Geschiebesammeln auf Rügen 3: Kap Arkona, Sellin und Mönchgut

2.3. Kap Arkona

Vom Parkplatz am Nordstrand Wittow, etwa 2,5 km westlich von Kap Arkona, führt ein Abstieg zum Strand. Wendet man sich nach Osten, werden die Steine bald größer, und nach 2 km erreicht man Gellort, den nördlichsten Punkt der Insel. Die Steilküste besteht hier wieder aus kreidigen Lockersedimenten. Am Gellort befindet sich auch der Siebenschneiderstein, der viertgrößte Findling auf Rügen.

Abb. 1: Strandabschnitt mit großen Geschieben, östlich vom Parkplatz am Nordufer auf der Insel Wittow.
Abb. 2: Abstieg zum Siebenschneiderstein am Gellort.

Der Siebenschneiderstein besitzt ein Volumen von ca. 61m³. Laut Erfassungsbeleg Geotop des GLA Mecklenburg-Vorpommern (Bearbeiter W. Schulz) handelt sich um einen Karlshamm-Granit, einem etwa 1,4 Ga alten anorogenen Granit aus Blekinge in Südschweden.

Abb. 3: Die Oberfläche des Findlings ist stark angewittert. Stellenweise ist eine schalige Ablösungen zu beobachten, wahrscheinlich eine Folge von Verwitterung durch Frostsprengung.
Abb. 4: Nur an einer Stelle ist das Gefüge des Findlings einigermaßen sichtbar und eine Ähnlichkeit mit dem Karlshamn-Granit erkennbar. Das Gestein enthält braunen Titanit.

Ein ausgesprochen interessantes Geschiebe befindet sich am einige hundert Meter westlich vom Siebenschneiderstein.

Abb. 5: Breite 75 cm.

Ein einsprenglingsarmer grüner Diabas und ein basisches Gestein mit sehr großen Plagioklas-Einsprenglingen steht im Kontakt mit einem sauren Porphyr vom Påskallavik-Typ (rechts unten). Solche Kontakte zwischen Gangporphyr und basischem Magma sind aus Ostsmåland bekannt. In diesen „gemischten Gängen“ nutzte zuerst das saure, später das basische Magma den gleichen Aufstiegsweg. Das basische Magma flankiert den sauren Gangporphyr, entstand also später. Im vorliegenden Fall scheint es mehrere basische Magmenschübe gegeben zu haben. Dabei wurde das feinkörnige und einsprenglingsarme Magma mechanisch mit dem Magma mit körniger Grundmasse und den großen Plagioklas-Einsprenglingen vermengt (magma mingling).

Abb. 6: Diabas mit körniger Grundmasse und großen Plagioklas-Einsprenglingen. Bildbreite 45 cm. Die Partie durchzieht eine etwa 1 cm breite Ader eines braunen Gesteins mit dichter Grundmasse, ohne Einsprenglinge (lokale, durch das heiße basische Magma aus dem Porphyr mobilisierte Schmelze?)
Abb. 7: Nahaufnahme der gleichen Partie. Im Diabas mit körniger Grundmasse sind die Plagioklase unregelmäßig verteilt, einige davon gerundet. Andere Partien sehen aus wie Fragmente (Bildmitte rechts). Offenbar fand mehrfach eine Vermengung unterschiedlicher basischer Gesteine statt.
Abb. 8: Der größte Plagioklas-Einsprengling (oder Xenokristall) ist 10 cm lang.
Abb. 9: Detailaufnahme einer anderen Partie. Eine Epidotader durchschlägt mehrere Plagioklas-Einsprenglinge (oben).
Abb. 10: Kontakt von Diabas und braunem Porphyr. Bildbreite ca. 25 cm.
Abb. 11: Braune Porphyrpartie. Die runden Alkalifeldspat-Einsprenglinge mit dunklen Kernen sind typisches Erkennungsmerkmal des Påskallavik-Porphyrs. Bildbreite etwa 30 cm.
Abb. 12: Die Grundmasse des Porphyrs wurde im Kontakt zum aufsteigenden Diabas-Magma aufgeschmolzen und assimiliert, nicht aber die runden Alkalifeldspäte. Sie häufen sich an dieser Stelle, teilweise sind sie von einem hellen Feldspat-Saum umgeben (Plagioklas aus dem Diabas-Magma?). Bildbreite ca. 13 cm.

Zwischen Nordstrand und Gellort sind noch weitere interessante Geschiebe zu finden, darunter auffällig viele größere Geschiebe von porphyrischen Amphiboliten (kleinkörnige Metabasite mit großen, runden Amphibol-Granoblasten, sog. „Uralit-Porphyrite“ oder „Uralit-Diabase“, Abb. 14-15).

Abb. 13: Påskallavik-Porphyr mit basischem Xenolith, Breite 24 cm. Das basische Gestein enthält einige runde Feldspäte (Xenokristalle) aus dem Porphyr. Auch hier muss das basische Magma zeitlich also nach dem Porphyr aufgestiegen sein.
Abb. 14: Porphyrischer Amphibolit, Breite 22 cm.
Abb. 15: Porphyrischer Amphibolit, Breite 24 cm.
Abb. 16: Metabasit. Für einen porphyrischen Amphibolit enthält das Gestein zu wenig Amphibol. Es dürfte sich um einen metamorphen Leukogabbro oder -diorit handeln. Breite 25 cm.
Abb. 17: Åland-Quarzporphyr, dunkle Variante, mit größeren grünen Plagioklas-Xenokristallen. Aufnahme unter Wasser.
Abb. 18: Nahaufnahme des Gefüges; rechts oben ein unvollständiger Ringquarz.

Auch an diesem Küstenabschnitt ist der Braune Ostsee-Quarzporphyr ein häufiger Geschiebefund. Die nächsten Bilder zeigen zwei ausgefallene Varianten.

Abb. 19: Brauner Ostsee-Quarzporphyr mit einem aplitischen Xenolith. Aufnahme unter Wasser.
Abb. 20: Nahaufnahme der nassen Oberfläche.
Abb. 21: Brauner Ostsee-Quarzporphyr mit fleckiger Grundmasse (Fragmente, vulkanische Brekzie?); Aufnahme unter Wasser.
Abb. 22: Der Porphyr enthält mit Quarz und Chalcedon gefüllte Hohlräume (Lithophysen). Stellenweise ist eine Bandtextur erkennbar (gebänderter Chalcedon = Achat).
Abb. 23: Gleicher Stein, polierte Schnittfläche.
Abb. 24: Nahaufnahme. Einige Lithophysen sind mit bläulichem Chalcedon verfüllt.
Abb. 25: Mafitreicher porphyrischer Rapakiwi, wahrscheinlich ein Nordingrå-Rapakiwi. Aufnahme unter Wasser.
Abb. 26: Polierte Schnittfläche. Die meisten der grauen bis gelbbraunen Alkalifeldspäte besitzen undeutliche Konturen, einige einen nahezu quadratischen Umriss.
Abb. 27: Nahaufnahme. Graugrüner Plagioklas ist in geringer Menge enthalten. Als dunkles Mineral tritt ganz überwiegend Amphibol auf. Eckige, teils idiomorphe mittelgraue Quarze sitzen in den Zwischenräumen der Feldspäte. Partien mit graphischen Verwachsungen sind nicht erkennbar.
Abb. 28: Fleckengestein, leicht foliierter Granofels mit feinkörniger roter Matrix und dunklen Flecken. Breite 35 cm, Herkunft unbekannt.
Abb. 29: Rotes Fleckengestein mit unregelmäßig konturierten Flecken in einer feinkörnigen Grundmasse. Solche Fleckengesteine kommen im Västervik-Gebiet, in ähnlicher Form aber auch in anderen Regionen vor. Breite 30 cm.
Abb. 30: Västervik-Fleckengestein, polierte Schnittfläche, Geschiebe von Göhren (Nordperd).
Abb. 31: Abendliche Stimmung am Gellort.

2.4. Lohme

Glück beim Finden wie auch beim Schneiden eines kambrischen Sandsteins hatte T. Brückner (Hilter). Der linke Grabgang mit dem Ichnofossil Monocraterion ist perfekt mittig getroffen.

Abb. 32: Außenseite des Geschiebes (Slg. T. Brückner).
Abb. 33: Polierte Schnittfläche mit Monocraterion tentaculum (TORELL 1870).
Abb. 34: In der Nahaufnahme erkennt man, dass beim Anlegen des Grabganges gröberes Sediment nachgesackt ist.

2.5. Sellin

Die nächsten Funde stammen vom Geröllstrand nordwestlich der Seebrücke Sellin.

Abb. 35: Seebrücke Sellin.
Abb. 36: Hammarudda-Quarzporphyr, Breite 75 mm.
Abb. 37: Åland-Rapakiwi mit Wiborgit-/Pyterlit-Mischgefüge, Aufnahme unter Wasser.
Abb. 38: Vulkanit mit Blauquarz (Småland-Vulkanit); Breite 7,5 cm.
Abb. 39: Rotbrauner Gangporphyr vom Påskallavik-Typ mit Blauquarz, Breite 11 cm.
Abb. 40: Porphyrischer Monzogranit, NE-Småland-Granit vom Kinda-Typ; Breite 13 cm.
Abb. 41: Monzogranit, Typ Filipstad, mit blass rötlich- bis braungrauem Alkalifeldspat und weißem bis grünlichgelbem Plagioklas. Breite 10,5 cm.
Abb. 42: Biotitreicher Monzogranit mit grünem und rotbraunem Plagioklas, Breite 7 cm.
Abb. 43: Plagioklasreicher Granitoid vom Typ Sala (Uppland-Granit), Breite 14 cm.
Abb. 44: Roter Flasergneis, Breite 9 cm.
Abb. 45: Roter Skolithos-Sandstein mit hellen Entfärbungsflecken, Breite 11 cm.

2.6. Mönchgut

Am südlichen Ende der Halbinsel Mönchgut liegt Klein Zicker. Vom Cafe „Zollhaus“ aus geht man eine niedrige Steilküste aus ockerbraunem Geschiebemergel entlang. Dieser Geschiebemergel des Mönchsguter Eislobus wurde vor 13.000 bis 15.000 Jahren während der weichselglazialen Mecklenburg-Phase abgelagert und ist ein sog. Ausschmelztill, d. h. er entstand durch sukzessives Abschmelzen des Eises während einer Stillstandslage.

Abb. 46: Steilküste auf Klein Zicker; ungeschichteter Till mit einem hohen Anteil an feinkörnigen Sedimenten (Ton, Sill) und wenigen größeren Steinen (dropstones).
Abb. 47: Brutröhren der Schornsteinwespe (Odynerus spinipes) im Geschiebemergel.
Abb. 48: Eigenartiges orthogonales Bruchmuster im Geschiebemergel. Sauerstoffhaltiges, entlang der Klüfte eindringendes Oberflächenwasser führte zu einer Oxidation von Fe II (grau) aus dem Geschiebemergel zu Fe III (Braunfärbung durch Bildung von Limonit).
Abb. 49: Steilküste aus Geschiebelehm und Schmelzwassersanden am westlichen Ende der Halbinsel.
Abb. 50: Åland-Ringquarzporphyr, Aufnahme unter Wasser.
Abb. 51: Grüner Quarzporphyr, polierte Schnittfläche.
Abb. 52: Nahaufnahme. Einige der eckigen bis kantengerundeten Quarze weisen Spuren einer magmatischen Korrosion auf.

Solche grünen Quarzporphyre werden immer wieder gefunden. Einige der eckigen bis kantengerundeten Quarze erinnern zwar an die magmatische korrodierten Quarze im Roten Ostsee-Quarzporphyr, allerdings kommen sie auch in Porphyren aus anderen Gebieten vor (u.a. Rödö).

Abb. 53: Bunter Granit vom Växjö-Typ, Aufnahme unter Wasser. Der Granittyp kommt verbreitet im nördlichen Småland vor.
Abb. 54: Grobkörniges und pegmatitähnliches Gestein aus blauem Quarz, etwas weißem Feldspat und einem braunen Mineral (Amphibol oder Andalusit?). Aufnahme unter Wasser.
Abb. 55: Tosterup-Konglomerat; überwiegend schwach kantengerundete Lithoklasten aus grünem Tonschiefer sowie ein rundes Quarzgeröll und ein rotbrauner Tonstein in einer sandigen, kalkgebundenen Matrix. Breite 20 cm.

Im westlichen Teil des Großen Zicker ist eine Steilküste aus Geschiebemergel und Schmelzwassersanden aufgeschlossen. Westlich der Zickerschen Berge liegt ein ausgedehnter Geschiebestrand.

Abb. 56: Blick von Klein Zicker auf die Zickerschen Berge.
Abb. 57: Die grasbewachsenen Hügel der Zickerschen Berge im Westen von Möchsgut werden zur Weidewirtschaft genutzt.
Abb. 58: Porphyrischer Rapakiwi; ähnliches Gefüge wie der Ostsee-Rapakiwi vom Nordbaltischen Pluton, allerdings ohne die charakteristischen kleinen Quarze um die Alkalifeldspäte. Polierte Schnittfläche, leg. D. Lüttich.
Abb. 59: Granodiorit bis Quarzmonzodiorit, Aufnahme unter Wasser.
Abb. 60: Mittelkörniger Granit aus blassrotem Alkalifeldspat (Karlsbader Zwillinge), braunrotem Plagioklas und grauem Quarz. Abgesehen von seiner Kleinkörnigkeit weist der Granit alle Merkmale des Lemland-Granits auf. Breite 13,5 cm.
Abb. 61: Ein weiterer porphyrischer Granit mit rotem Plagioklas, vermutlich (post)svekofennisch, aber kein Lemland-Granit. Aufnahme unter Wasser.
Abb. 62: Nahaufnahme der nassen Oberfläche.
Abb. 63: Abendstimmung auf Groß Zicker.

Ein Gedanke zu „Geschiebesammeln auf Rügen 3: Kap Arkona, Sellin und Mönchgut

  1. Pingback: Geologische Streifzüge auf Rügen | Geologische Streifzüge

Kommentare sind geschlossen.