat-Einsprenglinge finden sich in weiteren Gesteinstypen des Oslograbens, z. B. im Nordmarkit-Porphyr (s. skan-kristallin.de) oder in Plutoniten (Larvikit, Tönsbergit). Darüber hinaus treten sie auch in Gesteinen aus anderen Regionen auf, die aber kaum mit den Oslo-Gesteinen verwechselbar sind (Vaggeryd-Syenit, Sorsele-Granit, Heden-Porphyr). Einzelne rhombenförmige Plagioklase können in Diabasen enthalten sein.

Anhand der stratigraphischen Verhältnisse im Anstehenden unterscheidet OFTEDAHL 1952, 1967 etwa 30 einzelne Rhombenporphyr-Lagen (s. Proben auf vendsysselstenklub.dk). Seine Einteilung dürfte auf Geschiebefunde jedoch nur eingeschränkt anwendbar und eine entsprechende Zuordnung zu bestimmten RP-Lagen mit großen Schwierigkeiten verbunden sein. Zum einen ist von einer hohen Variationsbreite innerhalb der einzelnen RP-Lagen auszugehen. Auffällige Rhombenporphyr-Varianten müssen nicht an eine bestimmte vulkanostratigraphische Position gebunden sein, da in unterschiedlichen Phasen des Vulkanismus Porphyre mit ganz ähnlichen Merkmalen entstanden sein könnten, vor allem oberhalb der Lage RP15 (JENSCH 2013a: 60). Auch der Vergleich mit Anstehendproben führt zu Irrtümern (MEYER AP 1969). Rhombenporphyr-Lagen können durch frühere Vereisungen bereits vollständig abgetragen sein. Weiterhin ist zu bedenken, dass die Fortsetzung des Vorkommens der Oslo-Gesteine in südlicher Richtung unter Wasser weitere Varianten von Rhombenporphyren geliefert haben könnte.

3. Verbreitung der Rhombenporphyr-Geschiebe

Rhombenporphyre wurden zu verschiedenen Zeiten durch Eisströme vom Oslo-Gebiet in Richtung SSW bis SW über Dänemark und NW-Deutschland nach Süden transportiert (Abb. 21). In westlicher Richtung finden sich Rhombenporphyr-Geschiebe in Schottland und England (EHLERS 1988, K-D MEYER 1993, 2010), in südwestlicher Richtung in den Niederlanden (HUISMAN 1971). Auch aus Schweden liegt eine Fundmeldung vor (HILLEFORS 1968). Eine Kuriosität sind zwei (identische) Funde von Rhombenporphyr-Geschieben (sowie ein Drammen-Rapakiwi) von der Insel Leka, weit nördlich vom Oslograben (Mitteilung A. Bräu, Abb. 20). Der Transportmechanismus (Eisschollendrift, anthropogene Verschleppung) konnte bislang nicht geklärt werden.

Abb. 20: Rhombenporphyr, Geschiebefund von der Insel Leka (mittleres Norwegen), etwa 500 km nördlich von Oslo. Probe und Foto: A. Bräu.

In Deutschland sind Rhombenporphyr-Geschiebe von N- und NW- Deutschland bis nach Sachsen weit verbreitet. Mehrere Fundberichte liegen auch aus Polen und Tschechien vor (vgl. Literaturhinweise in SCHNEIDER & TORBOHM 2020). Außerhalb des allgemeinen Verbreitungsgebietes, östlich der Linie Mecklenburg-Brandenburg-Sachsen, treten sie als Einzelfund auf. Die östliche Verbreitungsgrenze wird in SCHULZ 1973, 2003 und 2012 ausführlich diskutiert (s. a. Abb. 21).

Abb. 21: Verbreitungsgebiet der Rhombenporphyr-Geschiebe. 1 – Gesteine des Oslograbens, Fortsetzung des Vorkommens unter Wasser; 2 – Geschiebefächer Rhombenporphyr (Hauptverbreitungsgebiet); 3 – östliche Verbreitungsgrenze; 4 – Maximalausdehnung der nordischen Inlandvereisungen. Karte nach SCHULZ 1973.

4. Funde aus Berlin und Brandenburg

Aus Berlin und Brandenburg konnten in jahrelanger Sammeltätigkeit bislang 82 Rhombenporphyr-Geschiebe zusammengetragen werden (Stand: 01/2021; Dokumentation in SCHNEIDER & TORBOHM 2020). Die Funde belegen einen weit nach Osten reichenden Transport dieser Gesteine in ein Gebiet, das überwiegend durch baltische und ostschwedische Geschiebegemeinschaften geprägt ist. Abb. 22 zeigt alle Fundpunkte. Hervorgehoben sind Kiesgruben mit der höchsten Fundanzahl. Eine hohe Fundanzahl spricht nicht unbedingt für ein gehäuftes Auftreten, sie könnte auch auf eine entsprechend aktive Sammeltätigkeit zurückzuführen sein.

Abb. 22: Fundpunkte von Rhombenporphyr-Geschieben in Brandenburg; Grafik verändert nach Benutzer Grabenstedt 2007, Quelle: wikipedia.de, Lizenz: CC BY-SA 3.0. Daten aus STACKEBRANDT & MANHENKE 2002.

1 – Damsdorf-Bochow bei Lehnin (9 Funde)
2 – Teschendorf bei Oranienburg (8 Funde)
3 – Hohensaaten (9 Funde)
4 – Niederlehme (9 Funde)
5 – Fresdorfer Heide (7 Funde)
6 – Ziezow (5 Funde)
7 – Gebiet um Fürstenwalde (Slg. Bennhold; 53 Funde).

Die brandenburgischen Rhombenporphyr-Geschiebe stammen überwiegend von Lokalitäten mit oberflächennah aufgeschlossenen Ablagerungen der Weichsel-Vereisung. Viele Kiesgruben liegen – nicht zuletzt aus bergbaulichen Erwägungen – am Rande von Hochflächen oder Urstromtälern. Lediglich 11 der insgesamt 82 Funde (14%) lassen sich unmittelbar mit saalekaltzeitlichen (oder älteren) Ablagerungen in Zusammenhang bringen. Diese im südlichen Brandenburg gelegenen Altmoränenhochflächen bieten allerdings auch nur wenige Aufschlüsse. Der Erhaltungszustand der Geschiebe ist im Allgemeinen schlecht: die Grundmassen sind ausgebleicht, die Gesteine stark verwittert, manchmal regelrecht durchgewittert.

Die in SCHNEIDER & TORBOHM 2020 dokumentierten Funde sind ausschließlich Einzelfunde von den Überkornhalden in Kiesgruben. Diese aus sandigen bis kiesigen Horizonten abgetrennte, grobe Gesteinsfraktion kann umgelagertes Material aus älteren Glazial-Ablagerungen enthalten. Statistische Daten zur glaziostratigraphischen Verbreitung von Rhombenporphyr-Geschieben in weichsel- und saalezeitlichen Ablagerungen in brandenburgischen Glazialablagerungen ließen sich durch Zählungen aus Tillablagerungen erheben. Jedoch dürften Rhombenporphyre hier auch bei ausdauernder Suche nur sehr selten anzutreffen sein.

Bemerkenswert ist die hohe Fundanzahl in unmittelbarer Nähe der nordöstlichen Verbreitungsgrenze der Rhombenporphyr-Geschiebe am Nordrand des Oderbruchs (s. SCHULZ 1973). Aus der Grube Hohensaaten (Lokalität 3 in Abb. 22) stammen 9, aus mittlerweile stillgelegten Gruben der unmittelbaren Umgebung zwei weitere Funde.

Der Geschiebesammler W. Bennhold trug im Laufe mehrerer Jahrzehnte mindestens 53 Rhombenporphyr-Geschiebe zusammen. Sie stammen überwiegend aus dem kompliziert gebauten Stauchmoränenkomplex der Rauener Berge im Bereich des Frankfurter Stadiums der Weichsel-Vereisung. Nach ZWENGER 1991 ist der genaue Herkunftshorizont zwar nicht präzisierbar, jedoch dürften die RP-Geschiebe überwiegend saalezeitlichen Bildungen entstammen, weil die weichselkaltzeitlichen Ablagerungen hier nur geringmächtig ausgebildet sind. Bennholds Funde werden in der Geschiebesammlung im Museum Fürstenwalde aufbewahrt.

Als Ursache für Fundhäufungen von Rhombenporphyren außerhalb ihres Hauptverbreitungsgebietes nennt SCHULZ 1973 einen wechselnden Einfluss des norwegischen Gletscherstroms. Rhombenporphyre wurden während des Drenthe-Stadiums der Saale-Vereisung und während des Brandenburgischen Stadiums der Weichsel-Vereisung weit nach Osten transportiert. Auch EIßMANN 1967 (in EHLERS 2011: 47) nimmt an, dass ein norwegisch-westschwedischer Eisstrom, dessen östlichste Ausdehnung etwa bis in den Raum Bornholm reichte, zu verschiedenen Zeiten durch einen nordschwedisch-finnischen Eisstrom abgelenkt wurde. Rhombenporphyr-Geschiebe von relativ weit östlich gelegenen Fundlokalitäten dürften daher nicht etwa aus aufgearbeiteten Ablagerungen der Elster-Vereisung stammen, zumal ihre Verbreitungsgrenze zumindest in Sachsen weit westlich der Maximalausdehnung elsterzeitlicher Sedimente liegt (etwa im Raum Grimma, SCHULZ 1973).

Geschiebefunde anderer Gesteine des Oslo-Grabens scheinen trotz intensiver Suche in Brandenburg nur sehr spärlich vorzukommen. MEYER AP 1964 berichtet von Fundhäufungen in der Kiesgrube am Stener Berg (Berlin). Aus der Kiesgrube Fresdorfer Heide bei Potsdam stammt ein Larvikit-Geschiebe. Ein weiterer Fund durch W. Bennhold aus den Rauener Bergen wird im Museum Fürstenwalde aufbewahrt. Herr D. Schmälzle (†) (Berlin) berichtet von einem Larvikit-Geschiebe aus dem nördlichen Brandenburg (mündl. Mitteilung). Erwähnenswert sind in diesem Zusammenhang vereinzelte Funde südwestschwedischer Leitgeschiebe wie Schonengranulit und „Flammenpegmatit“ (Slg. Torbohm: 7 Funde), die bisher offenbar nur wenig Beachtung fanden und ebenfalls durch einen norwegisch-westschwedischen Eisstrom nach Brandenburg gelangt sein dürften.

Abb. 23: Bisher größter Rhombenporphyr-Fund aus Brandenburg (20 x 15 x 10 cm); gut erhaltenes Exemplar mit dunkelgrauer Grundmasse und silbrig glänzenden, transparenten Feldspäten; Kiesgrube Niederlehme bei Berlin; Slg. M. Torbohm.
Abb. 24: Brauner Rhombenporphyr, Aufnahme unter Wasser (Kiesgrube Niederlehme).
Abb. 25: Rhombenporphyr mit eingeregelten Feldspäten (fluidaler Typ, „RP1“); Kiesgrube Niederlehme.
Abb. 26: Rhombenporphyr mit hellen und orangefarbenen Feldspäten, Aufnahme unter Wasser (Kiesgrube Niederlehme).
Abb. 27: Rhombenförmiger Feldspat-Einsprengling mit subparallelen, welligen Entmischungslamellen und randlicher Zonierung. Geschiebe aus der Kiesgrube Damsdorf-Bochow bei Lehnin, Slg. D. Lüttich.
Abb. 28: Glomerophyrisches Gefüge; zu kleinen Kristallhaufen aggregierte Feldspat-Einsprenglinge. Rhombenporphyr aus der Kiesgrube Hoppegarten, leg. St. Schneider.
Abb. 29: Eigens gedrucktes „Festkärtchen“ zum 50. Rhombenporphyr-Fund aus der Umgebung von Fürstenwalde (Sammlung Bennhold, Museum Fürstenwalde).
Abb. 30: Blasige Rhombenporphyr-Lava, einsprenglingsarmer Typ. Kiesgrube Teschendorf, leg. St. Schneider.
Abb. 31: Lapillistein mit Rhombenporphyr- und Mandelstein-Fragmenten, Aufnahme unter Wasser. Kiesgrube Teschendorf, leg. St. Schneider.
Abb. 32: Rhombenporphyr-Lapillistein, polierte Schnittfläche. Kiesgrube Falkenthal, Löwenberger Land.
Abb. 33: Rhombenporphyr aus roten und braunen, fest miteinander verbundenen Pyroklasten (pyroklastische Brekzie). Die Bezeichnung „Agglomeratlava“ ist nach aktueller Nomenklatur Pyroklastiten vorbehalten, die zu mind. 75% aus Bomben (Vulkanoklasten über 63 mm) bestehen. Fundort: Hohensaaten an der Oder, Slg. St. Schneider.
Abb. 34: Rhombenporphyr-Geschiebe aus SE-Brandenburg (Papproth, Tagebau Welzow-Süd, Niederlausitz).
Abb. 35: Rhombenporphyr mit rechteckigen Feldspat-Einsprenglingen (Rektangel-Porphyr); Lesesteinhaufen bei Schlunkendorf, Slg. D. Lüttich.
Abb. 36: Fund aus dem Berliner Stadtgebiet; Kiesgrube Spandau, leg. A.P. Meyer, Aufnahme unter Wasser.
Abb. 37: Rotgrauer Rhombenporphyr, Kiesgrube Hartmannsdorf bei Berlin.
Abb. 38: Graubrauner, deutlich magnetischer Rhombenporphyr mit dunkelgrauen Feldspäten, die von gelben Säumen umgeben sind (Langtangen-Typ, RP14a); Kiesgrube Teschendorf bei Oranienburg.
Abb. 39: Rhombenporphyr mit körniger Grundmasse. Kiesgrube Oderberg-Bralitz; Slg. St. Schneider.
Abb. 40: Intrusiver Typ mit körniger Grundmasse. Kiesgrube Hoppegarten bei Müncheberg.
Abb. 41: Nahaufnahme der nassen Oberfläche.
Abb. 42: Heller Rhombenporphyr. Das Gestein enthält runde und transparente Quarzaggregate, vermutlich eine sekundäre Füllung von Blasenhohlräumen. Kiesgrube Borgsdorf/Velten bei Oranienburg, leg. St. Schneider.

5. Literatur

EHLERS J 1988 Skandinavische Geschiebe in Großbritannien – Der Geschiebesammler 22 (2): 49-64, 5 Abb., Hamburg.

EHLERS J 2011 Das Eiszeitalter – Spektrum Sachbuch: IX+363 S., 347 meist kapitelweise num. Abb. (davon 327 farbig), 12 kapitelweise num. Tab., 32 Text-Kästen, Heidelberg etc. (Spektrum Akademischer Verlag in Springer SBM).

EIßMANN L 1967 Rhombenporphyrgeschiebe in Elster- und Saalemoränen des Leipziger Raumes – Abhandlungen und Berichte des naturkundlichen Museums „Mauritianum” Altenburg 5: 37-46, 2 Abb., 1 Tab., Altenburg.

GÁBA Z 1974 Rhombenporphyr und Prickgranit als Geschiebe im tschechoslowakischen Schlesien – Der Geschiebesammler 9 (1): 29-30, 1 Abb., Hamburg.

GÁBA Z & MATYÁŠEK J 1997 Rhombenporphyr-Geschiebe in der Tschechischen Republik- Geschiebekunde aktuell 13 (4): 123-125, 3 Abb., Hamburg.

GÓRSKA M 2003 Nowe znaleziska narzutniaków porfiru rombowego z Oslo na terenie północno-zachodniej Polski [New finds of erratics of the Oslo rhomb porphyry in North-Western Poland] – Przegląd Geologiczny 51 (7): 580-585, 7 Abb., 1 Tab., Warszawa.

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 44 Abb., 8 Taf., 1 Kt., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

HILLEFORS Å 1968 Fynd av stora block av rombporfyr [Discovery of large boulders of rhombporphyry] – Svensk geografisk Årsbok, 44: 186-188, Lund (Lunds Universitet, Geografiska Institution).

HUISMAN H 1971 Die Verbreitung der Rhombenporphyre – Der Geschiebesammler 6 (2): 47-52, Hamburg.

JENSCH J-F 2013a Bestimmungspraxis Rhombenporphyre – Der Geschiebesammler 46 (2-3): 47-103, 35 Abb.,3 Tab., 18 Taf., 1 Karte, Wankendorf.

JENSCH J-F 2013b Korrekturen zu Bestimmungspraxis Rhombenporphyre – Der Geschiebesammler 46(4): 120, 1 Abb., Wankendorf.

KUMMEROW E 1954 Grundfragen der Geschiebeforschung (Heimat, Transport und Verteilung der Geschiebe) – Geologie 3 (1): 42-54, Berlin.

LAMPE R 2012 Erster Nachweis eines Rhombenporphyr-Geschiebes in Vorpommern!? – Geschiebekunde aktuell 28 (3/4) [Werner-Schulz-Festschrift]: 95-98, 1 Abb., Hamburg/Greifswald.

LÜTTIG G 1997 Beitrag zur Geschiebeforschung in Böhmen und Mähren – Geschiebekunde aktuell 13 (2): 43-46, 2 Abb., Hamburg.

MEYER A P 1964 Über Funde kristalliner Geschiebe aus Berlin – Der Aufschluss, Sonderheft 14: 111-116, Heidelberg.

MEYER A P 1969 Ein Blick nach Norden – Der Geschiebesammler 4 (1): 21-27, 4 (2):58-62, 1 Karte, 4 (3/4): 83-94, 2 Abb., Hamburg.

MEYER K-D 1993 Rhombenporphyre an Englands und Schottlands Ostküste – Der Geschiebesammler 26 (1): 9-17, 6 Abb., Hamburg.

MEYER K-D 2010 200 Jahre Rhombenporphyr – Der Geschiebesammler 43 (3): 97-105, 4 Abb., 1 Karte, Wankendorf.

OFTEDAHL C 1952 Studies on the igneous rock complex of the Oslo region. XII. The Lavas – Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo (I) Matematisk-Naturvidenskapelig Klasse 3: 64 S., 21 Abb., 6 Tab., Oslo (Universitetsforlag).

OFTEDAHL C 1967 Magmen-Entstehung nach Lava-Stratigraphie im südlichen Oslo-Gebiete – Geologische Rundschau 47: 203-218, 5 Abb., 2 Tab., Stuttgart.

QUENSEL P 1918 Über ein Vorkommen von Rhombenporphyren in dem präkambrischen Grundgebirge des Kebnekaisegebietes. – Bulletin of the Geological Institution of the University of Upsala 16: 1-14, 2 Abb., 1 Taf., 3 Tab.,Uppsala.

SCHULZ W 1973 Rhombenporphyrgeschiebe und deren östliche Verbreitungsgrenze im nordeuropäischen Vereisungsgebiet – Zeitschrift für geologische Wissenschaften 1 (9): 1141-1154, 5 Abb., Berlin.

SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 1 Taf., div. Abb., Schwerin (cw Verlagsgruppe).

SCHULZ W 2012 Stratigraphie und Geschiebeführung am Kliff des Klützer Winkels Nordwest – Mecklenburg) – Geschiebekunde aktuell 28 (1): 13-27, 8 Abb.; Hamburg/Greifswald.

SMED P & EHLERS J 2002 Steine aus dem Norden (2.Aufl.) – 194 S., 34 Taf., 67 Abb., 1 Kte. (rev. 2008), Berlin, Stuttgart (Gebr. Borntraeger).

STACKEBRANDT W & MANHENKE V [Hrsg.] 2002 Atlas zur Geologie von Brandenburg – Landesamt für Geowissenschaften und Rohstoffe Brandenburg, (2. Aufl.): 142 S., 43 Ktn., Kleinmachnow.

TIETZ O 1999b Otoczaki porfiru rombowego z Pogórza Łużyckiego (pd.-wsch. Niemcy) – Przyroda Sudetów Zachodnich t.2: 105-108, 2 Abb., 1 Tab., 1 Kt., Jelenia Gora.

VIŠEK J & NÝVLT D 2006 Leitgeschiebestatistische Untersuchungen im Kontinentalvereisungsgebiet Nordböhmens – Archiv für Geschiebeforschung 5 (1-5) [Festschrift Gerd Lüttig]: 229-236, 2 Abb., 2 Tab., Hamburg/Greifswald.

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).

ZWANZIG M, BÜLTE R, LIEBERMANN S & SCHNEIDER S 1994 Sedimentärgeschiebe in den Kiesgruben Oderberg-Bralitz, Hohensaaten und Althüttendorf – In: Schroeder J H [Hrsg]: Führer zur Geologie von Berlin und Brandenburg, No. 2: Bad Freienwalde-Parsteiner See: 131-141, 7 Abb., Berlin (Geowissenschaftler in Berlin und Brandenburg e.V., Selbstverlag).

ZWENGER W H 1991 Die Geschiebesammlung W. Bennhold im Museum Fürstenwalde (Spree) Teil 1: Kristalline Geschiebe – Archiv für Geschiebekunde 1 (2): 65-78, 2 Taf., 4 Abb., 2 Tab., Hamburg.

Lamprophyre

1. Allgemeines
2. Schonen-Lamprophyr
3. Lamprophyre aus dem Oslograben
4. Weitere Vorkommen
5. Lamprophyre und Alkalivulkanite südlicher Herkunft
6. Literatur

Abb. 1: Schonen-Lamprophyr, feinkörniges basaltähnliches Gestein mit Einsprenglingen von Pyroxen (schwarz) und Olivin (gelblichbraun, grün) sowie weißen Hohlraumfüllungen mit Sekundärmineralen. Polierte Schnittfläche eines Geschiebes von Steinbeck/Klütz.

Lamprophyre sind dunkle und basaltähnliche Ganggesteine, die eine eigenständige Gesteinsgruppe bilden und zu den Alkaligesteinen gehören. Die Bezeichnung (lamprós griech. hell, glänzend) verweist auf die glänzenden Kristallflächen von großen Amphibol- oder Biotit-Einsprenglingen auf der Bruchfläche. Nur solche porphyrischen Varianten sind auch mit einfachen Mitteln als Lamprophyre erkennbar. Die Grundmasse der Gesteine ist feinkörnig, neben Biotit und/oder Amphibol kann auch Pyroxen oder Olivin als Einsprengling auftreten. Olivin besitzt eine grüne, im alterierten Zustand eine gelblich- oder rötlichbraune Färbung. Lamprophyre reagieren auf einen Handmagneten und enthalten in der Regel einige mit weißen Sekundärmineralen (Calcit, Zeolithe) verfüllte Blasenhohlräume (sog. Ocelli). Feldspat- und Quarz-Einsprenglinge kommen nicht vor.

Die Gesteine werden in großer Tiefe aus Mantelschmelzen gebildet und steigen in der Spätphase von Intrusionen in Form von Gängen auf. Früher gab es eine unüberschaubare Fülle von Lokal- und Spezialbezeichnungen für Lamprophyre und andere Alkaligesteine. Mit der Klassifikation der Gesteine nach ihrer mineralogischen Zusammensetzung (nach Darrell 2008) sind diese Namen weitgehend obsolet. Die Zusammensetzung der Grundmasse spielt bei der Benennung eine wichtige Rolle und ist nur durch Laboruntersuchungen ermittelbar:

  • Kersantit: Biotit-Hornblende-Augit-Lamprophyr. In der Grundmasse überwiegt Plagioklas über Orthoklas.
  • Minette: Biotit-Hornblende-Augit-Lamprophyr. In der Grundmasse überwiegt Orthoklas über Plagioklas.
  • Spessartit: Hornblende-Augit-Lamprophyr; Grundmasse: Plagioklas > Orthoklas.
  • Vogesit: Hornblende-Augit-Lamprophyr; Grundmasse: Orthoklas > Plagioklas.
  • Sannait: Amphibol-Augit-Olivin-Biotit-Lamprophyr; Grundmasse: Orthoklas > Plagioklas; Foide treten nur untergeordnet auf.
  • Camptonit: Amphibol-Augit-Olivin-Biotit-Lamprophyr; Grundmasse: Plagioklas > Orthoklas; Foide treten nur untergeordnet auf.
  • Monchiquit: Amphibol-Augit-Olivin-Biotit-Lamprophyr, glasige Grundmasse oder ausschließlich Foide in der Grundmasse.

Neben Lamprophyren gibt es weitere Gesteinsgruppen mit einer eigenen Klassifikation, die entweder früher zu den Lamprophyren gezählt wurden (Alnöit = ultramafischer Lamprophyr, heute zu den melilithführenden Gesteinen gerechnet) oder mit ihnen verwechselbar sind (einige Lamproite). Sie spielen als Geschiebe nur eine untergeordnete (Melilithe) oder gar keine Rolle (Lamproite, Kimberlite).

Lamprophyre treten, wenn auch relativ selten, als Geschiebe auf. Der bedeutendste Vertreter ist der Schonen-Lamprophyr (Abb. 1). Aller Wahrscheinlichkeit nach gibt es einen Doppelgänger südlicher Herkunft, der als Flussgeröll aus Nordböhmen oder Sachsen nach Norden transportiert wurde (s. u.). Auch im Oslo-Graben kommen Lamprophyre vor (u. a. Camptonite, evtl. als Leitgeschiebe geeignet).

2. Schonen-Lamprophyr

Abb. 2: Schonen-Lamprophyr, polierte Schnittfläche einer Anstehendprobe aus dem Steinbruch Torpa Klint (Schonen). Das feinkörnige und mittelgraue Gestein enthält große Einsprenglinge von Pyroxen (?), kleinere braune Körner von Olivin und Mandeln mit weißen Sekundärmineralen. Bild aus skan-kristallin.de.

Das basaltähnliche und schwere Gestein besitzt eine feinkörnige Grundmasse und enthält Einsprenglinge von grünlich-schwarzem Pyroxen und grünem Olivin bzw. gelblichbraunen bis rotbraunen Olivin-Relikten. Zusätzlich kommen Blasenhohlräume vor, die mit weißen Sekundärmineralen gefüllt sind. Die feinporphyrische Variante mit 2-5 mm großen Einsprenglingen ist als Geschiebe bedeutend häufiger zu finden als der grobporphyrische Typ (Einsprenglinge über 1 cm).

Der Gesteinstyp tritt gehäuft an Lokalitäten mit einem hohen Anteil an Schonen-Basaniten auf (z. B. am Geröllstrand von Steinbeck/Klütz). Die Lamprophyre entstanden im Perm und Karbon und bilden gangförmige Vorkommen in Zentral-Schonen. Proben von Ganggesteinen mit einer vergleichbaren Mineralisation sind aus dem Steinbruch Torpa Klint (Abb. 2) und der Gegend von Tolånga bekannt (siehe auch skan-kristallin.de). Nach Obst 1999 handelt es sich dabei um Camptonite, basaltische Camptonite und Olivin-Basalte mit einer für Lamprophyre typischen geochemischen Signatur. Eine andere, am Mineralbestand orientierte Bezeichnung für den Schonen-Lamprophyr ist Ankaramit (=Alkalibasalt mit einem hohen Gehalt an Olivin- und Pyroxen-Einsprenglingen).

Abb. 3: Geschiebefund von Steinbeck/Klütz, gleicher Stein wie in Abb. 1, verwitterte Außenseite und frische Bruchfläche.
Abb. 4: Nahaufnahme der polierten Schnittfläche mit Einsprenglingen von Pyroxen und Olivin (teils als gelblichbraunes Umwandlungsprodukt, teils unverändert und grün).
Abb. 5: Feinporphyrischer Schonen-Lamprophyr, etwa 20 cm breites Geschiebe vom Geröllstrand bei Kaltenhof (Insel Poel).
Abb. 6: Nahaufnahme des Gefüges, Bildbreite 10 cm. Einsprenglinge sind schwarzer Pyroxen und rotbrauner Olivin.

3. Lamprophyre aus dem Oslograben

Die Vulkanite und Plutonite des Oslograbens werden von alkalischen Ganggesteinen begleitet, u. a. Lamprophyren wie Camptonit, „Natron-Minette“ (feinkörnig) und Kersantit (Bezeichnungen nach Brøgger 1932, Nomenklatur teilweise veraltet). Von Vestby ist ein Vorkommen eines Lamprophyrs mit Orbiculargefüge bekannt (Bryhni & Dons 1975).

Als guter Kandidat für ein Leitgeschiebe kommen porphyrische und einsprenglingsreiche Varianten des Camptonits in Frage. Diese könnten – wenn auch selten – an Lokalitäten mit einem hohen Anteil an Oslo-Gesteinen als Geschiebe auftreten. Das feinkörnige Gestein besitzt eine graue bis grünlichgraue angewitterte Außenseite und eine schwarz bis violettschwarz getönte Bruchfläche. Als wenige mm bis 1 cm große Einsprenglinge sind reichlich schwarzer und idiomorpher Pyroxen und/oder Alkaliamphibol enthalten. Auch einige Plagioklasleisten bis 5 mm Länge kommen vor, die aufgrund magmatischer Korrosion häufig abgerundet sind. Weiterhin finden sich weiße Mandeln mit Sekundärmineralen (Beschreibung nach Zandstra 1988: 400, Anstehendproben auf skan-kristallin.de).

Abb. 7: Camptonit vom See Jarenvatnet, Straßenaufschluss nördlich von Gran (60.37435, 10.56391), M. Bräunlich leg.; Sammlung der BGR in Berlin/Spandau.

4. Weitere Vorkommen

Lamprophyre und ähnliche Gesteine sind auch aus anderen Regionen bekannt. Brögger 1921 beschreibt einen Damtjernit („ultramafischer Lamprophyr“, heute: Ultramafitit) aus dem Fen-Gebiet (Proben auf skan-kristallin.de). In Nordschweden (Lulea/Kalix) treten Lamprophyre als Begleiter von Doleritgängen der zentralskandinavischen Doleritgruppe auf (Kresten et al 1997). Die Gesteine mit karbonatreicher Grundmasse enthalten Einsprenglinge von Glimmer (möglicherweise besteht eine Ähnlichkeit mit dem Alnöit). Weitere Lamprophyr-Vorkommen nennen Wahlgren et al 2015 (Idefjorden-Terran, West-Schweden), Lundegardh 1998: 184 (Värmland), Hedström 1917 (Kartenblatt Eksjö, Smaland) und Lindberg & Bergmann 1993 (Finnland, Vehmaa). Eckermann 1928 beschreibt einen Geschiebefund eines Hamrongits (=Kersantit) aus der Umgebung von Gävle. Das anstehende Vorkommen konnte bisher nicht lokalisiert werden.

5. Lamprophyre und Alkalivulkanite südlicher Herkunft

Alkalivulkanite südlicher Herkunft (Tephrite, Basanite, Phonolithe) finden sich als Beimengung zu nordischen Geschieben im Gebiet südlich von Berlin, im südlichen Brandenburg und in Sachsen. Die Gesteine wurden während der Zeit des sog. Berliner Elbelaufs (zwischen Elster- und Saalevereisung) wahrscheinlich mittels Eisschollendrift transportiert. Sie erreichen nicht selten Dezimetergröße, was einen Transport als „echtes“ Flussgeröll in weitgehend flachem Gelände ausschließt. Das größte Vorkommen im Einzugsbereich der Elbe ist das Böhmische Mittelgebirge, kleinere Vorkommen existieren in Sachsen. Neben den genannten Alkalivulkaniten kommen dort auch zahlreiche Ganggesteine, u. a. Lamprophyre vor (Ulrych et al 1993, 2000, 2014, Abdelfadil 2013).

Mehrere Funde von lamprophyrähnlichen Gesteinen mit Pyroxen- und Olivin-Einsprenglingen liegen aus dem Berliner Raum vor. Sie stammen ausnahmslos von Lokalitäten, an denen vermehrt südliche Alkalivulkanite vorkommen. Eine südliche Herkunft ist anzunehmen, zumal dort Geschiebefunde aus dem südlichsten Schweden (Karlshamn-Granit, Schonen-Basanit) oder Bornholm gar nicht oder nur vereinzelt in Erscheinung treten.

Abb. 8: Lamprophyrähnliches Gestein mit hellgrauer und feinkörniger Grundmasse, großen Dunkelglimmer- sowie kleinen Pyroxen- und Olivin-Einsprenglingen. Kiesgrube Horstfelde, südlich von Berlin; D. Lüttich leg.
Abb. 9: Bruchfläche des gleichen Steins. Das Gestein ist von Klüften mit feinkörnigen grünen und weißen Sekundärmineralen (u. a. Calcit) durchzogen.
Abb. 10: Nahaufnahme des Gefüges.
Abb. 11: Nahaufnahme der nassen Außenseite eines Alkalivulkanits mit Pyroxen- und Olivin-Einsprenglingen,. Kiesgrube Damsdorf-Bochow bei Lehnin (Slg. D. Lüttich).
Abb. 12: Einsprenglingsreicher Alkalivulkanit mit Olivin- und Pyroxen-Einsprenglingen sowie weißen Mandeln; Kiesgrube Niederlehme bei Berlin.
Abb. 13: Nahaufnahme der nassen Gesteinsoberfläche.
Abb. 14: Ankaramit, ein olivin- und pyroxenreicher Alkalivulkanit mit weißen Mandeln. Kiesgrube Horstfelde südlich von Berlin.
Abb. 15: Nahaufnahme. Olivin ist durchgängig grün gefärbt und wurde offenbar kaum umgewandelt.
Abb. 16: Grobporphyrischer Ankaramit mit roten Olivin-, grünen bis schwarzen Pyroxen-Einsprenglingen und weißen Mandeln. Kiesgrube Horstfelde.
Abb. 17: Nahaufnahme der nassen Oberfläche.
Abb. 18: Peridotit-Xenolith mit einem grünen Kern aus Pyroxen und roten Schlieren aus umgewandeltem Olivin.
Abb. 19: Feinkörniges, nahezu dichtes basaltisches Gestein mit einem feinkörnigen Gang. Der Basalt ist stark magnetisch, das Ganggestein reagiert überhaupt nicht auf einen Handmagneten. An der Grenze von Basalt und Ganggestein ist ein schmaler heller Reaktionssaum erkennbar. Fundort: Kiesgrube Niederlehme südlich von Berlin.
Abb. 20: Nahaufnahme. Das Mineralgefüge des Ganggesteins ließ sich auch mit Hilfe eines Binokulars nicht bestimmen. Vereinzelt finden sich gelblichbraune Körner (Hinweis auf umgewandelten Olivin), die auch im basaltischen Wirtgestein auftreten. Weiterhin enthält das Ganggestein Karbonat (Nachweis mit HCl). Für eine nähere petrographische Einordnung (Lamprophyr?) bedarf es einer dünnschliffmikroskopischen Untersuchung.

6. Literatur

Darrell H 2008 A Web Browser Flow Chart for the Classification of Igneous Rocks: Classification of lamprophyres (en) – Louisiana State University. Link.

Abdelfadil M K 2013 Geochemistry of Variscan lamprophyre magmatism in the Saxo-Thuringian Zone – Doctoralthesis, Universität Potsdam 2013.

Brøgger WC 1921 Die Eruptivgesteine des Kristianiagebietes IV. Das Fengebiet in Telemark, Norwegen – Videnskaps-Selskabets Skrifter (I) Matematisk-Naturvidenskapelig Klasse 1921 (9): VIII+408 S., 30 Taf., 46 Abb., 2 geol. Ktn. i. Anl., Kristiania (Oslo).

Brøgger WC 1932 Die Eruptivgesteine des Oslogebietes VI. Über verschiedene Ganggesteine des Oslogebietes. Skr. Norske Videns.-Akad. i Oslo I. Mat.-naturv. Kl. I Nr. 7, 1932.

Bryhni I & Dons JA 1975 Orbicular lamprophyre from Vestby, southeast Norway – Lithos 8 (2): 113-122, 9 Abb., 2 Tab., Oslo.

Eckermann H von 1928 Hamrongite, a new Swedish alkaline mica lamprophyre – Fennia, Societas Geographica Fenniae 50 (13): 21 S., 10 Abb., Helsinki.

Hedström H 1917 Beskrivning till kartanbladet Eksjö – Sveriges Geologiska Undersökning, Kartblad i skalan 1 : 50000 med beskrivningar Aa 129: 107 S., 19 Abb., unnum. Tab., 1 farb. Mini-Kte. im Anh., Stockholm.

Obst K 1999 Die permosilesischen Eruptivgänge innerhalb der Fennoskandischen Randzone (Schonen und Bornholm)- Untersuchungen zum Stoffbestand, zur Struktur und zur Genese – Greifswalder Geowissenschaftliche Beiträge, Heft 7 ; Selbstverlag des Instituts für Geologische Wissenschaften der Ernst-Moritz-Arndt-Universität Greifswald, 1999.

Kresten P, Rex D C & Guise P G 1997 40Ar-39Ar ages of ultramafic lamprophyres from the Kalix area, northern Sweden – Geologische Rundschau 70: 1215-1231.

Lindberg B & Bergman L 1993 Vehmaan kartta-alueen kallioperä – Geological map of Finland 1 : 100.000: 56 S., 24 Abb., 4 Tab. i. Anh., 1 Kte. in Tasche, Espoo.

Ulrych J & Balogh K 2000 Roztoky Intrusive Centre in the Ceské stredohorí Mts.: differentiation, emplacement, distribution, orientation and age of dyke series. – Geologica Carpathica 51/6: 383–397.

Ulrych J, Pivec E, Zák K, Bendl J & Bosák P 1993 Alkaline and ultramafic carbonate lamprophyres in Central Bohemian carboniferous basins, Czech Republic – Mineralogy and Petrology volume 48, S. 65–81.

Ulrych J, Adamovič J, Krmíček L & Ackerman L & Balogh K 2014 Revision of Scheumann´s classification of melilitic lamprophyres and related melilitic rocks in light of new analytical data. Journal of Geosciences. 59. 3-22. 10.3190/jgeosci.158.

Vinx R 2016 Steine an deutschen Küsten. Finden und bestimmen.- S. 102, Quelle & Meyer.

Wahlgren C H, Page L M, Kübler L & Delin H 2015 40Ar-39Ar biotite age of a lamprophyre dyke and constraints on the timing of ductile deformation inside the Idefjorden terrane and along the Mylonite Zone, Svekonorwegian Orogen, southwest Sweden – GFF 138: 311-319. Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië –    XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).