Vulkanite mit akkretionären („angewachsenen“) Lapilli sind als Geschiebefund ziemlich selten. Es handelt sich um feinkörnige bis dichte Gesteine und einer sehr hellen Verwitterungsrinde. Auf der Oberfläche sind rundliche bis elliptisch geformte Einschlüsse (Lapilli) erkennbar. Diese etwa erbsen- (lat. pisum Erbse) bis 1 cm großen Lapilli besitzen eine millimeterbreite und besonders feinkörnige Randzone, die als positives Relief hervortritt, weil sie der Verwitterung stärker widersteht (Abb. 1). Dies ist das akkretierte Aschenmaterial, das während der Flugphase der Lapilli konzentrisch angelagert wurde (s. u.).
Unter den Geschiebefunden überwiegen Aschentuffe mit hell cremefarbener bis gelblich-brauner Verwitterungsrinde. Auf der Bruchfläche sind die Gesteine meist wesentlich dunkler getönt (beige, braun, grau) und können einen grünen Farbstich besitzen. Die Tuffmatrix enthält nur wenige und sehr kleine Feldspat-Einsprenglinge. Auch dunkle Minerale fehlen weitgehend. An manchen Funden lassen sich fein laminierte Aschenlagen beobachten (Abb. 12). Lapilli und Randzone können eine andere Färbung als die Tuffmatrix besitzen (Abb. 1 und 8). Abb. 6 zeigt einen Fund mit farblosen und transparenten Lapilli-Säumen, Abb. 9-12 und 17 zeigen Lapilli mit dunkleren Rändern. Der Gesteinstyp ist in Farbe und Erscheinungsbild variabel. Auch graue (Abb.4), rote (Abb. 13) oder bunte (Abb. 5) Varianten sind bekannt.
Die Bezeichnung „Aschentuff
mit akkretionären Lapilli“ klingt etwas umständlich, beschreibt aber zutreffend
die Eigenschaften des Gesteins. „Vulkanischer Pisolith“ ist nicht ganz korrekt,
da Pisolithe Sedimentgesteine mit karbonatischen Pisoiden sind, also runden Gebilden
aus konzentrisch angelagerten Mineralschichten, ähnlich den Ooiden. Die
„vulkanischen Pisoide“ sind weder karbonatisch, noch besitzen sie einen mehrfach
konzentrischen Aufbau. Häufig erkennt man nur einen Kern (Lapilli) und eine
Hülle aus akkretierter Vulkanasche. Geschiebefunde sollten nicht pauschal als „Dala-Pisolith“
(Rudolph 2017) oder “Pisolithischer
Dalarna-Porphyrtuffit“ (Zandstra
1988, 1999) bezeichnet werden, weil der Gesteinstyp auch in anderen Regionen
vorkommt.
Entstehung
Lapillituffe mit
akkretionären Lapilli entstehen bevorzugt in der Anfangs- oder Schlussphase
vulkanischer Aktivität während phreatomagmatischer Eruptionen. Dies sind
Ausbrüche, deren Explosivität durch die Anwesenheit größerer Mengen Wasser befördert
wird. Verhältnismäßig „feuchter“ vulkanischer Auswurf (Asche und Lapilli) steigt
zunächst in einer Eruptionssäule empor und kühlt sich ab. Dabei kommt es zu einer
Kondensation von Wasser, das sich auf der Oberfläche mitgerissener Lapilli niederschlägt.
Durch Adhäsionskräfte werden noch während der Flugphase feinste Aschenteile angezogen,
die sich konzentrisch um die Lapilli anlagern (sog. Akkretion). Die weichen
Lapilli fallen später zu Boden, wo sie meist geringmächtige Horizonte in feinkörnigen
Vulkanaschen bilden. Ihre elliptische Form entsteht durch Kompaktion überlagernder
Schichten.
Akkretionäre
Lapilli entstehen auch in „feuchten“ pyroklastischen Ascheströmen (surges). Solche Ablagerungen kann man im
Gelände an Bruchstücken akkretionärer Lapilli („zerstörte Lapilli“) erkennen,
die durch die hohe Dynamik unmittelbar nach ihrer Bildung wieder zerstört
wurden.
Vorkommen
Der Gesteinstyp ist nicht als Leitgeschiebe geeignet, weil er Kleinstvorkommen bildet und in allen Vulkanitgebieten auftreten kann. Aus Dalarna sind ein anstehendes Vorkommen bei Mora sowie Funde von Nahgeschieben bekannt (Lundqvist 1968: 112-113, s. a. skan-kristallin.de). Die bunten Aschentuffe von Idkerberget (Dalarna) enthalten Horizonte mit akkretionären Lapilli (zwerfsteenweb.nl). Persson 1985: 46 beschreibt einen akkretionären Lapillituff aus Småland (Lönneberga-Silverdalen, Abb. 14-18). Im svekofennischen Grundgebirge (Bergslagen, Dannemora, Arvidsjaur?) gibt es kaum deformierte akkretionäre Lapillituffe (Abb. in Allen et al 2008: 28; Lundström 1995: 92; Stephens et al 2009: 62). Mit weiteren, bisher unbekannten Vorkommen ist zu rechnen. In Gebieten mit gemischten Geschiebe-Geröll-Gemeinschaften (z. B. im Berliner Elbelauf) besteht theoretisch die Möglichkeit von Funden akkretionärer Lapillituffe als „südliches Geröll“, z. B aus dem Döhlener Becken (s. Reichel & Schauer 2006).
Geschiebefunde
Abb. 6-8 zeigt einen
Abschlag von einem größeren Gesteinsblock aus dem Tagebau Jänschwalde in der
Niederlausitz (F. Mädler leg.) Das Geschiebe wird von Kottner 2005 beschrieben. Eine Dünnschliffuntersuchung
ergab, dass die Matrix Entglasungserscheinungen aufweist und im Wesentlichen
aus Quarz und Feldspat besteht. Kleine weiße Einsprenglinge wurden als Feldspat
der Plagioklas-Reihe identifiziert. Daneben fanden sich kleine Quarze und Spuren
nicht näher bestimmbarer dunkler Minerale.
Anstehendproben aus Småland
Auf einer gerodeten
Waldfläche in der Nähe von Silverdalen (Småland) fand sich nach einer Ortsangabe
von Persson 1985: 46 („700 m südsüdöstlich
von Lönneberga-Station“) zunächst ein großes Nahgeschiebe mit akkretionären
Lapilli, später auch das anstehende Vorkommen.
Literatur
Allen R, Ripa M, Jansson N 2008 Palaeoproterozoic volcanic- and limestonehosted Zn-Pb-Ag-(Cu-Au) massive sulphide deposits and Fe oxide deposits in Bergslagen, Sweden – Exkursionsskript 33. IGC excursion No 12, August 14 – 20, 2008;
84 S.
Kottner
J 2005 Ein Tuff mit akkretionären
Lapilli als Geschiebe – Geschiebekunde aktuell 21 (1): 25-28, 1 Taf.,
Hamburg / Greifswald.
Lundqvist T 1968 Description to Petrological Map of the
Los-Hamra-Region – Sveriges Geologiska Undersökning, Ba 23, Uppsala.
Lundström I 1985 Beskrivning till berggrundskartorna
Lindesberg NV – Sveriges Geologiska Undersökning (Af) 140 – 131 S., 32
Abb., 21 Tab., 6 Ktn., Uppsala.
Lundström I 1995 Beskrivning till berggrundskartorna 1 :
50000 – Filipstad SO och NO – Sveriges Geologiska Undersökning (Af) 177 –
(Af) 185: 218 S., 81 Abb., 13 Tab., 6 Ktn. als Anl., Uppsala.
Persson L 1985 Beskrivning till berggrundskartorna 1 :
50000 – Vetlanda NV och NO – Sveriges Geologiska Undersökning (Af): 138 S., 65
Abb., 30 Tab., Uppsala.
Reichel
& Schauer 2006 Das Döhlener Becken
bei Dresden – Geologie und Bergbau. – Bergbau in Sachsen 12, 384 S., Herausgeber: Sächsisches Landesamt für Umwelt und
Geologie (LfUG), Freiberg/Sachsen.
Rudolph
F 2017 Das große Buch der Strandsteine –
320 S., zahlr. Abb., Kiel/Hamburg (Wachholz-Verlag – Murmann Publishers).
Stephens MB, Ripa M, Lundström I, Persson L, Bergman
T, Ahl M, Wahlgren C-H, Persson P-O, Wickström L 2009 Synthesis of the bedrock
geology in the Bergslagen region, Fennoscandian Shield, south-central Sweden – Sveriges
geologiska undersökning, Ba 58, 264 S.
Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ;
Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit
Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb.,
43 Tab., 1 sep. Kte., Leiden etc.(Brill).
Der Kallberget-Porphyr stammt aus dem südwestlichen Teil des Porphyrgebietes in Dalarna. Dort kommt er in enger Nachbarschaft mit dem Heden-Porphyr vor, ohne dass es Übergänge zwischen diesen beiden Porphyrtypen zu geben scheint (Hjelmqvist 1982). Beide Gesteine sind als Geschiebe etwas seltener zu finden als andere Dala-Porphyre. In saalezeitlichen Ablagerungen kann der Kallberget-Porphyr aber manchmal gehäuft beobachtet werden.
Der Porphyr ist als Leitgeschiebe geeignet und zeigt ein charakteristisches Verwitterungsverhalten. Während die Grundmasse sehr hell werden kann, behalten die Alkalifeldspat-Einsprenglinge ihre kräftige Färbung. Geschiebe des Kallberget-Porphyrs fallen daher durch ihr kontrastreiches Gefüge auf. Die Gesamtfarbe des Gesteins ist grauviolett, braunrot oder rotviolett. In einer feinkörnigen bis dichten und hellen (grauen, rotgrauen oder violettgrauen) Grundmasse liegen zahlreiche Alkalifeldspat-Einsprenglinge von kräftig rotvioletter, roter oder rotbrauner Farbe. Sie besitzen eine Größe von 1-3 mm, maximal 5 mm und zeigen nahezu rechteckige bis abgerundete oder unregelmäßige Formen. Dazu kommen wenige, meist glasklare und 1-2 mm große Quarzkörner von eckiger oder abgerundeter Gestalt. Gelegentlich findet sich auch ein einzelnes helles Feldspatkorn (Plagioklas).
Die Grundmasse kann homogen oder schlierig sein, manchmal sind hellere Streifen und Flasern zu erkennen. Der Kallberget-Porphyr bildet auch Geschiebe, an denen der Kontrast zwischen Grundmasse und Alkalifeldspat-Einsprenglingen weniger deutlich ausgeprägt ist (z. B. abgerollte Strandgerölle), ansonsten aber die gleichen petrographischen Merkmale zu beobachten sind.
Nach der Beschreibung von
Anstehendproben (Hjelmqvist 1982)
schwankt der Anteil an Alkalifeldspat zwischen 20 und 30%. Quarz ist mit 4-9 %
enthalten. Die eckigen bis abgerundeten Quarzkörner sind immer hell, manchmal
glasklar, manchmal milchig. An ihnen lässt sich mit der Lupe häufig magmatische
Korrosion beobachten in Form von Einbuchtungen, die mit Grundmasse gefüllt
sind. Einzelne Körner von Plagioklas (ca. 1 %) sind auf der Bruchfläche
hellgrau oder graugrün gefärbt. Die Gesamtfarbe der Porphyrvarianten auf der
Bruchfläche ist braunrot, lilabraun, lilarot oder rot. Dunkle Minerale kommen
nur untergeordnet vor. An der Grenze zu jüngeren Graniten kommen auch deformierte
(gneisige) Varianten des Kallberget-Porphyrs vor.
Neben dem Kallberget-Porphyr dürfte es eine Reihe weiterer Vorkommen mit graulila Porphyren geben (s. a. Abb. 21-24). Nach Zandstra 1988: 256 ähneln violette Idre-Porphyre mit kleineren Einsprenglingen sehr stark den Porphyren des SW-Porphyrgürtels in Dalarna. Daneben gibt es einen einsprenglingsarmen grauvioletten Dala-Porphyr, der aber keine Quarzeinsprenglinge enthält. Von M. Bräunlich (kristallin.de) stammt der Hinweis, dass dem Kallberget-Porphyr ähnliche Vulkanite auch in der Nähe von Särna, weit nördlich des eigentlichen Vorkommens gefunden wurden.
Literatur
Hjelmqvist S 1982 The Porphyries of Dalarna, Central Sweden, Uppsala 1982, SGU Serie C Nr.
782.
Zandstra
J G 1988 Noordelijke Kristallijne
Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen
(zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen,
XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).
Die Metasedimente des Västervik-Gebiets sind zum großen Teil Quarzite. Weit verbreitet sind hellgraue und glimmerführende Quarzite, häufig mit Sedimentstrukturen wie Schrägschichtung oder sogar Rippelmarken. Diese Strukturen konnten sich erhalten, weil die Metamorphose der Västervik-Quarzite zum Teil unter statischen Bedingungen erfolgte, ohne Beteiligung von gerichtetem Druck. Als gute Kandidaten für Leitgeschiebe erscheinen der grauviolette Västervik-Quarzit (Abb. 1 und 2) und rotfleckige Quarzite mit Blauquarz (Abb. 3 und 4). Eine besondere Quarzit-Variante sind blaue Quarzite mit rotem Feldspat (Abb. 5). Die Västervik-Quarzite werden in einem Artikel auf kristallin.de ausführlich besprochen.
In Mittelschweden sind etwa 200 kleinere und größere Marmor-Vorkommen bekannt. Die folgenden Bilder zeigen Aufschlüsse und Proben von vier Lokalitäten in Östergötland und Södermanland (Abb. 1). Marmor bildet hier längliche Einschaltungen in die metamorphen und gefalteten Gesteine des svekofennischen Grundgebirges aus Metasedimenten (Gneise), Metavulkaniten (Leptit, Hälleflinta) und Metabasiten (z. B. Amphibolite).
1. Kolmården
Kolmården ist eines der wichtigsten Marmorvorkommen in Schweden. Der grüne Marmor wurde über 700 Jahre lang abgebaut und als beliebter Dekorstein im In- und Ausland verwendet. Empfehlenswert ist der Besuch des Freilandmuseums zur Bergbaugeschichte im Ort Marmorbruket (58.66099, 16.42120). Dort gibt es einen kleinen geologischen Lehrpfad sowie ausgedehnte Halden. Auf Wunsch werden im Museum polierte Schnittflächen von Marmorproben angefertigt (Abb. 3).
2. Insel Oaxen
Die kleine Insel Oaxen ist mit der Autofähre von Mörkö aus erreichbar und ein beliebtes Ausflugsziel (Fähranleger: 58.97067, 17.70307). Sie besteht zur Hälfte aus ehemaligen Steinbrüchen, in denen reiner Marmor abgebaut wurde.
3. Mölnbö
4. Stora Vika
Der Zugang zum großen Marmor-Steinbruch von Stora Vika bei Nynäshamn wird trotz der Verbotsschilder offenbar geduldet (58.94469, 17.79227). Der Bruch war von 1948-1981 in Betrieb. In den 50er Jahren befand sich hier die größte schwedische Zementfabrik. Abgebaut wurde vor allem reiner und grobkristalliner Marmor. Der Marmor mit beigemengten Silikatmineralen (meist Glimmer) wurde aufgehaldet (Abb. 25). Weiterhin finden sich Ophicalcite (Abb. 27), Kalksilikatgesteine („Skarngneise“, Abb. 28) sowie grobkörnige Quarz-Feldspat-Pegmatite. Begrenzt wird das Vorkommen von Sörmland-Gneis (auch als Einschluss im Marmor) sowie Metabasiten.
Literatur
WIK N-G, STEPHENS M B, SUNDBERG
A 2004 Malmer, industriella mineral och bergarter i Stockholms län – Serie:
Rapporter och meddelanden 117; 144 S., Uppsala, SGU, 2004. ISBN 91-7158-696-2.
In der steinverarbeitenden Industrie wird eine ganze Reihe von polierfähigen Gesteinen als „Marmor“ bezeichnet, sowohl metamorphe als auch nicht metamorphe Karbonatgesteine oder „marmorierte“ Werksteine. Die Petrographie sieht eine enge Definition des Begriffs vor: Marmor ist ein metamorpher Kalkstein mit mindestens 50 Vol.% Calcit (seltener auch Aragonit oder Dolomit). Abhängig vom Karbonat-Gehalt, lassen sich mehrere Arten von metamorphen Kalksteinen unterscheiden:
Reiner Marmor (über 95 Vol.% Calcit); entsteht aus reinen Kalksteinen.
Unreiner Marmor (50-95 Vol.% Calcit), auch „Silikatmarmor“; entsteht aus Kalksteinen mit tonigen oder sandigen Beimengungen, z. B. Mergelsteinen.
Karbonatsilikatgestein (5-50 Vol.% Calcit).
Kalksilikatgestein oder „Kalksilikatfels“ (unter 5 Vol.% Calcit).
Marmor kommt weltweit in ganz unterschiedlichen geologischen Settings vor und besitzt ein variables Erscheinungsbild. In diesem Artikel geht es um Marmor-Geschiebe aus dem fennoskandischen Grundgebirge. Ein zweiter Teil zeigt Bilder von einigen Marmorvorkommen in Östergötland und Sörmland.
2. Marmor-Geschiebe
Als reiner bis unreiner Marmor erkennbare Geschiebe sind vor allem mittel- bis grobkörnige, überwiegend aus kristallinem Calcit bestehende Gesteine mit Beimengungen von oftmals grünen Silikatmineralen. Eine veraltete Sammelbezeichnung hierfür ist „Urkalk“. Feinkörnige metamorphe Karbonatgesteine, Karbonatsilikatgesteine, Kalksilikatgesteine oder auch Skarne dürften mit einfachen Mitteln kaum sicher bestimmbar sein. Bartolomäus & Schliestedt 2006 untersuchten über 160 Marmorgeschiebe. Aus dieser Arbeit sei eine allgemeine Beschreibung zitiert:
„Geschiebemarmore sind vorherrschend weiße bis graue, seltener gelbliche
bis röt-liche, meist aber grünlich getönte Gesteine feiner bis grober Körnung.
Die meisten Gesteine enthalten im geringen Umfang Silikate. Teils handelt es
sich um Einschlüsse des Nebengesteins, teils um Minerale der Metamorphose,
teils um Umwandlungsminerale und Verwitterungsbildungen. Serpentinführende
Gesteine (Ophicalzite) sind weit verbreitet. Durch dieses Mineral, weniger
durch Körner von Pyroxen oder Olivin, sind die meisten Geschiebe grün
gesprenkelt. Gestein und eingeschlossene Kristalle verschiedener Silikate sind
häufig tektonisch deformiert.“
Reiner Marmor (Abb. 1) kommt als Geschiebe zwar häufiger vor, ist aber durch den geringen Anteil an Silikatmineralen eher unscheinbar und meistens nicht rein weiß, sondern gelblich oder schmutzig-grau getönt. Ziemlich auffällig (Abb. 2) ist unreiner Marmor mit grünen Silikatmineralen, der auch als „Ophicalcit“ bezeichnet wird. Der Name [1] verweist auf die häufig enthaltenen Serpentinminerale, die während der Metamorphose gebildet wurden. Sie können auf verwitterten Geschiebeoberflächen rostbraun, gelb oder matt weiß verfärbt sein und zeigen ihre grüne Farbe unter Umständen erst auf einer Bruchfläche.
Maßgeblich für die Bestimmung von Marmor ist ein Calcit-Gehalt von mind. 50 %. Calcit lässt sich mit dem Messer ritzen und reagiert auf verdünnte Salzsäure unter kräftigem Aufbrausen. Die seltenen Dolomitmarmore enthalten nur anteilig Dolomit und sind mittels Säuretest nicht von Calcit-Marmor unterscheidbar. Auf einer Bruchfläche erkennt man ein verzahntes Gefüge von xenomorphen Calcit-Kristallen mit glänzenden Spaltflächen, manchmal mit ausgeprägter Zwillingsstreifung diagonal zu den Spaltebenen (s. a. kristallin.de). Calcit in Marmorgeschieben ist häufig durchscheinend und reinweiß, hellgrau oder grau getönt, selten dunkel oder von gelblicher oder rötlicher Farbe.
Die grünen Silikatminerale lassen sich von Hand nicht sicher bestimmen. Nach Bartolomäus & Schliestedt 2006 handelt es sich in den meisten Geschieben um Serpentin. Etwas weniger häufig kommen Olivin und diopsidischer Klinopyroxen vor, Orthopyroxen ist selten. Die Mineralkörner besitzen satt hellgrüne bis schwarzgrüne, manchmal auch graue oder braune Farben. Serpentin kann in zwei farblich unterschiedlichen Generationen vorkommen.
Viele Marmorgeschiebe
enthalten Glimmerminerale von 1-5 mm
Durchmesser. Dies können Phlogopit, Muskovit, farbarmer Biotit, Sprödglimmer
oder Talk sein. Eine genaue Bestimmung ist nur durch mikroskopische
Untersuchungen möglich. Seltener treten zwei Arten von Glimmer auf.
Glimmerplättchen können durch tektonische Deformation verbogen sein.
Xenolithe
aus dem Nebengestein bestehen aus Feldspat, Quarz oder Gesteinsbruchstücken
(Quarzite, Gneise oder hälleflintartige Gesteine). Bei einem hohen
Xenolith-Anteil kann man von einem einschlussführenden Marmor sprechen. Quarz als metamorphe Neubildung ist
meist unauffällig und nur selten identifizierbar (kleine, rauchig getönte
Körner). Gelegentlich finden sich weitere Minerale in Marmorgeschieben, z. B.
dunkler und idiomorpher Amphibol, Fluorit, Granat, Chlorit, Epidot oder Erz. Magnetit ist hin und wieder mit einem
Magneten nachweisbar. Graphit als
Hinweis auf ehemals vorhandene organische Substanz tritt nur in Spuren und fein
verteilt auf und lässt sich von Hand nicht bestimmen.
Marmor ist mit folgenden Gesteinsarten
verwechselbar:
In Skarnen können metasomatisch veränderte Kalksteine oder Meta-Karbonate vorkommen, die von Marmor kaum zu unterscheiden sind. Typische für einige Skarne sind Vergesellschaftungen aus Ca-reichen Silikaten wie Granat, Diopsid und Epidot mit Calcit und Quarz.
Karbonatite sind kristalline Kalksteine aus magmatischen Schmelzen. Es gibt kleine Vorkommen im Fen-Gebiet (Norwegen), in Nordschweden (Alnö) und in Finnland. Über Geschiebefunde ist bisher nichts bekannt geworden. Als Indikatorminerale für Karbonatite kommen Ägirin und Pyrochlor sowie Nephelin in Frage, die aber nicht immer enthalten sind.
Merkmalsarme, weiße und rein calcitische Marmore können von Kontaktmetamorphiten (z. B. kontaktmetamorphe paläozoische Kalksteine aus Südnorwegen) sowie diagenetisch umkristallisierten Kalksteinen unter Umständen nicht unterscheidbar sein (Abb. 33, 34). Grauer oder bunter Ceratopyge-Kalk könnte auf den ersten Blick für Silikatmarmor gehalten werden, ist aber feinkörnig und enthält Glaukonit-Körner sowie Fossilreste (Abb. 35, 36).
3. Vorkommen und Entstehung
Die meisten Marmor-Geschiebe dürften aus den zahlreichen Vorkommen in Mittelschweden stammen. Marmor entstand dort während der svekofennischen Gebirgsbildung vor etwa 1,9 Ga aus tief versenkten kalkigen Sedimenten unter amphibolitfaziellen Metamorphose-Bedingungen. Dabei wurde Calcit aus den feinkörnigen Sedimenten mobilisiert und unter Kornvergrößerung (Blastese) umkristallisiert. Je nach Anteil toniger Komponente im Ausgangsgestein, bildeten sich gleichzeitig Silikatminerale. Marmor und Silikatmarmor sind Granofelse. Das primäre Mineralgefüge kann durch gleichzeitige oder nachfolgende tektonische Prozesse mäßig bis stark deformiert sein.
Zumindest ein Teil der
svekofennischen Marmor-Vorkommen soll aus Kalksteinen entstanden sein, die
durch Organismen ausgefällt wurden. An einigen Lokalitäten fand man
Stromatolithe (Dannemora, Sala, Arvidsjaur). Kleinere
Vorkommen von Marmor können zwar auch aus submarin-exhalativ gebildeten
Kalksteinen in vulkanischen Sequenzen hervorgehen. Die Größe mancher Vorkommen
spricht aber gegen einen solchen Ursprung. Geochemische
Untersuchungen an svekofennischen Meta-Karbonaten in Finnland ergaben hohe Sr-Gehalte,
die auf eine Ausfällung von aragonitischem (=biogenem?) CaCO3 in marinem Milieu hinweisen (Maier
2015).
Marmor kommt auch als Begleiter von Skarnen vor, als
kontaktmetamorphe Bildung, als metasomatisch umgewandelter Kalkstein oder einer
Kombination aus beiden Prozessen. Metasomatose bezeichnet
eine Gesteinsumwandlung durch fluide Phasen, mobilisiert z. B. durch in der
Nähe aufsteigende Magmatitkörper.
Aus Mittelschweden
sind etwa 200, meist kleinere Marmor- und Skarn-Vorkommen bekannt. Sie wurden
zum Teil bergmännisch genutzt und sind Bestandteil der sog.
Leptit-Hälleflinta-Serien, die sich vom Bergslagen-Gebiet bis nach SW-Finnland
erstrecken. In der Bottensee ist mit weiteren, untermeerischen Vorkommen zu
rechnen. Auch in Südschweden gibt es ca.
20 kleinere Vorkommen (z. B. bei Vetlanda in Smaland, s. Sundlad et al 1997). Weiterhin tritt Marmor geringmächtig in Form von Wechsellagerungen,
Klüften, Gängen oder Einschaltungen in kalkhaltigen Grundgebirgsgesteinen auf. Ehlers
et al 1993
fanden Marmor in svekofennischen Gneisen im Seegebiet zwischen Aland und dem finnischen Festland.
Aufgrund seiner weiten Verbreitung und wechselhaften Ausbildung ist Marmor
nicht als Leitgeschiebe geeignet. Dies gilt auch für Lokaltypen wie dem
Marmor vom „Kolmarden-Typ“, der an mehreren Orten in Södermanland vorkommt.
4. Geschiebefunde
Vom Marmorgeschiebe aus Hohensaaten wurde ein Dünnschliff gefertigt, freundlicherweise ausgeführt von Herrn U. Maerz (Hattingen). Die Untersuchung ergab, dass es sich bei den grünen Mineralen um Serpentin und Olivin handelt. Das helle Glimmermineral ist Phlogopit. Quarz und Diopsid (Amphibol) wurden nicht beobachtet. Die nächsten beiden Bilder (Abb. 16/17) zeigen eine Detailaufnahme eines Dünnschliffs, Bildbreite etwa 185 µm.
Links (gekreuzte Polarisatoren in Dunkelstellung) erkennt man die charakteristische Zwillingsstreifung des hellen Calcits, der ein verzahntes Verwachsungsgefüge aus xenomorphen Kristallen bildet. Das dunkle Mineral in der Bildmitte ist Olivin. Die bunten Anlauffarben, randlich und in Spaltrissen, zeigen seine teilweise Umwandlung in Serpentin an. Im rechten Bild (gekreuzte Polarisatoren in Hellstellung) sind jene Teile des Olivinkorns hellblau gefärbt, die nicht serpentinisiert wurden.
Das nächste Marmorgeschiebe ist ein Exot aus der Kiesgrube Horstfelde, südlich von Berlin. Erst ein Test mit verdünnter Salzsäure erbrachte den Hinweis, dass es sich überhaupt um einen Marmor handelt. Das Gestein ist recht schwer und spricht stark auf einen Handmagneten an (Magnetit). Ungewöhnlich sind die bunten Mineralkörner. Eine Dünnschliffuntersuchung ergab, dass sie von dunklen Magnetitsäumen umgeben sind.
Abb. 18: Kantengerundetes Marmor-Geschiebe mit hellgrauer und rauer Oberfläche. Rechts unten sind grünschwarze Glimmerplättchen bis 5 mm Größe erkennbar. Abb. 19: Seitenansicht des gleichen Geschiebes. Abb. 20: Detailaufnahme ockergelber, roter bis violettroter und schwach bläulicher Minerale, umgeben von dunklen Magnetit-Säumen. Einige Mineralkörner besitzen einen mehrfarbigen und zonaren Aufbau. Abb. 21: Kleiner Abschlag mit frischer Bruchfläche. Unüblich für Marmorgeschiebe ist die dunkelgraue Tönung des Calcits. Die bunten Mineralkörner zeigen einen stumpfen bis matten Glanz und wurden offenbar stark umgewandelt. Abb. 22: Polierte Schnittfläche; nebulöse Streifen in unterschiedlichen Richtungen lassen auf eine mehrfache tektonische Deformation des Gesteins schließen. Die Farbabfolge der bunten Körner (oben: rot, Mitte: weiß, unten: bläulich) deutet auf verschiedene Umwandlungsstadien, möglicherweise desselben Minerals. Abb. 23: Detailaufnahme. Rechts der Bildmitte ein hellgrünes und längliches Aggregat, das einen ovalen, von einem weißen Saum umgebenen Kernbereich enthält. Der Kern ähnelt der Farbe und Textur mancher Serpentinite. Dunkelglimmer-Plättchen im Querschnitt sind durch tektonische Beanspruchung leicht verbogen.
Die Dünnschliffuntersuchung ergab, dass die dunkle Matrix aus feinkörnigem und stark verwachsenem Calcit besteht. Die Korngrenzen des Calcits sind durch dunkle Erzspuren nachgezeichnet (Imprägnierung durch Magnetit, Abb. 24). Auch das Innere verschiedener Calcit-Individuen zeigt solche Spuren und bildet wohl frühere Korngrenzen ab, die durch Umkristallisierungsprozesse überwachsen wurden. Der Mineralbestand des Gesteins wurde wie folgt geschätzt: Calcit ca. 75-80%, Reliktminerale („bunte“ Minerale) ca. 15-20%, Magnetit ca. 3-5%, Biotit <2%. Nicht beobachtet wurden Quarz und Amphibol.
Die bunten Minerale dürften Relikte
verschieden weit fortgeschrittener Umwandlungen sein. Zumindest teilweise handelt
es sich dabei um fein verwachsene Serpentinminerale. Andere Reliktkristalle zeigen
kein Serpentinisierungsgefüge und sind meistens durch feinere Calcitkristalle (möglicherweise
mit ankeritischem oder sideritischem Anteil) ausgefüllt. Für das
Ausgangsmaterial dieser Relikte gibt es bisher keine Anhaltspunkte. Die meisten
Reliktminerale besitzen ebenfalls dunkle Säume von Magnetit.
Abb. 24: Erzpartikel und Magnetit zeichnen die Korngrenzen des Calcits nach. Teilweise folgen sie den aktuellen Korngrenzen (grüne Pfeile), teilweise durchquert die Erzspur Calcit-Individuen (rote Pfeile). Abb. 25: Einschlussführender Marmor, grünlicher Ophicalcit mit runden Gneis- und Migmatit-„Geröllen“. Großgeschiebe am Strand von Jastrzębia Góra (Danziger Bucht/PL), Bildbreite ca. 50 cm. Siehe weitere Marmor-Großgeschiebe von dieser Lokalität im Fundbericht, Abb. 57-64.Abb. 26: Tektonisch überprägter Marmor mit geringen Anteilen grüner Silikatminerale. Polierte Schnittfläche, Geschiebe aus der Kiesgrube Schweinrich, Slg. F. Wilcke (Wittstock).Abb. 27: Nahaufnahme.Abb. 28: Silikatmarmor mit einer Flasertextur aus dunkelgrauen und weißen Partien. Polierte Schnittfläche, Abschlag aus einem Großgeschiebe in der Kiesgrube Schwarz (S-Mecklenburg).Abb. 29: Nahaufnahme; zum Rand des Geschiebes (links) ist eine Zonierung unterschiedlicher Verwitterungsstadien erkennbar: grün, bräunlichgrün, schließlich gelb. Die helle Calcit-Matrix erscheint fein zuckerkörnig und wurde durch tektonische Einwirkung fein zerrieben.Abb. 30: Silikatmarmor mit Lagentextur und zwei größeren Porphyroblasten (Hellglimmer). Polierte Schnittfläche, Geschiebe aus der Kiesgrube Schweinrich, Slg. F. Wilcke.Abb. 31: Nahaufnahme der Hellglimmer-Porphyroblasten; rechts mit bläulichem Schimmer.Abb. 32: Silikatmarmor/Ophicalcit am Strand von Nienhagen bei Rostock, Breite 17 cm.
5. Beispiele für nicht metamorphe kristalline Kalksteine
Abb. 33: Diagenetisch umkristallisierter Kalkstein (Biosparit) aus dem Malm (ehem. Steinbruch Schwanteshagen / Polen). Unter der Lupe sind keine Silikatminerale, aber zertrümmerte Schalenreste erkennbar. Abb. 34: Grobkristalliner, oberflächlich fossilfreier Anthrakonit, loser Stein vom Anstehenden (Aleklinta auf Öland, Oberkambrium), Bildbreite 28 cm. Anthrakonite besitzen eine dunkle Bruchfläche und riechen nach dem Anschlagen nach Bitumen („Stinkkalk“). Abb. 35: Ordovizischer Kalk (Expansus-Kalk), loser Stein vom Anstehenden (Öland), grauer und massiger Kalkstein mit Glaukonitkörnern. Abb. 36: Der Glaukonit bildet xenomorphe, teils wurmförmige Aggregate. Auch der Ceratopyge-Kalk enthält Glaukonit. Ein buntes Exemplar ist hier abgebildet.
6. Literatur
BARTHOLOMÄUS WA &
SCHLIESTEDT M 2006 Marmore als Urkalkgeschiebe – Archiv für Geschiebekunde 5
(1-5): 27–56, 5 Taf., 6 Abb., Hamburg/ Greifswald, September 2006. ISSN
0936-2967.
EHLERS C, LINDROOS A & SELONEN O 1993 The late Svekofennian
granite-migmatite zone of southern Finland – a belt of transpressive
deformation and granite emplacement – Precambrian Research 64: 295-309; Elsevier Science Publishers B.V., Amsterdam
MAIER W D, LAHTINEN R, O`BRIEN H 2015 Mineral Deposits of Finland: 291-303
– 802 S., Elsevier Inc., ISBN 978-0-12-410438-9.
SUNDBLAD K, MANSFELD J & SÄRKINEN M 1997 Palaeoproterozoic rifting
and formation of sulphide deposits along the southwestern margin of the
Svecofennian Domain, southern Sweden – Precambrian Research 82, Issues 1–2, March 1997, S. 1-12. https://doi.org/10.1016/S0301-9268(97)00012-0
Abb. 1: Bunter Granit-Pegmatit (Bildbreite 35 cm) aus rotem Alkalifeldspat, gelbem Plagioklas und grauem Quarz. Die Partie besitzt einen scharfen Kontakt zu einem mittelkörnigen Gneisgranit (Findlingslager Steinitz bei Drebkau/Niederlausitz).
Pegmatite sind grob- bis
riesenkörnige magmatische Gesteine, die als gang- oder linsenförmige Körper in
der Gefolgschaft von Plutonen, aber auch in Gneisen und Migmatiten vorkommen. Die
meisten Pegmatite besitzen eine granitische Zusammensetzung (Abb. 1) und
enthalten neben xenomorphem Quarz auffällig gut entwickelte
Feldspat-Kristall-Individuen. Gewöhnlich erreichen die Minerale Korngrößen von
mehreren Zentimetern bis Dezimetern, im Ausnahmefall können auch metergroße
Kristalle vorkommen (Abb. 20). Die Verteilung der Minerale ist variabel und ungleichmäßig,
im Unterschied zum hypidiomorph-gleichkörnigen oder hypidiomorph-porphyrischen
Mineralgefüge „regulärer“ grobkörniger Plutonite. Letztere enthalten zudem
höchstens zentimetergroße Glimmer-Aggregate, die in Pegmatiten ebenfalls riesenkörnig
ausgebildet sein können (Abb. 19).
Granit-Pegmatite enthalten
Quarz und Alkalifeldspat (meist Mikroklin), optional können Plagioklas, Hell-
oder Dunkelglimmer, manchmal auch Amphibol oder Turmalin hinzukommen. Syenit-,
Alkalisyenit-, Gabbro- oder Dioritpegmatite (Abb. 11) sind viel seltener.
Die „klassischen“ Pegmatite kristallisieren
in der Spätphase der Entstehung von Plutonen aus wasserhaltigen Restschmelzen
und bilden
kleinere oder größere Körper, entweder im Pluton selbst oder im Nebengestein. Die Restschmelzen bleiben nach der Kristallisation
der meisten Minerale übrig und enthalten Anreicherungen sog. inkompatibler
Elemente, die aufgrund ihres hohen Ionenradius nicht oder unvollständig in das
Kristallgitter eingebaut werden konnten. Dazu gehören neben K, Si, Li, Be und B
auch seltene Elemente (z. B. Nb, Ta, Seltene Erden, Rb, Cs, Ga, Tl, Sn, U, Th,
Zr, P, Cl, F).
Der
hohe Wassergehalt und weitere leichtflüchtige Bestandteile (sog. Volatile wie
Cl oder F) erniedrigen den Schmelzpunkt und die Viskosität der Restschmelze. Es
können nur wenige Kristallkeime entstehen, aus denen bei weiterer Abkühlung dann wenige, aber sehr große Kristalle
hervorgehen. Neuere
Untersuchungen haben ergeben, dass bei der Kristallisation schnelle
Abkühlungsraten eine große Rolle spielen und „unterkühlte“ Pegmatitschmelzen
bis weit unter 500 Grad, sogar bis 350 Grad weiter bestehen können (Simmons & Webber 2008).
Größere
Pegmatitkörper in den Dachbereichen von Plutonen besitzen häufig einen zonaren
Aufbau mit unterschiedlicher Mineralisation. In einigen Zonen kann Schriftgranit
vorkommen, eine Sonderform pegmatitischer Gesteine. Gelegentlich findet sich
Schriftgranit, neben Apliten (Abb. 24), in der Randzone von Pegmatiten.
Pegmatitartige, meist aus
Quarz und Feldspat bestehende Gesteine, entstehen auch durch partielle
Aufschmelzung von tief versenkten Gesteinen während hochgradiger Metamorphose,
ähnlich der Bildung von Leukosomen in Migmatiten (Abb. 5). Solche Pegmatoide
oder „abyssalen Pegmatite“ sind im svekofennischen Grundgebirge weit verbreitet und dementsprechend
als Geschiebe häufig zu finden. Pegmatitische Einschaltungen können ebenfalls in
gewöhnlichen Gneisen vorkommen, die keine Anzeichen einer Teilaufschmelzung zeigen
(Abb. 8).
Pegmatite sind wichtige Lagerstätten für Minerale mit seltenen Elementen (z. B. Lithiumglimmer, Beryll oder Topas). In den meisten Pegmatiten (und in allen Pegmatoiden) fehlen diese exotischen Minerale jedoch und dürften auch in Geschieben kaum anzutreffen sein. In Skandinavien werden einige Vorkommen bergmännisch zur Feldspat- oder Glimmergewinnung genutzt. Bemerkenswert ist, dass in der Granitprovinz des Transskandinavischen Magmatitgürtels (TIB) über viele Tausend Quadratkilometer fast überhaupt keine Pegmatite vorkommen (Vinx 2011).
Beispiele aus dem Anstehenden
Abb. 2: Gang eines Alkalifeldspat-Quarz-Pegmatits in einem TIB-Granit in unmittelbarer Nähe zum Götemar-Pluton (etwa 1,5 km nördlich vom Gehöft Gässhult), Bildbreite 32 cm. Wenige Meter weiter fand sich eine schriftgranitische Partie (s. Schriftgranit). Abb. 3: Pegmatitgang im Loftahammar-Gneisgranit (Bergholmsfjärden, Bildbreite ca. 70 cm; Bild: T. Langmann). Abb. 4: Pegmatitische Partie im Eringsboda-Granit (Loser Stein östlich von Tving), Bildbreite 38 cm. Abb. 5: Pegmatoid in einem migmatitischen Gneis (Campingplatz Kolmarden in Sörmland, Bildbreite ca. 3 m). Der mehrere Meter mächtige Pegmatit-Körper besteht aus grobem Alkalifeldspat und Quarz und wird von dunklen Schlieren (Restit) und Gneis-Relikten durchsetzt. Solche Pegmatoide sind im Gebiet des svekofennischen Grundgebirges regelmäßig, z. B. in Aufschlüssen entlang der großen Straßen zu beobachten. Abb. 6: Überwiegend aus Alkalifeldspat bestehender Pegmatoid als randlicher Begleiter des Marmorvorkommens von Stora Vika (Sörmland). Bildbreite 55 cm. Abb. 7: Pegmatitartiges Gestein aus hellem Feldspat, Blauquarz und etwas schwarzgrünem Amphibol; grobkörnige Einschaltung zwischen Sörmland-Gneis und Marmor (Insel Oaxen/Sörmland). Abb. 8: Bunter Pegmatit aus dunkelgrauem Quarz, rotem Alkalifeldspat und gelbgrünem Plagioklas in einem Gneisgranit (Tjurkö Stenhuggeri, Blekinge). Bildbreite 40 cm. Abb. 9: Pegmatitkörper in einem Gneis (Campingplatz Karlskrona, Blekinge, Bildbreite 55 cm). Abb. 10: Gleiche Lokalität, 18 cm (!) breiter Xenolith eines Alkalifeldspatkristalls in einem Gneis. Abb. 11: Pegmatite in basischen Gesteinen sind selten. Das Bild zeigt ein grobkörniges Plagioklas-Amphibol-Gestein (Diorit-Pegmatit) als Begleiter eines mittelkörnigen Diorits[1]. Die Amphibol-Kristalle erreichen eine Länge von 3 cm (Straßenaufschluss in West-Smaland, 57.50963, 14.56288).
[1] Eine sichere Unterscheidung von Dioriten und Gabbros ist makroskopisch kaum möglich. Entscheidend hierfür ist der Anorthit-Gehalt, der nur mikroskopisch ermittelbar ist. Abb. 12: Quarz-Alkalifeldspat-Pegmatit im SW-schwedischen Gneis (Küstenaufschluss auf der Kullen-Halbinsel, Bildbreite etwa 1 m). Abb. 13: Als Leitgeschiebe geeignet ist der sog. „Flammenpegmatit“ aus dem südwestschwedischen Granulitgebiet. Typisch sind die kräftigen Farben (roter Alkalifeldspat, gelber Plagioklas und dunkelgrauer Quarz), das weitgehende Fehlen von dunklen Mineralen und ein deformiertes Gefüge. Etwa 80 cm breiter Block von Stensjöstrand / SW-Schweden. Abb. 14: SW-schwedischer Flammenpegmatit mit grünlichem Plagioklas, Anstehendprobe aus einem Steinbruch bei Söndrum (56.64604, 12.76593). Abb. 15: Bläulichgrau-weißer Pegmatoid in einem svekofennischen Gneis; Großgeschiebe in einer Kiesgrube westlich von Nyköping (Sörmland), Bildbreite 31 cm. Abb. 16: Ausschnitt aus einem Alkalifeldspat-Quarz-Pegmatoid mit reichlich Hellglimmer. Loser Stein vom Strand am Campingplatz Kolmarden (Sörmland), Bildbreite 17 cm.
Geschiebefunde
Pegmatite und Pegmatoide bilden häufig große Geschiebe aus, weil sie eine weitständige Klüftung im Anstehenden besitzen. Zahlreiche Pegmatit-Geschiebe zeigt die Artikelserie „Großgeschiebe aus der Lausitz“, daher folgt an dieser Stelle nur eine kleine Auswahl von Funden.
Abb. 17: Riesenkörniger bläulich-grauer Pegmatit mit scharfem Kontakt zu einem dunklen Gneis (Nr. 436, Aussichtspunkt Tagebau Jänschwalde, südlich Heinerbrück, Bildbreite 130 cm). Abb. 18: Gleicher Stein. Der Pegmatit besteht aus graublauen Akalifeldspat-Kristallen bis 15 cm Größe und Quarz. Die dunkle Tönung des Feldspats dürfte auf fein verteilte Glimmerminerale zurückzuführen sein. Abb. 19: Quarz-Feldspat-Glimmer-Pegmatit mit riesenkörnigen Glimmer-Aggregaten (Nr. 205, Findlingslager Steinitz / Niederlausitz, Bildbreite 45 cm). Abb. 20: Dieser etwa 1 m hohe Block eines weißen Pegmatits besteht fast ausschließlich aus Alkalifeldspat (Nr. 518, Findlingslager Steinitz / Niederlausitz). Die großen und ebenen Spaltflächen lassen vermuten, dass es sich um einen Einkristall, zumindest aber um wenige und sehr große Feldspatkristalle handelt. Die Feldspäte enthalten mm-große Einschlüsse von Quarz und Amphibol. Abb. 21: Quarz-Feldspat-Muskovit-Pegmatoid mit großen Amphibol-Kristallen (Kiesgrube Niederlehme bei Berlin). Abb. 22: Zu den seltenen Geschiebefunden gehören Pegmatite mit Turmalinkristallen (schwarzer Schörl). Im Unterschied zum Amphibol bildet Turmalin längliche, manchmal etwas „krumme“ Kristalle, zeigt eine schlechte Spaltbarkeit (unebener Bruch) und tendenziell dreieckige Querschnitte (Amphibol: sechseckig). Der Fund ist ein Bruchstück eines ca. 35 cm großen Geschiebeblockes (Weg von Rotscherlinde nach Grüneiche bei Brandenburg/ Havel; Rohde leg.; Geschiebesammlung der BGR in Berlin-Spandau). Abb. 23: Gabbro-Pegmatit als riesenkörnige Einschaltung mit feinkörniger Randzone in einem Hornblende-Gabbro. (Nr. 473, Tagebau Cottbus-Nord, Breite des Steins ca. 35 cm). Abb. 24: Polierte Schlifffläche einer pegmatitartigen Quarz-Feldspat-Partie mit aplitischer Randzone und scharfer Grenze zu einem grauen Gneis (Kiesgrube Hohensaaten, Brandenburg, A. Bräu leg.). Abb. 25: Nahaufnahme der aplitischen Randzone.
Mehrere Reisen nach Schweden lieferten nähere Erkenntnisse über das Västervik-Fleckengestein aus dem nordöstlichen Småland. So konnten im Västervik-Gebiet zahlreiche Anstehendproben gesammelt werden. Es zeigte sich, dass ganz ähnliche Gesteine auch an anderen Stellen vorkommen (Ålmeskra-Formation und Södermanland). Zur Bestimmung des Västervik-Fleckengesteins reicht keinesfalls ein schneller Blick aus – rotes Gestein mit schwarzen Flecken.
Anstehendes Västervik-Fleckengestein (Casimirsborg/Schweden), Bildbreite 60 cm. Västervik-Fleckengestein, loser Stein vom Anstehenden in Casimirsborg.
Als Leitgeschiebe geeignet sind Varianten, die eine feinkörnige und graue bis bräunlich-graue Grundmasse besitzen. Darin finden sich runde bis ovale und dunkle Flecken, die von orangeroten Säumen umgeben sind. Die Flecken sind 1-2 cm groß, die Breite der Säume ist variabel. Entscheidend ist, dass das Gestein bis auf die ovale Form der Flecken keiner durchgreifenden tektonischen Deformation unterlag oder etwa ein Gneisgefüge aufweist. Eine ausführliche Beschreibung des Västervik-Fleckengesteins und zahlreiche Proben aus dem Anstehenden sowie eine Darstellung der bisher bekannten Vorkommen ähnlicher Fleckengesteine findet sich auf kristallin.de.
Västervik-Fleckengestein, Geschiebe von der Insel Poel. Bildbreite 17 cm.
Grönklitt-Porphyrit aus der Kiesgrube Horstfelde, südlich von Berlin.Fluidale Textur, Aufnahme unter Wasser.Angefeuchtete Geschiebeoberfläche.Brauner Grönklitt-Porphyrit aus der Kiesgrube Thunpadel/Wendland/Niedersachsen. Das Gestein wurde in der näheren Umgebung einer feinen Ader mit grünem, epidotähnlichem Material rot verfärbt.
Abb. 1: Schriftgranit aus der Kiesgrube Waddeweitz/Kröte (Ost-Niedersachsen).
Als „Schriftgranit“ werden
Gesteine mit einem besonderen Verwachsungsgefüge aus Quarz und Alkalifeldspat
bezeichnet. Die Verwachsungen erinnern manchmal an arabische, hebräische oder
germanische (= „Runit“) Schriftzeichen. Sie entstehen durch das gleichzeitige
Auskristallisieren von Quarz und Feldspat unter besonderen Bedingungen.
Schriftgranite sind genetisch an Granitplutone gebunden, entsprechend viele Vorkommen sind bekannt (Norwegen, Westschweden, Bornholm, im Götemar-Pluton und im svekofennischen Bereich). In den Granitkörpern des Transkandinavischen Magmatitgürtels scheinen Pegmatite (und damit assoziierte Schriftgranite) weitgehend zu fehlen. Ein Beispiel für einen anstehenden Schriftgranit zeigt Abb. 2.
Abb. 2: Anstehender Schriftgranit, Bildbreite 36 cm. Die Partie fand sich in unmittelbarer Nähe zur Plutongrenze des etwa 1,45 Ga alten Götemar-Granits in Ost-Småland. Die untere Bildhälfte zeigt das Wirtgestein, einen etwa 1,8 Ga alten Granit des Transkandinavischen Magmatitgürtels. Der Schriftgranit bildet hier, zusammen mit Pegmatiten und Granitporphyr-Gängen, einen Fortsatz außerhalb des eigentlichen Granitmassivs. Abb. 3: Gefüge des Schriftgranits, Bildbreite 18,5 cm.
Schriftgranite sind mittel- bis grobkörnige Gesteine mit graphischen Verwachsungen aus Quarz und Alkalifeldspat. Eine kleinkörnige Variante dieses Gefüges kennt man aus der Grundmasse bestimmter Rapakiwi-Granite und aus Granophyren (Gesteine, die fast ausschließlich aus feinen graphischen Verwachsungen bestehen). Das skelettartige Gefüge von Schriftgraniten entsteht bei der raschen Kristallisation aus einer Schmelze, in der Solidus- und Liquiduslinie durch das Mischverhältnis von Quarz und Feldspat in einem Punkt zusammenfallen (Eutektikum). Vereinfacht gesagt erfolgte keine allmähliche Kristallisation von Quarz und Feldspat, während sich die Zusammensetzung der Restschmelze ändert, sondern beide Komponenten erstarrten gleichzeitig. Solche Bedingungen finden sich z. B. in wasserreichen Spätkristallisaten magmatischer Schmelzen, aus denen die riesenkörnigen Pegmatite kristallisieren, die ihrerseits von schriftgranitischen Partien begleitet sein können.
In Schriftgraniten bilden die beiden Komponenten Kalifeldspat und Quarz Einkristalle, die sich gegenseitig skelettartig durchdringen. Erkennbar ist dies, wenn der Alkalifeldspat auf einer ebenen Gesteinsfläche das einfallende Licht vollständig reflektiert (Abb. 6, 8 und 12). Auch ein durchgängig gleichlaufendes Muster der perthitischen Entmischungslamellen des Alkalifeldspats lässt sich manchmal beobachten (Abb. 5). Nicht alle Schriftgranite zeigen ein kontrastreiches Gefüge aus Quarz-Feldspat-Verwachsungen. Die unauffälligen Vertreter kann man aber an diesem großflächigen Reflektieren der Feldspat-Einkristalle erkennen (Abb. 7,8 12-14).
Abb. 4: Orangeroter Schriftgranit aus der Kiesgrube Niederlehme bei Berlin. Abb. 5: In der Vergrößerung erkennt man, dass die feinen perthitischen Entmischungslamellen des Alkalifeldspats einer bevorzugten Richtung folgen (Einkristall). Abb. 6: Rückseite des gleichen Steins. Am linken Bildrand wird seitlich einfallendes Licht flächenhaft vom Alkalifeldspat reflektiert. Bei geeignetem Lichteinfall reflektiert die gesamte Gesteinsoberfläche und zeigt, dass es sich um einen großen Einkristall handelt. Abb. 7: Wenig auffälliger, gneisartiger und rotfleckiger Schriftgranit (Kiesgrube Hoppegarten bei Müncheberg/Brandenburg). Abb. 8: Gleicher Stein. Seitlich einfallendes Licht zeigt auf der trockenen Gesteinsoberfläche einen Alkalifeldspat-Einkristall sowie seine skelettartige Verwachsung mit Quarz. Schriftgranite und rote, die Korngrenzen überschreitende Flecken sind u. a. von einigen Bornholm-Graniten bekannt. Abb. 9: Polierte Schnittfläche eines Schriftgranits aus der Kiesgrube Fresdorfer Heide bei Potsdam (Sammlung Georg Engelhardt). Abb. 10: Schriftgranit aus der Kiesgrube Waddeweitz/Kröte in Ost-Niedersachsen. Gehäufte Funde ähnlicher heller Schriftgranite konnten in saalekaltzeitlichen Drenthe-Ablagerungen im Hannoverschen Wendland (Ost-Niedersachsen) beobachtet werden. Abb. 11: Schriftgranit aus der Kiesgrube Tiesmesland (Ost-Niedersachsen). Abb. 12: Heller Schriftgranit mit reflektierender Oberfläche eines Alkalifeldspat-Einkristalls. Geschiebestrand bei Misdroy (Polen), Breite des Steins: 15 cm. Abb. 13: gleicher Stein, angefeuchtet. Abb. 14: Heller Schriftgranit, angefeuchtete Schnittfläche. Im Bild senkrecht und annähernd parallel verlaufen Quarz-Feldspat-Lamellen, die waagerecht von feinen Aplit-Adern durchschnitten werden. Die hellgraue Aplitader ganz unten führt Hellglimmer. Aplite treten nicht selten als randliche Begleiter in Schriftgranit- bzw. Pegmatit-Vorkommen auf. Fundort: Geröllstrand bei Ustronie Morskie, östlich von Kolberg (Polen), Slg. D. Lüttich. Abb. 15: Schriftgranitische Partie in einem bunten Pegmatit (Nr. 200, Findlingslager Steinitz/ Niederlausitz).
Påskallavik-Porphyr vom Geröllstrand in Steinbeck/Klütz.Die dichte und braune Grundmasse enthält Einsprenglinge von gerundetem Alkalifeldspat mit dunklen Kernen und runde, schwach bläulichgraue und trübe Quarzkörner.Rückseite des Geschiebes.Geschiebe aus der Kiesgrube Hoppegarten bei Mücheberg/BB.Fund aus der Kiesgrube Hohensaaten an der Oder.Rotbrauner Påskallavik-Porphyr aus der Kiesgrube Arendsee/BB.