Die Steilküste von Dwasieden liegt zwischen dem Hafen von Mukran und Sassnitz. Im Wald finden sich gesprengte Reste des imposanten Schlosses Dwasieden. Das 1873-1877 erbaute Hotel wurde seit den 1930er Jahren militärisch genutzt und nach dem Krieg gesprengt. Auf dem Gelände gibt es neben weiteren Relikten einer militärischen Nutzung aus DDR-Zeiten auch Parkmöglichkeiten. Steigt man von hier zur Küste hinab, stößt man zunächst auf einen Geröllstrand mit großen Geschieben sowie Werksteinen, die zum Bau des Schlosses verwendet wurden.
Unter anderem trifft man auf den einst sehr beliebten Königshainer Granit, einem postvariszischen und anorogenen Granit aus der Oberlausitz. Der gleichkörnige und meist etwas gelblich verfärbte Granit fällt durch seine idiomorphen Quarze auf. Am Strand weiter südlich findet sich das Gestein gelegentlich als Geröll wieder und sollte nicht mit „echten“ Geschieben verwechselt werden.
Die Steilküste besteht aus weichselkaltzeitlichem Geschiebemergel mit Einschaltungen von Rügener Schreibkreide. Die schlierenartigen Kreide-Schollen liegen zwischen zwei Geschiebemergeln (Brandenburger und Pommersches Stadium). Die glazialen Sedimente ruhen auf einer offenbar fast ungestört lagernden großen Kreide-Scholle (LUDWIG et al 2010; erkennbar in Abb. 1).
Am nördlichen Strandabschnitt ist ein ungewöhnliches Sedimentprofil zu sehen. Über dem Geschiebemergel liegt eine Bank aus grobem Schotter, gefolgt von geschichteten glazialen Beckensanden bzw. Bändertonen (Warven) in feiner Wechsellagerung. Sie werden als Ablagerungen eines Eissees aufgefasst.
Geschiebe aus dem Oslograben kommen auf Rügen nicht vor, die Insel liegt außerhalb des Verbreitungsgebietes der Oslo-Gesteine. Sollte man einen Larvikit finden, dürfte er aus den zu Uferschutzzwecken herbeigeschafften Blöcken am Hafen von Mukran stammen. Auch der folgende Fund, ein dunkler Gangporphyr mit rhombenförmigen Feldspat-Einsprenglingen, dürfte mit einiger Sicherheit nicht aus dem Oslograben stammen.
Auf skan-kristallin.de wird der gezeigte Porphyrtyp in Verbindung mit einer Rand- oder Gangfazies des Vaggeryd-Syenits gebracht. Gegen eine Herkunft aus diesem Gebiet spricht, dass der gewöhnliche Vaggeryd-Syenit auf Rügen als Geschiebe ebenfalls nicht angetroffen wurde. Hingegen konnte ein zweiter und ganz ähnlicher Porphyrtyp am Strand von Sassnitz aufgelesen werden. Viel wahrscheinlicher ist also eine Herkunft aus einem unbekannten Vorkommen mit syenitischen Porphyren, z. B. in Småland.
Es folgen Bilder von Åland-Gesteinen, Rapakiwis unbekannter Herkunft und Porphyren aus dem Ostseebecken.
Stets finden sich auch interessante Rapakiwigeschiebe, die keiner näheren Herkunft zugeordnet werden können.
Die größeren Blauquarze weisen nur geringe Spuren einer magmatischen Korrosion auf, die größten Feldspat-Ovoide erreichen einen Durchmesser von 2 cm. Graphische Verwachsungen aus Quarz und Feldspat in der Grundmasse sind eher eckig (aplitartig), nicht gewunden. Der Geschiebefund besitzt Merkmale der Wiborgite vom Rödö-Pluton, vgl. die auf kristallin.de gezeigten Typen.
Eine Reihe von braunen bis grünen Quarzporphyren mit orangefarbenen Feldpäten und oft schlieriger Grundmasse wird einem vermuteten Vorkommen in der Bottensee zugeordnet und als Bottenseeporphyr bezeichnet. Diese Porphyre finden sich auf Åland vermehrt als Geschiebe und müssen aus einem Vorkommen weiter nördlich stammen. Ob sie alle aus einem einzigen autonomen Vorkommen stammen oder wenigstens zum Teil aus dem Åland-Pluton, ist ungeklärt.
Als Herkunftsgebiete des folgenden Ignimbrits kommen das Vulkanitgebiet von Dalarna, aber auch das Vorkommen des Roten Ostsee-Quarzporphyrs in Frage. Dafür sprechen das gänzlich undeformierte Gefüge, Xenolithe basischer Gesteine und einzelne Quarze, die den charakteristischen magmatisch korrodierten Hochquarz-Relikten des gewöhnlichen Roten Ostsee-Quarzporphyrs ähneln.
Granite des Transskandinavischen Magmatitgürtels (TIB), die bunten „Småland“-Granite mit Blauquarz, finden sich in großer Anzahl in Dwasieden.
Eine Reihe von Merkmalen unterscheidet den 1,45 Ga alten anorogenen Uthammar-Granit von den grobkörnigen roten Småland-Graniten. Der Uthammar-Granit besitzt ein undeformiertes Gefüge; dunkle Minerale finden sich in kleinen Aggregaten, nicht in Schnüren und Schlieren (Hinweis auf Deformation). Mit der Lupe erkennt man weitgehend unverbogene Biotit-Plättchen. Grünlicher und roter Plagioklas sind nur in geringer Menge enthalten. Innerhalb der Alkalifeldspäte finden sich kleine eckige Quarzeinschlüsse.
Basische Gesteine
Metamorphite
Sedimentgesteine
Der Strandabschnitt von Dwasieden ist bekannt durch die häufigen Funde von paläozoischen Kalken, insbesondere Stinkkalken. Tatsächlich ist die Belegung mit paläozoischen Geschieben hoch.
In Dwasieden treten reichlich Limonitsandsteine auf, die überwiegend jurassischen Alters sein dürften und wahrscheinlich aus Vorkommen von Bornholm, SE-Schonen oder dem Ostseegrund stammen.
Literatur
LUDWIG A O, PANZIG W-A & KENZLER M 2010 Das Pleistozän nördlich von Sassnitz – Fazies, Lagerung und Stratigraphie des Pleistozän-Streifens 4 in: LAMPE R & LORENZ S (Hrsg.) 2010 Eiszeitlandschaften in Mecklenburg-Vorpommern. S. 65-68. Verlag Geozon Science Media, ISBN 3-941971-05-0.
Fleckengestein ist eine
allgemeine Bezeichnung für feinkörnige Metamorphite mit einer Fleckentextur. Die
runden bis linsenförmigen und meist ebenfalls feinkörnigen Flecken unterscheiden
sich in Farbe und Mineralbestand von der Matrix (Grundmasse). Solche kleinkörnigen
lokalen Konzentrationen von Mineralen, die während der Gesteinsumwandlung neu
gebildet wurden, nennt man Granoblasten. Fleckentexturen können auch in
kleinkörnigen Plutoniten auftreten („Fleckengranite“). Eine grobe
Differenzierung von Fleckengesteinen lässt sich anhand der texturellen Merkmale
der Matrix vornehmen:
Fleckengneis (flecky gneiss): Metamorphite mit einem Gneisgefüge und meist ovalen bis länglichen Flecken (Abb. 1 und 3);
Flecken-Granofels: Metamorphite mit richtungslosem Mineralgefüge und runden bis ovalen Flecken (Abb. 2).
Flecken-Glimmerschiefer: überwiegend aus Glimmer bestehendes Gestein mit dunklen Flecken (Cordierit, Andalusit), Abb. 4.
Fleckengranit (spotted granite): kleinkörniger Granit mit regellos-gleichkörniger Matrix und einer Fleckentextur (Abb. 5); makroskopisch nicht immer sicher von metamorphen Granofelsen unterscheidbar. Die Flecken enthalten häufig Biotit oder Titanit.
Zur genaueren Bezeichnung der Metamorphite können die Texturmerkmale mit dem metamorphen Mineralbestand kombiniert werden, z. B. Cordierit-Granofels (Abb. 2) oder sillimanit-granoblastischer Gneis (Abb. 3).
Metamorphite mit einer Fleckentextur gehen vor allem aus Al-reichen Sedimentiten hervor (seltener auch aus Vulkaniten oder basischen Gesteinen). In Sedimentiten wird unter geeigneten Bedingungen die Bildung von Sillimanit, Andalusit oder Cordierit begünstigt. Die Flecken entstehen unter statischen Metamorphose-Bedingungen, das heißt durch Einwirkung von hohen Temperaturen, ohne maßgebliche Beteiligung von gerichtetem Druck. Häufig dürfte es sich dabei um kontaktmetamorphe Vorgänge im Rahmen einer Gebirgsbildung handeln, bei denen das Nebengestein (z. B. Gneise, Granofelse, Migmatite) durch einen aufsteigenden Pluton verändert wird. Relativ undeformierte Flecken (Granoblasten) in deformierten Gesteinen (z. B. Gneise) müssen also nach der tektonischen Deformation und der eigentlichen Gebirgsbildung entstanden sein. Kommt erneut mäßiger und gerichteter Druck hinzu, erhalten auch die Flecken eine elliptische oder augenförmige Gestalt. Permanenter gerichteter Druck zerstört die Fleckentextur.
Der Mechanismus der Fleckenbildung in plutonischen Gesteinen („Fleckengranite“) ist nicht vollständig geklärt. Wahrscheinlich handelt es sich um Schmelzen, die in einer Spätphase der Bildung von Granitplutonen entstehen, da die Flecken häufig Titanit als typisch spätmagmatische Ausscheidung enthalten. Fleckengranite sind aus dem Stockholm-Gebiet („Stockholm-Fleckengranit“) und aus Blekinge bekannt. Der Gesteinstyp wird in einem separaten Artikel besprochen.
Abb. 1: Fleckengestein, Strandgeröll von Hökholz bei Eckernförde, Slg. E. Figaj.
Das dunkle und kleinkörnige Fleckengestein besteht aus einer Quarz-Feldspat-Biotit-Matrix und enthält helle Flecken aus Quarz und Feldspat (und sehr wenig Biotit). Wahrscheinlich sind noch weitere Minerale enthalten, von Hand aber nicht bestimmbar. Das Gestein besitzt eine Gneistextur, erkennbar an der Einregelung der Glimmerplättchen in der Matrix (Fleckengneis).
Abb. 2: Metamorphe Fleckengesteine (Flecken-Granofelse), Nahgeschiebe aus dem Västervik-Gebiet (Lok. 1). Links unten ein Västervik-Fleckengestein (Cordierit-Granofels), rechts zwei Västervik-Fleckenquarzite (glimmerführender Quarzit mit Sillimanit-Granoblasten). Links oben ein rotfleckiger Västervik-Quarzit.Abb. 3: Fleckengneise mit einer Matrix aus Quarz, Feldspat und Biotit sowie länglichen Flecken, teilweise mit feinfaserigem Sillimanit. Nahgeschiebe aus Kolmården in Östergötland (Lok. 2).Abb. 4: Flecken-Glimmerschiefer („Knoten-Glimmerschiefer“); hauptsächlich aus Glimmer bestehendes Gestein mit dunklen Flecken (Cordierit oder Andalusit). Geschiebe von Altenteil/Fehmarn.Abb. 5: Blekinge-Fleckengranit, kleinkörniger Plutonit mit einer Quarz-Feldspat-Biotit-Matrix und zoniert aufgebauten Flecken. Der Saum der Flecken besteht aus Quarz und Feldspat, der Kern enthält roten Titanit und Feldspat. Anstehendprobe vom Yasjön in Blekinge, Aufnahme unter Wasser.
Bei der Untersuchung von Fleckengestein-Geschieben mit Lupe oder Bino wird man sich aufgrund der Feinkörnigkeit der Gesteine in vielen Fällen mit einer unvollständigen Mineralbestimmung begnügen müssen. Ist die Grundmasse quarzitisch zusammengesetzt oder enthält sie auch Feldspat in nennenswerter Menge? Wenn ja, welchen? Dunkle Flecken könnten Cordierit sein, der durch retrograd gebildeten Glimmer pigmentiert ist. Auch granoblastischer Andalusit kann in Form dunkler Flecken auftreten. Cordierit kann durch Alteration in grünlich-graue Folgeprodukte (Serizit, Chlorit) umgewandelt sein. Weiße Flecken mit einem feinfaserigen Interngefüge deuten auf Sillimanit hin. In anderen Fällen scheinen die weißen Flecken nur aus einem Quarz-Feldspat-Gemenge zu bestehen. Flecken können einen einfachen oder mehrfach zonaren Aufbau besitzen. Besteht der rote Kern aus Titanit? Genauere Aussagen zum Mineralbestand sind meist nur durch eine dünnschliffmikroskopische Untersuchung möglich.
2. Funde aus Schweden
Ausgehend von der Frage, ob es Doppelgänger der Västervik-Fleckengesteine in anderen Regionen gibt, konnten im Laufe mehrerer Exkursionen nach Schweden Fleckengesteine an zahlreichen Lokalitäten gefunden werden, als Geschiebe, Nahgeschiebe oder anstehend. Fast alle Fundorte liegen innerhalb des svekofennischen Grundgebirges. Insgesamt erstreckt sich das untersuchte Gebiet aber nur über einen kleinen Teil des südlichen Segments der Svekofenniden. Weiter nördlich sowie in anderen Regionen ist mit weiteren Vorkommen zu rechnen, zumal Geschiebefunde aus Norddeutschland eine größere petrographische Diversität aufweisen als die hier gezeigten Varianten (siehe Teil 2).
Als Leitgeschiebe eignen
sich nach derzeitigem Kenntnisstand nur einige Flecken-Granofelse aus dem
Västervik-Gebiet (Abb. 2). Sie werden an anderer Stelle ausführlich besprochen
und mit ähnlichen Fleckengesteinen aus anderen Gebieten verglichen:
– Västervik-Cordierit-Granofels (Västervik-Fleckengestein). Undeformierte und feinkörnige Varianten sind als Leitgeschiebe verwendbar. Ähnliche Fleckengesteine kommen in Östergötland (Kolmården, Linköping) und im westlichen Småland vor (Almesåkra-Formation).
– Västervik-Fleckenquarzit (ehemals „Stockholm-Fleckenquarzit“). Undeformierte und glimmerführende Quarzite bis Glimmerquarzite mit kleinen Sillimanit-Granoblasten finden sich anstehend sowie in großer Menge und Vielfalt als Nahgeschiebe im Västervik-Gebiet.
Die Einzigartigkeit und Unverwechselbarkeit der Västervik-Fleckengesteine erklärt sich aus ihren besonderen Bildungsbedingungen, einer weitgehend statischen Regionalmetamorphose. Unter vergleichbaren Bedingungen könnten auch Fleckengesteine in anderen Regionen entstanden sein, allerdings sind bisher keine größeren und lokal begrenzten Vorkommen bekannt. Abgesehen von den Västervik-Gesteinen dürften Fleckengesteine prinzipiell nicht als Leitgeschiebe geeignet sein, weil Fleckenbildung in metamorphen Gesteinskomplexen weit verbreitet ist und eine Vielzahl kleiner und weit verstreuter Vorkommen existiert. Zudem unterliegen die Gesteine einer hohen petrographischen Variabilität, wie die nächsten Bilder zeigen.
Abb. 6: Besuchte Fundlokalitäten mit Fleckengesteinen in Schweden. Das Gebiet mit der höchsten Funddichte und Vielfalt an Fleckengesteinen liegt im südlichen Södermanland und östlichen Östergötland (Kolmården und Umgebung). Nach Norden und Osten werden Geschiebefunde seltener, südlich und westlich von Stockholm finden sich kaum noch Fleckengesteine.
2.1. Kolmården
Im Gebiet von Kolmården in Östergötland, etwa 100 km nördlich von Västervik, fanden sich Fleckengesteine in beispielloser Menge und Variabilität als Geschiebe. In den meisten Fällen dürfte es sich um Nahgeschiebe handeln, da einige Gesteinstypen in der näheren Umgebung auch anstehend vorkommen. Die Funde stammen vom Geröllstrand am Ufer des Braviken am Campingplatz Kolmården (Lok. 2, Abb. 7-19).
Rote Fleckengesteine: Sehr häufig finden sich die sog. Gneise vom Marmorbruket-Typ. Die grauen Gneise enthalten gröber kristallisierte fleckige Partien aus rotem Feldspat und Quarz sowie einen dunklen Kern. Der Gesteinstyp ähnelt teilweise den Fleckengesteinen aus dem Västervik-Gebiet. Weitere Bilder sowie Anstehendproben siehe Abschnitt 3.2. im Artikel zum Västervik-Fleckengestein.
Abb. 7: Graues Metasediment mit roten Flecken am Geröllstrand in Kolmården, Breite 41 cm.Abb. 8: Kleine Gerölle von Fleckengesteinen vom Marmorbruket-Typ (Geröllstrand Kolmården), Aufnahme unter Wasser.Abb. 9: In einigen der roten Fleckengneise sind die Flecken etwas grobkörniger als die Grundmasse. Neben grauem Cordierit und dunklem Glimmer finden sich grünlichbraune, teilweise rot alterierte Mineralkörner (möglicherweise Andalusit).
Auch graue Fleckengesteine kommen am Geröllstrand in Kolmården in großer Menge vor. Gefüge und Textur sind variabel, kaum ein Fund gleicht dem anderen. Zum einen handelt es sich um glimmerreiche Fleckengneise (Abb. 13-19; siehe auch Abb. 3) mit einer kleinkörnigen Matrix aus Quarz, Feldspat und Glimmer. Andere Fleckengesteine lassen keinen Feldspat in der Matrix erkennen und scheinen eine quarzitische Zusammensetzung zu besitzen (Abb. 10-12). Die Länge der Flecken beträgt wenige Millimeter bis 1 cm, im Ausnahmefall bis 5 cm (Abb. 18). Sie zeigen eine augen- bis linsenförmige oder schmale und längliche Gestalt, je nach Anschnitt der Flecken zur Foliationsrichtung. In manchen Flecken ist fibroblastischer Sillimanit erkennbar.
Abb. 10: Feinkörniger Flecken-Granofels (Kolmården) mit quarzitischer Grundmasse und weißen Sillimanit-Flecken. Im Zentrum einiger Flecken ist ein einzelnes größeres Biotitkorn erkennbar. Die bräunlichen Flecken könnten Alterationsprodukte von Cordierit sein (Chlorit).Abb. 11: Feinkörniges quarzitisches Fleckengestein (Kolmården) mit augenförmigen weißen Flecken und dunklen Schlieren (Cordierit?).Abb. 12: Gleicher Stein, Nahaufnahme. Die feinkörnigen hellen Flecken enthalten Quarz und Feldspat. In der Matrix ist kein Feldspat erkennbar.Abb. 13: Grauer Fleckengneis mit Sillimanit-Granoblasten (Kolmården). Der Blick auf die Foliationsebene zeigt breite und ovale Flecken, in der Seitenansicht (unterer Bildteil) sind sie flach und linsenförmig ausgebildet. Abb. 14: Nahaufnahme, radialstrahlig ausgebildete Aggregate von feinfaserigem (fibroblastischem) Sillimanit. Abb. 15: Hellgrauer und feinkörniger Fleckengneis (Kolmården). In den gelb- bis rötlich-braunen Kernen der Flecken sind Kristalle von keilförmiger Gestalt erkennbar (Hinweis auf Titanit). Abb. 16: Feinkörniger Fleckengneis mit stark ausgelängten weißen Flecken. Geröllstrand Kolmården, Breite des Steins 10 cm.Abb. 17: Grauer Quarz-Feldspat-Biotit-Gneis. Die länglichen Flecken enthalten einen gelblichbraunen Kern (Titanit?) und eine helle Randzone aus Quarz und Feldspat.
Ein vergleichbarer Gesteinstyp wird in Hesemann 1975 und in ZANDSTRA 1988 als feinkörnige Variante des „Stockholm-Fleckengranits“ angeführt. Offensichtlich stammt er aber aus zahlreichen Kleinvorkommen, die in Södermanland ein größeres Gebiet einnehmen. Im Stockholm-Gebiet wurden Geschiebe dieses Typs nur vereinzelt gefunden.
Abb. 18: Grauer Fleckengneis (Quarz-Feldspat-Biotit-Gneis) mit ungewöhnlich großen augenförmigen Flecken bis 5 cm Länge. Kolmården, Breite des Steins 32 cm.Abb. 19: Gleicher Stein, nass fotografiert. Biotit fehlt innerhalb der weißen und roten Quarz-Feldspat-Flecken und tritt vermehrt in der schmalen Randzone auf.
Anstehendproben aus dem Gebiet von Kolmården: Das Kartenblatt Katrineholm SO verzeichnet in den Metasedimenten der weiteren Umgebung von Kolmården lokale Anreicherungen von Sillimanit, Cordierit und Andalusit sowie Fleckentexturen (SGU 1960, Beschreibung Wikström 1979). Zwei Anstehendproben von roten Fleckengneisen werden im Artikel zum Västervik-Fleckengestein gezeigt (Abb. 31, 32 sowie 38). Im Dorf Snörom (Lokalität 3) fand sich ein grauer Fleckengneis in einem temporären Aufschluss (Baustelle).
Abb. 20: Anstehender Fleckengneis mit hellen Flecken bis 2 cm Länge (Snörom, Lokalität 3), Bildbreite 22 cm.Abb. 21: Die weißen Bereiche der Flecken bestehen aus Quarz und Feldspat. Die hellgrauen Kerne, ein feinkörniges und unbestimmtes Mineralgemisch, treten nur beim Anschnitt des Gesteins zur Foliationsebene in Erscheinung. Bildbreite 15 cm.Abb. 22: Polierte Schnittfläche einer Probe aus dem gleichen Aufschluss, ein Quarz-Feldpat-Biotit-Gneis mit eingeregelten Glimmerblättchen, hellen Quarz-Feldspat-Flecken und größeren dunklen Flecken (wahrscheinlich Cordierit).
Das Kartenblatt Katrineholm SO zeigt ein weiteres Vorkommen mit fleckigen Metasedimenten in unmittelbarer Nähe. Der Aufschluss konnte nicht lokalisiert werden, aber in Snörom fanden sich mehrere lose Gesteinsbrocken eines Fleckengneises, der vom anstehenden Typ abweicht und aus unmittelbarer Nähe stammen dürfte.
Abb. 23: Brauner Fleckengneis mit weißen und dunklen Flecken. Die dunklen Flecken sind im Vergleich zur Matrix gröber kristallisiert und von roten Quarz-Feldspat-Partien umgeben. Nahgeschiebe von Snörom, Bildbreite 36 cm.Abb. 24: Gleicher Stein, polierte Schlifffläche.Abb. 25: Nahaufnahme. Die hellen Säume der Flecken bestehen aus Quarz und Feldspat, der Kern aus einem unbestimmten Mineralgemisch. Unten rechts der Anschnitt eines roten Flecks mit dunklem Kern (wahrscheinlich Cordierit).
2.2. Sörmland
Bedeutend weniger Fleckengestein-Geschiebe, insgesamt etwa ein Dutzend, fanden sich in einer Kiesgrube bei Nyköping, etwa 20 km östlich von Kolmården (Lok. 4). Überwiegend handelte es sich um graue, kleinkörnige und biotitreiche Fleckengesteine mit weißen Flecken. Die Grundmasse aus Quarz, Feldspat und Biotit besitzt ein weitgehend regelloses Gefüge, die länglichen Flecken zeigen eine gerichtete Textur (Abb. 26). Vereinzelt kamen auch dunkle und feinkörnige Gneise mit Sillimanit-Flecken vor (Abb. 27). Etwa 30 km weiter nördlich, in einer Kiesgrube bei Flen, wurden überhaupt keine Fleckengestein-Geschiebe gefunden.
Abb. 26: Kleinkörniges Fleckengestein mit einer Quarz-Feldspat-Biotit-Matrix (Kiesgrube Nyköping). Breite 12 cm.Abb. 27: Feinkörniger Gneis mit weißen Sillimanit-Flecken (Kiesgrube Nyköping).
In der Kiesgrube fand sich auch ein kleinkörniger Granofels (Abb. 28) mit einer Quarz-Feldspat-Biotit-Matrix, der zahlreiche gelbbraune Granat-Granoblasten enthält, die von einem schmalen hellen Plagioklas-Saum umgeben sind. Dies ist der erste (und einzige) Fund eines granathaltigen Metasediments in diesem Gebiet. Weder im Västervik-Gebiet noch in der Umgebung von Kolmården kommt der Gesteinstyp vor.
Abb. 28: Granat-Granofels (Kiesgrube Nyköping).
Auch das nächste Fleckengestein-Geschiebe ist ein Einzelfund und stammt vom Campingplatz in Hölö (Lok. 5), etwa 45 km SW von Stockholm. Auch an weiter östlich gelegenen Lokalitäten sowie südlich von Stockholm fanden sich entweder nur einzelne oder gar keine Geschiebe von Fleckengesteinen: 1. Kiesgrube bei Järna, unmittelbar westlich von Stockholm (Lok. 6, 1 Fleckengranit); 2. Skansholmen, südlich von Stockholm (Lok. 7, 1 kleinkörniges Fleckengestein, vergleichbar mit dem Typ in Abb. 26); 3. Kiesgruben auf Nynäshamn, südlich von Stockholm (keine Geschiebe von Fleckengesteinen, pers. Mitteilung M. Bräunlich).
Abb. 29: Geschiebe eines Fleckengesteins von Hölö mit polierter Schnittfläche. Die fleckig-inhomogene Matrix besteht im Wesentlichen aus Quarz und Feldspat sowie grünen und dunklen, nicht näher bestimmbaren Mineralen. Abb. 30: Gleicher Stein, Nahaufnahme.
Die Flecken besitzen eine helle Saumzone und weiße oder grüne Kerne. Weiße Kerne enthalten fibroblastischen Sillimanit, grüne Kerne wahrscheinlich Chlorit als Alterationsprodukt von Cordierit. Die Vermutung stützt sich auf den Befund einer Dünnschliffuntersuchung eines ähnlichen Fleckengestein-Geschiebes (s. Teil 2).
2.3. Almesåkra-Formation
Im westlichen Småland, unmittelbar südlich der Almesåkra-Formation, finden sich vermehrt Geschiebe von Fleckengesteinen. Die Metasedimente zeigen teilweise noch Relikte des sedimentären Mineralgefüges (runde Quarzkörner). Mit einiger Wahrscheinlichkeit sind sie aus tonhaltigen Sedimenten hervorgegangen, die beim Aufstieg des Almesåkra-Diabas kontaktmetamorph verändert wurden. Anstehendproben liegen bisher nicht vor. Einige dieser Metamorphite ähneln dem Västervik-Fleckengestein und werden im betreffenden Artikel besprochen (Abschnitt 3.1.).
Abb. 31: Fleckengestein-Geschiebe aus einer Kiesgrube bei Komstad, westlich von Sävsjö, Lok. 8. Abb. 32: Fleckengestein-Geschiebe (Kiesgrube bei Komstad). Unregelmäßig geformte dunkle Flecken sind von roten Säumen aus Quarz und Feldspat umgeben. Die Matrix enthält größere Mengen Hellglimmer.
2.4. Linköping
In einer Kiesgrube bei Linköping (Lok. 9) fand sich ein einzelnes rotes Fleckengestein (s. Västervik-Fleckengestein, Abschnitt 3.3, Abb. 40) sowie ein grünliches Fleckengestein. Nördlich von Linköping ist demnach mit weiteren, bisher nicht näher untersuchten Vorkommen von Fleckengesteinen zu rechnen.
Abb. 33: Feinkörniges Fleckengestein mit länglichen hellen Flecken.Abb. 34: Gleicher Stein, Nahaufnahme. Der Mineralbestand ist bis auf ein blaues Quarzkorn und feine Flitter eines glimmerähnlichen Minerals nicht näher bestimmbar.
3. Verzeichnis der Lokalitäten
Lokalität 1: Geschiebe Västervik-Fleckengesteine; Böschung am Fahrradweg in Västervik Jenny, nahe der Autorennbahn (Motorbana); 57.768130, 16.585394. Lokalität 2: Geschiebe Fleckengesteine; Rollsteinstrand am Campingplatz Kolmården; 58.65718, 16.40712. Lokalität 3: Fleckengneis, anstehend; Snörom bei Kolmården, temporärer Aufschluss; 58.66476, 16.41711. Lokalität 4: Geschiebe Fleckengesteine; aktive Kiesgrube NW von Nyköping; 58.774022, 16.819400. Lokalität 5: Geschiebe Fleckengestein; Campingplatz Hölö/Norrvra; 59.00824, 17.53729. Lokalität 6: Geschiebe Fleckengranit; aktive Kiesgrube zwischen Järna und Nykvarn; 59.12040, 17.46764. Lokalität 7: Geschiebe Fleckengestein; Geröllstrand am Campingplatz Skansholmen/S Sandviken; 59.04647, 17.69313. Lokalität 8: Geschiebe Fleckengesteine; Kiesgrube bei Komstad, 3 km westlich Sävsjö; 57.391392, 14.616904. Lokalität 9: Geschiebe Fleckengesteine; Kiesgrube südlich Linköping; 58.329789, 15.631448.
4. Literatur
Gavelin S 1983 The Västervik Area in South-eastern Sweden – SGU Ser. Ba No. 32, 172 S, Uppsala.
Wikström A 1979 Beskrivning till berggrundskartan 1:50000 – Katrineholm SO – Sveriges Geologiska Undersökning (Af) 123: 101 S., 44 Abb., 14 Tab., 3 Ktn. in 1 Mappe, Stockholm.
Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).
Die folgenden Geschiebefunde aus Norddeutschland illustrieren die petrographische Vielfalt von Fleckengesteinen. Kaum ein Fund gleicht dem nächsten, kaum ein Geschiebe lässt sich einem näheren Herkunftsgebiet zuordnen. Mögen in einigen Fällen auch Ähnlichkeiten mit den Funden aus Schweden bestehen (siehe 1. Teil), ist der Umkehrschluss nicht zulässig, dass der betreffende Gesteinstyp nur an einer einzigen Lokalität vorkommt. – Das erste Geschiebe stammt aus einer Kiesgrube in Brandenburg (E. Fuchs leg.) und wurde freundlicherweise von Herrn U. Maerz dünnschliffmikroskopisch untersucht.
Abb. 1: Grünlichbraunes und feinkörniges Fleckengestein, Aufnahme unter Wasser.Abb. 2: Nahaufnahme der polierten Schnittfläche. Die Flecken sind mehrfach zoniert und bestehen aus einem grünlichen Kern, einer hellen Zwischenzone und einer schmalen grünlichen Randzone.
Die Dünnschliffuntersuchung ergab, dass die Matrix aus xenomorphen, teilweise polygonalen Kristallen von Quarz, Kalifeldspat (überwiegend Mikroklin) und Plagioklas sowie idiomorphen Biotit-Kristallen besteht. Die äußere Randzone der Flecken ist deutlich grobkörniger als die Matrix und enthält ebenfalls Quarz, Kalifeldspat und Plagioklas. Die helle Zwischenzone enthält zusätzlich Serizit, die dunklen Kerne Serizit und Chlorit. Diese Minerale dürften Alterationsprodukte von Cordierit sein, der durch wässrige Fluide instabil wurde. Unalterierter Cordierit konnte nicht beobachtet werden. In den Kernen wurde weiterhin feinnadeliger Sillimanit gefunden. Die grünen Umwandlungsprodukte von Cordierit finden sich auch außerhalb der Blasten und umschließen die Körner der Matrix.
Abb. 3: Dünnschliffaufnahme einer Fleckenzone unter linear polarisiertem Licht. Bildbreite 3 mm. Foto: U. Maerz. Abb. 4: Gleicher Ausschnitt unter gekreuzten Polarisatoren. Foto: U. Maerz.
Das Zentrum des Kerns bilden Büschel von wirrstrahlig angeordneten, mit Serizit verwachsenen Sillimanitnadeln. Rechts und links schließen sich Bereiche an, die von überwiegend feinst verwachsenem Serizit ausgefüllt werden. Der Randbereich mit den größeren Kristallen aus Quarz und Feldspat setzt sich gut von der feiner körnigen Matrix ab.
Abb. 5: Polierte Schnittfläche eines grünen Fleckengesteins, Kiesgrube Damsdorf/Bochow, Brandenburg (D. Lüttich leg.).Abb. 6: Nahaufnahme.
Die Flecken besitzen eine dunkelgrüne äußere Randzone, eine helle Zwischenzone und grüne oder weiße Kerne, teilweise aus feinfaserigem Sillimanit. Bei den grünen Mineralen könnte es sich ebenfalls um Chlorit als Alterationsprodukt von Cordierit handeln.
Abb. 7: Grauer Fleckengneis mit biotitreicher Grundmasse aus der Kiesgrube Ruhlsdorf bei Bernau (Brandenburg). Aufnahme unter Wasser.Abb. 8: Nahaufnahme des gleichen Steins, Flecken mit grünen Kernen und hellem Saum.Abb. 9: Grauer Fleckengneis mit weißen Flecken aus Quarz und Feldspat. Kiesgrube Teschendorf bei Oranienburg, Brandenburg.Abb. 10: Quarz-Feldspat-Biotit-Gneis mit großen Flecken aus Quarz und Feldspat, umgeben von einer dunklen und biotitreichen Randzone. Kiesgrube Penkun, Ost-Brandenburg; Slg. A. Bräu.Abb. 11: Grauer Fleckengneis mit einzelnen größeren Biotitplättchen innerhalb der feinkörnigen weißen Flecken. Kiesgrube Hoppegarten bei Müncheberg, Brandenburg.Abb. 12: Sehr feinkörniges Fleckengestein mit quarzitischer Grundmasse. Kiesgrube Hohensaaten, Brandenburg.Abb. 13: Muskovithaltiger Quarz-Feldspat-Gneis; helle Flecken mit rötlichem Kern. Fundort: Geröllstrand Hökholz bei Eckernförde, Schleswig-Holstein.Abb. 14: Nahaufnahme, nasse Oberfläche. Die hellen Säume enthalten Quarz, Feldspat sowie ein feinfaseriges Mineral, vermutlich Sillimanit. Die Minerale in den roten Kernen sind feinkörnig und nicht bestimmbar.Abb. 15: Feinkörniger Fleckengneis, Strandgeröll von Travemünde (E. Figaj leg.).Abb. 16: Nahaufnahme.
Bemerkenswert ist ein mehrphasiger Aufbau der Flecken: 1. Kernbereich mit einem einzelnen Biotit- und/oder hellem Feldspat-Korn, 2. quarzreicher Saum, umgeben von 3. gelben Mineralen mit stumpfem Glanz (angewitterter Feldspat?). 4. Heller und stärker ausgelängter Bereich aus Quarz und Feldspat, schließlich 5. eine biotitreichere Hülle, ohne klare Abgrenzung zur Matrix aus Quarz, Feldspat und Biotit (+Amphibol?).
Abb. 17: Schnittfläche eines Fleckengneises, Aufnahme unter Wasser. Das Gestein ist auffällig schwer und enthält neben Biotit wahrscheinlich auch Amphibol in bedeutender Menge. Die länglichen Flecken bestehen aus feinfaserigem Sillimanit. Strandgeröll von Nienhagen bei Rostock, leg. G. Engelhardt.Abb. 18: Nahaufnahme der faserigen Sillimanit-Aggregate.Abb. 19: Fleckengestein als Windkanter. Die Kernbereiche der Flecken weisen Vertiefungen auf, während die hellen Säume der erosiven Einwirkung des Windes widerstehen konnten. Kiesgrube Rietz bei Treuenbietzen, Brandenburg; Slg. D. Lüttich.Abb. 20: Feinkörniger Gneis mit länglichen und glimmerreichen Flecken. Kiesgrube Gusow, Ost-Brandenburg.Abb. 21: Grünlicher Flecken-Granofels mit dunklen Cordierit- und weißen Sillimanit-Granoblasten (Strandgeröll von Misdroy in Westpolen). Das undeformierte Gestein könnte aus dem Västervik-Gebiet stammen, ein vergleichbares grünes Fleckengestein wurde dort bisher allerdings nicht gefunden.Abb. 22: Roter Fleckengneis, Geschiebe von der Ostsee. Foto: M. Bräunlich.Abb. 23: Nahaufnahme der länglichen Flecken mit wellenförmig ausgebildeten Aggregaten eines feinfaserigen Minerals, wahrscheinlich Sillimanit.
Als Geschiebe weniger verbreitet sind Glimmerschiefer oder glimmerreiche Metasedimente mit einer Fleckentextur (Flecken- oder Knoten-Glimmerschiefer, Abb. 24-26). In den meisten Fällen dürfte es sich um Kontaktmetamorphite mit Andalusit oder Cordierit als Mineralneubildung handeln.
Abb. 24: Knoten-Glimmerschiefer aus der Kiesgrube Vogelsang bei Eisenhüttenstadt, Brandenburg (St. Schneider leg.).Abb. 25: Metamorphit mit einer grünlich-grauen und an Hellglimmer reichen Matrix sowie dunklen Flecken (Kiesgrube Hohensaaten, Ost-Brandenburg).Abb. 26: Glimmerreicher Metamorphit (Metasediment) mit dunklen Flecken und einigen einzelnen hellen Feldspatkörnern (Kiesgrube Niederlehme bei Berlin). Abb. 27: Fleckengestein mit dunkler und feinkörniger Grundmasse aus der Kiesgrube Kröte (Wendland, Ost-Niedersachsen). Abb. 28: Für den Mineralbestand des Kernbereichs mit rötlich-gelben Mineralkörnern und der feinkörnigen weißen Randzone gibt es bisher keine Anhaltspunkte.Abb. 29: Polierte Schnittfläche eines Fleckengneises mit länglichen dunklen Flecken aus der Kiesgrube Althüttendorf in Brandenburg.Abb. 30: Helle und graugrüne Partien scheinen eine quarzitische Zusammensetzung zu besitzen, während die roten Partien zusätzlich Feldspat enthalten. Das Gestein ist von senkrecht verlaufenden Klüften durchzogen, die einzelnen Bereiche weisen einen leichten Versatz auf.Abb. 31: Eine schmale rote Partie enthält kleine nadelförmige Porphyroblasten (wahrscheinlich Amphibol).Abb. 32: Dunkle Cordierit-Flecken mit hellem Saum in einem feinkörnigen Granofels. Kiesgrube Waltersdorf bei Berlin.Abb. 33: Heller Quarz-Feldspat-Biotit-Gneis mit grünlich-braunen Flecken (alterierter Cordierit?). Polierte Schnittfläche eines Geschiebes aus der Kiesgrube Damsdorf/Bochow, Brandenburg; leg. D. Lüttich.Abb. 34: Dunkles Metasediment (Granofels) mit gelblichen Flecken (Kiesgrube Niederlehme bei Berlin).Abb. 35: Nahaufnahme der nassen Gesteinsoberfläche. Die gelblichgrauen Flecken auf der Außenseite weisen auf der Bruchfläche eine unvollständige Spaltbarkeit, einen lebhaften Glasglanz und eine dunkelgraue Tönung auf (Cordierit oder Andalusit).
Ein seltener Geschiebefund
sind Vulkanite mit einer Fleckentextur. Die Neubildung von Mineralen könnte
bevorzugt von sekundär entstandenen Strukturen mit abweichender chemischer Zusammensetzung
ausgegangen sein (z. B. Lithophysen).
Abb. 36: Metavulkanit, Aufnahme unter Wasser. Fundortangabe: „Roth“, wahrscheinlich aus der Umgebung von Parchim (D. Schmälzle leg.).Abb. 37: Nahaufnahme der polierten Schnittfläche. Innerhalb der kugeligen Aggregate ist ein feinfaseriges gelbbraunes Mineral als metamorphe Neubildung erkennbar (z. B. ein Amphibol wie Anthophyllit).