Schlagwort-Archive: Geschiebe

Helsinkit

Abb. 1: Helsinkit-Geschiebe von Aluksne (Lettland), leg. O. Mellis. Sammlung Bennhold im Museum Fürstenwalde. Originalgestein zu MELLIS 1928.

Helsinkit ist eine Lokalbezeichnung für Albit-Epidot-Gesteine, die zuerst aus Finnland beschrieben wurden und dort an mehreren Lokalitäten vorkommen (LAITAKARI 1918; Analyse eines Gesteins von der Insel Suursaari in TRÖGER 1969). Helsinkit-Geschiebe finden sich verbreitet im Baltikum. Nach einem Fundbericht aus Lettland (MELLIS 1928) setzte in Deutschland eine rege Sammeltätigkeit und Diskussion der Gesteine ein (MELLIS 1931, 1932). Der Helsinkitbegriff wurde im Laufe der Zeit erweitert und auch quarz- oder mikroklinführende Gesteine einbezogen. Aus heutiger Sicht gehören die Helsinkite zur Gesteinsgruppe der Metasomatite. Eher historisch interessant ist die Unterscheidung zweier Geschiebetypen:

1. Helsinkit mit rotbraunem oder violettbraunem Epidot („finnischer Typ“)
Der „klassische“ Helsinkit ist ein mittel- bis grobkörniges Gestein und besteht im Wesentlichen aus weißem, manchmal leicht rötlich gefärbtem Feldspat. Die Feldspäte sind von einer violett- bis bräunlichroten und feinkörnigen Masse von Sekundärmineralen umgeben. Neben weitgehend gleichkörnigen Helsinkiten mit Feldspäten bis 5 mm Größe finden sich auch grobkörnige bzw. pegmatitartige (Feldspäte bis 2 cm Größe) oder ausgesprochen ungleichkörnige Varianten. Das Gefüge zeigt häufig Spuren einer Kataklase (zerbrochene Feldspäte). Geschiebe erreichen maximal Faustgröße.

Makroskopisch lässt sich der Mineralbestand nicht näher bestimmen, da neben weißem Albit (Na-Plagioklas) meist auch Mikroklin (Kalifeldspat) enthalten ist. Beide Feldspäte sind von Hand nicht unterscheidbar. Dünnschliff-Untersuchungen ergaben, dass die rotbraune Zwischenmasse aus Epidot besteht, der von einem feinen Hämatit-Pigment durchsetzt ist. Als weitere Gemengteile können schwarzgrüner Chlorit sowie etwas Quarz auftreten. Neuere Arbeiten zur Untersuchung von Helsinkit-Geschieben s. MEYER K-D 1987 und BURGATH & MEYER 1989.

Abb. 2: Nahaufnahme des Gesteins aus Abb. 1; weißer Feldspat bis 5 mm, umgeben von einer rotbraunen und feinkörnigen Marix; Quarz fehlt.

2. Helsinkit mit grünem Epidot („schwedischer Typ“)
In Schweden fand man an mehreren Lokalitäten Gesteine, die aus grobkörnigem rotem Alkalifeldspat und einer feinkörnigen Zwischenmasse aus grünem Epidot bestehen (ASKLUND 1923, ECKERMANN 1925). Meist ist etwas Chlorit enthalten; Quarz fehlt oder tritt in wechselnden Mengen auf.

Abb. 3: Helsinkit mit grünem Epidot („schwedischer Typ“); Geschiebe aus einer Kiesgrube bei Fürstenwalde/Spree, leg. 10.9.1911 W. Bennhold (Sammlung im Museum Fürstenwalde); Nach MELLIS 1931 besteht das Gestein aus Mikroklin, Albit und Epidot sowie Spuren von Chlorit und Quarz.

Helsinkit-Geschiebe lassen sich keiner näheren Herkunft zuordnen. Es ist mit zahlreichen und weit verstreuten Vorkommen im gesamten nordischen Grundgebirge zu rechnen, insbesondere am Grund der Ostsee. Die regionale Differenzierung hält einem näheren Blick nicht stand, weil der „schwedische Typ“ anstehend auch aus Finnland sowie Norwegen (MELLIS 1931) und dem Bohuslän-Gebiet (ASKLUND 1947: 74) bekannt ist. Auf die Leitgeschiebe-Problematik weist schon MELLIS 1925 hin, trotz weitgehender Übereinstimmungen von Geschiebefunden mit finnschen Anstehendproben. Allenfalls lässt sich sagen, dass der „finnische Typ“ bevorzugt in ostschwedisch-baltischen Geschiebegemeinschaften zu beobachten ist.

Abb. 4: Helsinkit mit rot- und violettbraunen Sekundärmineralen, Aufnahme unter Wasser; Kiesgrube Buchholz bei Prenzlau.
Abb. 5: Nahaufnahme; deutlich ungleichkörniges Gefüge der Feldspäte im Vergleich zum Gestein in Abb. 1.
Abb. 6: Helsinkit mit hellgrüner (Epidot!) bis rotbrauner Grundmasse; Kiesgrube Althüttendorf (Brandenburg), Aufnahme unter Wasser.
Abb. 7: Quarzführender Helsinkit; Geschiebefund aus Schweden, Geröllstrand bei Eksilslund, NW-Öland.

Das nächste Bild (Abb. 8) zeigt einen quarzreichen Magmatit, der nur auf den ersten Blick einem Helsinkit ähnelt. Die rotbraunen Bereiche sind keine feinkörnige Grundmasse, sondern ein rotbraunes und hämatithaltiges Pigment, das zwischen den Zwickeln der Quarze vermutlich aus infiltrierten Lösungen ausgeschieden wurde (s. a. skan-kristallin.de).

Abb. 8: Helsinkitartiger Magmatit; Kiesgrube Thunpadel (Wendland/Niedersachsen), Aufnahme unter Wasser.

Das nächste Beispiel ist ein Magmatit mit Blauquarz, weißen Feldspäten und roten Hämatit-Pigmenten. Die Feldspäte sind durch tektonische Einwirkung zerbrochen, teilweise weisen sie staffelartige, mit Quarz oder dunklen Mineralen verfüllte Risse auf. Kein Helsinkit, möglicherweise aber ein metasomatisch überprägtes Gestein.

Abb. 9: Metasomatisch überprägter Magmatit, Kiesgrube Hoppegarten (Brandenburg).
Abb. 10: Nahaufnahme.
Abb. 11: „Schwedischer Helsinkit“; neben rotem Feldspat und grünem Epidot sind wenige schwarzgrüne Sekundärminerale (vermutlich Chlorit) sowie Quarz erkennbar. Kiesgrube Hoppegarten bei Müncheberg (Brandenburg), Aufnahme unter Wasser.
Abb. 12: Metasomatisch veränderter quarzführender Magmatit. Kiesgrube Niederlehme bei Berlin, Breite des Steins 9,5 cm.
Abb. 13: Epidotisiertes Band in einem Monzogranit. Kiesgrube Fresdorfer Heide bei Potsdam.

In einem begrenzten Bereich wurden die gelblichen Plagioklase des Plutonits kräftig epidotisiert und auch die dunklen Minerale weitgehend umgewandelt, während der rote Alkalifeldspat unverändert erscheint. Der Geschiebefund (Abb. 13) illustriert eine selektive metasomatische Verdrängung von Mineralen durch hydrothermale Fluide.

Abb. 14: Epidotisierter Plutonit (Quarzsyenit), Geschiebefund von Älekinta auf Öland. Breite des Steins 18 cm.
Abb. 15: Nahaufnahme, Bildbreite etwa 13 cm.

Das Gestein besteht im Wesentlichen aus rotem Alkalifeldspat, teilweise imprägniert durch ein rotbraunes Pigment. Auch geringe Anteile eines zweiten Feldspats (weiß) sowie etwas Quarz sind erkennbar. Die feinkörnige Grundmasse enthält wechselnde Mengen von hellgrünem Epidot, chloritisierte dunkle Minerale sowie gelblichen Titanit.

Abb. 16: Helsinkitartiger Metasomatit mit feinkörniger Grundmasse und roten Alkalifeldspat-Einsprenglingen (teilweise als Karlsbader Zwillinge). Kiesgrube Oderberg-Bralitz (Brandenburg), Aufnahme unter Wasser.
Abb. 17: Gleicher Stein, um 90 Grad gedreht.

Literatur

ASKLUND B 1923 Petrological studies in the neighbourhood of Stavsjö – SGU Arsbok. 17, 1923, S.40.

ASKLUND B 1947 Svenska Stenindustriomraden I-II Gatsten och Kantsten – Arsbok 40 (1946) No. 3, Sveriges Geologiska Undersökning Ser. C, No. 479; 187 S., 9 Abb., 8 Tafeln. Stockholm 1947

ECKERMANN H V 1925 A find of boulders of Helsinkite in the Parish of Alfta – Geologiska Föreningens i Stockholm Förhandlingar 47 (4): 504-511, Taf. 18-20, 2 Tab., Stockholm.

HESEMANN J 1929 Beiträge zur Kenntnis kristalliner Geschiebe – Zeitschrift für Geschiebeforschung 5 (3): 137-143, Berlin.

HESEMANN J 1930 Über einige neuere petrographische Arbeiten aus Schweden und Finnland (Helsinkite, Rapakiwi) – Zeitschrift für Geschiebeforschung 6 (4): 176-180, Berlin.

LAITAKARI A 1918 Einige Albitepidotgesteine von Südfinnland. Bulletin de la Commission géologique de Finlande, Vol. 51.

MELLIS O 1928 Über das Vorkommen von Helsinkitgeschieben in Lettland – Zeitschrift für Geschiebeforschung 4 (4): 145-150, 3 Abb., Berlin.

MELLIS O 1931 Beitrag zur Kenntnis deutscher Helsinkitgeschiebe – Zeitschrift für Geschiebeforschung 7 (4): 160-173, 4 Abb., Berlin.

MELLIS O 1931 Einige Ergänzungen zu J. HESEMANNs Aufsatz: „Über einige neuere petrographische Arbeiten aus Schweden und Finnland (Helsinkite, Rapakiwi)”. – Zeitschrift für Geschiebeforschung 7 (1): 34-37, Berlin.

MELLIS O 1932: Zur Genesis des Helsinkits. Vorläufige Mitteilung – Geologiska Föreningens i Stockholm Förhandlingar 54: 419-435, 8 Abb., Stockholm.

MEYER K-D 1987 Ein Helsinkit-Geschiebe von Volksdorf – Geschiebekunde aktuell 3 (3): 69-72, 1 Taf., Hamburg.

BURGATH KP & MEYER K-D 1989 Zwei Syenit-Geschiebe von Volksdorf bei Lüneburg – Archiv für Geschiebekunde 1 (1): 5-8, 1 Taf., Hamburg.

PREEDEN U, MERTANEN S, ELMINEN T, PLADO J 2009 Secondary magnetizations in shear and fault zones in southern Finland. Tectonophysics 479, 3-4, S. 203-213.

SIMONEN A 1948: On the petrochemistry of the infracrustal rocks in the Svecofennidic territory of southwestern Finland. Govt. Press Vol. 141

SIMONEN A 1971 Das finnische Grundgebirge – Geologische Rundschau, 1971, Bd. 60, S. 1406-1420.

TRÖGER E 1969 Spezielle Petrographie der Eruptivgesteine; Nr. 199, S. 92. Unveränderter Nachdruck 1969, Verlag der Deutschen Mineralogischen Gesellschaft.

ZANDSTRA J G 1988 Noordelijke kristallijne gidsgesteenten, E. J. Brill 1988

www.skan-kristallin.de

www.kristallin.de

Rhombenporphyr

Der Rhombenporphyr ist das bekannteste Leitgeschiebe aus dem Oslogebiet und für jedermann anhand der charakteristischen rhombenförmigen Feldspat-Einsprenglinge leicht erkennbar. Die Farbe der feinkörnigen bis dichten Grundmasse sowie Anzahl und Größe der Einsprenglinge variieren in weiten Grenzen (Abb. 2).

Abb. 1: Rhombenporphyr, Aufnahme unter Wasser. Geschiebe von Hanstholm (Dänemark), leg. T. Brückner.
Abb. 2: Rhombenporphyr-Nahgeschiebe von Slagen Tangen (Norwegen); Foto: D. Pittermann. Bildbreite ca. 40 cm.
  1. Vorkommen
  2. Beschreibung
  3. Verbreitung der Rhombenporphyr-Geschiebe
  4. Funde aus Berlin und Brandenburg
  5. Literatur

1. Vorkommen

Das Heimatgebiet der Rhombenporphyr-Geschiebe liegt im Oslograben in Süd-Norwegen. Vor etwa 280 Millionen Jahren stiegen entlang einer langgestreckten tektonischen Dehnungszone (Grabenbruch) magmatische Schmelzen auf. Während einer Phase intensiver vulkanischer Aktivität entstanden zahlreiche und unterschiedlich ausgebildete Lavadecken von Rhombenporphyren. Die Vorkommen setzen sich in südwestlicher Richtung am Boden von Oslofjord und Skargerrak fort. Im Zuge des Magmatismus im Oslograben kam es zur Bildung weiterer intrusiver und effusiver Gesteine, von denen einige aufgrund ihrer besonderen Entstehungsgeschichte sowie einzigartiger petrographischer Merkmale als Leitgeschiebe geeignet sind, u. a. Larvikit, Tönsbergit, Ekerit, Oslo-Basalt, Foyait und Nordmarkit.

Mit dem Aufdringen der Rhombenporphyr-Magmen ist die Entstehung eines Gangsystems aus intrusiven Rhombenporphyren verbunden, das entlang der Küste von Bohuslän in West-Schweden verläuft (KUMMEROV 1954, JACOBI 1997). Dieses Gebiet kommt ebenfalls als Lieferant von Rhombenporphyr-Geschieben in Frage, allerdings ist die Ausdehnung dieser Gänge vergleichsweise gering.

QUENSEL 1918 beschreibt ein kleines Vorkommen von (tektonisch deformierten) Rhombenporphyren aus dem Kebnekaise-Gebiet in Lappland. Ob aus diesem sehr weit nördlich gelegenen Gebiet Rhombenporphyr-Geschiebe nach Norddeutschland gelangten (und von den Rhombenporphyren des Oslo-Gebiets unterscheidbar sind), ist zweifelhaft.

Abb. 3: Rhombenporphyr, polierte Schnittfläche. Geschiebe von Hohenfelde, östlich von Schönberg, Schleswig-Holstein.
Abb. 4: Nahaufnahme. Neben rhombenförmigen Anschnitten von Feldspat-Einsprenglingen sind zwei mit Sekundärmineralen (u. a. Calcit und Epidot) verfüllte Blasenhohlräume erkennbar.

2. Beschreibung

Entscheidendes Erkennungsmerkmal der Rhombenporphyre sind die länglichen und manchmal spitz zulaufenden rauten- oder bootsförmigen Anschnitte von Feldspat-Einsprenglingen. Es handelt sich um Mischkristalle von Na-K-Ca-Feldspat, sog. ternären Feldspat, z. B. Anorthoklas (Albit+Orthoklas). Ihre Bildung ist an sehr heiße Magmen gebunden, in denen eine Entmischung der Feldspatkomponenten (Plagioklas und Alkalifeldspat) nicht oder nur unvollständig erfolgt. Diese speziellen Feldspäte sind ein charakteristischer Bestandteil der Vulkanite (und einiger Plutonite) des Oslograbens und von anderen Lokalitäten weitgehend unbekannt (s. u.). Petrographisch handelt es sich beim Rhombenporphyr um Latite, also SiO2-arme Vulkanite mit jeweils 35-65% Alkalifeldspat und Plagioklas. Latite sind das vulkanische Äquivalent der Monzonite.

Die Feldspat-Einsprenglinge weisen gelbliche, bräunliche oder graue Farben auf. Seltener sind blassgrüne, rote oder leuchtend orangefarbene Tönungen. Ihre Länge beträgt zwischen 5-30 mm. Die Feldspäte sind heller (selten dunkler) als die Grundmasse, können aber dunklere Kerne oder andersfarbige dünne Säume besitzen. Die Einsprenglingsdichte ist variabel. Nach OFTEDAHL 1967 lassen sich ein einsprenglingsreicher („klassischer“) Typ mit Feldspäten bis 2,5 cm Länge und ein einsprenglingsarmer Typ mit wenigen und kleinen Einsprenglingen bis 1,8 cm unterscheiden.

Als Folge von Entmischungsvorgängen ist manchmal eine unregelmäßig netz- oder tropfenförmige und wellige „Zeichnung“ in den Feldspäten erkennbar (Abb. 12, 27), die sich von der perthitischen Entmischung der Alkalifeldspäte und der polysynthetischen Verzwilligung der Plagioklase unterscheidet. Die Feldspäte neigen zur Bildung von Zwillingen, Mischkristalle aus mehreren Feldspat-Rhomben sind häufig. Durch Adhäsionskräfte in der Schmelze können die Feldspäte zu Kristallhaufen vereinigt sein (glomerophyrisches Gefüge, Abb. 28).

Neben rhombenförmigen können auch nahezu rechteckige Feldspat-Einsprenglinge auftreten. Eine seltene Variante ist der Rektangelporphyr mit ausschließlich rechteckigen Feldspat-Einsprenglingen und einer sehr feinkörnigen Grundmasse. Dieser Typ wird gelegentlich mit Diabasen verwechselt. Basaltische Gesteine mit rechteckigen Plagioklas-Einsprenglingen (=Diabase) besitzen häufig eine körnige Grundmasse sowie ein ophitisches Gefüge (kleine Plagioklasleisten in der Grundmasse). Die größeren Plagioklase zeigen in der Regel die typische polysynthetische Verzwilligung.

Abb. 5: Rotbrauner Rhombenporphyr; Kiesgrube Kreuzfeld, Aufnahme unter Wasser.
Abb. 6: Grünlicher Rhombenporphyr, Geschiebe von Presen/Fehmarn.
Abb. 7: Feldspat-Zwillinge in einem Rhombenporphyr aus der Kiesgrube Kröte (Wendland, Niedersachsen).
Abb. 8: Anorthoklas-„Drilling“; FO: Westermarkelsdorf/Fehmarn.
Abb. 9: Schnittfläche eines grauen Rhombenporphyrs mit dunklen Feldspäten, Aufnahme unter Wasser (FO: Steinbeck/Klütz).
Abb. 10: Rhombenporphyr; dunkle Feldspäte mit hellem Saum (Langtangen-Typ); Vigsö-Bucht (Dänemark), Slg. E. Figaj.
Abb. 11: Brauner Rhombenporphyr (oder Nordmarkit-Porphyr?) mit körniger Grundmasse und relativ viel dunklen Mineralen. Strandgeröll von Johannistal, Slg. E. Figaj, Aufnahme unter Wasser.
Abb. 12: Nahaufnahme.

Die Grundmasse der Rhombenporphyre ist feinkörnig bis dicht. Häufig sind bräunliche Farbtöne, auch mit grünlichem oder orangefarbenem Stich. Rote bis violette und sehr feinkörnige bis dichte Grundmassen finden sich vor allem in pyroklastischen Gesteinen (Abb. 13, 33). Seltener sind grüne, dunkelgraue oder sehr helle Farben (Abb. 42). Durch Verwitterung können die Gesteine oberflächlich stark ausbleichen.

Rhombenporphyre mit erkennbaren Einzelkörnern (über 1 mm) in der Grundmasse entstanden durch eine entsprechend langsame Abkühlung des Magmas und dürften subvulkanische Bildungen oder Gangporphyre sein. Solche intrusiven Typen sind sowohl aus dem Oslogebiet als auch von der westschwedischen Küste (Bohuslän) bekannt und der Herkunft nach nicht unterscheidbar. Für glaziostratigraphische Untersuchungen ist dies auch zweitrangig, da beide Vorkommen im Einzugsgebiet des norwegisch-westschwedischen Gletscherstroms liegen.

Dunkle Minerale sind nur in geringer Menge enthalten und von Hand kaum bestimmbar (Biotit, Augit und Erz nach ZANDSTRA 1988). Etwa ein Fünftel der Rhombenporphyr-Geschiebe reagiert auf einen Handmagneten, etwa jeder zehnte Geschiebefund ist deutlich bis stark magnetisch (statistische Erhebung an RP-Geschieben aus Brandenburg). Häufig sind gefüllte Blasenhohlräume (Mandeln) zu beobachten. Bei einem hohen Anteil an Mandeln kann man von einem Rhombenporphyr-Mandelstein sprechen. Als sekundäre Bildung treten Calcit oder Epidot auf, aber auch Mandelfüllungen mit glasklarem Quarz (Abb. 42).

Neben Porphyren mit weitgehend homogener Grundmasse finden sich blasenreiche Laven (weitgehend ohne Hohlraumfüllungen, meist einsprenglingsarmer Typ, Abb. 30) und aus Pyroklasten zusammengesetzte Vulkanite (Lapillisteine, Lapillituffe oder „Agglomeratlaven“, s. Abb. 13,14, 31-33). In älterer Literatur wurden letztere gelegentlich als „Rhombenporphyr-Konglomerat“ bezeichnet. Der Name sollte jedoch klastischen Sedimentgesteinen mit umgelagerten Vulkanitfragementen vorbehalten sein. Das Rhombenporphyr-Konglomerat (Krogskogen-Konglomerat), ein seltener Geschiebefund, besitzt eine sandige Matrix und enthält neben Klasten von Rhomben- und Quarz-Porphyren klastische Quarze, Sandstein und basaltische Klasten (s. skan-kristallin.de).

Abb. 13: Blasige Rhombenporphyr-Lava, Aufnahme unter Wasser; Steinbeck/Klütz.
Abb. 14: Nahaufnahme, Verzwilligung mehrerer rhombischer Feldspat-Einsprenglinge.
Abb. 15: Rhombenporphyr-Mandelstein (Hökholz bei Eckernförde).
Abb. 16: Rhombenporphyr-Mandelstein von der Vigsö-Bucht (Dänemark), Slg. E. Figaj.
Abb. 17: Rhombenporphyr, im unteren Teil eine Tufflage mit Feldspat-Bruchstücken. Polierte Schnittfläche eines Geschiebes von Westermarkelsdorf/Fehmarn (T. Brückner leg.).
Abb. 18: Spezielle Rhombenporphyr-Variante mit länglichen Feldspat-Einsprenglingen (Pipenhus-Typ); Geschiebe von Hökholz.
Abb. 19: Rhombenporphyr, Pipenhus-Typ, Breite 14 cm. Vigsö-Bucht (Dänemark), Slg. E. Figaj.

Zusammenfassung der unterschiedlichen Ausprägungen bzw. Geschiebetypen von Rhombenporphyren (Abbildungen in JENSCH 2013a und 2013b; allgemeine Beschreibung in HESEMANN 1975, SMED & EHLERS 2002, SCHULZ 2003):

  • gewöhnlicher Rhombenporphyr: einsprenglingsarmer und einsprenglingsreicher Typ
  • Rhombenporphyr-Mandelstein (Abb. 13-16)
  • blasige Laven, Pyroklastika (Lapillisteine, Lapillituffe oder „Agglomeratlaven“, Abb. 13-14, 31-33)
  • Intrusiver Rhombenporphyr (körnige Grundmasse, Abb. 39-41)
  • Rektangelporphyr (Abb. 35, s. a. kristallin.de)
  • Rhombenporphyr-Konglomerat (skan-kristallin.de).

Rhombenförmige Feldspat-Einsprenglinge finden sich in weiteren Gesteinstypen des Oslograbens, z. B. im Nordmarkit-Porphyr (s. skan-kristallin.de) oder in Plutoniten (Larvikit, Tönsbergit). Darüber hinaus treten sie auch in Gesteinen aus anderen Regionen auf, die aber kaum mit den Oslo-Gesteinen verwechselbar sind (Vaggeryd-Syenit, Sorsele-Granit, Heden-Porphyr). Einzelne rhombenförmige Plagioklase können in Diabasen enthalten sein.

Anhand der stratigraphischen Verhältnisse im Anstehenden unterscheidet OFTEDAHL 1952, 1967 etwa 30 einzelne Rhombenporphyr-Lagen (s. Proben auf vendsysselstenklub.dk). Seine Einteilung dürfte auf Geschiebefunde jedoch nur eingeschränkt anwendbar und eine entsprechende Zuordnung zu bestimmten RP-Lagen mit großen Schwierigkeiten verbunden sein. Zum einen ist von einer hohen Variationsbreite innerhalb der einzelnen RP-Lagen auszugehen. Auffällige Rhombenporphyr-Varianten müssen nicht an eine bestimmte vulkanostratigraphische Position gebunden sein, da in unterschiedlichen Phasen des Vulkanismus Porphyre mit ganz ähnlichen Merkmalen entstanden sein könnten, vor allem oberhalb der Lage RP15 (JENSCH 2013a: 60). Auch der Vergleich mit Anstehendproben führt zu Irrtümern (MEYER AP 1969). Rhombenporphyr-Lagen können durch frühere Vereisungen bereits vollständig abgetragen sein. Weiterhin ist zu bedenken, dass die Fortsetzung des Vorkommens der Oslo-Gesteine in südlicher Richtung unter Wasser weitere Varianten von Rhombenporphyren geliefert haben könnte.

3. Verbreitung der Rhombenporphyr-Geschiebe

Rhombenporphyre wurden zu verschiedenen Zeiten durch Eisströme vom Oslo-Gebiet in Richtung SSW bis SW über Dänemark und NW-Deutschland nach Süden transportiert (Abb. 21). In westlicher Richtung finden sich Rhombenporphyr-Geschiebe in Schottland und England (EHLERS 1988, K-D MEYER 1993, 2010), in südwestlicher Richtung in den Niederlanden (HUISMAN 1971). Auch aus Schweden liegt eine Fundmeldung vor (HILLEFORS 1968). Eine Kuriosität sind zwei (identische) Funde von Rhombenporphyr-Geschieben (sowie ein Drammen-Rapakiwi) von der Insel Leka, weit nördlich vom Oslograben (Mitteilung A. Bräu, Abb. 20). Der Transportmechanismus (Eisschollendrift, anthropogene Verschleppung) konnte bislang nicht geklärt werden.

Abb. 20: Rhombenporphyr, Geschiebefund von der Insel Leka (mittleres Norwegen), etwa 500 km nördlich von Oslo. Probe und Foto: A. Bräu.

In Deutschland sind Rhombenporphyr-Geschiebe von N- und NW- Deutschland bis nach Sachsen weit verbreitet. Mehrere Fundberichte liegen auch aus Polen und Tschechien vor (vgl. Literaturhinweise in SCHNEIDER & TORBOHM 2020). Außerhalb des allgemeinen Verbreitungsgebietes, östlich der Linie Mecklenburg-Brandenburg-Sachsen, treten sie als Einzelfund auf. Die östliche Verbreitungsgrenze wird in SCHULZ 1973, 2003 und 2012 ausführlich diskutiert (s. a. Abb. 21).

Abb. 21: Verbreitungsgebiet der Rhombenporphyr-Geschiebe. 1 – Gesteine des Oslograbens, Fortsetzung des Vorkommens unter Wasser; 2 – Geschiebefächer Rhombenporphyr (Hauptverbreitungsgebiet); 3 – östliche Verbreitungsgrenze; 4 – Maximalausdehnung der nordischen Inlandvereisungen. Karte nach SCHULZ 1973.

4. Funde aus Berlin und Brandenburg

Aus Berlin und Brandenburg konnten in jahrelanger Sammeltätigkeit bislang 82 Rhombenporphyr-Geschiebe zusammengetragen werden (Stand: 01/2021; Dokumentation in SCHNEIDER & TORBOHM 2020). Die Funde belegen einen weit nach Osten reichenden Transport dieser Gesteine in ein Gebiet, das überwiegend durch baltische und ostschwedische Geschiebegemeinschaften geprägt ist. Abb. 22 zeigt alle Fundpunkte. Hervorgehoben sind Kiesgruben mit der höchsten Fundanzahl. Eine hohe Fundanzahl spricht nicht unbedingt für ein gehäuftes Auftreten, sie könnte auch auf eine entsprechend aktive Sammeltätigkeit zurückzuführen sein.

Abb. 22: Fundpunkte von Rhombenporphyr-Geschieben in Brandenburg; Grafik verändert nach Benutzer Grabenstedt 2007, Quelle: wikipedia.de, Lizenz: CC BY-SA 3.0. Daten aus STACKEBRANDT & MANHENKE 2002.

1 – Damsdorf-Bochow bei Lehnin (9 Funde)
2 – Teschendorf bei Oranienburg (8 Funde)
3 – Hohensaaten (9 Funde)
4 – Niederlehme (9 Funde)
5 – Fresdorfer Heide (7 Funde)
6 – Ziezow (5 Funde)
7 – Gebiet um Fürstenwalde (Slg. Bennhold; 53 Funde).

Die brandenburgischen Rhombenporphyr-Geschiebe stammen überwiegend von Lokalitäten mit oberflächennah aufgeschlossenen Ablagerungen der Weichsel-Vereisung. Viele Kiesgruben liegen – nicht zuletzt aus bergbaulichen Erwägungen – am Rande von Hochflächen oder Urstromtälern. Lediglich 11 der insgesamt 82 Funde (14%) lassen sich unmittelbar mit saalekaltzeitlichen (oder älteren) Ablagerungen in Zusammenhang bringen. Diese im südlichen Brandenburg gelegenen Altmoränenhochflächen bieten allerdings auch nur wenige Aufschlüsse. Der Erhaltungszustand der Geschiebe ist im Allgemeinen schlecht: die Grundmassen sind ausgebleicht, die Gesteine stark verwittert, manchmal regelrecht durchgewittert.

Die in SCHNEIDER & TORBOHM 2020 dokumentierten Funde sind ausschließlich Einzelfunde von den Überkornhalden in Kiesgruben. Diese aus sandigen bis kiesigen Horizonten abgetrennte, grobe Gesteinsfraktion kann umgelagertes Material aus älteren Glazial-Ablagerungen enthalten. Statistische Daten zur glaziostratigraphischen Verbreitung von Rhombenporphyr-Geschieben in weichsel- und saalezeitlichen Ablagerungen in brandenburgischen Glazialablagerungen ließen sich durch Zählungen aus Tillablagerungen erheben. Jedoch dürften Rhombenporphyre hier auch bei ausdauernder Suche nur sehr selten anzutreffen sein.

Bemerkenswert ist die hohe Fundanzahl in unmittelbarer Nähe der nordöstlichen Verbreitungsgrenze der Rhombenporphyr-Geschiebe am Nordrand des Oderbruchs (s. SCHULZ 1973). Aus der Grube Hohensaaten (Lokalität 3 in Abb. 22) stammen 9, aus mittlerweile stillgelegten Gruben der unmittelbaren Umgebung zwei weitere Funde.

Der Geschiebesammler W. Bennhold trug im Laufe mehrerer Jahrzehnte mindestens 53 Rhombenporphyr-Geschiebe zusammen. Sie stammen überwiegend aus dem kompliziert gebauten Stauchmoränenkomplex der Rauener Berge im Bereich des Frankfurter Stadiums der Weichsel-Vereisung. Nach ZWENGER 1991 ist der genaue Herkunftshorizont zwar nicht präzisierbar, jedoch dürften die RP-Geschiebe überwiegend saalezeitlichen Bildungen entstammen, weil die weichselkaltzeitlichen Ablagerungen hier nur geringmächtig ausgebildet sind. Bennholds Funde werden in der Geschiebesammlung im Museum Fürstenwalde aufbewahrt.

Als Ursache für Fundhäufungen von Rhombenporphyren außerhalb ihres Hauptverbreitungsgebietes nennt SCHULZ 1973 einen wechselnden Einfluss des norwegischen Gletscherstroms. Rhombenporphyre wurden während des Drenthe-Stadiums der Saale-Vereisung und während des Brandenburgischen Stadiums der Weichsel-Vereisung weit nach Osten transportiert. Auch EIßMANN 1967 (in EHLERS 2011: 47) nimmt an, dass ein norwegisch-westschwedischer Eisstrom, dessen östlichste Ausdehnung etwa bis in den Raum Bornholm reichte, zu verschiedenen Zeiten durch einen nordschwedisch-finnischen Eisstrom abgelenkt wurde. Rhombenporphyr-Geschiebe von relativ weit östlich gelegenen Fundlokalitäten dürften daher nicht etwa aus aufgearbeiteten Ablagerungen der Elster-Vereisung stammen, zumal ihre Verbreitungsgrenze zumindest in Sachsen weit westlich der Maximalausdehnung elsterzeitlicher Sedimente liegt (etwa im Raum Grimma, SCHULZ 1973).

Geschiebefunde anderer Gesteine des Oslo-Grabens scheinen trotz intensiver Suche in Brandenburg nur sehr spärlich vorzukommen. MEYER AP 1964 berichtet von Fundhäufungen in der Kiesgrube am Stener Berg (Berlin). Aus der Kiesgrube Fresdorfer Heide bei Potsdam stammt ein Larvikit-Geschiebe. Ein weiterer Fund durch W. Bennhold aus den Rauener Bergen wird im Museum Fürstenwalde aufbewahrt. Herr D. Schmälzle (†) (Berlin) berichtet von einem Larvikit-Geschiebe aus dem nördlichen Brandenburg (mündl. Mitteilung). Erwähnenswert sind in diesem Zusammenhang vereinzelte Funde südwestschwedischer Leitgeschiebe wie Schonengranulit und „Flammenpegmatit“ (Slg. Torbohm: 7 Funde), die bisher offenbar nur wenig Beachtung fanden und ebenfalls durch einen norwegisch-westschwedischen Eisstrom nach Brandenburg gelangt sein dürften.

Abb. 23: Bisher größter Rhombenporphyr-Fund aus Brandenburg (20 x 15 x 10 cm); gut erhaltenes Exemplar mit dunkelgrauer Grundmasse und silbrig glänzenden, transparenten Feldspäten; Kiesgrube Niederlehme bei Berlin; Slg. M. Torbohm.
Abb. 24: Brauner Rhombenporphyr, Aufnahme unter Wasser (Kiesgrube Niederlehme).
Abb. 25: Rhombenporphyr mit eingeregelten Feldspäten (fluidaler Typ, „RP1“); Kiesgrube Niederlehme.
Abb. 26: Rhombenporphyr mit hellen und orangefarbenen Feldspäten, Aufnahme unter Wasser (Kiesgrube Niederlehme).
Abb. 27: Rhombenförmiger Feldspat-Einsprengling mit subparallelen, welligen Entmischungslamellen und randlicher Zonierung. Geschiebe aus der Kiesgrube Damsdorf-Bochow bei Lehnin, Slg. D. Lüttich.
Abb. 28: Glomerophyrisches Gefüge; zu kleinen Kristallhaufen aggregierte Feldspat-Einsprenglinge. Rhombenporphyr aus der Kiesgrube Hoppegarten, leg. St. Schneider.
Abb. 29: Eigens gedrucktes „Festkärtchen“ zum 50. Rhombenporphyr-Fund aus der Umgebung von Fürstenwalde (Sammlung Bennhold, Museum Fürstenwalde).
Abb. 30: Blasige Rhombenporphyr-Lava, einsprenglingsarmer Typ. Kiesgrube Teschendorf, leg. St. Schneider.
Abb. 31: Lapillistein mit Rhombenporphyr- und Mandelstein-Fragmenten, Aufnahme unter Wasser. Kiesgrube Teschendorf, leg. St. Schneider.
Abb. 32: Rhombenporphyr-Lapillistein, polierte Schnittfläche. Kiesgrube Falkenthal, Löwenberger Land.
Abb. 33: Rhombenporphyr aus roten und braunen, fest miteinander verbundenen Pyroklasten (pyroklastische Brekzie). Die Bezeichnung „Agglomeratlava“ ist nach aktueller Nomenklatur Pyroklastiten vorbehalten, die zu mind. 75% aus Bomben (Vulkanoklasten über 63 mm) bestehen. Fundort: Hohensaaten an der Oder, Slg. St. Schneider.
Abb. 34: Rhombenporphyr-Geschiebe aus SE-Brandenburg (Papproth, Tagebau Welzow-Süd, Niederlausitz).
Abb. 35: Rhombenporphyr mit rechteckigen Feldspat-Einsprenglingen (Rektangel-Porphyr); Lesesteinhaufen bei Schlunkendorf, Slg. D. Lüttich.
Abb. 36: Fund aus dem Berliner Stadtgebiet; Kiesgrube Spandau, leg. A.P. Meyer, Aufnahme unter Wasser.
Abb. 37: Rotgrauer Rhombenporphyr, Kiesgrube Hartmannsdorf bei Berlin.
Abb. 38: Graubrauner, deutlich magnetischer Rhombenporphyr mit dunkelgrauen Feldspäten, die von gelben Säumen umgeben sind (Langtangen-Typ, RP14a); Kiesgrube Teschendorf bei Oranienburg.
Abb. 39: Rhombenporphyr mit körniger Grundmasse. Kiesgrube Oderberg-Bralitz; Slg. St. Schneider.
Abb. 40: Intrusiver Typ mit körniger Grundmasse. Kiesgrube Hoppegarten bei Müncheberg.
Abb. 41: Nahaufnahme der nassen Oberfläche.
Abb. 42: Heller Rhombenporphyr. Das Gestein enthält runde und transparente Quarzaggregate, vermutlich eine sekundäre Füllung von Blasenhohlräumen. Kiesgrube Borgsdorf/Velten bei Oranienburg, leg. St. Schneider.

5. Literatur

EHLERS J 1988 Skandinavische Geschiebe in Großbritannien – Der Geschiebesammler 22 (2): 49-64, 5 Abb., Hamburg.

EHLERS J 2011 Das Eiszeitalter – Spektrum Sachbuch: IX+363 S., 347 meist kapitelweise num. Abb. (davon 327 farbig), 12 kapitelweise num. Tab., 32 Text-Kästen, Heidelberg etc. (Spektrum Akademischer Verlag in Springer SBM).

EIßMANN L 1967 Rhombenporphyrgeschiebe in Elster- und Saalemoränen des Leipziger Raumes – Abhandlungen und Berichte des naturkundlichen Museums „Mauritianum” Altenburg 5: 37-46, 2 Abb., 1 Tab., Altenburg.

GÁBA Z 1974 Rhombenporphyr und Prickgranit als Geschiebe im tschechoslowakischen Schlesien – Der Geschiebesammler 9 (1): 29-30, 1 Abb., Hamburg.

GÁBA Z & MATYÁŠEK J 1997 Rhombenporphyr-Geschiebe in der Tschechischen Republik- Geschiebekunde aktuell 13 (4): 123-125, 3 Abb., Hamburg.

GÓRSKA M 2003 Nowe znaleziska narzutniaków porfiru rombowego z Oslo na terenie północno-zachodniej Polski [New finds of erratics of the Oslo rhomb porphyry in North-Western Poland] – Przegląd Geologiczny 51 (7): 580-585, 7 Abb., 1 Tab., Warszawa.

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 44 Abb., 8 Taf., 1 Kt., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

HILLEFORS Å 1968 Fynd av stora block av rombporfyr [Discovery of large boulders of rhombporphyry] – Svensk geografisk Årsbok, 44: 186-188, Lund (Lunds Universitet, Geografiska Institution).

HUISMAN H 1971 Die Verbreitung der Rhombenporphyre – Der Geschiebesammler 6 (2): 47-52, Hamburg.

JENSCH J-F 2013a Bestimmungspraxis Rhombenporphyre – Der Geschiebesammler 46 (2-3): 47-103, 35 Abb.,3 Tab., 18 Taf., 1 Karte, Wankendorf.

JENSCH J-F 2013b Korrekturen zu Bestimmungspraxis Rhombenporphyre – Der Geschiebesammler 46(4): 120, 1 Abb., Wankendorf.

KUMMEROW E 1954 Grundfragen der Geschiebeforschung (Heimat, Transport und Verteilung der Geschiebe) – Geologie 3 (1): 42-54, Berlin.

LAMPE R 2012 Erster Nachweis eines Rhombenporphyr-Geschiebes in Vorpommern!? – Geschiebekunde aktuell 28 (3/4) [Werner-Schulz-Festschrift]: 95-98, 1 Abb., Hamburg/Greifswald.

LÜTTIG G 1997 Beitrag zur Geschiebeforschung in Böhmen und Mähren – Geschiebekunde aktuell 13 (2): 43-46, 2 Abb., Hamburg.

MEYER A P 1964 Über Funde kristalliner Geschiebe aus Berlin – Der Aufschluss, Sonderheft 14: 111-116, Heidelberg.

MEYER A P 1969 Ein Blick nach Norden – Der Geschiebesammler 4 (1): 21-27, 4 (2):58-62, 1 Karte, 4 (3/4): 83-94, 2 Abb., Hamburg.

MEYER K-D 1993 Rhombenporphyre an Englands und Schottlands Ostküste – Der Geschiebesammler 26 (1): 9-17, 6 Abb., Hamburg.

MEYER K-D 2010 200 Jahre Rhombenporphyr – Der Geschiebesammler 43 (3): 97-105, 4 Abb., 1 Karte, Wankendorf.

OFTEDAHL C 1952 Studies on the igneous rock complex of the Oslo region. XII. The Lavas – Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo (I) Matematisk-Naturvidenskapelig Klasse 3: 64 S., 21 Abb., 6 Tab., Oslo (Universitetsforlag).

OFTEDAHL C 1967 Magmen-Entstehung nach Lava-Stratigraphie im südlichen Oslo-Gebiete – Geologische Rundschau 47: 203-218, 5 Abb., 2 Tab., Stuttgart.

QUENSEL P 1918 Über ein Vorkommen von Rhombenporphyren in dem präkambrischen Grundgebirge des Kebnekaisegebietes. – Bulletin of the Geological Institution of the University of Upsala 16: 1-14, 2 Abb., 1 Taf., 3 Tab.,Uppsala.

SCHULZ W 1973 Rhombenporphyrgeschiebe und deren östliche Verbreitungsgrenze im nordeuropäischen Vereisungsgebiet – Zeitschrift für geologische Wissenschaften 1 (9): 1141-1154, 5 Abb., Berlin.

SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 1 Taf., div. Abb., Schwerin (cw Verlagsgruppe).

SCHULZ W 2012 Stratigraphie und Geschiebeführung am Kliff des Klützer Winkels Nordwest – Mecklenburg) – Geschiebekunde aktuell 28 (1): 13-27, 8 Abb.; Hamburg/Greifswald.

SMED P & EHLERS J 2002 Steine aus dem Norden (2.Aufl.) – 194 S., 34 Taf., 67 Abb., 1 Kte. (rev. 2008), Berlin, Stuttgart (Gebr. Borntraeger).

STACKEBRANDT W & MANHENKE V [Hrsg.] 2002 Atlas zur Geologie von Brandenburg – Landesamt für Geowissenschaften und Rohstoffe Brandenburg, (2. Aufl.): 142 S., 43 Ktn., Kleinmachnow.

TIETZ O 1999b Otoczaki porfiru rombowego z Pogórza Łużyckiego (pd.-wsch. Niemcy) – Przyroda Sudetów Zachodnich t.2: 105-108, 2 Abb., 1 Tab., 1 Kt., Jelenia Gora.

VIŠEK J & NÝVLT D 2006 Leitgeschiebestatistische Untersuchungen im Kontinentalvereisungsgebiet Nordböhmens – Archiv für Geschiebeforschung 5 (1-5) [Festschrift Gerd Lüttig]: 229-236, 2 Abb., 2 Tab., Hamburg/Greifswald.

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).

ZWANZIG M, BÜLTE R, LIEBERMANN S & SCHNEIDER S 1994 Sedimentärgeschiebe in den Kiesgruben Oderberg-Bralitz, Hohensaaten und Althüttendorf – In: Schroeder J H [Hrsg]: Führer zur Geologie von Berlin und Brandenburg, No. 2: Bad Freienwalde-Parsteiner See: 131-141, 7 Abb., Berlin (Geowissenschaftler in Berlin und Brandenburg e.V., Selbstverlag).

ZWENGER W H 1991 Die Geschiebesammlung W. Bennhold im Museum Fürstenwalde (Spree) Teil 1: Kristalline Geschiebe – Archiv für Geschiebekunde 1 (2): 65-78, 2 Taf., 4 Abb., 2 Tab., Hamburg.

Basaltische Brekzien

Als Geschiebe finden sich Brekzien aus grauen, violettgrauen, roten, rotbraunen oder grünen Klasten basaltischer Gesteine, die durch einen Calcit-Zement miteinander verbunden sind. Ein Teil der Gesteine könnte aus dem gleichen, zwischen Stockholm und Gotland vermuteten Unterwasser-Vorkommen stammen wie der „Ostsee-Melaphyr-Mandelstein“.

Abb. 1: Rezentes Beispiel: Basaltische Vulkanoklasten, verbunden durch einen Calcit-Zement; die Zwischenräume der Klasten sind nur unvollständig ausgefüllt. Bildbreite 42 cm; Playa de Guariñen, Taguluche, La Gomera, Kanarische Inseln.
Abb. 2: Fragmente basaltischer Gesteine mit und ohne Mandeln, verkittet durch einen Calcit-Zement. Bildbreite 50 cm, Geschiebe aus der Kiesgrube Penkun (Vorpommern).

Die Verkittung der basaltischen Gesteinsfragmente ist auf Ausscheidung von Calcit oder anderen Sekundärmineralen aus zirkulierenden hydrothermalen Lösungen zurückzuführen. Ihre Brekziierung kann auf unterschiedliche Weise erfolgt sein: Fragmentierung durch Auswurf als Pyroklasten während vulkanischer Aktivität; Zerbrechen massiger Vulkanite durch Abkühlung oder (vulkano)tektonische Vorgänge; Fragmentierung beim Kontakt basaltischer Lava mit Meerwasser.

Manche Brekzien enthalten nur einen Typ basaltischer Gesteine und ihre Fragmente passen wie in einem Puzzlespiel zueinander (Abb. 4). Pyroklastische Ablagerungen können aus unterschiedlichen Klastentypen des gleichen Gesteinstyps bestehen (verschiedenfarbige basaltische Gesteine und Mandelsteine, Abb. 2); submarine Laven und Vulkanoklasten zeichnen sich durch eine intensive Alteration und Grünfärbung aus (Abb. 6-8). In der Regel sind genaue Aussagen zur Entstehung solcher Geschiebe-Brekzien schwierig, weil ihre Position im anstehenden Gesteinsverband nicht bekannt ist.

Abb. 3: Vulkanoklastische Brekzie mit basaltischen Gesteinen, verkittet durch einen rot pigmentierten Zement aus Calcit. Kiesgrube Miodowice (Westpolen), Aufnahme unter Wasser.
Abb. 4: Graues basaltisches Gestein, vermutlich in situ zerbrochen (die Klasten passen teilweise zueinander). Die Risse wurden mit einem Zement aus Calcit und hellgrünem Epidot verfüllt. Kiesgrube Horstfelde, Aufnahme unter Wasser.
Abb. 5: Nahaufnahme; weißer Calcit ist bereits an seinen parallelen Zwillingslamellen erkennbar.
Abb. 6: Brekzie aus grünen Mandelsteinen (Spilit?). Polierte Schnittfläche eines Geschiebes aus der Kiesgrube Damsdorf/Bochow bei Lehnin (Brandenburg), leg. D. Lüttich.
Abb. 7: Nahaufnahme; größere Klasten von grünen Mandelsteinen liegen in einer calcit-zementierten Matrix aus kleinen Gesteinsfragmenten
Abb. 8: Spilitische Mandelstein-Brekzie aus einem variszischen Vorkommen. Die graugrünen und sehr hellen Klasten, hauptsächlich Mandelsteine, besitzen eine unregelmässige, teils bizarre Gestalt. Loser Stein von einer Halde am Büchenberg bei Elbingerode (Harz), Aufnahme unter Wasser.
Abb. 9: Rotbraune basaltische Brekzie mit feinkörnigem Zement und weißen Calcit-Mandeln. Polierte Schnittfläche; Kiesgrube Fresdorfer Heide bei Potsdam, leg. G. Engelhardt.
Abb. 10: Brekzie aus grünen und rotbraunen basaltischen Mandelsteinen, verkittet durch einen Zement aus hellem Calcit und grünen Sekundärmineralen. Geschiebe von Hökholz, Slg. E. Figaj, Aufnahme unter Wasser.
Abb. 11: Nahaufnahme. Die Ränder der Klasten werden von roten Hämatit-Ausscheidungen begleitet.
Abb. 12: Rückseite des gleichen Gesteins.
Abb. 13: Basaltische Mandelstein-Brekzie, zum größeren Teil aus einer grünen und epidothaltigen Matrix bestehend. Geschiebe von Hökholz, Slg. E. Figaj, Aufnahme unter Wasser.
Abb. 14: Nahaufnahme der nassen Gesteinsoberfläche.
Abb. 15: Basaltisches Gestein aus graubraunen und feinkörnigen (tuffartigen) sowie violettgrauen und dichten Partien (Lava). Die Tufflagen sind von hellen und dunklen Mandeln durchsetzt. Kiesgrube Hoppegarten bei Müncheberg (Brandenburg), Aufnahme unter Wasser.
Abb. 16: Nahaufnahme, polierte Schnittfläche.

Achatführende Basaltmandelsteine

Die Bildung von mikrokristallinem Quarz in Form von Chalcedon oder Achat als Mandelfüllung in basaltischen Gesteinen ist keine ungewöhnliche Erscheinung und weltweit in vielen Vorkommen zu beobachten. Als Geschiebe findet sich der Gesteinstyp nur vereinzelt. Wenige anstehende Vorkommen sind bisher bekannt (z. B. Abb. eines Öje-Basalts mit rotem Achat als Hohlraumfüllung in SMED 2002: 127).

Chalcedon und Achat treten häufig gemeinsam auf. Chalcedon ist milchig-weiß, hellgrau oder bläulich gefärbt und massig ausgebildet. Chalcedon mit einer feinen Bandtextur kann vereinfachend als Achat bezeichnet werden. Die Größe der Mandeln beträgt meist nur wenige Millimeter, ausnahmsweise finden sich auch cm-große Mandeln (Abb. 3). Roter Achat ist selten.

Abb. 1: Basaltischer Mandelstein mit größeren Mandeln aus massigem Chalcedon und weißem Bandachat. Polierte Schnittfläche, Geschiebe aus der Kiesgrube Waltersdorf bei Berlin, Aufnahme unter Wasser.
Abb. 2: Nahaufnahme. Links im Bild eine größere Mandel mit weißem bis milchig-blauem Chalcedon und sphärischen Achat-Aggregaten.
Abb. 3: Blasenhohlraum mit zonarem Aufbau: am Rand heller Bandachat, im Kern kristalliner Quarz. Polierte Schnittfläche eines Geschiebes von der Baustelle des Flughafens BER, Schönefeld, Brandenburg (D. Lüttich leg.).
Abb. 4: Mandelstein mit bläulich-weißem Chalcedon und rotem Bandachat. Strandgeröll von Misdroy (Westpolen), polierte Schnittfläche, Aufnahme unter Wasser.
Abb. 5: Nahaufnahme. Das Gestein wurde hydrothermal stark überprägt – erkennbar an der graugrünen Färbung der Grundmasse – und ist von groben und zahlreichen feinen Rissen durchzogen.
Abb. 6: Gleicher Stein, polierte Schnittfläche; Mandeln mit rotbraunem Bandachat. Die Mandel links unten im Bild ist eine sog. Wasserwaage: die horizontale Lagentextur des Achats verweist auf die Orientierung der Mandel im Gesteinskörper (demnach steht das Bild hier allerdings auf dem Kopf).
Abb. 7: Basaltischer Mandelstein mit dunklen und hellen Mandeln sowie xenolithischen Gesteinseinschlüssen. Polierte Schnittfläche, Geschiebe aus der Kiesgrube Fresdorfer Heide bei Potsdam, Slg. G. Engelhardt.
Abb. 8: Nahaufnahme der Mandeln, darunter eine rote Achatmandel.

Es folgen drei Makroaufnahmen vom gleichen Gestein.

Abb. 9: Nahaufnahme einer rotbraunen Achatmandel (Bild: T. Langmann).
Abb. 10: Nahaufnahme eines Xenoliths und einer mehrfach zonierten Mandel mit grünen und schwarzen Sekundärmineralen (Bild: T. Langmann).
Abb. 11: Nahaufnahme einer Mandel mit hellem Bandachat (Bild: T. Langmann).
Abb. 12: Grüner basaltischer Mandelstein mit unterschiedlich mineralisierten und meist zonierten Mandeln. Polierte Schnittfläche, Geschiebe aus der Kiesgrube Penkun (Vorpommern).
Abb. 13: Einige Mandeln enthalten orangeroten Bandachat.
Abb. 14: Auch blassroter Achat tritt auf. Andere Mandeln besitzen dunkle Kerne und einen grünen Saum oder sind mehrfach zoniert. Die Grundmasse des Gesteins ist von hellen Flecken durchsetzt.
Abb. 15: Heller und gebänderter Achat tritt auch als Füllung von Blasenhohlräumen im Ostsee-Syenitporphyr auf; Nahaufnahme einer polierten Schnittfläche, Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).

Basaltische Mandelsteine

  1. Allgemeines
  2. Vorkommen und Anstehendproben
  3. Geschiebetypen
    3.1. Ostsee-Melaphyr-Mandelstein
    3.2. Spilit-Mandelstein
    3.3. Prehnit-Mandelstein
  4. Literatur

Siehe auch achatführende Basaltmandelsteine und basaltische Brekzien.

Als Mandeln werden rundliche, mit hydrothermalen Mineralneubildungen verfüllte Blasenhohlräume in Vulkaniten bezeichnet. Man spricht auch von einem Mandelstein- oder amygdaloidem Gefüge (von amygda griech. Mandel). Nur teilweise mit Mineralen verfüllte Hohlräume nennt man Drusen. Mandelsteingefüge kann in allen Arten von Vulkaniten auftreten. Als Geschiebe findet es sich besonders häufig in basaltischen Gesteinen, darüber hinaus auch im Ostsee-Syenitporphyr, Rhombenporphyr oder Schonen-Lamprophyr.

Attraktiv sind basaltische Mandelstein-Geschiebe mit entsprechendem Farbkontrast zwischen Grundmasse und Mandeln. Die vergleichsweise schweren Gesteine bestehen aus einer feinkörnigen und grauen, rotbraunen, grünen oder violett gefärbten Grundmasse. Mit weißen, schwarzen, grünen oder roten Sekundärmineralen verfüllte Mandeln weisen runde, gelegentlich auch längliche, schlauchförmige oder verzweigte Formen auf. Darüber hinaus können Feldspat-Einsprenglinge von weißer, roter oder grüner Farbe enthalten sein.

Abb. 1: Violettgrauer basaltischer Mandelstein mit weißen Calcit-Mandeln; Geschiebe von Fehmarn.
Abb. 2: Violettgrauer basaltischer Mandelstein mit runden Mandeln und weißen bis grünlichen Feldspat-Einsprenglingen (eckig). Strandgeröll von Steinbeck/Klütz, Aufnahme unter Wasser.

Beim Aufstieg vulkanischer Schmelzen werden gelöste Gase durch Druckentlastung in Form von Blasen freigesetzt. Neigen Schmelzen quarzreicher Gesteine zum „Aufschäumen“ (Bims), bilden sich in niedrig viskosen und quarzarmen (z. B. basaltischen) Schmelzen einzelne und mehr oder weniger voneinander abgegrenzte Blasenhohlräume. Eine hydrothermale Überprägung der Gesteine und die damit verbundene Ausscheidung von Mineralen in Blasenhohlräumen erfolgt in den oberen Bereichen der Erdkruste oder an der Erdoberfläche, und zwar überall dort, wo ausreichend Wasser zur Verfügung steht: bei submarinen Eruptionen, bei der Interaktion von „trockenen“ basaltischen Schmelzen mit wässrigen Fluiden oder einer hydrothermalen Überprägung der Vulkanite nach ihrer Ablagerung.

Abb. 3: Rezentes Beispiel der Blasenbildung in einem Alkalibasalt. In der äußeren und kühleren Zone des Lavaergusses kommt es zur Entgasung und Bildung eines Blasenzuges, während in der heißeren Zone nur wenige, durch die anhaltende Bewegung der Lava ausgelängte Blasen erkennbar sind. Bildbreite 30 cm; La Gomera/Kanarische Inseln/Spanien.
Abb. 4: Blasenreiche Partie mit weißen Mandeln in einem grünlichgrauen basaltischen Gestein. Geschiebe aus der Kiesgrube Buchholz bei Prenzlau.

Durch hydrothermale Überprägung verändert sich der Mineralbestand basaltischer Gesteine. Die gewöhnlich dunkelgraue Grundmasse nimmt durch die Neubildung von Chloritmineralen, Epidot oder Amphibol (Aktinolith) eine grüne Färbung an. Rote oder grauviolette Farben sind auf Ausscheidungen von Hämatit zurückzuführen. Auch Magnetit – in vielen basaltischen Gesteinen mit einem Handmagneten nachweisbar – wird oxidiert und ist in den meisten Mandelsteinen nicht mehr enthalten. Der Vorgang der „Vergrünung“ basaltischer Gesteine (Grünstein) erfolgt unter niedrig metamorphen Bedingungen der Subgrünschiefer- oder Grünschieferfazies unter Mitwirkung metasomatischer Prozesse.

Die meist feinkörnigen Mandeln können aus einem einzigen Mineral oder einem Mineralgemisch bestehen. Nicht selten lässt sich eine konzentrische und schichtige Mineralabfolge beobachten. Während die Bildung von Quarz, Chalcedon, Achat, Jaspis, Calcit und Chlorit an keine speziellen Bedingungen geknüpft ist, sind faziesspezifische Minerale (z. B. Pumpellyit) nur mikroskopisch bestimmbar. Als Ausnahme mag Prehnit gelten, der unter günstigen Umständen auch von Hand erkennbar ist (s. u. Prehnit-Mandelstein, Abb. 34-37).

Weiße Mandeln bestehen aus Quarz, Chalcedon (massig, häufig bläulich, Abb. 13) oder Karbonaten (Calcit). Calcit ist mittels Säuretest nachweisbar, größere Kristalle zeigen gelegentlich eine deutliche Zwillingsstreifung parallel zur Spaltbarkeit (Abb. 12). Ebenfalls farblos sind Zeolithe (z. B. Natrolith). Sie reagieren nicht auf HCl und sind im Unterschied zu Quarz und Chalcedon mit dem Messer ritzbar. Weißer, roter oder orangefarbener Achat ist an seiner charakteristischen Bandtextur erkennbar (Abb. 14; siehe auch Abschnitt achatführende Basalt-Mandelsteine).

Grüne bis schwarzgrüne Farben weisen auf Minerale der Chloritgruppe hin. In Frage kommen auch Prehnit (blassgrün), Klinozoisit sowie Aktinolith, der bereits unter den Bedingungen der Grünschieferfazies entstehen kann. Ein Hinweis auf Epidot sind feinkörnige und apfelgrüne Pigmente. Gegebenfalls enthaltene Feldspat-Einsprenglinge (Plagioklas) können durch hydrothermale Alteration stark verändert sein. Neben der Umwandlung in Serizit (feinste Schüppchen von Hellglimmer) sind „vergrünte“ Plagioklase, mitunter auch hellgrüne „prehnitisierte“ Plagioklase zu beobachten (Abb. 38).

Abb. 5: Helle Mandel mit unregelmäßigem Umriss in einem grauen Basaltmandelstein. Gekritztes Geschiebe aus der Kiesgrube Althüttendorf (Brandenburg), Aufnahme unter Wasser.
Abb. 6: Nahaufnahme; die Mandel weist eine zonierte Mineralabfolge auf.
Abb. 7: Rotbrauner Mandelstein mit weißen, roten und schwarzen Mandeln; Kiesgrube Hohensaaten (Brandenburg).
Abb. 8: Grünlichbrauner Mandelstein mit grünen, teilweise zonierten Mandeln; Altenteil (Fehmarn).
Abb. 9: Grauer Mandelstein mit Feldspat-Einsprenglingen. Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 10: Gleicher Stein, Nahaufnahme; kleine schwarze Mandeln mit hellem Saum.
Abb. 11: Grünlichgrauer Mandelstein; Geschiebe von Hohenfelde, östlich von Kiel.
Abb. 12: Nahaufnahme; weißer Calcit ist bereits an seiner charakteristischen Zwillingsstreifung erkennbar.
Abb. 13: Polierte Schnittfläche eines basaltischen Mandelsteins mit bläulichem und massigem Chalcedon; Strand bei Misdroy (Polen).
Abb. 14: Roter Bandachat in einem grünen Mandelstein. Polierte Schnittfläche eines Geschiebes aus der Kiesgrube Penkun (Vorpommern).
Abb. 15: Beim Aufspalten dieses Mandelsteins präparierten sich ganze schwarze Mandeln heraus, die offenbar härter als das umgebende Gestein sind. Kiesgrube Hoppegarten, leg. G. Ramm.
Abb. 16: Nahaufnahme; die Außenseite der Mandeln weist konkave Vertiefungen auf, die wahrscheinlich auf Alterungsvorgänge der dunklen Minerale (Chlorit o. ä.) durch Wasserabgabe zurückzuführen sind.
Abb. 17: Rhombenporphyr-Lava mit weißen Calcit-Mandeln; Geschiebe von Hökholz bei Eckernförde.

2. Vorkommen und Anstehendproben

Im Vergleich zur Vielfalt an Geschiebefunden basaltischer Mandelsteine sind bisher nur wenige, zudem kleine anstehende Vorkommen bekannt. Gehäufte Geschiebefunde auf Gotland deuten auf ein größeres Vorkommen südlich von Stockholm am Grund der Ostsee hin (Abb. 18, s. a. skan-kristallin.de). Von dort stammt vermutlich ein großer Teil des Geschiebetyps „Ostsee-Melaphyr-Mandelstein“.

Abb. 18: Geschiebe von Gotland. Links oben ein basaltischer Mandelstein, links unten ein Brauner Ostsee-Quarzporphyr. Beide Gesteinstypen kommen auf Gotland häufig vor. Foto: G. Engelhardt.

Basaltische Mandelsteine mit schwarzen Mandeln sind vom Öje-Diabas in Dalarna bekannt (s. skan-kristallin.de). Der Öje-Diabas durchdringt den Dala-Sandstein in Form von Gängen und Sills. Ähnliche Gesteine sind auch innerhalb der anderen großen jotnischen Sandstein-Vorkommen zu erwarten.

Im Karbon und Perm wurden paläozoische Sedimentgesteine und das kristalline Grundgebirge in Schonen von Gängen basischer Gesteine durchschlagen. Teilweise unterlagen diese einer intensiven hydrothermalen Alteration. Ein Beispiel ist der Frualid-Mandelstein, der östlich von Övedkloster als steiler Bergrücken aufgeschlossen ist (Abb. 19).

Abb. 19: Frualid-Mandelstein, Anstehendprobe, Aufnahme unter Wasser.

Ein winziges Vorkommen mit metamorph überprägten, etwa 1,7 Ga alten basaltischen Mandelsteinen ist aus Småland bekannt (Ortsausgang von Nässja).

Abb. 20: Grauer basaltischer Mandelstein von Nässja (Småland); die weißen Mandeln wurden durch metamorphe Überprägung ausgelängt.

3. Geschiebetypen

3.1. Ostsee-Melaphyr-Mandelstein

Melaphyr ist eine veraltete Bezeichnung für Basalte von mindestens paläozoischem Alter (heutige Bezeichnung: Paläo-Basalt). Der Geschiebetyp ist häufig zu finden und besitzt eine violettgraue bis rötliche Grundmasse und Mandeln mit Calcit, Quarz oder grünen Mineralen (Chlorit). Die Namensgebung bezieht sich auf ein größeres Vorkommen, das südlich von Stockholm am Grund der Ostsee vermutet wird (siehe z. B. RUDOLPH 2017: 154).

Abb. 21: Basaltischer Mandelstein („Ostsee-Melaphyr-Mandelstein“). Geschiebe von Altenteil (Fehmarn), Aufnahme unter Wasser.
Abb. 22: Nahaufnahme; rotbraune bis rote Grundmasse mit Ausscheidungen von Hämatit und grünen (chloritisierten) Partien. Die Mandeln bestehen aus Calcit.
3.2. Spilit-Mandelstein

Spilite sind basaltische Gesteine, die an einem aktiven Plattenrand in einer ozeanischen Riftzone entstehen und unter niedrig metamorphen Bedingungen unter Mitwirkung metasomatischer Prozesse verändert wurden (sog. Ozeanboden-Metamorphose). Ohne den geologischen Kontext im Anstehenden sind Spilite nicht von vergrünten Basalten mit einer anderen Entstehungsgeschichte unterscheidbar.

Abb. 23: Graugrüner Mandelstein, durchsetzt mit zahlreichen schwarzgrünen Mandeln; Geschiebe von Misdroy (Polen).
Abb. 24: Grüner Mandelstein mit überwiegend dunklen Mandeln; Kiesgrube Althüttendorf (Brandenburg).
Abb. 25: Grüner Mandelstein mit weißen Mandelfüllungen und roten Hämatit-Ausscheidungen. Polierte Schnittfläche, Geschiebe aus der Kiesgrube Penkun (Vorpommern).
Abb. 26: Nahaufnahme. Die intensive Grünfärbung der Grundmasse weist auf eine nahezu vollständige Umwandlung der primären Mineralbestandteile (Pyroxen, Plagioklas) in Chlorit, Epidot o. ä. hin.
Abb. 27: Grüner Mandelstein mit roten Feldspat-Einsprenglingen; polierte Schnittfläche eines Geschiebes aus der Kiesgrube Teschendorf bei Oranienburg (Brandenburg).
Abb. 28: Nahaufnahme; zonierte Mandeln mit verschiedenen Mineralisationen. Helle Reaktionshöfe um die Mandeln lassen auf eine stoffliche Interaktion zwischen Grundmasse und Mandeln während oder nach der Bildung von Sekundärmineralen schließen.
Abb. 29: Einige der helleren Mandeln enthalten Chalcedon.
Abb. 30: Grüner Mandelstein mit hellroten Mandeln sowie grünen und stark alterierten Plagioklas-Einsprenglingen. Strandgeröll von Misdroy (Polen).
Abb. 31: Gleicher Stein, Nahaufnahme.
Abb. 32: Grünlichgrauer Mandelstein mit dunklen Mandeln. Eine einzelne Mandel ist mit bläulichem Chalcedon gefüllt. FO: Strand von Misdroy (Polen).
3.3. Prehnit-Mandelstein

Prehnit entsteht unter niedrigmetamorphen Bedingungen (Subgrünschieferfazies, sog. Prehnit-Pumpellyit-Fazies). ESKOLA 1933, 1934 beschreibt Geschiebefunde eines Mandelsteintyps aus Ostpreussen und Litauen, der Mandeln aus Prehnit, bisweilen auch „prehnitisierte“ Plagioklas-Einsprenglinge enthält. Ein anstehendes Vorkommen ist nicht bekannt und wird am Grund der Ostsee vermutet.

Nur Mandelstein-Gesteine mit blassgrünem Prehnit sind mit einiger Wahrscheinlichkeit erkennbar. Das Mineral kann auch farblos, weiß, grau, gelblich, rosa oder dunkelgrün gefärbt sein. Charakteristisch sind kugelige bis halbkugelige Aggregate mit einem radialstrahligen oder fächerförmigen Aufbau. Der zentrale Teil kann aus Quarz bestehen. Diese sog. „Prehnit-Sonnen“ lassen sich am besten auf einer Bruchfläche beobachten. Häufiger findet sich Prehnit aber in Gestalt einer körnigen und kristallinen Masse. Das durchsichtige bis durchscheinende hellgrüne Mineral besitzt Glasglanz und ist mit Quarz, Calcit und/oder etwas apfelgrünem Epidot vergesellschaftet. Die feinkörnige und dunkelrotbraune Grundmasse des Prehnit-Mandelsteins enthält gelegentlich zahlreiche und sehr kleine Plagioklasleisten. Größere Plagioklas-Einsprenglinge können ebenfalls in hellgrünen Prehnit umgewandelt sein (Pseudomorphosen von Prehnit nach Plagioklas).

Abb. 33: Hellgrüner Prehnit aus Namibia in radialstrahliger Ausbildung („Prehnit-Sonne“); Slg. E. Figaj.
Abb. 34: Prehnit-Mandelstein mit rotbrauner Grundmasse. FO: Preschen, Warthe-Grundmoräne, leg. F. Mädler.
Abb. 35: Nahaufnahme der Bruchfläche; massiger Prehnit, teilweise mit Calcit im Kern der Mandeln.
Abb. 36: Gleicher Stein, Nahaufnahme unter Wasser. Die Mandeln sind von einem Rand aus gelbgrünem Epidot umgeben.
Abb. 37: Prehnit-Diabasmandelstein; Niederfinow, leg. Müldner 1958. Geschiebesammlung der BGR in Berlin-Spandau.
Abb. 38: Stark alterierter Basaltmandelstein mit „prehnitisierten“ Feldspat-Einsprenglingen. Aufnahme unter Wasser; Kiesgrube Hohensaaten (Brandenburg).
Abb. 39: Gleicher Stein, polierte Schnittfläche.

4. Literatur

ESKOLA P 1933 Tausend Geschiebe aus Lettland – Annales Academiae Scientiarum Fennicae (A) 39 (5): 1-41, 9 Abb., 2 Tab., Helsinki.

ESKOLA P 1934 Prehnite amygdaloid from the bottom of the Baltic. – Bulletin de la Commission géologique de Finlande 17 (104) und Comptes Rendus de la Société géologique de Finlande 8 (8): 132-143, 7 Abb., Helsinki.

RUDOLPH F 2017 Das große Buch der Strandsteine – Wachholtz-Verlag – Murmann Publishers, Kiel/Hamburg.

VINX R 2011 Gesteinsbestimmung im Gelände – 480 S., 418 Abb., 3. Auflage Spekrum Akademischer Verlag Heidelberg.

Ostsee-Syenitporphyr

Syenitporphyr ist eine veraltete Bezeichnung für Vulkanite oder feinkörnige magmatische Gesteine, die Alkalifeldspat-, aber keine Quarzeinsprenglinge enthalten. Vorkommen des Gesteinstyps wurden von verschiedenen Lokalitäten beschrieben (z. B. Rödö, Ragunda). Der bekannteste Geschiebetyp ist der Ostsee-Syenitporphyr, dessen Anstehendes nicht zugänglich ist und wahrscheinlich in einem Unterwasservorkommen südlich von Stockholm liegt. Die Erstbeschreibung geht auf HEDSTRÖM 1894 zurück (vgl. a. COHEN & DEECKE 1896, HESEMANN 1975, ZANDSTRA 1988).

Abb. 1: Ostsee-Syenitporphyr mit grünlich-grauer Grundmasse und wenigen Feldspat-Einsprenglingen. Die Mandeln besitzen einen zonaren Aufbau sowie eine helle Aureole, die sich in der Grundmasse fortsetzt. Geschiebe aus der Kiesgrube Teschendorf bei Oranienburg, Aufnahme unter Wasser.
Abb. 2: Gleicher Stein, Nahaufnahme. Links unten ein netzartig von dunklen Mineralen durchsetzter (korrodierter) Feldspat.

Die gewöhnliche Variante des Ostsee-Syenitporphyrs ist recht unscheinbar und kann als Geschiebe leicht übersehen werden (Abb. 3). Es handelt sich um ein feinkörniges Gestein mit grau- bis braungrüner Grundmasse, die wenige und kleine Einsprenglinge aus weißem bis rotem Feldspat sowie ovale und meist zoniert aufgebaute Mandeln enthält. Seltener, aber auffällig sind intensiv grün gefärbte Typen oder Varianten mit großen Mandeln.

Abb. 3: Gewöhnlicher grünlich-brauner Ostsee-Syenitporphyr mit fleckiger Grundmasse, wenigen roten Feldspat-Einsprenglingen und kleinen schwarzen Mandeln. Geschiebe aus der Kiesgrube Niederlehme bei Berlin.
Abb. 4: Graugrüner Ostsee-Syenitporphyr mit blassroten Feldspat-Einsprenglingen und zonierten Mandeln (dunkler Kern, heller Rand). Kiesgrube Hohensaaten, Brandenburg.
Abb. 5: Nahaufnahme.

Beschreibung

Die Grundmasse des Ostsee-Syenitporphyrs kann weitgehend homogen (Abb. 4), schlierig (Abb. 10, 11) oder von Rissen netzartig durchzogen (Abb. 8, 9) sein. Meist sind einzelne, seltener auch zahlreiche runde Gesteinseinschlüsse von bräunlicher Farbe enthalten. Neben grau- bis braungrünen Tönungen finden sich auffällig grüne oder sogar blaugrüne Grundmassen. Abb. 10 zeigt einen Fund mit der möglichen Variationsbreite an Färbungen. Die grünlichen Farbtöne dürften auf hydrothermale Alterationsprodukte (Epidot, Chlorit) zurückzuführen sein. Für einen vulkanischen Ursprung des Gesteinstyps spricht die Anwesenheit von Mandeln.

Weiße bis rötliche Feldspat-Einsprenglinge sind nur spärlich vorhanden und lose im Gestein verteilt. Sie erreichen eine Größe von 1-5 mm. Einige Feldspäte zeigen ein gitterartiges, durch Ausscheidungen dunkler Minerale nachgezeichnetes Muster (Abb. 2, 7). Quarz-Einsprenglinge fehlen; vereinzelt kommen aber unregelmäßig geformte bis rundliche Quarzaggregate vor (Xenokristalle oder Relikte aus Mandeln?).

Die Mandeln erreichen einen Durchmesser von 1-5 mm, seltener auch über 1 cm. Meist besitzen sie eine ovale Form und einen zonaren Aufbau. Dabei lassen sich ganz unterschiedliche Mineralabfolgen beobachten: heller Kern, dunkler Rand (oder umgekehrt); schwarze Kerne, grüner Rand usw. Gelegentlich besteht der Kern der Mandeln aus milchig-weißem bis bläulichem Chalcedon (massig) oder Achat (gebändert). Die Mandeln können von einem breiten Reaktionssaum umgeben sein, der auf einen Stoffaustausch zwischen Grundmasse und Mandeln hinweist. Ein seltener Geschiebefund sind die farblich attraktiven Varianten des Ostsee-Syenitporphyrs mit cm-großen und zonierten Mandeln (Abb. 27, 28; s. a. kristallin.de).

Abb. 6: Grüner Ostsee-Syenitporphyr, polierte Schnittfläche, Aufnahme unter Wasser. Geschiebe von Binz auf Rügen, leg. D. Lüttich.
Abb. 7: Die Nahaufnahme zeigt rote Feldspat-Einsprenglinge, längliche Mandeln mit weißem Achat/Chalcedon, rundliche Gesteinseinschlüsse sowie ein einzelnes dunkelgraues Quarzaggregat.
Abb. 8: Grüner Ostsee-Syenitporphyr mit netzartig von Rissen durchzogener Grundmasse. Polierte Schnittfläche eines Geschiebes aus der Kiesgrube Damsdorf/Bochow (Brandenburg); leg. D. Lüttich.
Abb. 9: Nahaufnahme. Einige Mandeln enthalten Kerne aus hellem Chalcedon/Achat und sind von einem dunklen Rand sowie einer breiten Aureole in der Grundmasse umgeben.
Abb. 10: Ostsee-Syenitporphyr mit inhomogener und schlieriger Grundmasse. Der Fund zeigt die Variationsbreite möglicher Färbungen. Polierte Schnittfläche, Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 11: Nahaufnahme; einige Mandeln besitzen helle Kerne aus Chalcedon.
Abb. 12: Nahaufnahme eines rundlichen Gesteinseinschlusses sowie mehrfach zonierten Mandeln mit breiter Aureole.

Herkunft

Das Heimatgebiet des Ostsee-Syenitporphyrs wird am Grund der Ostsee zwischen Gotland und dem Landorttief vermutet. HEDSTRÖM 1894 berichtet von häufigen Geschiebefunden des braunen Ostsee-Quarzporphyrs, basaltischer Mandelsteine („Ostsee-Melaphyr-Mandelstein“) und gelegentlichen Funden des Ostsee-Syenitporphyrs auf Gotland und der etwas weiter nördlich gelegenen Insel Gotska Sandön. Die Funde verweisen auf ein gemeinsames oder ähnliches Herkunftsgebiet in nördlicher Richtung. Eine Probe aus Hedströms Erstbeschreibung ist auf skan-kristallin.de abgebildet, eine Übersetzung seiner Beschreibung findet sich auf kristallin.de.

In Norddeutschland tritt der Ostsee-Syenitporphyr mitunter gehäuft an Lokalitäten mit viel braunem Ostsee-Quarzporphyr auf. ZANDSTRA 1988: 177 weist auf eine große Variabilität des Gesteinstyps hin. Neben dem beschriebenen Ostsee-Typ (Abb. 1-13) finden sich weitere Syenitporphyr-Geschiebe mit ähnlichen Merkmalen. Es dürfte kaum zu klären sein, ob diese Varianten aus dem gleichen oder bisher unbekannten (Unterwasser-)Vorkommen stammen (Abb. 13-17, 19-28).

Abb. 13: Diverse Syenitporphyre mit wenigen Feldspat-Einsprenglingen, Mandeln und Fremdgesteinseinschlüssen, Geschiebefunde aus Kiesgruben in Brandenburg.
Abb. 14: Brauner Ostsee(?)-Syenitporphyr mit wenigen Feldspat-Einsprenglingen (teilweise netzartig korrodiert) und schwarzen Mandeln mit grünem Rand. Polierte Schnittfläche, Geschiebe aus der Kiesgrube Teschendorf bei Oranienburg (Brandenburg), Aufnahme unter Wasser.
Abb. 15: Gleicher Stein, Nahaufnahme.
Abb. 16: Graubrauner Syenitporphyr mit zahlreichen Feldspat-Einsprenglingen sowie rundlichen Gesteinseinschlüssen (teilweise mit dunklem Reaktionssaum). Strandgeröll von Hohenfelde, östlich von Kiel.
Abb. 17: Nahaufnahme. Links oberhalb der Bildmitte ein einzelnes längliches Quarzkorn.
Abb. 18: Grünlichbrauner Syenitporphyr mit Gesteinseinschlüssen; einige rote Feldspat-Einsprenglinge sind gitterartig korrodiert. Geschiebe aus der Kiesgrube Horstfelde in Brandenburg, Aufnahme unter Wasser.
Abb. 19: Brauner Syenitporphyr mit grünlichgrauen Xenolithen, wenigen weißen Feldspat-Einsprenglingen und dunklen Mandeln. Strandgeröll von Johannistal bei Heiligenhafen, Aufnahme unter Wasser.
Abb. 20: Brauner Syenitporphyr mit grünlichen Gesteinseinschlüssen; gleiches Gestein wie in Abb.14 links unten. Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 21: Brauner Syenitporphyr mit roten Feldspat-Einsprenglingen, dunklen Mandeln und Einschlüssen eines grünen Gesteins. Geschiebe von Steinbeck/Klütz, Aufnahme einer Bruchfläche unter Wasser.
Abb. 22: Gleicher Stein, Nahaufnahme einer polierten Schnittfläche.
Abb. 23: Ähnlicher Gesteinstyp: brauner Syenitporphyr mit roten Feldspat-Einsprenglingen, zonierten Mandeln und braunen Gesteins-Einschlüssen. Fundort „Baro“, leg. D. Schmälzle.
Abb. 24: Nahaufnahme der nassen Oberfläche.
Abb. 25: Grünlich-brauner Syenitporphyr mit zonierten Aureolen um korrodierte rote Feldspat-Einsprenglinge. Polierte Schnittfläche, Geschiebe von Dwasiden (Rügen), leg. D. Lüttich.
Abb. 26: Gleicher Stein, Nahaufnahme.
Abb. 27: Brauner Ostsee-Syenitporphyr mit großen Mandeln; Kiesgrube Buchholz bei Prenzlau, Aufnahme unter Wasser.
Abb. 28: Nahaufnahme der zonierten Mandeln.
Abb. 29: Grüner Syenitporphyr mit körniger Grundmasse. Aufnahme unter Wasser, Geschiebe von Schlunkendorf (Brandenburg), Slg. D. Lüttich.
Abb. 30: Nahaufnahme der nassen Oberfläche. Im unteren Bildteil ist eine kleine Mandel mit dunklem Rand erkennbar.

Abb. 31 und 32 zeigen einen braunen Syenitporphyr (nur Feldspat-, keine Quarzeinsprenglinge), der keine Ähnlichkeit mit dem Ostsee-Typ aufweist. Neben roten treten auch grüne Feldspat-Einsprenglinge auf; Mandeln fehlen.

Abb. 31: Syenitporphyr; polierte Schnittfläche eines Geschiebes von Klütz, leg. T. Brückner.
Abb. 32: Nahaufnahme.

Literatur

HEDSTRÖM H 1894 Studier öfver bergarter från morän vid Visby – Geologiska Föreningens i Stockholm Förhandlingar Serie c, Nr. 139; 16: 247-274, 9 Abb., Stockholm.

COHEN E & DEECKE W 1897 Über Geschiebe aus Neu-Vorpommern und Rügen. Erste Fortsetzung. – Mittheilungen des naturwissenschaftlichen Vereins für Neu-Vorpommern und Rügen zu Greifswald 28 (1896): 1-95, Berlin (R. Gaertner’s Verlagsbuchhandlung Hermann Heyfelder).

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – Geologisches Landesamt Nordrhein-Westfalen, S. 137, 138.
ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).

Fleckengranite

1. Allgemeine Beschreibung
2. Leitgeschiebe?
3. Stockholm-Fleckengranit
4. Fleckengesteine mit körniger Grundmasse
5. Blekinge-Fleckengranit
6. Geschiebefunde
7. Verzeichnis der Lokalitäten
8. Literatur

1. Allgemeine Beschreibung

Fleckengranite (spotted granite) sind kleinkörnige Plutonite mit einer Fleckentextur. Nicht alle Fleckengesteine mit einer klein- und gleichkörnigen Matrix aus Quarz, Feldspat und Biotit sollten als Fleckengranit bezeichnet werden, auch andere Zusammensetzungen kommen in Frage (z. B. Quarzdiorit). Allerdings können die Mengenanteile an Quarz, Alkalifeldspat und Plagioklas von Hand nur schwer abschätzbar sein.

Unter den Metamorphiten gibt es Gesteine mit einem ähnlichen Erscheinungsbild (Migmatite, Granofelse). Mögliche Anhaltspunkte auf eine metamorphe Entstehungsgeschichte sind eine Lagen- oder Gneistextur, eine inhomogene Grundmasse sowie das Vorhandensein von feinfaserigem Sillimanit oder dunklen Cordieritflecken.

Die Flecken in Fleckengraniten besitzen meist einen zonaren Aufbau aus einer hellen, selten auch roten Randzone aus Feldspat und Quarz und einem dunkleren Kernbereich mit braunem oder rötlichem Titanit und/oder schwarzen Biotitplättchen. Titanit kann an seiner charakteristischen keilförmigen Kristallform erkennbar sein.

Abb. 1: Blekinge-Fleckengranit, Anstehendprobe vom Yasjön im Eringsboda-Massiv (Lok. 4), Aufnahme unter Wasser. Das kleinkörnige Gestein besitzt eine Quarz-Feldspat-Biotit-Matrix und enthält Flecken mit einem zonaren Aufbau. Die Säume bestehen aus Quarz und Feldspat, die roten Kerne aus Titanit und etwas Feldspat.
Abb. 2: Nahaufnahme der nassen Oberfläche.

2. Leitgeschiebe?

Mehrere kleine Vorkommen von Fleckengraniten sind aus dem Stockholm-Gebiet („Stockholm-Fleckengranit“) und aus Blekinge („Blekinge-Fleckengranit“) bekannt. Mit weiteren und bisher nicht entdeckten Vorkommen, möglicherweise auch in anderen Regionen, muss gerechnet werden. Die petrographische Variabilität des Gesteinstyps – kaum ein Geschiebefund gleicht dem anderen – erschwert eine Referenzierung mit den wenigen vorliegenden Vergleichsproben, die allesamt aus Kleinvorkommen stammen. Fleckengranite eignen sich daher nicht als Leitgeschiebe. Auch eine grobe Unterscheidbarkeit von Geschiebefunden nach Herkunft (Stockholm oder Blekinge) ist aufgrund ganz ähnlicher Merkmale wohl kaum möglich.

Die Darstellung des Stockholm-Fleckengranits in der Geschiebeliteratur ist wenig befriedigend. Hesemann 1975: 188-191 nennt neben den Gesteinen aus dem Stockholm-Gebiet weitere „abweichende“ Fleckengranite, die er (methodisch problematisch) von Geschiebefunden aus Norddeutschland ableitet und annimmt, dass sie aus dem gleichen Gebiet stammen. Zandstra 1988: 205 unterscheidet zwei Typen und ordnet ihnen ein größeres Herkunftsgebiet zu („Södermanland und Uppland“). Für den ersten Typ, ein kleinkörniger Fleckengranit, der dem „normalen“ (?) Stockholm-Granit ähnelt, übernimmt er die Beschreibungen von Geijer 1913b. Der zweite Typ ist eine dunklere und feinkörnige Variante, die in Zandstra 1999, Nr. 123 als Migmatit bezeichnet wird. Hier werden also zwei verschiedene Gesteinstypen, Plutonite und Metamorphite, unter der gleichen Bezeichnung zusammengefasst. Feldstudien ergaben, dass dieser zweite Typ nicht im Zusammenhang mit dem Stockholm-Granit steht, sondern im Gebiet von Kolmården, etwa 100 km südwestlich von Stockholm, verbreitet als Geschiebe auftritt (s. Abb. 5).

3. Stockholm-Fleckengranit

Geijer 1913b beschreibt elf anstehende Vorkommen von Fleckengraniten aus dem Gebiet des Stockholm-Granits. Ihre Ausdehnung beträgt wenige bis einige Hundert Quadratmeter. Bis auf eine Lokalität (Almnäs, 30 km SW Stockholm) liegen sie innerhalb des Stadtgebiets von Stockholm. In fast allen Proben ist Titanit das dominierende Mineral in den Kernen der Flecken, Biotit tritt viel seltener auf. Der Titanit ist meist braun und als kompaktes Mineralkorn von max. 3-4 mm Länge oder als schwammartige Masse ausgebildet. Die hellen Säume um die Kerne der Flecken bestehen aus Quarz und Feldspat und können bis 6-7 mm breit werden.

Fleckenbildungen im Stockholm-Granit treten im Abstand von wenigen Metern zum Kontakt mit älteren Gneisen auf (Geijer 1913b). Die Minerale in den Flecken könnten z. B. durch metasomatische Vorgänge aus den Metamorphiten mobilisiert worden sein. Nach Lohberg 1963 sind die Kerne der Fleckengranite postkinematische, dicht unter 500 Grad gebildete Rekristallisationsprodukte als Folge metamorpher Differenzierungen (in Hesemann 1975).

Möller & Stålhös 1969 (Kartenblatt Stockholm SV) nennen zwei Vorkommen von Fleckengraniten innerhalb des Stockholm-Granits. Die Gesteine besitzen 1-3 cm große und runde oder elliptische Flecken mit einer hellroten Randzone aus Quarz und Feldspat und dunklen Kernen aus Biotit, Titanit oder beiden Mineralen.

Abb. 3: Stockholm-Fleckengranit, Anstehendprobe, wahrscheinlich südwestlich vom Thorsvikssvängen, Stockholm, Insel Lidingö (leg. o. A. 1960, Slg. Geozentrum Hannover). Foto aus skan-kristallin.de.

Während mehrerer Exkursionen in das Gebiet zwischen Norrköping und Stockholm konnte ich lediglich ein einziges Fleckengranit-Geschiebe in einer Kiesgrube unmittelbar westlich von Stockholm finden, das aller Wahrscheinlichkeit nach mit dem Stockholm-Granit im Zusammenhang steht (Abb. 4).

Abb. 4: Fleckengranit, Geschiebe aus der Kiesgrube Järna, W von Stockholm (Lok. 2). Die Flecken weisen einen undeutlichen Zonarbau auf, mit einer Randzone aus Feldspat und Quarz und einem unbekannten Mineralgemisch im Kern.

4. Fleckengesteine mit körniger Grundmasse

Graue Fleckengesteine mit einer kleinkörnigen, nicht näher differenzierbaren Grundmasse aus Quarz, Feldspat und Biotit sowie einer Gneistextur, manchmal auch einer kaum erkennbaren Foliation (Streifung, Einregelung der Flecken) konnten vor allem im südlichen Södermanland und östlichen Östergötland, etwa 100 km südwestlich von Stockholm, verbreitet als Geschiebe beobachtet werden. Dabei scheint es sich offenbar um etwas körnigere Varianten der feinkörnigen Fleckengesteine zu handeln, die in diesem Gebiet verbreitet auftreten (vgl. auch Geschiebefunde Abb. 15, 17 und 26 im Artikel Fleckengesteine). Aus der näheren Umgebung von Stockholm liegt lediglich ein Einzelfund dieses Typs  (Abb. 7) vor.

Ein Teil der Funde entspricht dem zweiten Typ in Zandstra 1988, einem dunklen, biotit- und hornblendereichem Metamorphit (migmatitischer Gneis) mit einer Flecken-Struktur (Nr. 123 in Zandstra 1999, auch Rudolph 2017: 214). Die Bezeichnung „Stockholm-Fleckengranit“ für diesen Gesteinstyp dürfte obsolet sein, ebenso der Begriff „Stictolith“ oder stictolithische Textur für Migmatite mit Flecken von Reliktmineralen (Fettes & Desmons 2007).

Flecken von 0,5-3 cm Größe sind annähernd rund bis länglich geformt und liegen regellos im Gestein verteilt oder sind in Reihen angeordnet. Einfache Flecken bestehen meist aus einem Gemenge von Quarz und Feldspat. Zonierte Flecken zeigen einen weißen oder rötlichen Saum aus Feldspat und Quarz um einen dunklen Kern. Der schwarze, graue, rötliche, selten auch grün getönte Kernbereich kann aus einem einzelnen Mineral oder einem Mineralgemisch bestehen, z. B. schwarzen Biotitplättchen (manchmal nur ein einzelnes größeres Korn), grünlich-schwarzen Chloritmineralen oder gelbem, braunem oder rotem Titanit (gelegentlich an seiner keilförmigen Kristallform erkennbar).

Abb. 5: Graues Fleckengestein mit kleinkörniger Grundmasse aus Quarz, Feldspat und Biotit sowie länglichen und zonierten Flecken. Das hellbraune und transparente Mineral im Kern der Flecken könnte Titanit sein, keilförmige Kristallaggregate waren jedoch nicht erkennbar. Geschiebe vom Campingplatz Kolmården (Lok. 1).
Abb. 6: Ähnlicher Geschiebefund von Kolmården (Lok. 1) mit feinkörniger Grundmasse und gelb- bis rötlich-braunem Titanit in den Kernen der Flecken (keilförmige Kristalle erkennbar).
Abb. 7: Ähnlicher Typ eines Fleckengesteins mit einfachen Flecken, einige auch mit rötlichen Kernen; Geröllstrand in Skansholmen, südlich Stockholm (Lok. 3).

5. Blekinge-Fleckengranit

Kleinkörnige Granite mit einer Fleckentextur kommen an mehreren Lokalitäten in Nordost-Blekinge vor (Wiklander 1974: 52f). In der Nähe von Tving, innerhalb des Yasjö-Granits, einer Variante des 1,45 Ga alten Eringsboda-Granits, ist ein etwa 6 m breiter Gang eines Fleckengranits („sphen-spotted granite“) aufgeschlossen. Der etwas jüngere Fleckengranit durchschlägt den Yasjö-Granit und enthält Flecken mit rotem Titanit.

Abb. 8: Blekinge-Fleckengranit, angefeuchtete Anstehendprobe mit frischer Bruchfläche (Lok. 4).

Das hellgraue Gestein (s. a. Abb. 1 und 2) besitzt ein klein- und gleichkörniges Mineralgefüge aus Quarz, Feldspat und Biotit. Die annähernd runden, bis 10 mm großen Flecken besitzen einen zonaren Aufbau aus einer hellen Quarz-Feldspat-Aureole (2-4 mm) und einen roten Kern (3 mm) aus Titanit und etwas Feldspat. Die Ränder der Flecken setzen sich nur unscharf von der Matrix ab.

Abb. 9: Nahaufnahme unter Wasser.

6. Geschiebefunde

Fleckengesteine mit körniger Grundmasse (Korngrößen bis etwa 1 mm) treten als Geschiebe ebenso variantenreich in Erscheinung wie die feinkörnigen Vertreter. Gesteinstypen, die den folgenden Geschiebefunden aus Norddeutschland ähneln, konnten im Gebiet südlich und westlich von Stockholm sowie in Sörmland und Östergötland nicht beobachtet werden.

Abb. 10: Kleinkörniger Fleckengranit, Geschiebefund von Travemünde, E. Figaj leg.

Das Gestein ähnelt dem Geschiebetyp des Stockholm-Granits. Die länglichen Flecken scheinen eine bevorzugte Ausrichtung zu besitzen, während die hellgraue Matrix ein gleichkörnig-richtungsloses Mineralgefüge aufweist.

Abb. 11: Nahaufnahme der zonierten Flecken mit einem weißen Saum aus Quarz und Feldspat und einem dunklen Kern mit Biotit.
Abb. 12: Roter Fleckengranit. Die Matrix enthält roten Alkalifeldspat und Quarz (Mengenanteile nicht abschätzbar) und reichlich dunkle Minerale. Die Randzone der Flecken besteht aus Quarz und Feldspat, der dunkle Kern enthält Biotit und vermutlich Titanit. Nahaufnahme einer polierten Schnittfläche, Geschiebe aus der Kiesgrube Arendsee (Brandenburg).
Abb. 13: Biotitreiches und feinkörniges Fleckengestein mit roten Flecken aus Biotit und Titanit, Aufnahme unter Wasser. Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg.
Abb. 14: Ähnlicher Geschiebetyp aus der Kiesgrube Gusow, Ost-Brandenburg; Aufnahme unter Wasser.

Weitere Abbildungen von Geschiebefunden finden sich auf skan-kristallin.de.

7. Verzeichnis der Lokalitäten

Lokalität 1: Geschiebe Fleckengesteine, Rollsteinstrand am Campingplatz Kolmården; 58.65718, 16.40712.
Lokalität 2: Geschiebe Fleckengranit; aktive Kiesgrube zwischen Järna und Nykvarn; 59.12040, 17.46764.
Lokalität 3: Geschiebe Fleckengestein; Geröllstrand am Campingplatz Skansholmen/S Sandviken; 59.04647, 17.69313
Lokalität 4: Anstehender Blekinge-Fleckengranit; Gang im Eringsboda-Granit, ca. 3,5 km N Tving, am Fahrweg N des Yasjön; 56.33846, 15.48692.

8. Literatur

Fettes DJ & Desmons J 2007 Metamorphic rocks – A classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks – Cambridge University Press.

Geijer P 1913b Zur Petrographie des Stockholm-Granites – GFF 35: 123-150

Hesemann J 1975 Kristalline Geschiebe der nordischen Vereisungen – GLA Nordrhein-Westfalen, S. 188-191.

Loberg B 1963 The Formation of a Flecky Gneiss and Similar Phenomena in Relation to the Migmatite and Vein Gneiss Problem – Geologiska Föreningen i Stockholm Förhandlingar, 85:1, 3-109, Stockholm.

Möller H & Stålhös G 1969 Beskrivning till geologiska kartbladet Stockholm SV. SGU Ae 4, S. 28.

Rudolph F 2017 Das große Buch der Strandsteine – 320 S., zahlr. Abb., Kiel/Hamburg (Wachholz-Verlag – Murmann Publishers).

Wiklander U 1974 Precambrian petrology, geochemestry and age relations of northeastern Blekinge, southern Sweden – Sveriges Geologiska Undersökning (C) Avhandlingar och uppsatser 704 [Årsbok 68 (11)]: 142 S., 59 Abb., 9 Tab., 1 Kte., Uppsala.

Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).

Zandstra J G 1999: Platenatlas van noordelijke kristallijne gidsgesteenten – Backhuys Leiden, Nr. 123 und 124.

Teil 2: Fleckengesteine- Geschiebefunde aus Norddeutschland

Die folgenden Geschiebefunde aus Norddeutschland illustrieren die petrographische Vielfalt von Fleckengesteinen. Kaum ein Fund gleicht dem nächsten, kaum ein Geschiebe lässt sich einem näheren Herkunftsgebiet zuordnen. Mögen in einigen Fällen auch Ähnlichkeiten mit den Funden aus Schweden bestehen (siehe 1. Teil), ist der Umkehrschluss nicht zulässig, dass der betreffende Gesteinstyp nur an einer einzigen Lokalität vorkommt. – Das erste Geschiebe stammt aus einer Kiesgrube in Brandenburg (E. Fuchs leg.) und wurde freundlicherweise von Herrn U. Maerz dünnschliffmikroskopisch untersucht.

Abb. 1: Grünlichbraunes und feinkörniges Fleckengestein, Aufnahme unter Wasser.
Abb. 2: Nahaufnahme der polierten Schnittfläche. Die Flecken sind mehrfach zoniert und bestehen aus einem grünlichen Kern, einer hellen Zwischenzone und einer schmalen grünlichen Randzone.

Die Dünnschliffuntersuchung ergab, dass die Matrix aus xenomorphen, teilweise polygonalen Kristallen von Quarz, Kalifeldspat (überwiegend Mikroklin) und Plagioklas sowie idiomorphen Biotit-Kristallen besteht. Die äußere Randzone der Flecken ist deutlich grobkörniger als die Matrix und enthält ebenfalls Quarz, Kalifeldspat und Plagioklas. Die helle Zwischenzone enthält zusätzlich Serizit, die dunklen Kerne Serizit und Chlorit. Diese Minerale dürften Alterationsprodukte von Cordierit sein, der durch wässrige Fluide instabil wurde. Unalterierter Cordierit konnte nicht beobachtet werden. In den Kernen wurde weiterhin feinnadeliger Sillimanit gefunden. Die grünen Umwandlungsprodukte von Cordierit finden sich auch außerhalb der Blasten und umschließen die Körner der Matrix.

Abb. 3: Dünnschliffaufnahme einer Fleckenzone unter linear polarisiertem Licht. Bildbreite 3 mm. Foto: U. Maerz.
Abb. 4: Gleicher Ausschnitt unter gekreuzten Polarisatoren. Foto: U. Maerz.

Das Zentrum des Kerns bilden Büschel von wirrstrahlig angeordneten, mit Serizit verwachsenen Sillimanitnadeln. Rechts und links schließen sich Bereiche an, die von überwiegend feinst verwachsenem Serizit ausgefüllt werden. Der Randbereich mit den größeren Kristallen aus Quarz und Feldspat setzt sich gut von der feiner körnigen Matrix ab.

Abb. 5: Polierte Schnittfläche eines grünen Fleckengesteins, Kiesgrube Damsdorf/Bochow, Brandenburg (D. Lüttich leg.).
Abb. 6: Nahaufnahme.

Die Flecken besitzen eine dunkelgrüne äußere Randzone, eine helle Zwischenzone und grüne oder weiße Kerne, teilweise aus feinfaserigem Sillimanit. Bei den grünen Mineralen könnte es sich ebenfalls um Chlorit als Alterationsprodukt von Cordierit handeln.

Abb. 7: Grauer Fleckengneis mit biotitreicher Grundmasse aus der Kiesgrube Ruhlsdorf bei Bernau (Brandenburg). Aufnahme unter Wasser.
Abb. 8: Nahaufnahme des gleichen Steins, Flecken mit grünen Kernen und hellem Saum.
Abb. 9: Grauer Fleckengneis mit weißen Flecken aus Quarz und Feldspat. Kiesgrube Teschendorf bei Oranienburg, Brandenburg.
Abb. 10: Quarz-Feldspat-Biotit-Gneis mit großen Flecken aus Quarz und Feldspat, umgeben von einer dunklen und biotitreichen Randzone. Kiesgrube Penkun, Ost-Brandenburg; Slg. A. Bräu.
Abb. 11: Grauer Fleckengneis mit einzelnen größeren Biotitplättchen innerhalb der feinkörnigen weißen Flecken. Kiesgrube Hoppegarten bei Müncheberg, Brandenburg.
Abb. 12: Sehr feinkörniges Fleckengestein mit quarzitischer Grundmasse. Kiesgrube Hohensaaten, Brandenburg.
Abb. 13: Muskovithaltiger Quarz-Feldspat-Gneis; helle Flecken mit rötlichem Kern. Fundort: Geröllstrand Hökholz bei Eckernförde, Schleswig-Holstein.
Abb. 14: Nahaufnahme, nasse Oberfläche. Die hellen Säume enthalten Quarz, Feldspat sowie ein feinfaseriges Mineral, vermutlich Sillimanit. Die Minerale in den roten Kernen sind feinkörnig und nicht bestimmbar.
Abb. 15: Feinkörniger Fleckengneis, Strandgeröll von Travemünde (E. Figaj leg.).
Abb. 16: Nahaufnahme.

Bemerkenswert ist ein mehrphasiger Aufbau der Flecken: 1. Kernbereich mit einem einzelnen Biotit- und/oder hellem Feldspat-Korn, 2. quarzreicher Saum, umgeben von 3. gelben Mineralen mit stumpfem Glanz (angewitterter Feldspat?). 4. Heller und stärker ausgelängter Bereich aus Quarz und Feldspat, schließlich 5. eine biotitreichere Hülle, ohne klare Abgrenzung zur Matrix aus Quarz, Feldspat und Biotit (+Amphibol?).

Abb. 17: Schnittfläche eines Fleckengneises, Aufnahme unter Wasser. Das Gestein ist auffällig schwer und enthält neben Biotit wahrscheinlich auch Amphibol in bedeutender Menge. Die länglichen Flecken bestehen aus feinfaserigem Sillimanit. Strandgeröll von Nienhagen bei Rostock, leg. G. Engelhardt.
Abb. 18: Nahaufnahme der faserigen Sillimanit-Aggregate.
Abb. 19: Fleckengestein als Windkanter. Die Kernbereiche der Flecken weisen Vertiefungen auf, während die hellen Säume der erosiven Einwirkung des Windes widerstehen konnten. Kiesgrube Rietz bei Treuenbietzen, Brandenburg; Slg. D. Lüttich.
Abb. 20: Feinkörniger Gneis mit länglichen und glimmerreichen Flecken. Kiesgrube Gusow, Ost-Brandenburg.
Abb. 21: Grünlicher Flecken-Granofels mit dunklen Cordierit- und weißen Sillimanit-Granoblasten (Strandgeröll von Misdroy in Westpolen). Das undeformierte Gestein könnte aus dem Västervik-Gebiet stammen, ein vergleichbares grünes Fleckengestein wurde dort bisher allerdings nicht gefunden.
Abb. 22: Roter Fleckengneis, Geschiebe von der Ostsee. Foto: M. Bräunlich.
Abb. 23: Nahaufnahme der länglichen Flecken mit wellenförmig ausgebildeten Aggregaten eines feinfaserigen Minerals, wahrscheinlich Sillimanit.

Als Geschiebe weniger verbreitet sind Glimmerschiefer oder glimmerreiche Metasedimente mit einer Fleckentextur (Flecken- oder Knoten-Glimmerschiefer, Abb. 24-26). In den meisten Fällen dürfte es sich um Kontaktmetamorphite mit Andalusit oder Cordierit als Mineralneubildung handeln.

Abb. 24: Knoten-Glimmerschiefer aus der Kiesgrube Vogelsang bei Eisenhüttenstadt, Brandenburg (St. Schneider leg.).
Abb. 25: Metamorphit mit einer grünlich-grauen und an Hellglimmer reichen Matrix sowie dunklen Flecken (Kiesgrube Hohensaaten, Ost-Brandenburg).
Abb. 26: Glimmerreicher Metamorphit (Metasediment) mit dunklen Flecken und einigen einzelnen hellen Feldspatkörnern (Kiesgrube Niederlehme bei Berlin).
Abb. 27: Fleckengestein mit dunkler und feinkörniger Grundmasse aus der Kiesgrube Kröte (Wendland, Ost-Niedersachsen).
Abb. 28: Für den Mineralbestand des Kernbereichs mit rötlich-gelben Mineralkörnern und der feinkörnigen weißen Randzone gibt es bisher keine Anhaltspunkte.
Abb. 29: Polierte Schnittfläche eines Fleckengneises mit länglichen dunklen Flecken aus der Kiesgrube Althüttendorf in Brandenburg.
Abb. 30: Helle und graugrüne Partien scheinen eine quarzitische Zusammensetzung zu besitzen, während die roten Partien zusätzlich Feldspat enthalten. Das Gestein ist von senkrecht verlaufenden Klüften durchzogen, die einzelnen Bereiche weisen einen leichten Versatz auf.
Abb. 31: Eine schmale rote Partie enthält kleine nadelförmige Porphyroblasten (wahrscheinlich Amphibol).
Abb. 32: Dunkle Cordierit-Flecken mit hellem Saum in einem feinkörnigen Granofels. Kiesgrube Waltersdorf bei Berlin.
Abb. 33: Heller Quarz-Feldspat-Biotit-Gneis mit grünlich-braunen Flecken (alterierter Cordierit?). Polierte Schnittfläche eines Geschiebes aus der Kiesgrube Damsdorf/Bochow, Brandenburg; leg. D. Lüttich.
Abb. 34: Dunkles Metasediment (Granofels) mit gelblichen Flecken (Kiesgrube Niederlehme bei Berlin).
Abb. 35: Nahaufnahme der nassen Gesteinsoberfläche. Die gelblichgrauen Flecken auf der Außenseite weisen auf der Bruchfläche eine unvollständige Spaltbarkeit, einen lebhaften Glasglanz und eine dunkelgraue Tönung auf (Cordierit oder Andalusit).

Ein seltener Geschiebefund sind Vulkanite mit einer Fleckentextur. Die Neubildung von Mineralen könnte bevorzugt von sekundär entstandenen Strukturen mit abweichender chemischer Zusammensetzung ausgegangen sein (z. B. Lithophysen).

Abb. 36: Metavulkanit, Aufnahme unter Wasser. Fundortangabe: „Roth“, wahrscheinlich aus der Umgebung von Parchim (D. Schmälzle leg.).
Abb. 37: Nahaufnahme der polierten Schnittfläche. Innerhalb der kugeligen Aggregate ist ein feinfaseriges gelbbraunes Mineral als metamorphe Neubildung erkennbar (z. B. ein Amphibol wie Anthophyllit).

Vänge-Granit

Der Vänge-Granit gehört zu den etwa 1,89-1,87 Ga alten mittelschwedischen Uppland-Graniten und kommt im gleichen Gebiet wie der Uppsala-Granit vor. Das Gestein ist zumindest in Brandenburg bei praktisch jedem Kiesgrubenbesuch anzutreffen, meist in größeren Blöcken, seltener in Handstückgröße.

Abb. 1: Vänge-Granit aus der Kiesgrube Horstfelde südlich von Berlin.

Als Leitgeschiebe geeignet sind grobkörnige und besonders quarzreiche Varianten dieses Alkalifeldspatgranits. Alkalifeldspat ist blassrot, seltener auch kräftig rot oder orangefarben getönt und bildet unregelmäßig begrenzte Kristalle von 1-3 cm Länge. Weißer Plagioklas ist deutlich kleiner und nur in geringer Menge enthalten (max. 10 %). Er erscheint häufig an den Rändern der Alkalifeldspäte. Quarz kommt reichlich in Form grauer bis gelblich- oder grünlich-grauer und zerdrückter („zuckerkörniger“) Massen vor. Daneben finden sich meist auch einzelne größere und trübe Quarzkörner von bläulichgrauer Farbe, die nicht zerdrückt sind. Durch den hohen Quarzgehalt „schwimmen“ die Alkalifeldspäte regelrecht in der Quarzmasse und das Gefüge wirkt auf den ersten Blick porphyrisch. Dunkle Minerale (Biotit) sind nur in geringer Menge enthalten.

Das Mineralgefüge ist insgesamt undeformiert (richtungslos-körniges Gefüge, keine länglichen Aggregate von dunklen Mineralen). Lediglich Quarz wurde weitgehend granuliert, nachdem der Granitkörper bereits erstarrt war. Nach Zandstra 1988 ist der Vänge-Granit mittelkörnig, nach Lundegardh 1956: 55 „grob mittelkörnig“. Die Alkalifeldspäte in Anstehendproben (vgl. skan-kristallin.de) sind in der Regel größer als 1 cm.

Mittelschwedische Granite verschiedener Vorkommen besitzen teilweise ähnliche Merkmale wie der Vänge-Granit. Dies betrifft den Norrtälje-/Vätö-Granit und einige Granite des Hedesunda-Massivs (s. Abb. 2). Der Vätö-Granit ist mittelkörnig, enthält weniger, zudem kräftiger rot gefärbten Alkalifeldspat und mehr dunkle Minerale. Die zerdrückten Quarze zeigen eine mittelgraue Tönung. Nur einige Varianten des Vätö-Granits besitzen blassrote Alkalifeldspäte. Proben auf skan-kristallin.de. Proben aus dem Hedesunda-Massiv (siehe skan-kristallin.de) zeigen Ähnlichkeiten zum Vänge-Granit in Farbe und Gefüge. Der Quarzanteil ist hier geringer, die Quarze sind nicht oder nicht durchgängig granuliert. Der Älö-Granit aus Nordost-Småland ist ein sehr quarzreicher Granit mit vollständig granuliertem Quarz. Im Vergleich zum Vänge-Granit bestehen Gefüge- und Farbunterschiede: mittelkörniges Gefüge, hellroter bis braunroter Alkalifeldspat, manchmal bläulicher Quarz, mehr dunkle Minerale. Proben auf skan-kristallin.de.

Die drei genannten Granite konnten bisher nicht als Geschiebe identifiziert werden. Ihr Status als Leitgeschiebe ist umstritten oder noch nicht geklärt.

Abb. 2: Herkunftsgebiet des Vänge-Granits und anderer im Text erwähnter Granit-Vorkommen.
Abb. 3: Vänge-Granit, Abschlag mit frischer Bruchfläche aus einem größeren Block  (Kiesgrube Hohensaaten, Brandenburg).
Abb. 4: Die Nahaufnahme zeigt hellroten Alkalifeldspat und gelblichgrüne Massen von zerdrücktem Quarz.
Abb. 5: Vänge-Granit, Großgeschiebe aus der Niederlausitz (Findlingshalde Steinitz bei Drebkau, Bildbreite etwa 30 cm).
Abb. 6: Gleicher Stein, Nahaufnahme. Das Gefüge besteht aus hellrotem Alkalifeldspat und kleineren weißen Plagioklaskörnern. Granulierter Quarz bildet eine grünlichgraue Masse, daneben finden sich einige größere milchig-hellgraue Quarzkörner. Stellenweise „schwimmen“ die Alkalifeldspäte in der Quarzmasse.
Abb. 7: Diese leicht angewitterte Bruchfläche eines Vänge-Granits zeigt schön die Gruppierung kleiner weißer Plagioklaskörner um hellrote Alkalifeldspäte. Geschiebe aus Merzdorf am ehemaligen Tagebau Cottbus-Nord.
Abb. 8: Vänge-Granit aus der Kiesgrube Teschendorf bei Oranienburg (Brandenburg), Aufnahme unter Wasser.
Abb. 9: Vänge-Granit mit sehr wenig Plagioklas aus der Kiesgrube Fresdorfer Heide bei Potsdam; Aufnahme unter Wasser.
Abb. 10: Heller Granit mit orangefarbenem Alkalifeldspat, mäßig hohem Quarzgehalt und wenig dunklen Mineralen. Kiesgrube Teschendorf bei Oranienburg (Brandenburg).
Abb. 11: Quarz ist vollständig granuliert; einige Plagioklase besitzen einen rötlichen Kern.
Abb. 12: Granit vom Vänge-Typ mit einem höheren Anteil dunkler Minerale. Breite 40 cm, Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 13: Gleicher Stein, Nahaufnahme.
Abb. 14: Heller Granit mit wenig dunklen Mineralen aus dem ehem. Tagebau Cottbus-Nord, Breite 45 cm.
Abb. 15: Nahaufnahme des Gefüges. Der Granit ist nicht grob-, sondern mittelkörnig. Die übrigen Gefügemerkmale stimmen ansonsten mit denen des Vänge-Granits überein.
Abb. 16: Grobkörniger Granit mit hellrotem Alkalifeldspat und weißem bis grünlich-grauem Plagioklas. Quarz ist grünlich-grau getönt, bildet aber einzelne Körner aus und ist nicht zerdrückt (kein Vänge-Granit gemäß der Beschreibung des Leitgeschiebes). Findlingslager Steinitz am Tagebau Welzow-Süd.

Das letzte Großgeschiebe zeigt einige Merkmale des Vänge-Granits (hellroter Alkalifeldspat, grünliche Massen aus zerdrücktem Quarz, größere trübe Quarzkörner). Durch den hohen Gehalt an Plagioklas ist das Gestein aber kein Granit, sondern ein Granodiorit. Die Art des Gefüges der kleinen Plagioklaskörner erinnert an andere Uppland-„Granite“, z. B. den Uppsala-Granit. Im Vänge-Massiv kommen auch Plutonite mit intermediärer Zusammensetzung vor (Lundegardh 1956: 55). Ob das Geschiebe tatsächlich von dort stammt, lässt sich allerdings nicht mit Sicherheit feststellen.

Abb. 17: (Uppland?-)Granodiorit, Findlingslager Steinitz am Tagebau Welzow-Süd (Brandenburg), Bildbreite 30 cm.
Abb. 18: gleicher Stein, Nahaufnahme.

Literatur

Lundegårdh P-H & Lundqvist G 1956 Beskrivning kartbladet Uppsala – SGU Serie Aa 199, Uppsala.

Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië –    XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).

Einschlussführende Diabase

1. Allgemeines
2. Geschiebetypen
3. Weitere Anstehendproben
4. Geschiebefunde
5. Lokalitäten
6. Literatur

Ein feinkörniges basaltisches Gestein mit kantigen oder runden Fremdgesteins-Einschlüssen (Xenolithe) wird schlicht als einschlussführender Diabas bezeichnet. Es entsteht, wenn basaltisches Magma bei seinem Aufstieg Quarz- und feldspathaltige Fragmente des Nebengesteins oder auch Einzelkristalle aufnimmt. Durch die hohe Temperatur basaltischer Schmelzen werden diese Fragmente leicht abgerundet, weil sie einen deutlich niedrigeren Schmelzpunkt besitzen, zudem einen chemischen Ausgleich mit der Schmelze anstreben. Die häufig rundlichen Formen von Einschlüssen in basaltischen Gesteinen führten wahrscheinlich zu der etwas unglücklichen Bezeichnung „Gerölldiabas“. Nur in wenigen Fällen dürfte es sich tatsächlich um Geröll-Horizonte handeln, die durch eine basaltische Schmelze aufgearbeitet wurden.

Abb. 1: Einschlussführender Diabas mit feinkörniger Grundmasse. Das Gestein enthält abgerundete Xenolithe von Alkalifeldspat und eckige Quarz-Feldspat-Fragmente. Polierte Schnittfläche eines Geschiebes aus der Kiesgrube Niederlehme bei Berlin.
Abb. 2: Die runden Feldspäte sind stark alteriert, teilweise auch zoniert durch wechselnde Anteile dunkler Minerale.

Einschlussführende Diabase können monomikt (nur eine Gesteinsart als Fremdeinschluss) oder oligomikt/polymikt (mehrere Gesteinsarten) zusammengesetzt sein. Als Einschluss kommen Plutonite und Gneise aller Art, Sandsteine und Quarzite sowie einzelne Quarze und Feldspäte in Frage. Wesentlich häufiger als einschlussführende Diabase lässt sich übrigens das umgekehrte Phänomen beobachten: Xenolithe basaltischer Gesteine in Plutoniten (Abb. 3).

Abb. 3: Basische Xenolithe (Basaltoide, Gabbro) in einem dioritischen Gestein. Kiesgrube Arendsee/Weggun, Brandenburg.

2. Geschiebetypen

In der Geschiebekunde werden mehrere Typen einschlussführender Diabase unterschieden: Björbo-Diabas, Brevik-Gerölldiabas und Ålsarp-Diabas. Neben diesen Typlokalitäten (s. Abb. 6) sind rund ein Dutzend weitere Vorkommen aus Blekinge, Mittelschweden (Grängesberg), von Bornholm sowie aus Norwegen und Finnland bekannt (Hesemann 1975, Korn 1927, Meyer 1981, Bartolomäus & Herrendorf 2003). Darüber hinaus dürfte es eine Reihe weiterer Lokalitäten mit einschlussführenden Partien innerhalb der schwarmartigen Vorkommen verschiedener Generationen von Diabasgängen geben. Die Gangschwärme nehmen jeweils größere Gebiete ein, von Bornholm bis nach Dalarna. Einschlussführende Partien treten nur lokal begrenzt und ausschließlich in kleinen Vorkommen auf. Es ist kaum möglich, hier spezifische Gesteinstypen mit einem begrenzten Herkunftsgebiet herauszustellen. Dies gilt auch für den Sandstein führenden Brevik-Typ (s. a. Bartolomäus & Herrendorf 2003). Einschlussführende Diabase sind daher nicht als Leitgeschiebe geeignet.

Abb. 4: Übersichtskarte mit einigen postorogenen Diabas-Gangschwärmen und im Text angeführten Lokalitäten.
Abb. 5: Brevik-Gerölldiabas, Foto aus skan-kristallin.de.

Der Brevik-„Gerölldiabas“ enthält eckige bis schwach gerundete Klasten von Sandsteinen aus der Almesåkra-Formation sowie bis zu 10 % Granit- und Porphyrklasten. Im Schwedischen heißt das Gestein diabaskonglomerat. Vorkommen dieses Gesteinstyps sind nicht auf das Gebiet von Brevik beschränkt (Bartolomäus & Herrendorf 2003).

Abb. 6: Björbo-Diabas aus Dalarna (4 km westlich von Björbo, K.-D. Meyer leg.) , Foto aus skan-kristallin.de.

Der Björbo-Diabas aus Dalarna besitzt eine feinkörnige bis dichte Grundmasse und runde, eigentümlich korrodierte Xenolithe aus rotem Feldspat. Quarz fehlt in dieser Probe, kann aber in den Diabasen dieses Typs zusätzlich enthalten sein. Beschreibung des Aufschlusses in Meyer KD 1981.

Abb. 7: Alsarp-Diabas, Anstehendprobe mit polierter Schnittfläche, K.-D. Meyer leg., Foto aus skan-kristallin.de.

Der einschlussführende Alsarp-Diabas besitzt eine ophitische Grundmasse und runde Xenolithe von roten Feldspäten. Foto aus skan-kristallin.de, siehe dort für eine Beschreibung und weitere Anstehendproben; siehe Abb. 14-16 für Bilder von der Lokalität Alsarp.

3. Weitere Anstehendproben

3.1. Södregården: Nördlich von Växjö wurde ein Diabasgang mit einer ungewöhnlichen Kombination von Einschlüssen aus Anorthosit und Sandstein/Quarzit beprobt (Lokalität 1). Nach Wikman 2000 (Kartenblatt Växjö NO, SGU) gibt es in diesem Gebiet weitere Aufschlüsse mit ähnlichen einschlussführenden Diabasen.

Abb. 8: Große Anorthosit-Xenolithe und kleinere quarzitartige Einschlüsse in einem Diabas an der Lokalität Södregården. Bildbreite 30 cm.
Abb. 9: Probe aus dem gleichen Aufschluss; Bruchfläche eines einschlussführenden Diabas mit quarzitähnlichen Einschlüssen, Aufnahme unter Wasser.
Abb. 10: Die Xenolithe sind Sandsteine der Almesakra-Formation, die bei der Aufnahme in das basaltische Magma aufgeschmolzen wurden. Die Sedimentite der Almesåkra-Formation dürften einst ein wesentlich größeres Gebiet eingenommen haben, da einschlussführende Diabase dieses Typs auch weit außerhalb ihrer heutigen Verbreitung gefunden wurden. Die Lokalität Södregården liegt über 40 km südlich davon.

3.2. Forserum: In der Nähe der Lokalität Brevik fanden sich einschlussführende Partien eines Diabases im Kontakt zu einem Småland-Granit (Lokalität 2). Gerundete Feldspat-Xenolithe im Diabas weisen darauf hin, dass es sich nicht um basaltische Xenolithe im Granit handelt.

Abb. 11: Einschlussführender Diabas in einem Småland-Granit (Lokalität 2).

3.3. Värlebo bei Påskallavik (Lokalität 3): Einige Vorkommen von Gangporphyren im östlichen Småland werden von Diabasen begleitet, die den gleichen Aufstiegsweg nutzten und an den Rändern der Gänge auftreten (bimodaler Magmatismus). Im Kontakt zu einem Påskallavik-Porphyr fand sich in der Nähe der Ortschaft Värlebo ein grüner Diabas, der gerundete Feldspäte und einige Blauquarze als Xenolithe führt.

Abb. 12: Graugrüner Diabas mit runden Einschlüssen von Feldspat und Blauquarz, die aus dem benachbarten Påskallavik-Porphyr stammen. Aufnahme unter Wasser.
Abb. 13: Gleicher Stein, nasse Bruchfläche.

3.4. Alsarp (Lokalität 4): Der Besuch eines Straßenaufschlusses in der Nähe der Typlokalität Alsarp in Ost-Småland war enttäuschend, weil der anstehende Diabasgang keine Einschlüsse von runden Feldspäten enthielt. Lediglich der benachbarte Småland-Granit wies Einschlüsse von Diabas sowie unterschiedliche Stadien einer Vermengung auf. Nach Meyer KD 1981 liegt der Aufschluss mit den einschlussführenden Partien 650 m weiter südwestlich (etwa 57.52943, 16.02641, s. a. Abb. 7).

Abb. 14: Småland-Granit mit Diabas-Einschlüssen vom Straßenaufschluss bei Alsarp. Breite des Abschlags ca. 15 cm.
Abb. 15: Anstehender Småland-Monzogranit mit teilweise assimilierten Diabas-Xenolithen; Aufnahme unter Wasser.
Abb. 16: Nahaufnahme einer weiteren Probe. Insgesamt handelt es sich um ein granitisches Gestein. Die Grundmasse enthält reichlich dunkle Minerale aus dem benachbarten Diabas (magma mingling).

4. Geschiebefunde

Abb. 17: Einschlussführender Diabas vom Brevik-Typ, Geschiebefund mit polierter Schnittfläche. Die feinkörnige, graue und basaltartige Matrix führt eckige bis schwach gerundete Einschlüsse von Sandstein. Die graue Matrix ist leicht magnetisch, der Sandstein nicht. Fundort: Kiesgrube Fresdorfer Heide bei Potsdam, leg. G. Engelhardt.
Abb. 18: Gleicher Stein, Nahaufnahme. Auffällig sind die schwarzen Reaktionsränder um die Sandsteinfragmente, die auf eine mineralische Veränderung des basaltischen Gesteins durch Stoffaustausch mittels Fluiden (Wasser) schließen lassen.
Abb. 19: Einschlussführender Diabas („Björbo-Typ“) mit feinkörniger Grundmasse. Geschiebe aus der Kiesgrube Penkun bei Stettin, Aufnahme unter Wasser.
Abb. 20: Nahaufnahme, runde Einschlüsse mit orangerotem Alkalifeldspat, grauem Quarz und wenigen dunklen Mineralen.
Abb. 21: Grenze eines feinkörnigen basaltischen Gesteins zu einem Rapakiwi-Quarzporphyr. Mitten im Basalt befindet sich ein einzelnes Porphyr-Fragment. Während basische Xenolithe in Rapakiwi-Graniten, z. B. Granitporphyren, regelmäßig zu finden sind, scheinen basaltische Gesteine mit Rapakiwi-Einschlüssen wesentlich seltener zu sein. Strandgeröll von Misdroy in Westpolen, Aufnahme unter Wasser.
Abb. 22: Basaltisches Gestein mit Einschlüssen granitischer Zusammensetzung; Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 23: Einschlussführender Diabas aus der Kiesgrube Hohensaaten (Brandenburg), Aufnahme einer frischen Bruchfläche unter Wasser.

Das Gestein enthält runde Feldspat- und Blauquarz-Einschlüsse sowie feinkörnige basaltische Xenolithe. Die Einschlüsse, besonders gut erkennbar an den Quarzen, weisen einen dunklen Reaktionssaum auf. Solche Säume, wie sie auch im Aland-„Ringquarzporphyr“ auftreten, sind ein Hinweis auf unvollständige Mineralumwandlungen. Die Reaktion fand nur an der Grenzfläche zweier Minerale statt, ein chemisches Gleichgewicht konnte sich nicht einstellen, weil die Reaktion vorzeitig zum Stillstand kam.

Abb. 24: Diabas mit Einschlüssen aus rotem Feldspat und runden Ringquarzen. Polierte Schnittfläche eines Geschiebes von Mukran auf Rügen (Slg. D. Lüttich).
Abb. 25: Diabas mit runden und eckigen Feldspäten und bläulichgrauem Quarz als Einschluss. Strandgeröll von Westermarkelsdorf, Fehmarn.
Abb. 26: Einschlussführender Diabas mit großen Alkalifeldspat-Xenokristallen und runden Blauquarzen. Kiesgrube Niederlehme bei Berlin.
Abb. 27: Schweres basaltartiges Gestein mit großen Feldspat-Fragmenten. Breite 16 cm, Kiesgrube Althüttendorf (Brandenburg).
Abb. 28: Einschlussführender Diabas, Großgeschiebe vom Rand des Tagebaus Welzow-Süd in Brandenburg, Höhe 90 cm.
Abb. 29: Das Gestein enthält schwach gerundete Fragmente von Gneisen und granitischen Plutoniten.

5. Lokalitäten

Lokalität 1: Einschlussführender Diabas mit Anorthosit- und quarzitähnlichen Sandstein-Fragmenten; Diabasgang 850 m OSO Södregården, Kartenblatt Växjö NO; WGS84DD 57.20566, 14.73403.

Lokalität 2: Småland-Granit mit Partien einschlussführender Diabase; lose Steine vom Anstehenden am Wegesrand; Waldweg bei Olstorp, SW Forserum; 57.67967, 14.44153.

Lokalität 3: Einschlussführender Diabas im Kontakt zum Påskallavik-Porphyr; Bahnanschnitt 1 km NW des ehemaligen Bahnhofs Värlebo; 57.06050, 16.19424.

Lokalität 4: Diabasgang und Diabas-Xenolithe im Småland-Granit; Aufschluss an der Straße von Alsarp nach Sjunnarp (57.53253, 16.03591), Typlokalität liegt ca. 650 m weiter südwestlich (57.52943, 16.02641).

6. Literatur

Bartholomäus WA & Herrendorf G 2003 Ein großes Gerölldiabas-Geschiebe von Varel in Oldenburg – Geschiebekunde aktuell 19 (1): 1-15, 2 Taf., 6 Abb., 1 Tab., Hamburg / Greifswald.

Hesemann J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 8 Taf. (1 Taf. im Anh.), 44 Abb., 29 Tab., 1 Kte., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

Korn J 1927 Die wichtigsten Leitgeschiebe der nordischen kristallinen Gesteine im norddeutschen Flachlande ; Ein Führer für den Sammler kristalliner Geschiebe – VI+64 S., 48 farb. Abb. auf Taf. 1-6, 8 Farb-Ktn. auf Taf. 7-14, 1 Tab., Berlin (Preußische geologische Landesanstalt).

Meyer K-D 1981 Ein Vorkommen einschlußführender Diabase bei Björbo, 60 km WSW Falun, Dalarna / Mittelschweden – Der Geschiebesammler 15 (3): 93-98 (-106), 3 Taf., 3 Abb., Hamburg. Wikman H 2000 Berggrundskartan 5E Växjö NO, skala 1:50 000. Sveriges geologiska undersökning Af 201.