Småland-Ignimbrite

Abb. 1: Ignimbrit von Idekulla, polierte Schnittfläche.

Vulkaneruptionen von Rhyolithen sind von großer Dynamik und Explosivität bestimmt und werden in der Regel von Ignimbrit-Ablagerungen begleitet. Auch bei einem Teil der hälleflintartigen Småland-Vulkanite handelt es sich um Ignimbrite. Auf Grund ihrer metamorphen Überprägung sind sie aber nur selten als solche erkennbar. Fluidale oder lagig-schlierige Texturen treten zwar häufig auf, lassen sich aber nur schwer deuten (z. B. Abb. 16). Einzig ein gut erhaltenes eutaxitisches Gefüge ist ein makroskopisch zuverlässiges Bestimmungsmerkmal.

Dieses tritt nur in einem kleinen Teil der Småland-Vulkanite auf und nur einzelne kleine Vorkommen solcher Gesteine sind bekannt. Die Kartenblätter Växjö NO und SO (WIKMAN 2000) sowie Vetlanda NO (PERSSON 1986) verzeichnen zwar mehrere Gebiete mit Ignimbriten, Besuche vor Ort ergaben allerdings, dass eutaxitisches Gefüge in den Gesteinen nicht erkennbar oder allenfalls undeutlich entwickelt ist. Anstehendproben von Ignimbriten mit eutaxitischem Gefüge liegen von Idekulla bei Mariannelund und Nöbbele (südlich von Växjö) vor, mit weiteren kleinen Vorkommen ist zu rechnen. Nahgeschiebe finden sich vereinzelt in der Umgebung von Lönneberga, ohne dass bisher ein Anstehendes lokalisiert werden konnte. In weiter südlich oder westlich gelegenen Vulkanitgebieten wurden Vulkanite mit eutaxitischem Gefüge bislang nicht beobachtet.

Abb. 2: Fundlokalitäten von Småland-Ignimbriten mit eutaxitischem Gefüge (außer S228). Karte aus kristallin.de.

Die Beschreibung verschiedener Typen von Ignimbriten, „Eutaxiten“ und „Agglomeratlaven“ in der Geschiebeliteratur (HESEMANN 1975:198-200, ZANDSTRA 1988:310, Tab. 33) geht auf NORDENSKJÖLD 1893 zurück. Nordenskjöld betont die zahlreichen Gefügevarianten und Übergänge unter den Småland-Vulkaniten. Die Verwendung seiner Lokalnamen durch die genannten Autoren ist bei der Bestimmung von Geschieben daher kritisch zusehen, zumal eine Prüfung der Einzigartigkeit dieser Vulkanite bisher weder erfolgte, noch besonders wahrscheinlich oder überhaupt möglich sein dürfte. Dies betrifft die Ignimbrite von Ekelid, Gökhult, Kolsjön-Kulla und Gåskullen.

1. Anstehendproben und Nahgeschiebe aus Småland

1.1. Ignimbrit von Idekulla
Abb. 3: Aufschluss im Wald mit dem Ignimbrit von Idekulla (S21; 57.59343, 15.35004).
Abb. 4: Angewitterte Außenseite, angefeuchtet. In der oberen Partie sind Schlieren mit Blauquarz erkennbar.
Abb. 5: Angewitterte Außenseite, Nahaufnahme.

Der Ignimbrit von Idekulla (s. a. Abb. 1) besitzt eine hellbraune bis braune Grundmasse, die Fiamme ist dunkel- bis schwarzbraun. In der Mitte der Fiamme sind sekundäre Ausscheidungen von hellem Quarz erkennbar. Der Vulkanit enthält wenige weiße und mm-große Feldspat-Einsprenglinge, die überwiegend intakt sind und klare Begrenzungen zeigen. Quarz-Einsprenglinge kommen nicht vor.

1.2. Geschiebefunde Silverdalen

Als „Mariannelund-Ignimbrit“ beschreibt VINX 2016:170 ein zwischen Lönneberga und Mariannelund anstehendes Gestein. Gemäß Kartenblatt Vetlanda NO müsste das Vorkommen unmittelbar NW von Lönneberga liegen. Der Ignimbrit besitzt eine gelbliche bis braune Grundmasse, eine bräunliche Fiamme und enthält wenige mm-große, klare und weiße Feldspat-Einsprenglinge.

Einige Kilometer weiter östlich, im Gebiet von Silverdalen, deuten zwei Geschiebefunde auf mindestens ein weiteres Vorkommen in der Nähe hin. Die Ignimbrite enthalten zudem einige Quarz-Einsprenglinge, die eckige Gestalt (ehemaliger) Hochquarze mit Spuren einer magmatischen Korrosion in Abb. 7 ähnelt jenen im Roten Ostsee-Quarzporphyr.

Abb. 6: Småland-Ignimbrit, verwitterte Außenseite; loser Stein südlich von Silverdalen (S24; 57.54628, 15.72610).
Abb. 7: Nahaufnahme der nassen Oberfläche. Links unten ein eckiger und magmatisch korrodierter Quarz-Einsprengling.
Abb. 8: Småland-Ignimbrit mit mehr Quarz-Einsprenglingen, Nahgeschiebe aus einer Kiesgrube bei Silverdalen, nass fotografiert (S199; 57.52934, 15.77246).
Abb. 9: Nahaufnahme.
1.3. Ignimbrit von Nöbbele

Der Ignimbrit von Nöbbele bei Tolg, etwa 25 km N von Växjö (S227; 57.103714, 14.852055), wurde offenbar leicht metamorph überprägt, die Fiamme erscheint ausgelängt und „begradigt“. Man beachte die gewisse Ähnlichkeit des Gesteins mit den braunen Älvdalen-Ignimbriten aus Dalarna (die jedoch keinerlei Spuren einer Deformation oder Kataklase aufweisen).

Abb. 10: Ignimbrit von Nöbbele, nass fotografiert.
Abb. 11: Ignimbrit von Nöbbele, nass fotografiert.
Abb. 12: Trockene und leicht angewitterte Oberfläche einer Probe.
Abb. 13: Nahaufnahme der nassen Oberfläche. Die Feldspäte wurden durch Kataklase teilweise zerbrochen und sind undeutlich begrenzt. Quarz-Einsprenglinge sind nicht erkennbar.
Abb. 14: Probe mit frischer Bruchfläche, Aufnahme unter Wasser.
Abb. 15: Gleicher Stein, Nahaufnahme nass. Hier ist die Kataklase weniger ausgeprägt, der Anteil zerbrochener Feldspat-Einsprenglinge ist geringer, ihre Konturen klarer.

Der Ignimbrit von Drev, wenige Kilometer östlich von Nöbbele, weist nur vereinzelte hellere Fiamme auf und ist makroskopisch nicht mehr als Ignimbrit erkennbar. Sein Habitus nähert sich dem der gewöhnlichen, häufig leicht fluidalen Småland-Hälleflinta (vgl. auch mit Abb. 18, Vulkanit von Braås).

Abb. 16: Ignimbrit von Drev, Aufnahme einer Bruchfläche unter Wasser (S228; 57.07944, 14.96783).

2. Geschiebefunde aus Norddeutschland

Entsprechend der geringen Ausdehnung der Vorkommen gehören Småland-Ignimbrite zu den seltenen Geschiebefunden, auch an Lokalitäten mit vorwiegend südschwedischem Gesteinsmaterial. Als allgemeines Kennzeichen gilt eine helle, rötliche, braune bis fast schwarze und dichte Grundmasse mit sehr wenigen und kleinen Feldspat-Einsprenglingen. Die Feldspäte sind weiß oder blassrot und besitzen überwiegend scharfe Umrisse. Sie werden teilweise von kurzen und gewellten Flasern umflossen, die Fiamme des eutaxitischen Gefüges. Die Fiamme ist gewöhnlich dunkler als die Matrix und kann in Folge von Rekristallisationsprozessen mittig von einer hellen Ader mit kristallinem Quarz durchzogen sein. Quarz-Einsprenglinge fehlen oder treten in geringer Menge auf. Ausschlusskriterien bei der Bestimmung und ein Hinweis auf stärker metamorph überprägte Vulkanite sind Schlieren dunkler Minerale sowie überwiegend fragmentierte („zerknackte“) oder augenförmige Feldspat-Einsprenglinge. Abb. 17 zeigt einen nach diesen allgemeinen Merkmalen als Småland-Ignimbrit bestimmten Fund. Die Ignimbrite aus Dalarna (Älvdalen-Ignimbrite) sind völlig undeformiert, einsprenglingsreicher und mit klarem Kontrast zwischen Grundmasse und Einsprenglingen.

Abb. 17: Småland-Ignimbrit, Geschiebe von Westermarkelsdorf/ Fehmarn.

Vereinzelt finden sich die Ignimbrite vom Idekulla-Typ als Geschiebe.

Abb. 18: Småland-Ignimbrit, Typ Idekulla, Aufnahme unter Wasser. Kiesgrube Niederlehme bei Berlin.
Abb. 19: Gleicher Stein, nasse Außenseite. Links ist ein leichter Versatz durch Bruchtektonik erkennbar.
Abb. 29: Gefüge der Außenseite, nass fotografiert.
Abb. 21: Polierte Schnittfläche.
Abb. 22: Nahaufnahme der polierten Schnittfläche.
Abb. 23: Ein weiterer Ignimbrit vom Idekulla-Typ, Aufnahme unter Wasser. Kiesgrube Teschendorf bei Oranienburg.
Abb. 24: Ein einzelner Vulkanoklast wird von der hellen Fiamme umflossen.

Andere Geschiebefunde von Ignimbriten lassen sich in Ermangelung von Vergleichsproben nur mit Fragezeichen nach Småland verorten, so auch der folgende, sehr helle und einsprenglingsarme Vulkanit. Teilweise scheint eutaxitisches Gefüge vorzuliegen, Anzahl und Richtung der quarzreichen Wellen sprechen aber auch für eine Rekristallisation in Folge von Entglasung und/oder leichte metamorphe Überprägung des Gesteins.

Abb. 25: Heller Ignimbrit, polierte Schnittfläche eines Fundes aus der Kiesgrube Fresdorfer Heide bei Potdam (G. Engelhardt leg.).
Abb. 26: Nahaufnahme; die Fiamme besteht im Wesentlichen aus hellgrauem bis leicht bläulichem Quarz (oben rechts).

3. Literatur

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 44 Abb., 8 Taf., 1 Kt., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

NORDENSKJÖLD O 1893 Ueber archaeische Ergussgesteine aus Småland, Bulletin of the Geological Institution of the University of Upsala, N:2, Vol.I, Ser. C. No. 135 (Buchabdruck 1894, Almqvist & Wiksells).

PERSSON L 1985 Beskrivning till berggrundskartorna 1 : 50000 – Vetlanda NV och NO [Description to the maps of solid rocks Vetlanda NV and NO with a section of geophysical aspects by Bo Hesselström] – Sveriges Geologiska Undersökning Af 150+151: 138 S., 65 Abb., 30 Tab., Uppsala.

PERSSON L 1986 Berggrundskartan 6F Vetlanda NO – SGU Ser Af nr 151.

VINX R 2016 Steine an deutschen Küsten; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.).

WIKMAN H 1997 Berggrundskartan 5E Växjö SV, SGU Af nr 188

WIKMAN H 1998 Beskrivning till berggrundskartona Växjö SV och SO – 59 S. Sveriges Geologiska Undersökning – Uppsala 1998.

WIKMAN H 2000 Berggrundskartan 5E Växjö SO, SGU Af nr 200

WIKMAN H 2000 Berggrundskartan 5E Växjö NO, SGU Af nr 201

WIKMAN H 2000 Beskrivning till berggrundskartona 5E Växjö NO och NV – 75 S. Sveriges Geologiska Undersökning – Uppsala 2000.

WIKMAN H 2004 Berggrundskartan 5E Växjö NV, SGU Af nr 201

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).

ZANDSTRA JG 1999 Platenatlas van noordelijke kristallijne gidsgesteenten, Foto’s in
kleur met toelichting van gesteentetypen van Fennoscandinavië – XII+412 S.,
272+12 unnum. Farb-Taf., 31 S/W-Abb., 5 Tab., Leiden (Backhuys).

Högsrum-Porphyr

Abb. 1: Gangporphyr vom Högsrum-Typ, Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg, Aufnahme unter Wasser.
Abb. 2: Nahaufnahme der Bruchfläche unter Wasser.

Der Högsrum-Porphyr zählt zu den klassischen Leitgeschieben für das östliche Småland (HESEMANN 1975:111-113, ZANDSTRA 1999:182, SMED 2002:108). Der Erstbeschreiber (NORDENSKJÖLD 1893) weist auf die Ähnlichkeit dieses Porphyr-Typs mit den Påskallavik-Typen hin. Eine geschiebekundliche Darstellung in
COHEN & DEECKE 1897:25 entstand in Korrespondenz mit dem Erstbeschreiber.

Probenahmen im Gebiet von Högsrum, einem kleinen Gehöft NW von Fliseryd, lieferten eine Reihe deformierter Gangporphyre, aber keines dieser Gesteine stimmt vollständig mit den Beschreibungen in der Literatur überein (Abb. 7-14). Gleiches gilt für die Anstehendproben auf skan-kristallin.de und in ZANDSTRA 1999:182 (in beiden Proben fehlen die der Länge nach aufgefächerten Feldspäte, gemäß der Beschreibung in COHEN & DEECKE 1897:27). Weitere Untersuchungen in diesem Gebiet sind wünschenswert, bis dahin dürften Zweifel an der Eignung des Gesteinstyps als Leitgeschiebe bestehen. Für eine regionale Verbreitung bestimmter Typen deformierter Gangporphyre in Ost-Småland, im Gebiet westlich von Påskallavik, spricht zumindest ihr Fehlen weiter nördlich. Auch im nördlichen Teil von Öland fanden sich nur vereinzelte, vom hier beschriebenen Typ abweichende Geschiebe deformierter Gangporphyre (Abb. 58 im Exkursionsbericht Öland).

Beschreibung (nach Cohen & Deecke 1897:25)

Die Grundmasse des Högsrum-Porphyrs ist grau, braun bis bräunlich violett und erscheint dicht. Zahlreiche weiße bis blassrote Alkalifeldspat-Einsprenglinge sind in Reihen angeordnet. Sie wurden durch Kataklase zerbrochen, ihre Fragmente teilweise der Länge nach aufgefächert. Die Größe dieser Einsprenglinge variiert zwischen 3-5 mm, einzelne Feldspäte erreichen 15 mm. Zahlreiche wellige und 2-4 mm breite Streifen aus dunklen Mineralen (schwarzer bis grünschwarzer Biotit und/oder Chlorit) durchziehen das Gestein sowie einige der fragmentierten Alkalifeldspäte. In der Grundmasse sind einsprenglingsfreie Partien bis Bohnengröße erkennbar. Vereinzelt erscheinen mattgrüne Plagioklas-Körner. Quarz fehlt in der Regel, gelegentlich bildet er unauffällige graue oder bläuliche Aggregate. Manche Geschiebe sind auf Grund der tektonischen Überprägung des Gesteins plattig ausgebildet.

Abb. 3: Porphyr vom Högsrum-Typ, Geschiebe aus Johannistal, A. Bräu leg.
Abb. 4: Deformierter Porphyr vom Högsrum-Typ; Feldspäte kaum „aufgefächert“; Geschiebe von Nienhagen bei Rostock, Breite 9 cm.
Abb. 5: Deformierter Gangporphyr, Kiesgrube Hoppegarten bei Müncheberg.
Abb. 6: Deformierter Gangporphyr, Kiesgrube Fresdorfer Heide bei Potsdam.

Nahgeschiebe und Anstehendproben aus dem Gebiet um Högsrum

Abb. 7: Fundpunkte im Gebiet von Högsrum (S96-98, S109) sowie vom Påskallavik-Porphyr (S95, S105, S108). S107 ist die Kiesgrube bei Värlebo. Der Pfeil markiert die Hauptzugrichtung des Eises während der letzten Inlandvereisung. Kartengrundlage: www.sgu.se.

In einer Kiesgrube, 2,5 km N von Värlebo, südöstlich von Högsrum, fanden sich zahlreiche Geschiebe von deformierten Gangporphyren (S107; 57.06805, 16.19732). Lediglich ein einzelner Fund entspricht in etwa der obigen Beschreibung vom Högrum-Porphyrtyp (Abb. 8). Gemäß der südöstlichen Zugrichtung des Eises während der letzten Inlandvereisung liegt die Grube allerdings knapp westlich vom Streukegel der Porphyre aus dem Högsrum-Gebiet, als dass mehr Funde zu erwarten wären (vgl. Exkursionsbericht SE-Schweden).

Abb. 8: Högsrum-Porphyrtyp, Geschiebe aus einer Kiesgrube bei Värlebo, Aufnahme unter Wasser.

In der Umgebung von Högsrum konnten einige deformierte und teilweise recht bunte Gangporphyren beprobt werden, die aber nur wenig Übereinstimmung mit dem oben beschriebenen Högsrum-Typ aufweisen (alle Aufnahmen unter Wasser).

Abb. 9: Deformierter brauner Gangporphyr mit lebhaft blau gefärbtem Quarz (S96; Straßenaufschluss am Wasserwerk Finsjö; 57.15319, 16.23211).
Abb. 10: Nahaufnahme.
Abb. 11: Rotbrauner Porphyr mit Blauquarz und weißen, durch tektonische Einwirkung zerbrochenen Alkalifeldspat-Einsprenglingen (S98, Straßenaufschluss an der Strecke Finsjö-Högsrum; 57.15884, 16.21636).
Abb. 12: Nahaufnahme.
Abb. 13: Stark zerscherter Porphyr, eher schon ein Gneis, mit körniger Grundmasse (S99, Straßenaufschluss an der Abfahrt nach Högsrum; 57.162813, 16.208073).
Abb. 14: Nahaufnahme.
Abb. 15: In der Nähe des Gehöfts Högsrum fanden sich große Brocken eines deformierten Gangporphyrs und einem Diabas als Begleitgestein. Der anstehende Gang muss in unmittelbarer Nähe liegen, konnte aber nicht lokalisiert werden (S109, 57.15904, 16.21116).

Literatur

COHEN E & DEECKE W 1897 Über Geschiebe aus Neu-Vorpommern und Rügen – Erste Fortsetzung – 95 S., F. W. Kunicke, Greifswald.

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 44 Abb., 8 Taf., 1 Kt., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

NORDENSKJÖLD O 1893 Ueber archaeische Ergussgesteine aus Småland, Bulletin of the Geological Institution of the University of Upsala, N:2, Vol.I, Ser. C. No. 135 (Buchabdruck 1894, Almqvist & Wiksells).

SMED P & EHLERS 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage 2002.

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).

ZANDSTRA JG 1999 Platenatlas van noordelijke kristallijne gidsgesteenten, Foto’s in
kleur met toelichting van gesteentetypen van Fennoscandinavië – XII+412 S.,
272+12 unnum. Farb-Taf., 31 S/W-Abb., 5 Tab., Leiden (Backhuys).

Nymåla-Porphyr

Die Porphyre vom Nymåla-Typ stammen wie der Lönneberga-Porphyr aus der Umgebung von Lönneberga. Sie nehmen ein vergleichsweise kleines Gebiet ein, treten aber in zahlreichen Variationen auf. Die Bezeichnung wurde von NORDENSKJÖLD 1893 für eine Reihe von Småland-Porphyren mit „granophyrischer“ Grundmasse eingeführt, eine Eigenschaft, die allerdings auch mit Hilfe einer Lupe nicht erkennbar ist. Der Autor betont die Einzigartigkeit des Gesteinstyps in Schweden. An Hand seiner makroskopischen Merkmale ist er auch als Geschiebe erkennbar.

Abb. 1: Nymåla-Porphyr, Nahgeschiebe vom See Linden, Aufnahme einer frischen Bruchfläche unter Wasser. Das hell- bis dunkelgraue Gestein enthält mäßig viele Plagioklas-Einsprenglinge. Die größeren von ihnen sind trübe, überwiegend rechteckig und klar umrissen.
Abb. 2: In der Nahaufnahme sind auch gelbliche bis grüne Plagioklase sowie schwarzgrüne Partien mit dunklen Mineralen (Chlorit, Biotit) erkennbar.

Beschreibung

Der Nymåla-Porphyr ist ein grauer und quarzfreier Porphyr mit dichter Grundmasse und mäßig vielen rechteckigen Plagioklas-Einsprenglingen. Die Grundmasse kann weitgehend homogen und grau bis dunkelbraun gefärbt sein, häufiger ist sie fleckig und hell- bis dunkelgrau, durchsetzt von schwarzgrünen Partien aus umgewandelten dunklen Mineralen (Biotit, Chlorit u. ä.). Untergeordnet finden sich auch Varianten mit rötlicher Grundmasse.

Die weißen Feldspat-Einsprenglinge bilden teils perfekt idiomorphe und rechteckige Kristalle mit scharfen Kanten, teils sind sie zerbrochen. Einspringende Winkel weisen auf Zwillingsbildungen hin, aber auch bloße Zusammenballungen von Kristallen lassen sich beobachten. Ganz überwiegend handelt es sich um Plagioklas, zumindest an einigen der perlmuttartig glänzenden Einsprenglinge ist auf der Bruchfläche Zwillingsstreifung erkennbar (Abb. 6). Ihre Größe beträgt 5-10 mm, im Einzelfall auch 20 mm. Vereinzelt finden sich gelbliche, grünliche, manchmal auch blassrote Feldspat-Einsprenglinge. Eine Unterscheidung von Alkalifeldspat, der untergeordnet enthalten sein kann, ist schwierig, weil er die gleiche Farbe wie Plagioklas hat, dieser wiederum auch rötliche Töne annehmen kann.

Schwarzgrüne Nester oder Linsen mit mehr dunklen Mineralen bestehen im Wesentlichen aus Chlorit und enthalten manchmal etwas Erz. Sekundäre Minerale (Chlorit, Epidot, Serizit und Calcit) können auch innerhalb einzelner Plagioklas-Einsprenglinge auftreten. Einige Proben enthalten feinkörnige basische Xenolithe.

Als charakteristischer „Haupttyp“ lassen sich die Proben in Abb. 1-2 und 16, evtl. auch 10-13 herausstellen. Diese und die meisten der übrigen Proben erscheinen weitgehend undeformiert, abgesehen von einzelnen „geknackten“ Feldspäten. Daneben finden sich auch tektonisch überprägte Varianten (Abb. 15), in denen die Feldspäte in Reihen angeordnet und teils zerbrochen sind und die Grundmasse längliche und flaserige Partien mit dunklen Mineralen und gelbgrünem Epidot aufweist.

Als Geschiebe dürfte der Porphyr-Typ wegen der geringen Ausdehnung des Vorkommens eher selten zu finden und zudem nicht ganz leicht erkennbar sein. Weitere Probenahmen im Nymåla-Porphyrgebiet sind wünschenswert, da nach Sichtung der vorliegenden Proben und der Beschreibungen in der Geschiebeliteratur Fragen offen bleiben. So muss der Nymåla-Porphyr nach SMED 1994 1-3 cm große, rosa Kalifeldspäte enthalten, „die helle Kanten oder eine Randpartie voller Einschlüsse aufweisen…“, ein Merkmal, das an den vorliegenden Proben nur vereinzelt beobachtet werden konnte (Abb. 5). Auch existieren widersprüchliche Angaben zum Feldspatanteil: nach ZANDSTRA 1988:300 überwiegt Alkalifeldspat, nach ZANDSTRA 1999:252 trüber und grünlicher Plagioklas. Zudem wird ein Geschiebe mit roten Einsprenglingen als Referenz gezeigt, ein Porphyrtyp, der bei Bockefall überhaupt nicht beobachtet wurde. Im Anstehenden wechseln sich die Porphyre vom Nymåla-Typ mit denen vom Lönneberga-Typ ab (viel einsprenglingsreicher, deutlich kleinere Feldspäte) und scheinen teilweise durch Übergänge verbunden zu sein (Abb. 8). Möglicherweise erklärt dies die irrtümlich als Lönneberga-Porphyr ausgezeichnete Abbildung eines Nymåla-Porphyrs in KORN 1927.

Anstehendproben

Alle Proben stammen aus dem Gebiet um Bockefall und vom See Linden, südlich von Lönneberga, und sind Nahgeschiebe. Teilweise fanden sie sich in metergroßen Blöcken, anstehend konnte bisher weder das Gestein, noch die auf dem geologischen Kartenblatt Vetlanda NO (PERSSON 1986) verzeichneten Gänge lokalisiert werden. Weitere Proben, darunter auch eine von Otto Nordenskjöld gesammelte, auf skan-kristallin.de.

Abb. 3: Ausschnitt aus dem Geologischen Kartenblatt Vetlanda NE (PERSSON 1986). Die gelbe Vulkanit-Signatur mit grauen Punkten markiert die Vorkommen von Lönneberga- und Nymåla-Porphyr. Das Heimatgebiet des Nymåla-Porphyrs liegt südwestlich von Lönneberga.
Abb. 4: Großer Block eines Nymåla-Porphyrs am Weg zum See Linden. Bildbreite ca. 27 cm.
Abb. 5: Abschlag vom gleichen Block, Aufnahme unter Wasser. Die Grundmasse des Gesteins ist graubraun, die Feldspat-Einsprenglinge sind weniger klar umrissen.
Abb. 6: Gleicher Stein, Plagioklas mit erkennbarer Zwillingsstreifung links oberhalb der Bildmitte.
Abb. 7: Nymåla-Porphyr, loser Stein vom See Linden, angewitterte Außenseite, Aufnahme unter Wasser.
Abb. 8: Variante mit einigen größeren Plagioklas-Einsprenglingen und zahllosen kleineren Plagioklasen in der Grundmasse sowie basischen Xenolithen; Übergang zum Lönneberga-Porphyr.
Abb. 9: In dieser Probe ist der Kontrast zwischen graubrauner Grundmasse und Einsprenglingen nur schwach ausgeprägt. Loser Stein vom See Linden, Aufnahme unter Wasser.
Abb. 10: Nymåla-Porphyr mit grünlicher Grundmasse und grünen sowie einigen rötlich pigmentierten Einsprenglingen. Angewitterte Außenseite eines loser Steins, 200 m N vom Nordende des Sees Linden, leg. T. Langmann.
Abb. 11: Einige grüne Feldspäte sind von einem roten Saum umgeben, wahrscheinlich eine lokale Veränderung durch Fluide, die entlang einer Kluft eindrangen. Links unterhalb der Bildmitte violetter Fluorit als Kluftfüllung.
Abb. 12: Gleicher Stein, Bruchfläche, Aufnahme unter Wasser. Grünlich-graue Grundmasse mit weißen bis grünlichen und überwiegend eckigen Plagioklas-Einsprenglingen. Auch einige der rötlichen Feldspäte sind Plagioklas.
Abb. 13: Polierte Schnittfläche.
Abb. 14: Einsprenglingsreicher Gangporphyr (?) mit grünlichen und roten Einsprenglingen und einer körnigen Grundmasse aus dunklen Mineralen. Polierte Schnittfläche, Abschlag von einem Block am See Linden, in der Nähe der kartierten (aber nicht lokalisierten) Granitporphyr-Gänge. Aufnahme unter Wasser.
Abb. 15: Leicht deformierter Porphyr vom Nymåla-Typ, loser Stein vom Kyrkvägen S Lönneberga (S25).

Das Gestein enthält grüne Plagioklas-Einsprenglinge mit erkennbarer polysynthetischer Verzwilligung sowie einige hellere und durchscheinende Alkalifeldspäte, ganz oben im Bild auch als Zwillingsbildung, erkennbar an den einspringenden Winkeln der Kristallflächen. Eingeregelte Feldspäte und Ansammlungen von dunklen Mineralen weisen auf eine metamorphe Überprägung hin.

Abb. 16: Nymåla-Porphyr mit brauner Grundmasse, Nahgeschiebe auf einer Rodung südlich von Silverdalen (S24).
Abb. 17: Nahgeschiebe eines Porphyrs vom Nymåla-Typ, östlich Karlstorp; Bruchfläche, Aufnahme unter Wasser.
Abb. 18: Nahaufnahme. Einige Plagioklas-Einsprenglinge sind stark vergrünt und weisen eine helle Randzone auf. Einige Karlsbader Zwillinge der weißen Einsprenglinge weisen auf Alkalifeldspat hin.

Geschiebefunde

Abb. 19: Nymåla-Porphyr von Steinbeck-Klütz, Aufnahme unter Wasser.
Abb. 20: Nahaufnahme, nass fotografiert.
Abb. 21: Nymåla-Porphyr? von Möns Klint (Dänemark), Aufnahme unter Wasser. Vgl. die Ähnlichkeit mit Probe Abb. 8.

Literatur

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 44 Abb., 8 Taf., 1 Kt., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

KORN J 1927 Die wichtigsten Leitgeschiebe der nordischen kristallinen Gesteine im norddeutschen Flachlande – Ein Führer für den Sammler kristalliner Geschiebe – VI + 64 S., 48 Farb-Abb. auf Taf. 1-6, 8 Farb-Karten auf Taf. 7-14, 1 Tab., Berlin (Preußische geologische Landesanstalt).

NORDENSKJÖLD O 1893 Ueber archaeische Ergussgesteine aus Småland, Bulletin of the Geological Institution of the University of Upsala, N:2, Vol.I, Ser. C. No. 135 (Buchabdruck 1894, Almqvist & Wiksells).

PERSSON L 1985 Beskrivning till berggrundskartorna 1 : 50000 – Vetlanda NV och NO [Description to the maps of solid rocks Vetlanda NV and NO with a section of geophysical aspects by Bo Hesselström] – Sveriges Geologiska Undersökning Af 150+151: 138 S., 65 Abb., 30 Tab., Uppsala.

PERSSON L 1986 Berggrundskartan 6F Vetlanda NO – SGU Ser Af nr 151.

SMED P & EHLERS 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage 2002.

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).

ZANDSTRA JG 1999 Platenatlas van noordelijke kristallijne gidsgesteenten, Foto’s in
kleur met toelichting van gesteentetypen van Fennoscandinavië – XII+412 S.,
272+12 unnum. Farb-Taf., 31 S/W-Abb., 5 Tab., Leiden (Backhuys).

Lönneberga-Porphyr

Abb. 1: Hellgrauer Lönneberga-Porphyr mit dunkleren Lapilli. Probe vom NE-Ufer am See Linden (S136, 57.53316, 15.63174), Aufnahme unter Wasser.
Abb. 2: Nahaufnahme. Das Gestein ist sehr einsprenglingreich, von der grauen Grundmasse kaum etwas erkennbar. Bisher unbestimmbar sind die länglichen hellen Mineralaggregate (Hellglimmer?).

Die grauen und einsprenglingsreichen Porphyre in der Umgebung von Lönneberga unterscheiden sich von den „üblichen“ Småland-Vulkaniten. Das Gestein wurde von NORDENSKJÖLD 1893 als Lönneberga-Eodacit, später wegen der Vorherrschaft von Plagioklas-Einsprenglingen als Lönneberga-„Porphyrit“ bezeichnet. „Porphyrit“ ist ein mittlerweile veralteter Begriff, seine Verwendung allenfalls noch für Paläovulkanite mit andesitischer Zusammensetzung zulässig. Dies trifft auf den Lönneberga-Porphyr nicht zu, das Gestein ist schlicht und einfach ein „Porphyr“.

Abb. 3: Ausschnitt aus dem Geologischen Kartenblatt Vetlanda NE (PERSSON 1985, 1986). Die gelbe Vulkanit-Signatur mit grauen Punkten markiert die ausgedehnten Vorkommen des Lönneberga- sowie des Nymåla-Porphyrs.

Der Porphyrtyp tritt im Gebiet von Ingatorp bis Hultsfred (Abb. 3) auf und ist auch im übrigen Småland weit verbreitet, dort aber nie in großer Menge. Sein Erscheinungsbild ist sehr variabel, zudem sind ähnliche Porphyre mit zahlreichen Plagioklas-Einsprenglingen auch aus Dalarna bekannt. Bei der Bestimmung von Geschieben ist daher Sorgfalt geboten und auf einen Abgleich aller beschriebenen Merkmale zu achten. Geeignet scheint die Beschreibung in SMED 2002:120 (weitere Darstellungen in ZANDSTRA 1988:302, 1999:185-186 und HESEMANN 1975:117-118). KORN 1927:29 bildet einen Nymåla-Porphyr ab und bezeichnet ihn irrtümlich als Lönneberga-Porphyr. Die Beschreibung von COHEN & DEECKE 1897:30 ist wenig hilfreich, wahrscheinlich lagen den Autoren zu wenig Vergleichsproben vor.

Beschreibung

Die Grundmasse des Lönneberga-Porphyrs ist dicht und dunkelgrau, manchmal auch mit grünlichen, bräunlichen, seltener rötlichen Farbanteilen. Eine durchgehend bräunliche Farbe ist weniger spezifisch. Das Gestein enthält sehr viele Plagioklas-Einsprenglinge, teilweise mehr Einsprenglinge als Grundmasse. Dabei lassen sich einige größere und weiße Plagioklase von zahllosen kleineren unterscheiden, die transparent bzw. ähnlich wie die Grundmasse getönt sind. Die Matrix kann weitgehend homogen bis leicht fluidal erscheinen. Hier und dort finden sich Partien, die frei von Einsprenglingen sind.

Die Merkmale im Einzelnen:

  • Quarzeinsprenglinge fehlen oder sind nur in geringer Menge enthalten und dann unauffällig (runde graue Körner, nicht bläulich). Gleiches gilt für Alkalifeldspat.
  • Die größeren und trüb-weißen Plagioklase erreichen im Mittel 2-3, maximal 6 mm. Wenigstens einige von ihnen zeigen rechteckige Umrisse. Weitaus zahlreicher sind kleinere (0,5-0,1 mm), überwiegend grünliche oder graue Kristalle, die auf der Bruchfläche einen intensiven Glanz zeigen können. Sie wirken zerbrochen oder sehen scherbenförmig aus, rechteckige oder leistenförmige Umrisse sind kaum erkennbar.
  • Gelegentlich treten assimilierte graue oder schwarze, selten rotbraune Vulkanit-Fragmente auf, weiterhin schwarzgrüne, auch leicht eingeregelte Schlieren, die mehr dunkle Minerale enthalten. Eine Anstehendprobe enthält gerundete Vulkanoklasten vom Lönneberga-Typ, die ohne klare Begrenzung in die Grundmasse übergehen (Abb. 100-101 im Exkursionsbericht Småland-Vulkanite).
  • Biotit bildet Einsprenglinge in wechselnder Menge, kann aber auch fehlen.

Einige Proben dieses sehr einsprenglingsreichen Porphrs scheinen aus einem regelrechten „Kristallbrei“ zu bestehen und dürften als Kristalltuffe anzusehen sein. Dies sind spezielle Aschentuffe, die bei explosiven Vulkanausbrüchen ausgeworfen werden und aus einer Zone der Magmakammer stammen, in der es zu einer Kumulation von Kristallen kam, sei es durch besondere Kristallisationsbedingungen oder gravitative Differentiation des Magmas am Dach, durch Adhäsion auch an den Seiten der Magmakammer.

Obwohl der Lönneberga-Porphyr keine oder nur wenige Quarz-Einsprenglinge enthält, ist er kein SiO2-armes Gestein. NORDENSKJÖLD 1893:66 ermittelte an einer Probe einen SiO2-Gehalt von 66,46%. Nimmt man Plagioklas als überwiegenden Feldspat, handelt es sich um einen Dacit. PERSSON 1985:112 bezeichnet die „grauen Porphyrite“ dieses Gebietes als Dacite und Quarzlatite.

Anstehendproben

Abb. 4: Lönneberga-Porphyr, trocken fotografiert in einem Straßenaufschluss westlich von Bockefall (57.549122, 15.654743).
Abb. 5: Lönneberga-Porphyr mit dunklen und augenförmig eingeregelten Xenolithen. Abschlag von einem Nahgeschiebe vom NW-Hang des Gubbeberget; Foto und Probe T. Langmann, Aufnahme unter Wasser (S15, 57.569931, 15.682903).
Abb. 6: Lönneberga-Porphyr mit dunkelgrauer, teilweise auch grünlicher und bräunlicher Grundmasse (S198a, Rubborna, NW vom See Linden, 57.53444, 15.59532).
Abb. 7: Nahaufnahme; einige größere Plagioklase weisen rechteckige, die kleineren Einsprenglinge überwiegend unregelmäßige Formen auf.
Abb. 8: Grünlichgrauer Lönneberga-Porphyr mit Biotit-Einsprenglingen, trocken fotografiert (Rodung bei Silverdalen, S24; 57.542499, 15.730070).

Teilweise besitzen die Porphyre vom Lönneberga-Typ eine graugrüne Grundmasse, wahrscheinlich eine Folge hydrothermaler Überprägung.

Abb. 9: Grüner Porphyr vom Lönneberga-Typ, Aufnahme unter Wasser (S130, Aufschluss an der Strecke Lönneberga-Bockefall, 57.55070, 15.70437).
Abb. 10: Nahaufnahme, nass fotografiert.

Einsprenglingsreiche graue Porphyre finden sich auch in anderen Gegenden. Ein Porphyr aus einem Straßenaufschluss an der B23 bei Åseda im südlichen Småland zeigt ein diffuses Gefüge, zudem enthält er zahlreiche Einsprenglinge von farblosem Quarz.

Abb. 11: Einsprenglingsreicher Porphyr von Åseda (S44, 57.10998, 15.21005), Aufnahme unter Wasser.

Geschiebefunde

Die Geschiebefunde in Abb. 12-21 wurden als Lönneberga-Porphyr identifiziert. Die Variationsbreite im Anstehenden ist hoch, ähnliche Gesteine kommen in anderen Gebieten in Småland vor, wenn auch nur untergeordnet. Bei der Bestimmung ist ein sorgfältiger Abgleich mit der Beschreibung nötig. Ein größerer Teil der Geschiebefunde wird diesen nicht bestehen, bei anderen Funden bleiben Zweifel (Abb. 20-21).

Abb. 12: Lönneberga-Porphyr, Altenteil bei Fehmarn, Aufnahme unter Wasser.
Abb. 13: Nahaufnahme.
Abb. 14: Lönneberga-Porphyr, nass Fotografiert. Kiesgrube Schweinrich, N-Brandenburg.
Abb. 15: Nahaufnahme, nass fotografiert.
Abb. 16: Lönneberga-Porphyr, mit dunkelgrauen und einigen rötlichbraunen Vulkanit-Fragmenten (vgl. Anstehendprobe Abb. 100-101 im Exkursionsbericht Småland-Vulkanite). Geschiebe aus der Kiesgrube Niederlehme bei Berlin, Aufnahme unter Wasser.
Abb. 17: Nahaufnahme der nassen Oberfläche.
Abb. 18: Intensivere Grünfärbung des gleichen Steins auf der polierten Schnittfläche.
Abb. 19: Nahaufnahme.
Abb. 20: Lönneberga-Porphyr? Der Anteil kleinerer Einsprenglinge ist geringer als in den Anstehendproben und vorigen Beispielen. Strandgeröll von Hohenfelde.
Abb. 21: Nahaufnahme.

Weniger einsprenglingsreiche Vulkanite wie der Lapillituff in Abb. 22-23 finden sich auch im Gebiet von Lönneberga (vgl. Exkursionsbericht Abb. 94-95). Ob der Gesteinstyp ausschließlich hier vorkommt, ist bislang unklar.

Abb. 22: Lapillituff vom Lönneberga-Typ? Kiesgrube Hoppegarten bei Müncheberg (Brandenburg), Aufnahme unter Wasser.
Abb. 23: Nahaufnahme.

Vorsicht ist geboten bei der Bestimmung von Geschieben mit blauen Quarz-Einsprenglingen. In seiner Beschreibung des Lönneberga-Porphyrs schließt SMED 2002:120 das Auftreten von Blauquarz explizit aus. Dieser gelegentlich als Fagerhult-Quarzporphyr oder Fagerhult-Kristalltuff bezeichnete Geschiebetyp ähnelt dem Lönneberga-Porphyr, enthält aber zusätzlich 1-3 mm große blaue Quarzkörner (Beschreibung in ZANDSTRA 1988:306). In Abb. 24-27 sind zusätzlich einige rötliche Alkalifeldspat-Einsprenglinge erkennbar. Zu Vorkommen und Verbreitung solcher Varianten ist wenig bekannt, möglicherweise gibt es mehrere davon und sie liegen weit verstreut. Von einer Verwendung als Leitgeschiebe ist daher abzuraten.

Abb. 24: Einsprenglingsreicher und blauquarzführender Porphyr (Typ Fagerhult). Polierte Schnittfläche, Geschiebe von Schlunkendorf bei Potsdam.
Abb. 25: Nahaufnahme.
Abb. 26: Einsprenglingsreicher Porphyr mit vereinzelten Blauquarzen; Bruchfläche eines Geschiebes aus der Kiesgrube Hohensaaten an der Oder, Aufnahme unter Wasser.
Abb. 27: Nahaufnahme.

Eine weitere Verwechslungsmöglichkeit des Lönneberga-Porphyrs besteht mit grauen und an Plagioklas-Einsprenglingen reichen Porphyren, wie sie auch in Dalarna vorkommen. Geschiebe wie in Abb. 28 wurden mehrfach in Vergesellschaftung mit Dala-Porphyren gefunden – keine hinreichende Bedingung für eine Herkunft aus Dalarna, aber ein Hinweis. Das Gestein enthält zahlreiche Xenolithe, die Grundmasse ist eher braun. Die Einsprenglinge sind ungleichmäßig verteilt, mehrere von ihnen weisen eine leistenförmige Gestalt auf. Die Größenunterschiede zwischen den verschiedenen Plagioklas-Generationen sind weniger ausgeprägt wie im Lönneberga-Porphyr.

Abb. 28: Grauer Porphyr mit basischen Xenolithen, Aufnahme unter Wasser. Kiesgrube Horstfelde, südlich von Berlin.

Der „Graue Porphyrit“ aus Dalarna (SMED 2002:120) besitzt eine tiefgraue bis schwarzviolette Grundmasse und enthält viele längliche und leistenförmige sowie gelbbraun bis graugrün gefärbte Plagioklase (1-3 mm groß); weiterhin viele Einsprenglinge von Augit und Biotit sowie schwarzgrüne Aggregate mit Augit, Hornblende und Chlorit. Augit und Hornblende fehlen im Lönneberga-Porphyr, ebenso leistenförmige Plagioklase. Der Venjan-Porphyrit (Kättbo-Typ, SMED 2002:118) enthält größere Feldspateinsprenglinge und ebenfalls Augit-Einsprenglinge.

Literatur

COHEN E & DEECKE W 1897 Über Geschiebe aus Neu-Vorpommern und Rügen – Erste Fortsetzung – 95 S., F. W. Kunicke, Greifswald.

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 44 Abb., 8 Taf., 1 Kt., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

KORN J 1927 Die wichtigsten Leitgeschiebe der nordischen kristallinen Gesteine im norddeutschen Flachlande – Ein Führer für den Sammler kristalliner Geschiebe – VI + 64 S., 48 Farb-Abb. auf Taf. 1-6, 8 Farb-Karten auf Taf. 7-14, 1 Tab., Berlin (Preußische geologische Landesanstalt).

NORDENSKJÖLD O 1893 Ueber archaeische Ergussgesteine aus Småland, Bulletin of the Geological Institution of the University of Upsala, N:2, Vol.I, Ser. C. No. 135 (Buchabdruck 1894, Almqvist & Wiksells).

PERSSON L 1985 Beskrivning till berggrundskartorna 1 : 50000 – Vetlanda NV och NO [Description to the maps of solid rocks Vetlanda NV and NO with a section of geophysical aspects by Bo Hesselström] – Sveriges Geologiska Undersökning Af 150+151: 138 S., 65 Abb., 30 Tab., Uppsala.

PERSSON L 1986 Berggrundskartan 6F Vetlanda NO – SGU Ser Af nr 151.

SMED P & EHLERS 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage 2002.

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).

ZANDSTRA JG 1999 Platenatlas van noordelijke kristallijne gidsgesteenten, Foto’s in
kleur met toelichting van gesteentetypen van Fennoscandinavië – XII+412 S.,
272+12 unnum. Farb-Taf., 31 S/W-Abb., 5 Tab., Leiden (Backhuys).

Emarp-Porphyr

Abb. 1: Emarp-Porphyr (S27, rotbrauner Hamphorva-Typ mit Blauquarz), Aufnahme unter Wasser.

Namensgeber des Emarp-Porphyrs ist die kleine Ortschaft Emarp, etwa 4 km östlich von Mariannelund im mittleren Småland. Emarp- und Påskallavik-Porphyr finden sich mitunter zahlreich in weichselzeitlichen, von südschwedischem Gesteinsmaterial dominierten glazialen Ablagerungen. In seiner Erstbeschreibung fasst NORDENSKJÖLD 1893 unter der Bezeichnung „Porphyre vom Emarp-Typ“ alle Mikrogranite unter den massig auftretenden Porphyren des Sjögelö-Gebietes (Vulkanitgebiet um Mariannelund) zusammen. Die geschiebekundliche Vorstellung vom Emarp-Porphyr als Leitgeschiebe betrifft nur einen Teil dieser Gesteine. Insbesondere die Größe der Feldspat-Einsprenglinge (1-3 cm) ist maßgeblich für seine Bestimmung.

Beschreibung

Die Grundmasse des Emarp-Porphyrs erscheint für das bloße Auge nahezu dicht. Auf der Bruchfläche ist das Gestein rotbraun bis braun gefärbt, angewitterte Geschiebeoberflächen können eine hell gelblichbraune bis beige Farbe annehmen (Abb. 10).

Weiße, gelbliche oder blassrote Alkalifeldspat-Einsprenglinge, darunter einige Karlsbader Zwillinge, sind zahlreich enthalten und erreichen Abmessungen von 1-3 cm. Sie weisen überwiegend eine längliche Gestalt und abgerundete Kanten auf, nur wenige zeigen eckige Umrisse. Innerhalb einiger Feldspäte sind Risse und Sprünge erkennbar, manche sind sogar zerbrochen. Im Unterschied zum Påskallavik-Porphyr fehlen den Feldspäten die dunklen Kerne oder eine ausgeprägte Zonierung. Blauer oder hellgrauer Quarz bildet runde und 5-10 mm große Aggregate, die leicht getrübt sein können. Nur untergeordnet kommen grüne Plagioklaskörner (2-8 mm) vor; ebenso kleine rundliche Ansammlungen mit dunklen Mineralen.

Die Abmessungen der größten Feldspat-Einsprenglinge (mindestens 1 cm, maximal 3 cm) sind entscheidend bei der Bestimmung als Geschiebe. Ähnliche Porphyre mit deutlich kleineren Feldspat-Einsprenglingen besitzen eine weite Verbreitung in ganz Småland und lassen sich keiner näheren Herkunft zuordnen (Abb. 14). Gleiches gilt für Porphyre mit ähnlichem Gefüge, aber deutlich körniger Grundmasse (s. Funghult-Granitporphyr).

Die gezeigte Anstehendprobe stammt aus einem Aufschluss nahe der Bahnstation Emarp im mittleren Småland (S27, 57.602397, 15.654842), siehe Kartenblatt im Abschnitt Sjögelö-Porphyr, Abb. 3.

Abb. 2: Nahaufnahme.
Abb. 3: Im gleichen Aufschluss findet sich auch eine Variante mit kleineren Einsprenglingen (bis 5 mm). Ähnliche Porphyre sind in Småland weit verbreitet, die Probe ist keine Referenz für das Leitgeschiebe.

Der Emarp-Porphyr südlich von Hamphorva ist ein sog. „zusammengesetzter Gang“ (composite dyke) und wird an seinen Rändern von einem Diabas begleitet.

Abb. 4: Grünlicher Diabas, randlicher Begleiter des Emarp-Porphyrs, trocken fotografiert.
Abb. 5: Nahaufnahme des Gefüges unter Wasser.

Geschiebefunde

Abb. 6: Emarp-Porphyr, Geschiebefund mit guter Übereinstimmung zur Anstehendprobe. Kiesgrube Niederlehme bei Berlin, Aufnahme unter Wasser.
Abb. 7: Nahaufnahme.
Abb. 8: Emarp-Porphyr, Geschiebe am Geröllstrand von Äleklinta (Öland).
Abb. 9: Emarp-Porphyr mit schwach bläulichen Quarzen; Kiesgrube Penkun (Vorpommern), nass fotografiert.
Abb. 10: Emarp-Porphyr mit hellbrauner Verwitterungsrinde; Kägsdorf bei Kühlungsborn, Aufnahme unter Wasser.
Abb. 11: Kontakt von Emarp-Porphyr und grauem Granit. Kiesgrube Teschendorf bei Oranienburg, Breite 19 cm.
Abb. 12: Nahaufnahme des Kontaktbereichs, Bildbreite 10 cm.
Abb. 13: Småland-Gangporphyr, ganz ähnlich dem Emarp-Typ, aber mit feinkörniger („zuckerkörniger“) Grundmasse. Kiesgrube Arendsee (Brandenburg).

Das nächste Geschiebe ist kein Emarp-Porphyr, sondern ein in Småland weit verbreiteter Porphyr-Typ. Die Einsprenglinge sind kaum größer als 5 mm.

Abb. 14: Småland-Porphyr, Kiesgrube Penkun (Vorpommern).
Abb. 15: Småland-Porphyr mit Fragment eines Porphyrs vom Emarp-Typ (mit hellgrauem Quarz). Kiesgrube Arendsee (Brandenburg), Aufnahme unter Wasser.

Literatur

NORDENSKJÖLD O 1893 Ueber archaeische Ergussgesteine aus Småland, Bulletin of the Geological Institution of the University of Upsala, N:2, Vol.I, Ser. C. No. 135 (Buchabdruck 1894, Almqvist & Wiksells).

PERSSON L 1985 Beskrivning till berggrundskartorna 1 : 50000 – Vetlanda NV och NO [Description to the maps of solid rocks Vetlanda NV and NO with a section of geophysical aspects by Bo Hesselström] – Sveriges Geologiska Undersökning Af 150+151: 138 S., 65 Abb., 30 Tab., Uppsala.

PERSSON L 1986 Berggrundskartan 6F Vetlanda NO – SGU Ser Af nr 151.

Sjögelö-Porphyr

Abb. 1: Anstehendprobe Sjögelö-Porphyr, Unterwasseraufnahme einer frischen Bruchfläche. Probe aus einem Straßenaufschluss an der R40, westlich von Mariannelund (S22; 57.62194, 15.49141).

Aus dem mittleren Småland, dem Gebiet südwestlich von Mariannelund, stammt der von NORDENSKJÖLD 1893 als Sjögelö-Porphyr bezeichnete Gangporphyr-Typ (Abb. 3). Ein markanter Unterschied zum Påskallavik-Porphyr aus Ost-Småland ist das Fehlen dunkler Kerne innerhalb der runden Alkalifeldpäte. Bei der Bestimmung von Geschieben empfiehlt sich ein Abgleich mit den Anstehendproben (Abb. 1-2). Typische Vertreter mit mehrfachen hellen Säumen um die Alkalifeldspäte gehören zu den seltenen Geschiebefunden.

Abb. 2: Nahaufnahme. Die Feldspäte rechts unterhalb der Bildmitte weisen die typische Zonierung auf (hellroter Kern, heller Saum).

Beschreibung

Die Grundmasse des Sjögelö-Porphyrs ist rötlich bis rötlichbraun gefärbt und feinkörnig, nicht dicht. Sie enthält mäßig viele weiße bis blassrote Alkalifeldspat-Einsprenglinge von 1-2 cm Größe, die kantengerundete bis runde Konturen aufweisen. Einzelne Alkalifeldspäte besitzen typischerweise einen hellroten Kern und sind von einem, manchmal auch mehreren hellen Säumen umgeben. Andere Feldspäte werden unregelmäßig von dunklen Mineralen durchsetzt oder von roten und annähernd parallel verlaufenden Rissen durchzogen, die durch tektonische Überprägung entstanden. Blauquarz tritt in rundlichen Körnern bis 3 mm auf. Dunkle Minerale sind nur in geringer Menge vertreten und bilden isolierte kleine Nester, jedoch keine wolkigen Aggregate wie in der Grundmasse mancher Påskallavik-Porphyre.

Alle Anstehendproben stammen aus dem gleichen, in Abb. 3 verzeichneten Gang (S22). Ob es in diesem Gebiet (oder in anderen Regionen) weitere Gänge mit vergleichbaren Gesteinen gibt, ist bislang nicht geklärt (s. a. skan-kristallin.de).

Abb. 3: Ausschnitt aus dem Kartenblatt Vetlanda NE (PERSSON 1985).

Geschiebefunde

Gute Übereinstimmungen mit der Anstehendprobe weisen die drei Geschiebefunde in Abb. 4-10 auf. Auch der Porphyr in Abb. 11 lässt sich unter Vorbehalt dem Sjögelö-Porphyr zuordnen.

Abb. 4: Småland-Gangporphyr, Typ Sjögelö; Kiesgrube Hoppegarten bei Müncheberg (Brandenburg), Breite 17 cm.
Abb. 5: Aufnahme der Bruchfläche unter Wasser. Im Vergleich zur Anstehendprobe weisen parallel verlaufende Flasern mit dunklen Mineralen sowie zahlreiche „zerknackte“ Feldspäte auf eine stärkere Deformation des Gesteins hin.
Abb. 6: Nahaufnahme.
Abb. 7: Sjögelö-Porphyr, Kiesgrube Hoppegarten; Aufnahme unter Wasser.
Abb. 8: Nahaufnahme.
Abb. 9: Sjögelö-Porphyr; Kiesgrube Hohensaaten (Brandenburg), Breite 13 cm.
Abb. 10: Gleicher Stein, Nahaufnahme unter Wasser.
Abb. 11: Småland-Gangporphyr (Sjögelö-Porphyr?), Westermarkelsdorf (Fehmarn).

Literatur

NORDENSKJÖLD O 1893 Ueber archaeische Ergussgesteine aus Småland, Bulletin of the Geological Institution of the University of Upsala, N:2, Vol.I, Ser. C. No. 135 (Buchabdruck 1894, Almqvist & Wiksells).

PERSSON L 1985 Beskrivning till berggrundskartorna 1 : 50000 – Vetlanda NV och NO [Description to the maps of solid rocks Vetlanda NV and NO with a section of geophysical aspects by Bo Hesselström] – Sveriges Geologiska Undersökning Af 150+151: 138 S., 65 Abb., 30 Tab., Uppsala.

PERSSON L 1986 Berggrundskartan 6F Vetlanda NO – SGU Ser Af nr 151.

Påskallavik-Porphyr

Abb. 1: Påskallavik-Porphyr; braune und fleckige Grundmasse mit gerundeten Alkalifeldspat-Einsprenglingen und hellgrauen, rundlichen Quarzen. Geschiebe von Steinbeck/Klütz, Aufnahme unter Wasser.

Der Påskallavik-Porphyr, das wohl bekannteste Leitgeschiebe aus Ost-Småland, ist ein häufiger Fund in den glazialen Ablagerungen und zugleich ein ästhetisches Sammelobjekt. Unter der Bezeichnung Påskallavik-Porphyr wird eine Gruppe von Gangporphyren mit gemeinsamen Eigenschaften zusammengefasst, die nur in der Geschiebekunde Anwendung findet und von der Klassifikation des Erstbeschreibers (NORDENKJÖLD 1893) abweicht. Sie treten als Teil eines weitläufigen, etwa 1,7-1,8 Ga alten Gangschwarms innerhalb des Transskandinavischen Magmatitgürtels (TIB) auf. Die Vorkommen der als Leitgeschiebe geeigneten Varianten beschränken sich auf das Gebiet südlich von Oskarshamn und westlich von Mönsterås, mit der größten Dichte an Gängen im Raum Fliseryd (NORDENKJÖLD 1893:60).

Abb. 2: Kartenskizze mit Probepunkten des Påskallavik-Porphyrs (blau) in Ost-Småland. Kartengrundlage: www.sgu.se.
Abb. 3: Gleiches Geschiebe wie in Abb. 1, Nahaufnahme. Die meisten der runden Alkalifeldspäte besitzen einen dunklen Kern, manche zusätzlich eine helle Randzone.
Abb. 4: Gleicher Stein, polierte Schnittfläche.
Abb. 5: Nahaufnahme. Vom Rand der Feldspäte ausgehend ist eine feinfaserige radiale Textur innerhalb der Grundmasse erkennbar.

Beschreibung

Der Påskallavik-Porphyr besitzt eine dichte bis feinkörnige Grundmasse und enthält zahlreiche gerundete Alkalifeldspat-Einsprenglinge. Wenigstens ein Teil von ihnen besitzt dunkle Kerne. Die Merkmale im Einzelnen:

  • rotbraune, dunkelbraune oder schwarzbraune, seltener graue oder grauviolette Grundmasse, oft fleckig oder „wolkig“ durch wechselnde Anteile dunkler Minerale.
  • Zahlreiche 5-10 mm (maximal 3 cm) große und tafelige, kantengerundete bis runde Alkalifeldspat-Einsprenglinge von weißer, hell fleischroter bis beiger Farbe. Maßgeblich für die Bestimmung ist: wenigstens einige, manchmal auch ein überwiegender Teil der Alkalifeldspäte sind rund und weisen einen dunklen Kern auf. Dies sind Anteile dunkler Minerale als Umwandlungsprodukte von Feldspat. Zusätzlich können die Feldspäte einen schmalen und helleren äußeren Saum aufweisen (Zonarbau). Perthitische Entmischungen sind regelmäßig erkennbar (Abb. 5), weiterhin annähernd parallel verlaufende Sprünge oder Brüche und Längsverschiebungen durch tektonische Überprägung.
  • Blauer oder hellgrauer Quarz findet sich in runden, bis 6 mm großen Aggregaten. Durch magmatische Korrosion können sie Risse aufweisen, die mit feinkörniger Grundmasse verfüllt wurden (Abb. 22-23). Bei tektonischer Überprägung des Gesteins erscheinen die Quarze manchmal länglich und trübe. Hin und wieder fehlen die Quarzeinsprenglinge (Abb. 26).
  • Gelegentlich treten feinkörnige dunkle Xenolithe von basischen Gesteinen auf (Abb. 15).
  • Eigenständiger Plagioklas fehlt zumeist. Grünliche Verfärbungen einzelner Feldspäte könnten auch auf eingeschlossene und nachträglich alterierte Plagioklas-Anteile im Feldspat zurückzuführen sein.
  • Auf leichte Deformationserscheinungen weisen Partien mit eingeregelten dunklen Mineralen, rissige und „zerknackte“ Feldspat-Einsprenglinge, ausgelängte und linsenförmige Quarze oder flaserige Aggregate mit dunklen Mineralen hin.

Die rhyolithischen Gangporphyre vom Påskallavik-Typ weisen eine besondere Entstehungsgeschichte auf. Im Anstehenden werden die Gänge zu beiden Seiten häufig von basischen Gesteinen (Diabase), seltener auch von feinkörnigen Rhyolithen begleitet. Saures und basisches Magma nutzten offenbar den gleichen Aufstiegsweg, zuerst das saure (Gangporphyr), dann das basische Magma (Diabas). Man spricht von „gemischten“ oder „zusammengesetzten Gängen“ oder composite dykes. Zu einer Interaktion beider Gesteine kam es zum einen durch Assimilation von Teilen des Gangporphyrs durch das heißere basische Magma (magma mingling): im Diabas finden sich Xenokristalle aus dem Gangporphyr (Abb. 11). Zum anderen kann bereits in der Tiefe eine oder mehrere Phasen einer Magmenvermengung oder -vermischung erfolgt sein: basische Xenolithe und Schlieren treten im sauren Porphyr auf (Abb. 15). Gemischte Gänge sind ein Merkmal bimodalen Magmatismus, dem annähernd zeitgleichen Auftreten von Magmen aus verschiedenen Quellen. Solche Vorgänge sind beispielsweise aus Subduktionszonen bekannt: ein zur Mantel-Kruste-Grenze aufsteigendes basisches Magma mobilisiert zunächst eine rhyolithische Schmelze in der darüber liegenden Kruste und findet später selbst den Weg an die Oberfläche, indem es den gleichen Aufstiegsweg nutzt, in diesem Falle die tief reichenden rhyolithischen Gänge.

Anstehendproben

Abb. 6: Påskallavik-Porphyr, Aufschluss am Bahnübergang in Värlebo, Ost-Småland (S105; 57.05259, 16.20246, s. Karte Abb. 2). Einige der runden Feldspäte weisen einen dunklen Kern auf.
Abb. 7: Nahaufnahme.
Abb. 8: Handstück von der gleichen Lokalität, Aufnahme unter Wasser.
Abb. 9: Großer Block eines Påskallavik-Porphyrs aus dem gleichen Gang, etwa 1 km NW vom Bahnübergang in Värlebo (S108; 57.06110, 16.19321)
Abb. 10: Handstück, Aufnahme unter Wasser. Nur einzelne der runden Feldspäte weisen einen dunklen Kern auf.
Abb. 11: Kontakt von Gangporphyr und Diabas, Probe vom gleichen Aufschluss. Foto: T. Langmann.
Abb. 12: Kontakt von Diabas und Påskallavik-Porphyr am Aufschluss Finsjö Station, Bildbreite ca. 60 cm (S95, 57.15142, 16.23437).
Abb. 13: Påskallavik-Porphyr von Finsjö Station, Aufnahme unter Wasser.

Weitere Anstehendproben auf skan-kristallin.de und kristalline-geschiebe.de.

Geschiebefunde

Der variantenreiche Porphyr-Typ ist in den glazialen Ablagerungen Norddeutschlands häufig als Geschiebe anzutreffen. Die folgende Galerie zeigt eine Auswahl von Funden (Abb. 14-26). Entscheidend für die Bestimmung des Påskallavik-Porphyrs sind überwiegend, wenigstens aber einzelne gerundete Alkalifeldspat-Einsprenglinge mit dunklem Kern.

Abb. 26: Påskallavik-Porphyr; auf der linken Seite sind ansatzweise rhombenförmig ausgebildeten Feldspat-Einsprenglingen erkennbar. Kiesgrube Hohensaaten (Brandenburg), Aufnahme unter Wasser.
Abb. 27: Ein besonderer Fund ist der Kontakt eines mehrphasigen basischen Gangs zu einem Påskallavik-Porphyr (oberer Bildteil), vorgestellt in Abb. 5-12 im Artikel „Geschiebe von Rügen“. Breite 90 cm.

Literatur

NORDENSKJÖLD O 1893 Ueber archaeische Ergussgesteine aus Småland, Bulletin of the Geological Institution of the University of Upsala, N:2, Vol.I, Ser. C. No. 135 (Buchabdruck 1894, Almqvist & Wiksells).

Konglomerate mit Achat-Geröllen

Sandsteine mit Geröllen oder Fragmenten von Achat treten als Geschiebe nur selten in Erscheinung. Vereinzelt kommen sie in Rotsandsteinen vom Typ Jotnischer Sandstein und als ausgesprochene Rarität in Achatkonglomeraten vor, wie sie von der Basis des Jotnischen Sandsteins aus Dalarna bekannt sind (Transtrand-Konglomerat).

Achatgerölle im Jotnischen Sandstein

Abb. 1: Rotsandstein mit einem Fragment aus rot-weißem Bandachat und Milchquarzgeröllen (kein Transtrand-Konglomerat). Kiesgrube Niederlehme bei Berlin, Aufnahme unter Wasser.
Abb. 2: Nahaufnahme der charakteristischen Bandtextur des Achats.

Konglomeratische Lagen des Jotnischen Sandsteins sowie stratigraphisch nicht näher klassifizierbaren Sandsteinen können neben größeren Lithoklasten von Milchquarz, Vulkaniten, basischen Gesteinen oder Graniten einzelne Achatgerölle enthalten (Abb. 1-4; SCHULZ 2003, ZWENGER 2010). Das genaue Herkunftsgebiet solcher Geschiebe ist unbekannt, da Jotnische Sandsteinfolgen große Flächen in mehreren Regionen einnehmen und von intrusiven basischen Gesteinen begleitet werden, aus denen die Achatgerölle als Erosionsrelikt hervorgegangen sein können.

Abb. 3: Konglomeratischer Sandstein mit einem einzelnen weißen Achatgeröll sowie Quarz-, Granit-, Feinsandstein- und Vulkanit-Lithoklasten. Kiesgrube Glöwen bei Havelberg, Bildbreite ca. 8 cm.
Abb. 4: Nahaufnahme des Achatgerölls.

Transtrand-Konglomerat

Mehrere Fundlokalitäten mit achatführenden Konglomeraten treten an der Basis des Jotnischen Sandsteins (Lokalname: Dala-Sandstein) in Dalarna auf. Die als Transtrand-Konglomerat bezeichneten Gesteine (Abb. 5-7 und 10-11) besitzen eine grobsandige bis kiesige, teilweise ungleichkörnige Matrix. Diese kann einheitlich grünlichgrau gefärbt oder aus unterschiedlich getönten Partien bestehen: sehr hell und gelblich, mittelgrau oder dunkel grünlichgrau (nicht rot oder violett). Neben runden Milchquarz-Geröllen sind orange- bis bräunlichrote Achate von max. 1 cm Länge enthalten (rund bis kantengerundet, manchmal auch eckig und kaum abgerollt). Der Anteil an Achat-Geröllen beträgt nur wenige Prozent, verleiht dem Gestein aber ein auffälliges Erscheinungsbild. Untergeordnet können Feldspat und Gesteinsfragmente als Lithoklasten auftreten.

Abb. 5: Transtrand-Konglomerat, Außenseite. Nahgeschiebe aus Dalarna, Fundort: Kieswerk 30 km nördlich von Sälen, 6 km nördlich Fulunäs, 5 km SSW des Idbäcksklitten (Sammlung Figaj, Sprötze).
Abb. 6: Gleiches Geschiebe, polierte Schnittfläche. In einer gelb- bis graugrünen Sandsteinmatrix liegen unregelmäßig verteilt runde Milchquarz- und kantengerundete rote Achat-Lithoklasten.
Abb. 7: Nahaufnahme der Achat-Gerölle.

Nach HESEMANN 1975: 128 eignet sich das Transtrand-Konglomerat als Leitgeschiebe. Mit Geschiebefunden ist aufgrund der geringen Ausdehnung des Vorkommens nur sehr selten zu rechnen. In Dalarna gibt es neben dem Transtrand-Konglomerat (Abb. 5-7; 10-11) mindestens eine Lokalität mit einem abweichenden hellen Konglomerattyp (Konglomerat von Nornäs, Abb. 12-13). Vergleichbare Gesteine aus anderen jotnischen Sandstein-Vorkommen sind bisher nicht bekannt. Die meisten davon liegen allerdings unter Wasser und sind für eine Beprobung unzugänglich.

Abb. 8: Heimatgebiet des Transtrand-Konglomerats im westlichen Dalarna.
Abb. 9: Fundlokalitäten, anstehend und Nahgeschiebe. Die roten Pfeile markieren anhand von Gletscherschrammen dokumentierte Eiszugrichtungen der letzten Eiszeit.

Folgende Fundlokalitäten von Achat-Konglomeraten sind bisher aus Dalarna beschrieben:

Am Idbäcksklitten (Naturschutzgebiet, Sammelverbot) steht an der Basis des Jotnischen Sandsteins (Lokalname: Dala-Sandstein), wenig unterhalb des 1,46 Ga alten Öje-Diabas, eine maximal 0,5 m mächtige Konglomerat-Lage eines hellgrauen Sandsteins mit Achat-Geröllen bis 1 cm Größe an (Lok. 47 in LUNDQVIST & SVEDLUND 2009: 34). Die Achate sind Erosionsrelikte eines älteren Diabases oder einer früheren Generation des Öje-Diabas. Ähnliche Konglomerate finden sich wenige Kilometer südlich vom Idbäcksklitten in einer Kiesgrube sowie am Svartviksberget (Lok. 55 in LUNDQVIST & SVEDLUND 2009: 36) als Nahgeschiebe (Abb. 5-7).

Am Horrmundsåsen tritt ein grauer und an hellem Glimmer reicher Sandstein auf. Ein max. 2 m mächtiger Konglomerat-Horizont enthält schmale Lagen mit Achat- und Jaspis-Geröllen. Die grobklastischen Partien können zusätzlich eckige Basaltstücke enthalten (Beschreibung in LUNDQVIST & SVEDLUND 2009, Lok. 47 und 49). Von dieser Lokalität liegt keine Anstehendprobe vor, das Gestein dürfte aber weitgehend übereinstimmen mit dem Material vom Bau eines Tunnels für das Wasserkraftwerk Horrmund (Abb. 10-11).

Abb. 10: Transtrand-Konglomerat von Horrmund aus der Sammlung E. Figaj, Aufnahme unter Wasser.
Abb. 11: Nahaufnahme.

Dieses Achat-Konglomerat sieht anders aus als das Geschiebe aus Abb. 5-7. Runde Milchquarz-Klasten und kantige bis mäßig gerundete Klasten von orangerotem Bandachat sowie massigem Jaspis liegen in einer feinkörnigen und mittelgrauen Sandstein-Matrix. Auf den Schichtflächen des Sandsteins sind zahlreiche glänzende Glimmerschüppchen erkennbar. Achatgehalt und Größe der Gerölle variieren in diesem Typ. Die Matrix kann auch einen hellgelblichen oder grünen Farbton besitzen, vgl. Nahgeschiebe auf skan-kristallin.de.

Aus Straßenbaumaßnahmen bei Nornäs, etwa 20 km N von Horrmund, stammen gelbliche bis hellgraue Konglomerate mit Achatgeröllen bis 2 cm Größe (Abb. 12-13; weitere Bilder auf skan-kristallin.de). Teilweise sind die Konglomerate polymikt zusammengesetzt und enthalten neben Achat, Jaspis und Milchquarzgeröllen Klasten von Feinsandstein und Porphyren. Die Konglomerate von Nornäs wurden erst vor wenigen Jahren bekannt. Mit weiteren und bisher unentdeckten Vorkommen in Dalarna könnte zu rechnen sein, zumal die Achat-Konglomerate offenbar nur sehr kleine Areale einnehmen.

Abb. 12: Achatkonglomerat von Nornäs (20 km N von Horrmund) mit heller Sandstein-Matrix, Aufnahme unter Wasser.
Abb. 13: Nahaufnahme. Die Achate im Konglomerat von Nornäs sind größer, teilweise auch heller als im Transtrand-Typ.

Literatur

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – GLA Nordrhein-Westfalen, S. 128.

LUNDQVIST T & SVEDLUND J-O 2009 Dokumentation av breccior och andra bergarter i norra Dalarna – SGU-Rapport 2009:01, 60 S., SGU 2009.

SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 446+42 meist farb. kapitelweise num. Abb., 1 Kte. als Beil., Schwerin (cw Verlagsgruppe).

ZWENGER W 2010 Der Trebuser Sandstein ‒ ein Massenvorkommen jotnischer Sandsteingeschiebe – Brandenburger Geowissenschaftliche Beiträge 17 (1/2): 77-90, 10 Abb., 1 Tab., Kleinmachnow.

4. Nordost- Småland-Granite – Geschiebefunde aus Norddeutschland

Die Granite aus Ost- und Nordost-Småland sowie dem südlichen Östergötland wurden auf dieser Seite in mehreren Artikeln beschrieben- jene des Transskandinavischen Magmatitgürtels und die etwas jüngeren anorogenen Granite. Bei der Bestimmung von Geschieben stellt sich oft das Problem einer genauen Zuordnung zu einem der als Leitgeschiebe beschriebenen Varianten. Leichter ist es, die Gesteine einem größeren Herkunftsgebiet zuzuweisen („Ostsmåland-Granit“, „NE-Småland-Granit“). Die folgenden Geschiebefunde wurden unter Wasser aufgenommen, soweit nicht anders angegeben.

Abb. 1: Nordost-Småland-Granit, porphyrischer Monzogranit aus braunem Alkalifeldspat, orangefarbenem (und grünem) Plagioklas, bläulichem und trübem Quarz sowie reichlich gelbem Titanit. Geschiebe von der Insel Poel.
Abb. 2: Nahaufnahme.
Abb. 3: NE-Småland-Granit, Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 4: Nahaufnahme der Bruchfläche.

Besitzt der Monzogranit-Typ aus Abb. 1-4 Säume von orangefarbenem Plagioklas (meist unvollständig) um einzelne Alkalifeldspäte, kann er als Kinda-Granit bezeichnet werden (Beschreibung hier).

Abb. 5: Kinda-Granit; Nienhagen bei Rostock.
Abb. 6: Dem Kinda-Granit ähnlicher Fund aus der Kiesgrube Horstfelde, südlich von Berlin; allerdings sollten die Plagioklassäume um die Alkalifeldspäte wenigstens einige mm Dicke aufweisen.
Abb. 7: Kinda-Granit, Großgeschiebe am Strand von Jastrzębia Góra (Danziger Bucht, Polen).
Abb. 8: Granit vom Kinda-Typ mit sehr viel orangefarbenem Plagioklas; unvollständige Säume. Hohenfelde östlich von Kiel.
Abb. 9: Leicht deformierte Variante vom Kinda-Granit?, polierte Schnittfläche; Steinbeck/Klütz, leg. T. Brückner.
Abb. 10: Nahaufnahme

Der mittelkörnige bis schwach porphyrische Flivik-Granit ist ein seltener Geschiebefund (Beschreibung hier).

Abb. 11: Flivik-Granit, Geschiebe von Sassnitz (Rügen)
Abb. 12: Nahaufnahme.

Bisher liegen nur Geschiebefunde vor, die lediglich gewisse Übereinstimmung mit den Anstehendproben vom Vånevik-Granit (Beschreibung hier) aufweisen.

Abb. 13: Vånevik-Granit? Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 14: Ähnlich Vånevik-Granit, aber mittelkörnig; Westermarkelsdorf (Fehmarn). Solche roten und mittelkörnigen Alkalifeldspatgranite mit Blauquarz und Titanit kommen in Ost-Småland bis ins Västervik-Gebiet vor.
Abb. 15: Roter Ostsmåland-Granit mit viel Titanit; polierte Schnittfläche, Steinbeck/Klütz, leg. T. Brückner.
Abb. 16: Nahaufnahme.

Mittelkörnige Blauquarzgranite mit blassrotem bis bräunlichen Alkalifeldspat, wenig Plagioklas und etwas Titanit innerhalb der spärlich vorhandenen Biotit-Aggregate sind in Nordost-Småland weit verbreitet („Tuna-Granit“).

Abb. 17: Tuna-Granit?; Ruhlsdorf bei Bernau.
Abb. 18: Tuna-Granit? – gleichzeitg besteht eine Ähnlichkeit mit dem Vånevik-Granit; Niederlehme, SE von Berlin.

Bei der Bestimmung der anorogenen Ostsmåland-Granite (Beschreibung hier) ist zu berücksichtigen, dass Granite mit einem undeformierten Gefüge auch aus anderen Vorkommen stammen können, z. B. den Rapakiwi-Vorkommen, aber auch der Suite anorogener Granite in Dalarna (Siljan- und Garberg-Granit). Ein eindeutig als Uthammar-Granit bestimmter Geschiebefund liegt bislang nicht vor.

Abb. 19: Mafitarmer Alkalifeldspatgranit, Uthammar-Granit? Kiesgrube Arendsee (Brandenburg), trocken fotografiert. Breite 50 cm.
Abb. 20: Gleicher Stein, Nahaufnahme. Idiomorphe (sechseckige) Glimmerplättchen sind auf der Außenseite dieses Geschiebes nicht erkennbar.
Abb. 21: Anorogener Granit, polierte Schnittfläche. Das Mineralgefüge ist augenscheinlich undeformiert, für einen Uthammar-Granit enthält das Gestein aber zu wenig Quarz. Kiesgrube Hoppegarten bei Müncheberg.
Abb. 22: Nahaufnahme. Einige Alkalifeldspäte besitzen einen gelben Kern.
Abb. 23: Grobkörniger roter Småland-Granit mit etwas Titanit, Steinbeck/Klütz. Dunkle Minerale bilden zusammenhängende, etwas gestreckte Aggregate (Merkmal einer leichten Deformation, kein Uthammar-Granit!).
Abb. 24: Dieser undeformierte Granit zeigt weitgehend mit dem Götemar-Granit übereinstimmende Merkmale (Beschreibung hier), ist aber nur mittelkörnig ausgebildet. Bruchfläche trocken aufgenommen, Kiesgrube Hohensaaten (Brandenburg).
Abb. 25: In der Nahaufnahme sind einige kleinere idiomorphe sowie größere Quarze mit einer Zonierung wie im Götemar-Granit erkennbar.
Abb. 26: Götemar-Granit (?) mit rotem bis gelbem Feldspat, grauem Quarz (einige davon idiomorph) und Hellglimmer als Nebengemengteil. Das Geschiebe stimmt gut mit einem Nahgeschiebe aus dem Götemar-Pluton überein (vgl. Abb. x in diesem Artikel). Geschiebe von Altenteil auf Fehmarn.
Abb. 27: Porphyrischer Granit mit idiomorphen Quarzen, polierte Schnittfläche, Steinbeck/Klütz. Alkalifeldspäte bis 3 cm, Götemar– oder Jungfrun-Granit?
Abb. 28: Nahaufnahme. Einzelne rotgrüne Plagioklas-Säume um die Alkalifeldspäte; schwache Zonierung der größeren Quarze.
Abb. 29: Porphyrischer Granit mit dunkelgrauen Quarzen. Das Gestein enthält recht viel grünen Plagioklas; Götemar-Granit oder porphyrischer Rapakiwi? Westermarkelsdorf/Fehmarn.
Abb. 30: Nahaufnahme, Alkalifeldspäte mit grünen Plagioklaskernen.
Abb. 31: Augenscheinlich undeformierter (anorogener) Granit mit idiomorphen Quarzen; ein einzelner Alkalifeldspat ist vollständig von idiomorphen Quarzen umsäumt. Kiesgrube Niederlehme (Brandenburg).
Abb. 32: Nahaufnahme.
Abb. 33: Polierte Schnittfläche. Das Gestein ist recht ungleichkörnig bzw. am rechten Rand ist ein Übergang in eine mittelkörnige Partie erkennbar. Die rote Farbe des Alkalifeldspats irritiert, im Götemar-Pluton überwiegen braunrote Farben.
Abb. 34: Nahaufnahme. Die Herkunft dieses Granits bleibt zunächst offen.

3. Fundberichte aus Kiesgruben in Ost-Småland

Der Besuch von Kiesgruben in Schweden ermöglicht einen Einblick in die Gesteine des Grundgebirges. Man findet hier hauptsächlich Nahgeschiebe, denn die vorrückenden Gletscher der letzten Inlandvereisung transportierten aufgenommenes Gesteinsmaterial auf dem Festland in der Regel nur wenige Zehnerkilometer weit (EHLERS 2011:86). Das Material in den Kiesgruben stammt also ganz überwiegend aus dem Untergrund der näheren Umgebung entgegen der Eiszugrichtung, im Falle Ost-Smålands aus Richtung NW bis NNW. Ähnliche Beobachtungen sind auch auf Öland möglich, auch hier finden sich überwiegend Nahgeschiebe aus Ost- und Nordost-Småland. Gehäufte Funde gleicher Gesteinstypen deuten auf ein größeres Vorkommen in geringer Entfernung.

Abb. 1: Übersichtskarte mit Vorkommen einiger Leitgeschiebe und weiterer Gesteine in Ost- und Nordost-Småland. Nummeriert sind die besuchten Kiesgruben: 1 – Farbo, 2 – Forshult, 3 – Skoretorp, 4 – N Värlebo. Karte verändert nach: WIK et al 2005: Berggrundskartan Kalmar län – 1:250 000.

3.1. Fårbo
3.2. Kiesgrube Forshult
3.3. Kiesgrube Skoretorp
3.4. Kiesgrube nördlich von Värlebo
3.5. Literatur

3.1. Fårbo

Abb. 2: Blick in die Kiesgrube bei Fårbo (57.401891, 16.476663).

Eine nördlich von Fårbo, direkt neben der Fernstraße E22 gelegene große Kiesgrube, war zum Zeitpunkt des Besuches im Juli 2016 bereits aufgelassen. Vor Ort fanden sich aber noch große Halden mit faust- bis kopfgroßen sowie kantengerundeten bis gut gerundeten Steinen. Der Anteil an Nahgeschieben, überwiegend NE-Småland-Granitoide, beträgt grob geschätzt etwa 90%. Sie dürften aus dem nordwestlichen Teil des Kalmar län stammen, etwa einer gedachten Linie Richtung Vimmerby folgend.

Abb. 3: Zusammenstellung von Granitgeschieben.

Der häufigste Geschiebetyp sind mittelkörnige Alkalifeldspatgranite vom Växjö-Typ (Sammelname für mittel- und weitgehend gleichkörnige Alkalifeldspatgranite mit wenig dunklen Mineralen, ohne präzise Herkunftsangabe) . Sie enthalten kaum dunkle Minerale (Biotit), Plagioklas ist meist nicht sichtbar. Vollrote Varianten überwiegen, die blassroten Granite dieses Typs sind etwas seltener (vgl. Tuna-Granit).

Abb. 4: Mittelkörnige Alkalifeldspatgranite vom Växjö-Typ.
Abb. 5: Mittelkörnige Växjö-Granite, roter Typ und blassroter Typ
Abb. 6: Blassroter mittelkörniger Växjö-Typ („Tuna-Granit“), Aufnahme unter Wasser.

In großer Menge und zahlreichen Varianten finden sich porphyrische Småland-Monzogranite, die meisten von ihnen enthalten reichlich Titanit. Auffällig ist der relativ geringe Anteil an Granitoiden mit braunem Alkalifeldspat, häufiger sind Monzogranite mit rotem bis blassrotem Alkalifeldspat, auch mit Augentextur. Einige dieser Granite enthalten roten Plagioklas, ein Merkmal einiger TIB-Granitoide aus Östergötland (Abb. 13-14).

Abb. 7: Zusammenstellung überwiegend porphyrischer Småland-Monzogranite.
Abb. 8: Einige Granite im Detail.
Abb. 9: Gewöhnlicher Småland-Monzogranitoid mit braunem Alkalifeldspat und weißem Plagioklas. Es ist recht wenig Quarz enthalten, die Zusammensetzung entspricht einem Quarzmonzonit.

Von diesem Typ gibt es Übergänge zu Granitoiden mit braunem und blassrotem Alkalifeldspat sowie mehr Quarz.

Abb. 10: Småland-Monzogranit mit braunem und blassrotem Alkalifeldspat.

Die typischen dunklen Nordost-Småland-Monzogranite mit braunem Alkalifeldspat, Blauquarz und orangefarbenem Plagioklas (teilweise Typ Kinda-Granit) kommen in der Kiesgrube nur untergeordnet vor.

Abb. 11: Brauner NE-Småland-Monzogranit, Aufnahme unter Wasser.
Abb. 12: NE-Småland-Monzogranitoid mit bräunlich-grauem Alkalifeldspat und orangebraunem Plagioklas; wenig Quarz (Quarzmonzonit).
Abb. 13: Unterer Bildteil: Monzogranite mit blassrotem oder graubraunem Alkalifeldspat (teilweise gerundet) und rotem Plagioklas. Der Gesteinstyp ist aus Ost- und Nordost-Småland nicht bekannt und dürfte aus dem Gebiet um Vimmerby oder dem südlichen Östergötland stammen.
Abb. 14: Quarzarmer Monzogranitoid (=Quarzmonzonit) mit blassrotem Alkalifeldspat und rotem Plagioklas.
Abb. 15: Porphyrischer Monzogranit mit grünem und rotem Plagioklas (teils auch braune Mischfarben); Aufnahme unter Wasser.

Gelegentlich finden sich intensiv rote und grobkörnige Granite, häufig ungleichkörnig oder schwach porphyrisch, mit unklaren Korngrenzen. In den weiter südlich gelegenen Kiesgruben treten diese häufiger auf.

Abb. 16: Intensiv roter und ungleichkörniger Granit mit reichlich gelbem Titanit; Aufnahme unter Wasser.
Abb. 17: Stark alterierter Småland-Granit; dunkler Glimmer (Biotit) wurde in schwarzgrüne Folgeprodukte (Chlorit o. ä.) umgewandelt, das Gestein ist von hellgrünem Epidot durchsetzt.

In der Kiesgrube konnten weitere Geschiebetypen dokumentiert werden. NICHT gefunden wurden anorogene Ost-Småland-Granite (Uthammar- oder Götemar-Granit). Der Götemar-Pluton ist zwar nur etwa 10 km, der Ort Uthammar keine 8 km Luftlinie entfernt, liegt allerdings in nordöstlicher bzw. ostsüdöstlicher Richtung und damit nicht in Zugrichtung der letzten eiszeitlichen Vergletscherung. Auch Vulkanite des TIB fehlen vollständig, sie kommen erst weiter südlich vor.

Eine Reihe von nicht näher spezifizierten Diabasen stellt vielleicht einen Anteil von 5-10% an den Geschieben. Tatsächlich steht unmittelbar westlich der Kiesgrube ein etwa 3 x 15 km großes Massiv sowie weitere kleinere Vorkommen mit basischen Gesteinen an.

Ferngeschiebe wie Gneise und Migmatite aus den weiter nördlich gelegenen svekofennischen Gebieten fehlen. Lediglich aus dem nahen Västervik-Gebiet, das aber auch außerhalb des Geschiebefächers liegt, scheint etwas Material nach Farbo gelangt zu sein. Dies belegen Quarzite und Metasedimente, die einen Anteil von etwa 1% ausmachen. Västervik-Fleckengestein und Fleckenquarzite wurden nicht gefunden.

Bemerkenswert sind drei Funde von Rapakiwi-Graniten (Abb. 18, 20). Vereinzelt treten sie auch in den anderen Kiesgruben Ost-Smålands auf. Manche Funde sind eindeutig dem Åland-Pluton zuzuordnen, der etwa 350 km nördlich und nicht in Zugrichtung der Gletscher der letzten Inlandvereisung liegt. Über ihren Transportweg kann man nur Vermutungen anstellen. Zum einen könnte ihr Transport nicht linear, sondern in mehreren Phasen erfolgt sein. Auch eine Verdriftung Richtung Süden in Eisbergen oder Eisschollen nach dem Abschmelzen des Eispanzers (dropstones) ist nicht ausgeschlossen. Diese letzte Annahme ließe sich durch entsprechende Funde von dropstones in-situ belegen. Entsprechende Berichte in der schwedischen Literatur sind bisher nicht bekannt.

Abb. 18: Åland-Rapakiwi mit Wiborgit-Gefüge.

Hin und wieder finden sich gelbrote und geschichtete Kalksteine, ähnlich dem ordovizischen Planilimbata-Kalk (Roter Orthocerenkalk). Vom östlich gelegenen Öland dürften sie kaum stammen, wahrscheinlicher ist eine Herkunft aus der untermeerischen Fortsetzung der ordovizischen Vorkommen nördlich von Öland. Sie dürften damit einen ähnlichen Transportweg wie die Rapakiwi-Granite genommen haben.

Abb. 19: Gelbroter Kalkstein, Planilimbata-Kalk?

An Ferngeschieben fanden sich weiterhin zwei Porphyre aus Dalarna, darunter ein Grönklitt-Porphyrit.

Abb. 20: Zwei Dala-Porphyre, in der Mitte ein weiterer Åland-Rapakiwi. Bildbreite 17 cm, Foto: Tobias Langmann.
Abb. 21: Auch mehrere Geschiebe tektonischer Brekzien wurden in der Kiesgrube beobachtet.

3.2. Kiesgrube Forshult

Die Kiesgrube Forshult liegt westlich von Oskarshamn, etwa 1,5 km SE der gleichnamigen Ortschaft (Parkplatz: 57.24536, 16.34568). Entsprechend ihrer Position südlich eines Vulkanitgürtels finden sich gestreifte und hälleflintartige Vulkanite ohne Einsprenglinge in großer Zahl. In vergleichbarer Menge treten diese auch in Skoretorp (Fundpunkt 3) auf, siehe Abb. 35-37.

In der Grube boten sich zunächst interessante Anschnitte glazialer Ablagerungen:

Abb. 22: Glazitektonisch Faltung von sandigen bis schluffigen Lagen mit Wellenrippeln. In den Sanden liegen einzelne kantige Bruchstücke eines roten Granits, der nicht dem anstehenden Typ entspricht, aber aus der näheren Umgebung stammen dürfte. Bildhöhe etwa 2 m.
Abb. 23: Abfolge verschiedener glazialer oder postglazialer Sedimente, Bildhöhe etwa 2 Meter.

 Abb. 23 zeigt vom Liegenden zum Hangenden: 1. schluffige bis feinsandige Lagen, Übergang in 2. Wellenrippel mit zunehmendem sandigen Anteil (3); 4. Sande in Schrägschichtung, 5. grünlicher Schluff mit Belastungsmarken, darüber eine sandig-schluffige Lage (6) mit einzelnen Geröllen (dropstones?).

Abb. 24: Unterer Teil der gleichen Sequenz (Schluffe und Wellenrippel), Höhe etwa 1 m.
Abb. 25: Die glazialen Ablagerungen liegen direkt auf dem Grundgebirge, hier anstehend ein roter Alkalifeldspatgranit innerhalb des Vånevik-Granitgebiets.
Abb. 26: Roter Alkalifeldspatgranit vom Typ Vånevik.

In der Grube gab es nicht viele Geschiebe. Neben Vulkaniten und gewöhnlichen roten Alkalifeldspatgraniten fanden sich überwiegend grobkörnige, leicht deformierte und stark alterierte rote Granite.

Abb. 27: Roter Alkalifeldspatgranit.
Abb. 28: Rote und stark alterierte Granite, Bildbreite 25 cm.
Abb. 29: Hellroter bis orangeroter Alkalifeldspat. Milchiger Quarz bildet unregelmäßige Ansammlungen. Dunkle Minerale wie Biotit wurden teilweise in grünschwarze Folgeprodukte umgewandelt (Chlorit o. ä.).
Abb. 30: Roter und alterierter NE-Småland-Granit mit orangefarbenem Plagioklas und viel gelblichem Titanit. Aufnahme unter Wasser.

In Ost-Småland bis ins Västervik-Gebiet finden sich gelegentlich porphyrische Småland-Granite mit blass violettgrauem bis hellrotem Alkalifeldspat (eckige bis abgerundete Einsprenglinge), gelbem Plagioklas, Blauquarz und reichlich Titanit. Ihr Herkunftsgebiet dürfte im Gebiet östlich von Vimmerby oder im angrenzenden Östergötland zu suchen sein (Abb. 31).

Abb. 31: Porphyrischer Småland-Granit mit blass violettgrauem bis hellrotem Alkalifeldspat.
Abb. 32: Blassroter Småland-Granit mit Blauquarz und reichlich gelbem Titanit.

An Ferngeschieben fanden sich mehrfach hellgraue, teilweise auch rötliche Quarzite (wahrscheinlich aus dem Västervik-Gebiet) sowie ein Rapakiwi-Granit und ein Dala-Porphyr.

Abb. 33: Rapakiwi-Geschiebe (Åland-Wiborgit), Breite ca. 10 cm.

3.3. Kiesgrube Skoretorp

Die Kiesgrube Skoretorp, ca. 2 km NNW der gleichnamigen Ortschaft (57.20846, 16.38353) war zum Zeitpunkt des Besuchs bereits stillgelegt. Vor Ort konnte aber noch reichlich Geschiebematerial studiert werden. Grob geschätzt ein Drittel davon sind dichte und hälleflintartige Småland-Vulkanite aus dem wenig weiter nördlich gelegenen Vulkanitgürtel, ein weiteres Drittel vollrote, alterierte Granite.

Abb. 34: Stillgelegte Kiesgrube (Grustäkt) bei Skoretorp.

Die rotbraunen bis braunen sowie grauen Vulkanite des TIB bilden meist eckige bis kantengerundete Geschiebe aus und sind arm an Einsprenglingen. Nur in den grauen Vulkaniten können mehr kleine Feldspäte enthalten sein.

Abb. 35: Rotbraune bis braune und graue Vulkanite des TIB. Rechts oben ein Quarzit. Bildbreite 35 cm.

Die Streifung einiger Vulkanite kann eine primäre magmatische Textur, eine Folge einer leichten metamorphen Überprägung oder beides sein. Teilweise könnte es sich um Ignimbrite handeln (eutaxitisches Gefüge), aber der makroskopische Befund ist nicht eindeutig: die kurzen, welligen Streifen „umfließen“ zwar einige Feldspat-Einsprenglinge, allerdings sind diese meist zerbrochen, was für eine metamorphe Überprägung spricht (Abb. 37).

Abb. 36: Gestreifter hälleflintartiger Vulkanit.
Abb. 37: Gleicher Stein, Nahaufnahme unter Wasser.

Unter den Granitgeschieben dominieren grob-, seltener mittelkörnige und stark alterierte rote Småland-Granite mit weißem oder bläulichem Quarz. Die braunen porphyrischen NE-Småland-Monzogranite, wie sie in Fårbo noch einigermaßen regelmäßig auftraten, fehlen hier.

Abb. 38: Stark alterierte rote Småland-Granite, Bildbreite ca. 35 cm.
Abb. 39: Grobkörnige rote Småland-Granite.
Abb. 40: Roter Granitoid mit weißem Quarz.
Abb. 41: Stark alterierter Granit, durchzogen von hellen Quarzadern.

Etwa 5% der Geschiebe in der Grube sind basische Gesteine, meist Dolerite, einige Diabase sowie dioritähnliche Gesteine mit größeren eckigen Hornblende-Aggregaten. Sie dürften aus einem Vorkommen stammen, das wenig nördlich der Kiesgrube liegt.

Abb. 42: Dolerite und ein Diabas (Bildmitte), Bildbreite 20 cm.

Vereinzelt fanden sich auch hier wieder Quarzite, einige Granitporphyre, aber kein einziger Ostsmåland-Gangporphyr.

3.4. Kiesgrube nördlich von Värlebo

Der letzte Fundpunkt, etwa 2,5 km nördlich von Värlebo (57.06805, 16.19732), bot ein ganz anderes Geschiebespektrum. Hier überwiegen klein- bis mittelkörnige und teilweise deformierte Granite, die kaum mit jenen aus den weiter nördlich gelegenen Kiesgruben vergleichbar sind. Wie in Skoretorp, fehlen die porphyrischen NE-Småland-Monzogranite. Der Järeda-Granit fand sich mehrfach (Abb. 45).

Abb. 43: Kiesgrube bei Värlebo.
Abb. 44: Geschiebespektrum, Bildbreite 90 cm.
Abb. 45: Järeda-Granit, Aufnahme unter Wasser.

Hinzu kommen reichlich hälleflintartige Vulkanite, wahrscheinlich aus dem weiter nördlich gelegenen Vulkanitgürtel, sowie Emarp-Porphyre und Ostsmåland-Gangporphyre (vergleichbar mit dem Typ aus dem Straßenaufschluss bei Påskallavik); weiterhin deformierte, teilweise in Gneise umgewandelte Gangporphyre. Geachtet wurde auf Geschiebe vom Typ „Högsrum-Porphyr“ (Abb. 48), allerdings liegt sein Heimatgebiet etwas weiter westlich, gerade außerhalb des Geschiebefächers.

Abb. 46: Hälleflintartige Vulkanite sowie einige undeformierte neben reichlich deformierten Gangporphyren.
Abb. 47: Auswahl an Gangporphyren (teilweise in Gneise umgewandelt), Aufnahme unter Wasser. Rechts unten ein Porphyr vom Emarp-Typ.
Abb. 48: Deformierter Porphyr, ähnlich dem Högsrum-Typ.

Auch in dieser Grube waren zahlreiche Dolerite zu beobachten (mit und ohne größere Plagioklas-Einsprenglinge).

Abb. 49: Dolerite und Diabase.
Abb. 50: Diabas mit roten Feldspäten (Xenokristalle?) und grünem Epidot, Aufnahme unter Wasser.

Ein Einzelfund weist Ähnlichkeiten zum Siljan-Granit auf. Einzelne idiomorphe Quarze sowie sechseckige Biotitplättchen sprechen für ein undeformiertes Mineralgefüge. Die Frage nach der Herkunft ließ sich bislang nicht abschließend klären.

Abb. 51: Granit, ähnlich Siljan-Granit, Aufnahme unter Wasser.
Abb. 52: Nahaufnahme des Gefüges.

3.5. Literatur

EHLERS J 2011 Das Eiszeitalter – 363 S., Spektrum Akademischer Verlag Heidelberg.

WIK NG, BERGSTRÖM U, BRUUN A et al 2005 Berggrundskartan Kalmar län – 1:250 000, Sveriges geologiska undersökning serie Ba nr 66.