Schlagwort-Archive: Söndrum

3. SW-schwedische Küstenaufschlüsse

3.1. Söndrum

In Halland, im Gebiet zwischen Halmstad und Falkenberg (Karte), entwickelte sich ab dem Ende des 19. Jahrhunderts eine steinverarbeitende Industrie. Zahlreiche Steinbrüche zeugen vom regen Abbau der migmatitischen Gneise, die unter Handelsbezeichnungen wie „Halmstad“ oder „Hallandia“ überregionale Bekanntheit erlangten und auch heute noch ein beliebter Dekorstein sind. An der Küste bei Söndrum, im Ortsteil Stenhuggeriet bieten mehrere aufgelassene Steinbrüche einen Einblick in das Grundgebirge mit Gesteinen der Südwestschwedischen Granulitregion (Lok. 3.1 auf der Karte).

Abb. 1: Küstennah angelegte Steinbrüche erleichterten den Abtransport der Werksteine. Grötvik stenbrott, Aussichtsplattform Spritkullen, südlich von Söndrum.
Abb. 2: Rotgrauer und magnetitführender migmatitischer Granulitgneis („Järngneis“). Bildbreite 30 cm.
Abb. 3: Rot- bis orangegraue migmatische Gneise; Haldenmaterial der Steinbrüche als Brandungsgeröll. Bildbreite ca. 35 cm.
Abb. 4: Brandungsgerölle; migmatitische Adergneise sowie orangerote und pegmatitähnliche Quarz-Feldspat-Gesteine (teilweise wohl Leukosome aus der Aufschmelzung der Adergneise).
Abb. 5: Blick in den stillgelegten Steinbruch „Bolagsbrottet“.
Abb. 6: Migmatitischer Gneis mit grobkörnigen Partien aus rotem Alkalifeldspat und blassgelbem Plagioklas sowie Ansammlungen von dunklen Mineralen (Biotit); Steinbruch Bolagsbrottet.
Abb. 7: Deformierter bunter Pegmatit („Flammenpegmatit“) aus rotem Alkalifeldspat, grauem Quarz und grünlichem Plagioklas. Steinbruch Bolagsbrottet, Aufnahme unter Wasser.
Abb. 8: Orangeroter Flammenpegmatit, Steinbruch Bolagsbrottet.
Abb. 9: Fast vollständig aus dunklen Glimmermineralen bestehendes Gestein („Biotitit“), wahrscheinlich ein nicht aufgeschmolzenes Relikt (sog. Restit) migmatitischer Gneise.

Eine Besonderheit im Steinbruch Bolagsbrottet sind grüne und „charnockitisierte“ Partien innerhalb der rötlichen Grundgebirgsgneise. Die lokale Umwandlung der Gneise in Charnockite vollzog sich unter granulitfaziellen Bedingungen und dem Einfluss CO2-reicher, aber wasserarmer Fluide. Dabei kam es zur Bildung von Ortho- und Klinopyroxen, dem kennzeichnenden Mineralbestand von Charnockiten. Ansonsten bestehen die charnockitisierten Partien wie die benachbarten Gneise im Wesentlichen aus Quarz und Feldspat.

Abb. 10: Etwa 5 m breite grüne und charnockitisierte Partie, durchzogen von einem roten Pegmatit („Flammenpegmatit“).

Der charnockitisierte Bereich geht ohne klare Begrenzung in die roten Gneise über und wird von einem 1 m mächtigen roten Pegmatitgang durchzogen („Flammenpegmatit“). Klinopyroxen und Orthopyroxen treten, neben retrograd gebildetem Amphibol, ausschließlich innerhalb der grünen Partien sowie im Pegmatit auf. Der Pegmatit dürfte durch Aufschmelzung unter granulitfaziellen Bedingungen entstanden sein. Die Charnockitisierung wurde auf 1397 +/- 4 Ma datiert (HARLOV et al 2006; ANDERSSON et al 2008: 38-41).

Solche durch hochgradige Metamorphose charnockitisierte Gneise finden sich an mehreren Lokalitäten in SW-Schweden. Daneben gibt es auch Charnockit-Massive, die eindeutig magmatischen Ursprungs sind (s. Varberg-Charnockit). Der Gesteinstyp kann also auf verschiedene Weise entstehen. Kennzeichnend und für die Bestimmung dieser Quarz-Feldspat-Gesteine maßgeblich ist enthaltener Orthopyroxen, der jedoch, wie die anderen dunklen Minerale, meist feinkörnig ausgebildet und mit einfachen Mitteln nicht erkennbar ist. Im Gelände können jedoch eine Grünfärbung der Gesteine, das Vorhandensein von Granat und gegebenenfalls die Vergesellschaftung mit granulitfaziellen Pegmatiten („Flammenpegmatit“) als deutliche Indizien für charnockitisierte Partien angesehen werden.

Abb. 11: Deformierter bunter Pegmatit („Flammenpegmatit“) im Zentrum der charnockitisierten Gneispartie. Die plattig ausgebildeten Quarze verweisen auf granulitfazielle Bildungsbedingungen. Bildbreite etwa 35 cm.
Abb. 12: Charnockitprobe aus dem Steinbruch Bolagsbrottet, Aufnahme unter Wasser.

Das Gestein besteht aus xenomorphen Körnern von grünem Feldspat und transparentem Quarz. Dunkle Minerale sind von Hand nicht bestimmbar und bilden unregelmäßige Ansammlungen und Schlieren ohne vorherrschende Foliationsrichtung.

Abb. 13: Nahaufnahme. Innerhalb der dunklen Minerale findet sich reichlich roter Granat.

Ein weiterer Aufschluss im Steinbruch Bolagsbrottet zeigt ein blassgrünes und rotes, teilweise pegmatitartiges Quarz-Feldspat-Gestein mit Megakristallen von Orthopyroxen als faziestypisches Mineral der Granulitfazies (MÖLLER et al 1996: 20). Orthopyroxen-Megakristalle treten auch an anderen Lokalitäten in SW-Schweden auf (s. Abschnitt Stensjöstrand).

Abb. 14: Pegmatit mit Orthopyroxen-Megakristallen. Bildbreite etwa 90 cm.
Abb. 15: Nahaufnahme; schwarze Orthopyroxene bis 4 cm Länge.
Abb. 16: Bruchfläche einer Probe aus dem gleichen Aufschluss.

Auch hier erweist sich die makroskopische Bestimmung von Orthopyroxen als problematisch. Ein lebhafter Glasglanz deutet eher auf Amphibol, während die eher schlechte Spaltbarkeit sowie rechtwinklige Spaltwinkel auf Pyroxen hinweisen. Möglicherweise liegt hier auch eine partielle retrograde Umwandlung von Orthopyroxen in Amphibol vor.

Abb. 17: Der Gesteinstyp findet sich wenige Meter entfernt am Geröllstrand wieder.
Abb. 18: Nahaufnahme der trockenen Oberfläche mit länglichen Anschnitten der schwarzen Kristalle.

Literatur

ANDERSSON J, BINGEN B, CORNELL D, JOHANSSON L, SÖDERLUND U & MÖLLER C 2008 The Sveconorwegian orogen of southern Scandinavia: setting, petrology and geochronology of polymetamorphic high-grade terranes – 33 IGC excursion No 51, August 2 – 5, 2008.

HARLOV D E, JOHANSSON L, VAN DEN KERKHOF A & FÖRSTER H-J 2006 The role of advective fluid flow and diffusion during localized, solidstate dehydration: Söndrum Stenhuggeriet, Halmstad, SW Sweden – Journal of Petrology 47, 3–33.

MÖLLER C, JOHANSSON L, ANDERSSON J & SÖDERLUND U 1996 Southwest-Swedish Granulite Region – Exkursionsführer in: Berichte der Deutschen Mineralogischen Gesellschaft, Beih. z. Eur. J. Mineral. Vol. 8, 1996, No.2, S.1-42.