Schlagwort-Archive: TIB

4. Nordost- Småland-Granite – Geschiebefunde aus Norddeutschland

Die Granite aus Ost- und Nordost-Småland sowie dem südlichen Östergötland wurden auf dieser Seite in mehreren Artikeln beschrieben- jene des Transskandinavischen Magmatitgürtels und die etwas jüngeren anorogenen Granite. Bei der Bestimmung von Geschieben stellt sich oft das Problem einer genauen Zuordnung zu einem der als Leitgeschiebe beschriebenen Varianten. Leichter ist es, die Gesteine einem größeren Herkunftsgebiet zuzuweisen („Ostsmåland-Granit“, „NE-Småland-Granit“). Die folgenden Geschiebefunde wurden unter Wasser aufgenommen, soweit nicht anders angegeben.

Abb. 1: Nordost-Småland-Granit, porphyrischer Monzogranit aus braunem Alkalifeldspat, orangefarbenem (und grünem) Plagioklas, bläulichem und trübem Quarz sowie reichlich gelbem Titanit. Geschiebe von der Insel Poel.
Abb. 2: Nahaufnahme.
Abb. 3: NE-Småland-Granit, Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 4: Nahaufnahme der Bruchfläche.

Besitzt der Monzogranit-Typ aus Abb. 1-4 Säume von orangefarbenem Plagioklas (meist unvollständig) um einzelne Alkalifeldspäte, kann er als Kinda-Granit bezeichnet werden (Beschreibung hier).

Abb. 5: Kinda-Granit; Nienhagen bei Rostock.
Abb. 6: Dem Kinda-Granit ähnlicher Fund aus der Kiesgrube Horstfelde, südlich von Berlin; allerdings sollten die Plagioklassäume um die Alkalifeldspäte wenigstens einige mm Dicke aufweisen.
Abb. 7: Kinda-Granit, Großgeschiebe am Strand von Jastrzębia Góra (Danziger Bucht, Polen).
Abb. 8: Granit vom Kinda-Typ mit sehr viel orangefarbenem Plagioklas; unvollständige Säume. Hohenfelde östlich von Kiel.
Abb. 9: Leicht deformierte Variante vom Kinda-Granit?, polierte Schnittfläche; Steinbeck/Klütz, leg. T. Brückner.
Abb. 10: Nahaufnahme

Der mittelkörnige bis schwach porphyrische Flivik-Granit ist ein seltener Geschiebefund (Beschreibung hier).

Abb. 11: Flivik-Granit, Geschiebe von Sassnitz (Rügen)
Abb. 12: Nahaufnahme.

Bisher liegen nur Geschiebefunde vor, die lediglich gewisse Übereinstimmung mit den Anstehendproben vom Vånevik-Granit (Beschreibung hier) aufweisen.

Abb. 13: Vånevik-Granit? Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 14: Ähnlich Vånevik-Granit, aber mittelkörnig; Westermarkelsdorf (Fehmarn). Solche roten und mittelkörnigen Alkalifeldspatgranite mit Blauquarz und Titanit kommen in Ost-Småland bis ins Västervik-Gebiet vor.
Abb. 15: Roter Ostsmåland-Granit mit viel Titanit; polierte Schnittfläche, Steinbeck/Klütz, leg. T. Brückner.
Abb. 16: Nahaufnahme.

Mittelkörnige Blauquarzgranite mit blassrotem bis bräunlichen Alkalifeldspat, wenig Plagioklas und etwas Titanit innerhalb der spärlich vorhandenen Biotit-Aggregate sind in Nordost-Småland weit verbreitet („Tuna-Granit“).

Abb. 17: Tuna-Granit?; Ruhlsdorf bei Bernau.
Abb. 18: Tuna-Granit? – gleichzeitg besteht eine Ähnlichkeit mit dem Vånevik-Granit; Niederlehme, SE von Berlin.

Bei der Bestimmung der anorogenen Ostsmåland-Granite (Beschreibung hier) ist zu berücksichtigen, dass Granite mit einem undeformierten Gefüge auch aus anderen Vorkommen stammen können, z. B. den Rapakiwi-Vorkommen, aber auch der Suite anorogener Granite in Dalarna (Siljan- und Garberg-Granit). Ein eindeutig als Uthammar-Granit bestimmter Geschiebefund liegt bislang nicht vor.

Abb. 19: Mafitarmer Alkalifeldspatgranit, Uthammar-Granit? Kiesgrube Arendsee (Brandenburg), trocken fotografiert. Breite 50 cm.
Abb. 20: Gleicher Stein, Nahaufnahme. Idiomorphe (sechseckige) Glimmerplättchen sind auf der Außenseite dieses Geschiebes nicht erkennbar.
Abb. 21: Anorogener Granit, polierte Schnittfläche. Das Mineralgefüge ist augenscheinlich undeformiert, für einen Uthammar-Granit enthält das Gestein aber zu wenig Quarz. Kiesgrube Hoppegarten bei Müncheberg.
Abb. 22: Nahaufnahme. Einige Alkalifeldspäte besitzen einen gelben Kern.
Abb. 23: Grobkörniger roter Småland-Granit mit etwas Titanit, Steinbeck/Klütz. Dunkle Minerale bilden zusammenhängende, etwas gestreckte Aggregate (Merkmal einer leichten Deformation, kein Uthammar-Granit!).
Abb. 24: Dieser undeformierte Granit zeigt weitgehend mit dem Götemar-Granit übereinstimmende Merkmale (Beschreibung hier), ist aber nur mittelkörnig ausgebildet. Bruchfläche trocken aufgenommen, Kiesgrube Hohensaaten (Brandenburg).
Abb. 25: In der Nahaufnahme sind einige kleinere idiomorphe sowie größere Quarze mit einer Zonierung wie im Götemar-Granit erkennbar.
Abb. 26: Götemar-Granit (?) mit rotem bis gelbem Feldspat, grauem Quarz (einige davon idiomorph) und Hellglimmer als Nebengemengteil. Das Geschiebe stimmt gut mit einem Nahgeschiebe aus dem Götemar-Pluton überein (vgl. Abb. x in diesem Artikel). Geschiebe von Altenteil auf Fehmarn.
Abb. 27: Porphyrischer Granit mit idiomorphen Quarzen, polierte Schnittfläche, Steinbeck/Klütz. Alkalifeldspäte bis 3 cm, Götemar– oder Jungfrun-Granit?
Abb. 28: Nahaufnahme. Einzelne rotgrüne Plagioklas-Säume um die Alkalifeldspäte; schwache Zonierung der größeren Quarze.
Abb. 29: Porphyrischer Granit mit dunkelgrauen Quarzen. Das Gestein enthält recht viel grünen Plagioklas; Götemar-Granit oder porphyrischer Rapakiwi? Westermarkelsdorf/Fehmarn.
Abb. 30: Nahaufnahme, Alkalifeldspäte mit grünen Plagioklaskernen.
Abb. 31: Augenscheinlich undeformierter (anorogener) Granit mit idiomorphen Quarzen; ein einzelner Alkalifeldspat ist vollständig von idiomorphen Quarzen umsäumt. Kiesgrube Niederlehme (Brandenburg).
Abb. 32: Nahaufnahme.
Abb. 33: Polierte Schnittfläche. Das Gestein ist recht ungleichkörnig bzw. am rechten Rand ist ein Übergang in eine mittelkörnige Partie erkennbar. Die rote Farbe des Alkalifeldspats irritiert, im Götemar-Pluton überwiegen braunrote Farben.
Abb. 34: Nahaufnahme. Die Herkunft dieses Granits bleibt zunächst offen.

3. Fundberichte aus Kiesgruben in Ost-Småland

Der Besuch von Kiesgruben in Schweden ermöglicht einen Einblick in die Gesteine des Grundgebirges. Man findet hier hauptsächlich Nahgeschiebe, denn die vorrückenden Gletscher der letzten Inlandvereisung transportierten aufgenommenes Gesteinsmaterial auf dem Festland in der Regel nur wenige Zehnerkilometer weit (EHLERS 2011:86). Das Material in den Kiesgruben stammt also ganz überwiegend aus dem Untergrund der näheren Umgebung entgegen der Eiszugrichtung, im Falle Ost-Smålands aus Richtung NW bis NNW. Ähnliche Beobachtungen sind auch auf Öland möglich, auch hier finden sich überwiegend Nahgeschiebe aus Ost- und Nordost-Småland. Gehäufte Funde gleicher Gesteinstypen deuten auf ein größeres Vorkommen in geringer Entfernung.

Abb. 1: Übersichtskarte mit Vorkommen einiger Leitgeschiebe und weiterer Gesteine in Ost- und Nordost-Småland. Nummeriert sind die besuchten Kiesgruben: 1 – Farbo, 2 – Forshult, 3 – Skoretorp, 4 – N Värlebo. Karte verändert nach: WIK et al 2005: Berggrundskartan Kalmar län – 1:250 000.

3.1. Fårbo
3.2. Kiesgrube Forshult
3.3. Kiesgrube Skoretorp
3.4. Kiesgrube nördlich von Värlebo
3.5. Literatur

3.1. Fårbo

Abb. 2: Blick in die Kiesgrube bei Fårbo (57.401891, 16.476663).

Eine nördlich von Fårbo, direkt neben der Fernstraße E22 gelegene große Kiesgrube, war zum Zeitpunkt des Besuches im Juli 2016 bereits aufgelassen. Vor Ort fanden sich aber noch große Halden mit faust- bis kopfgroßen sowie kantengerundeten bis gut gerundeten Steinen. Der Anteil an Nahgeschieben, überwiegend NE-Småland-Granitoide, beträgt grob geschätzt etwa 90%. Sie dürften aus dem nordwestlichen Teil des Kalmar län stammen, etwa einer gedachten Linie Richtung Vimmerby folgend.

Abb. 3: Zusammenstellung von Granitgeschieben.

Der häufigste Geschiebetyp sind mittelkörnige Alkalifeldspatgranite vom Växjö-Typ (Sammelname für mittel- und weitgehend gleichkörnige Alkalifeldspatgranite mit wenig dunklen Mineralen, ohne präzise Herkunftsangabe) . Sie enthalten kaum dunkle Minerale (Biotit), Plagioklas ist meist nicht sichtbar. Vollrote Varianten überwiegen, die blassroten Granite dieses Typs sind etwas seltener (vgl. Tuna-Granit).

Abb. 4: Mittelkörnige Alkalifeldspatgranite vom Växjö-Typ.
Abb. 5: Mittelkörnige Växjö-Granite, roter Typ und blassroter Typ
Abb. 6: Blassroter mittelkörniger Växjö-Typ („Tuna-Granit“), Aufnahme unter Wasser.

In großer Menge und zahlreichen Varianten finden sich porphyrische Småland-Monzogranite, die meisten von ihnen enthalten reichlich Titanit. Auffällig ist der relativ geringe Anteil an Granitoiden mit braunem Alkalifeldspat, häufiger sind Monzogranite mit rotem bis blassrotem Alkalifeldspat, auch mit Augentextur. Einige dieser Granite enthalten roten Plagioklas, ein Merkmal einiger TIB-Granitoide aus Östergötland (Abb. 13-14).

Abb. 7: Zusammenstellung überwiegend porphyrischer Småland-Monzogranite.
Abb. 8: Einige Granite im Detail.
Abb. 9: Gewöhnlicher Småland-Monzogranitoid mit braunem Alkalifeldspat und weißem Plagioklas. Es ist recht wenig Quarz enthalten, die Zusammensetzung entspricht einem Quarzmonzonit.

Von diesem Typ gibt es Übergänge zu Granitoiden mit braunem und blassrotem Alkalifeldspat sowie mehr Quarz.

Abb. 10: Småland-Monzogranit mit braunem und blassrotem Alkalifeldspat.

Die typischen dunklen Nordost-Småland-Monzogranite mit braunem Alkalifeldspat, Blauquarz und orangefarbenem Plagioklas (teilweise Typ Kinda-Granit) kommen in der Kiesgrube nur untergeordnet vor.

Abb. 11: Brauner NE-Småland-Monzogranit, Aufnahme unter Wasser.
Abb. 12: NE-Småland-Monzogranitoid mit bräunlich-grauem Alkalifeldspat und orangebraunem Plagioklas; wenig Quarz (Quarzmonzonit).
Abb. 13: Unterer Bildteil: Monzogranite mit blassrotem oder graubraunem Alkalifeldspat (teilweise gerundet) und rotem Plagioklas. Der Gesteinstyp ist aus Ost- und Nordost-Småland nicht bekannt und dürfte aus dem Gebiet um Vimmerby oder dem südlichen Östergötland stammen.
Abb. 14: Quarzarmer Monzogranitoid (=Quarzmonzonit) mit blassrotem Alkalifeldspat und rotem Plagioklas.
Abb. 15: Porphyrischer Monzogranit mit grünem und rotem Plagioklas (teils auch braune Mischfarben); Aufnahme unter Wasser.

Gelegentlich finden sich intensiv rote und grobkörnige Granite, häufig ungleichkörnig oder schwach porphyrisch, mit unklaren Korngrenzen. In den weiter südlich gelegenen Kiesgruben treten diese häufiger auf.

Abb. 16: Intensiv roter und ungleichkörniger Granit mit reichlich gelbem Titanit; Aufnahme unter Wasser.
Abb. 17: Stark alterierter Småland-Granit; dunkler Glimmer (Biotit) wurde in schwarzgrüne Folgeprodukte (Chlorit o. ä.) umgewandelt, das Gestein ist von hellgrünem Epidot durchsetzt.

In der Kiesgrube konnten weitere Geschiebetypen dokumentiert werden. NICHT gefunden wurden anorogene Ost-Småland-Granite (Uthammar- oder Götemar-Granit). Der Götemar-Pluton ist zwar nur etwa 10 km, der Ort Uthammar keine 8 km Luftlinie entfernt, liegt allerdings in nordöstlicher bzw. ostsüdöstlicher Richtung und damit nicht in Zugrichtung der letzten eiszeitlichen Vergletscherung. Auch Vulkanite des TIB fehlen vollständig, sie kommen erst weiter südlich vor.

Eine Reihe von nicht näher spezifizierten Diabasen stellt vielleicht einen Anteil von 5-10% an den Geschieben. Tatsächlich steht unmittelbar westlich der Kiesgrube ein etwa 3 x 15 km großes Massiv sowie weitere kleinere Vorkommen mit basischen Gesteinen an.

Ferngeschiebe wie Gneise und Migmatite aus den weiter nördlich gelegenen svekofennischen Gebieten fehlen. Lediglich aus dem nahen Västervik-Gebiet, das aber auch außerhalb des Geschiebefächers liegt, scheint etwas Material nach Farbo gelangt zu sein. Dies belegen Quarzite und Metasedimente, die einen Anteil von etwa 1% ausmachen. Västervik-Fleckengestein und Fleckenquarzite wurden nicht gefunden.

Bemerkenswert sind drei Funde von Rapakiwi-Graniten (Abb. 18, 20). Vereinzelt treten sie auch in den anderen Kiesgruben Ost-Smålands auf. Manche Funde sind eindeutig dem Åland-Pluton zuzuordnen, der etwa 350 km nördlich und nicht in Zugrichtung der Gletscher der letzten Inlandvereisung liegt. Über ihren Transportweg kann man nur Vermutungen anstellen. Zum einen könnte ihr Transport nicht linear, sondern in mehreren Phasen erfolgt sein. Auch eine Verdriftung Richtung Süden in Eisbergen oder Eisschollen nach dem Abschmelzen des Eispanzers (dropstones) ist nicht ausgeschlossen. Diese letzte Annahme ließe sich durch entsprechende Funde von dropstones in-situ belegen. Entsprechende Berichte in der schwedischen Literatur sind bisher nicht bekannt.

Abb. 18: Åland-Rapakiwi mit Wiborgit-Gefüge.

Hin und wieder finden sich gelbrote und geschichtete Kalksteine, ähnlich dem ordovizischen Planilimbata-Kalk (Roter Orthocerenkalk). Vom östlich gelegenen Öland dürften sie kaum stammen, wahrscheinlicher ist eine Herkunft aus der untermeerischen Fortsetzung der ordovizischen Vorkommen nördlich von Öland. Sie dürften damit einen ähnlichen Transportweg wie die Rapakiwi-Granite genommen haben.

Abb. 19: Gelbroter Kalkstein, Planilimbata-Kalk?

An Ferngeschieben fanden sich weiterhin zwei Porphyre aus Dalarna, darunter ein Grönklitt-Porphyrit.

Abb. 20: Zwei Dala-Porphyre, in der Mitte ein weiterer Åland-Rapakiwi. Bildbreite 17 cm, Foto: Tobias Langmann.
Abb. 21: Auch mehrere Geschiebe tektonischer Brekzien wurden in der Kiesgrube beobachtet.

3.2. Kiesgrube Forshult

Die Kiesgrube Forshult liegt westlich von Oskarshamn, etwa 1,5 km SE der gleichnamigen Ortschaft (Parkplatz: 57.24536, 16.34568). Entsprechend ihrer Position südlich eines Vulkanitgürtels finden sich gestreifte und hälleflintartige Vulkanite ohne Einsprenglinge in großer Zahl. In vergleichbarer Menge treten diese auch in Skoretorp (Fundpunkt 3) auf, siehe Abb. 35-37.

In der Grube boten sich zunächst interessante Anschnitte glazialer Ablagerungen:

Abb. 22: Glazitektonisch Faltung von sandigen bis schluffigen Lagen mit Wellenrippeln. In den Sanden liegen einzelne kantige Bruchstücke eines roten Granits, der nicht dem anstehenden Typ entspricht, aber aus der näheren Umgebung stammen dürfte. Bildhöhe etwa 2 m.
Abb. 23: Abfolge verschiedener glazialer oder postglazialer Sedimente, Bildhöhe etwa 2 Meter.

 Abb. 23 zeigt vom Liegenden zum Hangenden: 1. schluffige bis feinsandige Lagen, Übergang in 2. Wellenrippel mit zunehmendem sandigen Anteil (3); 4. Sande in Schrägschichtung, 5. grünlicher Schluff mit Belastungsmarken, darüber eine sandig-schluffige Lage (6) mit einzelnen Geröllen (dropstones?).

Abb. 24: Unterer Teil der gleichen Sequenz (Schluffe und Wellenrippel), Höhe etwa 1 m.
Abb. 25: Die glazialen Ablagerungen liegen direkt auf dem Grundgebirge, hier anstehend ein roter Alkalifeldspatgranit innerhalb des Vånevik-Granitgebiets.
Abb. 26: Roter Alkalifeldspatgranit vom Typ Vånevik.

In der Grube gab es nicht viele Geschiebe. Neben Vulkaniten und gewöhnlichen roten Alkalifeldspatgraniten fanden sich überwiegend grobkörnige, leicht deformierte und stark alterierte rote Granite.

Abb. 27: Roter Alkalifeldspatgranit.
Abb. 28: Rote und stark alterierte Granite, Bildbreite 25 cm.
Abb. 29: Hellroter bis orangeroter Alkalifeldspat. Milchiger Quarz bildet unregelmäßige Ansammlungen. Dunkle Minerale wie Biotit wurden teilweise in grünschwarze Folgeprodukte umgewandelt (Chlorit o. ä.).
Abb. 30: Roter und alterierter NE-Småland-Granit mit orangefarbenem Plagioklas und viel gelblichem Titanit. Aufnahme unter Wasser.

In Ost-Småland bis ins Västervik-Gebiet finden sich gelegentlich porphyrische Småland-Granite mit blass violettgrauem bis hellrotem Alkalifeldspat (eckige bis abgerundete Einsprenglinge), gelbem Plagioklas, Blauquarz und reichlich Titanit. Ihr Herkunftsgebiet dürfte im Gebiet östlich von Vimmerby oder im angrenzenden Östergötland zu suchen sein (Abb. 31).

Abb. 31: Porphyrischer Småland-Granit mit blass violettgrauem bis hellrotem Alkalifeldspat.
Abb. 32: Blassroter Småland-Granit mit Blauquarz und reichlich gelbem Titanit.

An Ferngeschieben fanden sich mehrfach hellgraue, teilweise auch rötliche Quarzite (wahrscheinlich aus dem Västervik-Gebiet) sowie ein Rapakiwi-Granit und ein Dala-Porphyr.

Abb. 33: Rapakiwi-Geschiebe (Åland-Wiborgit), Breite ca. 10 cm.

3.3. Kiesgrube Skoretorp

Die Kiesgrube Skoretorp, ca. 2 km NNW der gleichnamigen Ortschaft (57.20846, 16.38353) war zum Zeitpunkt des Besuchs bereits stillgelegt. Vor Ort konnte aber noch reichlich Geschiebematerial studiert werden. Grob geschätzt ein Drittel davon sind dichte und hälleflintartige Småland-Vulkanite aus dem wenig weiter nördlich gelegenen Vulkanitgürtel, ein weiteres Drittel vollrote, alterierte Granite.

Abb. 34: Stillgelegte Kiesgrube (Grustäkt) bei Skoretorp.

Die rotbraunen bis braunen sowie grauen Vulkanite des TIB bilden meist eckige bis kantengerundete Geschiebe aus und sind arm an Einsprenglingen. Nur in den grauen Vulkaniten können mehr kleine Feldspäte enthalten sein.

Abb. 35: Rotbraune bis braune und graue Vulkanite des TIB. Rechts oben ein Quarzit. Bildbreite 35 cm.

Die Streifung einiger Vulkanite kann eine primäre magmatische Textur, eine Folge einer leichten metamorphen Überprägung oder beides sein. Teilweise könnte es sich um Ignimbrite handeln (eutaxitisches Gefüge), aber der makroskopische Befund ist nicht eindeutig: die kurzen, welligen Streifen „umfließen“ zwar einige Feldspat-Einsprenglinge, allerdings sind diese meist zerbrochen, was für eine metamorphe Überprägung spricht (Abb. 37).

Abb. 36: Gestreifter hälleflintartiger Vulkanit.
Abb. 37: Gleicher Stein, Nahaufnahme unter Wasser.

Unter den Granitgeschieben dominieren grob-, seltener mittelkörnige und stark alterierte rote Småland-Granite mit weißem oder bläulichem Quarz. Die braunen porphyrischen NE-Småland-Monzogranite, wie sie in Fårbo noch einigermaßen regelmäßig auftraten, fehlen hier.

Abb. 38: Stark alterierte rote Småland-Granite, Bildbreite ca. 35 cm.
Abb. 39: Grobkörnige rote Småland-Granite.
Abb. 40: Roter Granitoid mit weißem Quarz.
Abb. 41: Stark alterierter Granit, durchzogen von hellen Quarzadern.

Etwa 5% der Geschiebe in der Grube sind basische Gesteine, meist Dolerite, einige Diabase sowie dioritähnliche Gesteine mit größeren eckigen Hornblende-Aggregaten. Sie dürften aus einem Vorkommen stammen, das wenig nördlich der Kiesgrube liegt.

Abb. 42: Dolerite und ein Diabas (Bildmitte), Bildbreite 20 cm.

Vereinzelt fanden sich auch hier wieder Quarzite, einige Granitporphyre, aber kein einziger Ostsmåland-Gangporphyr.

3.4. Kiesgrube nördlich von Värlebo

Der letzte Fundpunkt, etwa 2,5 km nördlich von Värlebo (57.06805, 16.19732), bot ein ganz anderes Geschiebespektrum. Hier überwiegen klein- bis mittelkörnige und teilweise deformierte Granite, die kaum mit jenen aus den weiter nördlich gelegenen Kiesgruben vergleichbar sind. Wie in Skoretorp, fehlen die porphyrischen NE-Småland-Monzogranite. Der Järeda-Granit fand sich mehrfach (Abb. 45).

Abb. 43: Kiesgrube bei Värlebo.
Abb. 44: Geschiebespektrum, Bildbreite 90 cm.
Abb. 45: Järeda-Granit, Aufnahme unter Wasser.

Hinzu kommen reichlich hälleflintartige Vulkanite, wahrscheinlich aus dem weiter nördlich gelegenen Vulkanitgürtel, sowie Emarp-Porphyre und Ostsmåland-Gangporphyre (vergleichbar mit dem Typ aus dem Straßenaufschluss bei Påskallavik); weiterhin deformierte, teilweise in Gneise umgewandelte Gangporphyre. Geachtet wurde auf Geschiebe vom Typ „Högsrum-Porphyr“ (Abb. 48), allerdings liegt sein Heimatgebiet etwas weiter westlich, gerade außerhalb des Geschiebefächers.

Abb. 46: Hälleflintartige Vulkanite sowie einige undeformierte neben reichlich deformierten Gangporphyren.
Abb. 47: Auswahl an Gangporphyren (teilweise in Gneise umgewandelt), Aufnahme unter Wasser. Rechts unten ein Porphyr vom Emarp-Typ.
Abb. 48: Deformierter Porphyr, ähnlich dem Högsrum-Typ.

Auch in dieser Grube waren zahlreiche Dolerite zu beobachten (mit und ohne größere Plagioklas-Einsprenglinge).

Abb. 49: Dolerite und Diabase.
Abb. 50: Diabas mit roten Feldspäten (Xenokristalle?) und grünem Epidot, Aufnahme unter Wasser.

Ein Einzelfund weist Ähnlichkeiten zum Siljan-Granit auf. Einzelne idiomorphe Quarze sowie sechseckige Biotitplättchen sprechen für ein undeformiertes Mineralgefüge. Die Frage nach der Herkunft ließ sich bislang nicht abschließend klären.

Abb. 51: Granit, ähnlich Siljan-Granit, Aufnahme unter Wasser.
Abb. 52: Nahaufnahme des Gefüges.

3.5. Literatur

EHLERS J 2011 Das Eiszeitalter – 363 S., Spektrum Akademischer Verlag Heidelberg.

WIK NG, BERGSTRÖM U, BRUUN A et al 2005 Berggrundskartan Kalmar län – 1:250 000, Sveriges geologiska undersökning serie Ba nr 66.

Granite in Ost- und Nordost-Småland

Abb. 1: Nordost-Småland-Granit, Geschiebe von Öland. Breite 12 cm.

Småland ist eines der Hauptliefergebiete von Geschieben, die mit den nordischen Inlandvereisungen nach Norddeutschland gelangten. Vor allem in weichselzeitlichen Ablagerungen können Småland-Granite und -Vulkanite einen hohen Anteil ausmachen. Insbesondere die granitoiden Gesteine aus Ost- und Nordost-Småland sind von geschiebekundlichem Interesse, von dort wurden viele Leitgeschiebe beschrieben. Dieser Artikel vermittelt einen Eindruck von der Vielfalt granitoider Gesteine in diesem Gebiet und ist das Ergebnis mehrerer Exkursionen. Die Eignung einiger Leitgeschiebe wird diskutiert, präzisierte Gesteinsbeschreibungen helfen bei der Bestimmung von Geschieben.

Der erste Teil behandelt die Granitoide des ca. 1,7-1,8 Ga alten Transskandinavischen Magmatitgürtels (TIB). Drei kleine Vorkommen von jüngeren, anorogenen Graniten (Uthammar-, Götemar- und Jungfrun-Granit) sowie der Virbo-Granit (TIB-Granit) werden im zweiten Teil besprochen. Darüber hinaus lohnt sich ein Blick in die Kiesgruben Ost-Smålands (Teil 3), wo sich die Gesteine des Grundgebirges als Nahgeschiebe wieder finden. Gleiches gilt für den Exkursionsbericht Öland. Im vierten Teil werden einige Geschiebefunde aus Norddeutschland vorgestellt.

  1. Granite aus Ost- und Nordost-Småland
  2. Anorogene Granite in Ost-Småland und Virbo-Granit
  3. Fundberichte aus Kiesgruben in Ost-Småland
  4. Geschiebefunde aus Norddeutschland

Exkursionsbericht Öland (Kristallingeschiebe)

Vorab einige allgemeine Vorbemerkungen zu den Småland-Graniten: im Anstehenden finden sich alle möglichen Farb- und Gefügekombinationen. Als Geschiebe werden häufig die bunten Granite mit rotem, braunem oder orangefarbenem Alkalifeldspat und blauem oder grauem Quarz als „Småland-Granit“ bezeichnet. Plagioklas fehlt oder tritt untergeordnet in verschiedenen Farbtönen auf. Der Anteil an dunklen Mineralen, meist Biotit, ist variabel, im Allgemeinen aber gering. Granite mit den genannten Merkmalen kommen auch außerhalb von Småland vor, innerhalb des Transskandinavischen Magmatitgürtels („TIB-Granit“).

Nach ihrem Gefüge (nicht nach dem Herkunftsgebiet!) lassen sich gleichkörnige (Växjö-Typen) von porphyrischen Graniten (Filipstad-Typen) unterscheiden. In der Geschiebekunde werden die Typen weiter differenziert: roter, grauer, rosa oder bunter Växjö-Typ sowie „Vislanda-Granit“ (Växjö-Granite mit zuckerkörnigem Quarz). Abweichend zur schwedischen Nomenklatur bezeichnet man in der Geschiebekunde nur porphyrische TIB-Granite mit Plagioklasringen als Filipstad-Typ.

Bereits HOLMQVIST 1906 stellt zu den Småland-/TIB-Graniten fest: „In einzelnen Gebieten kehren petrographisch gleiche Typen immer wieder“. Damit wird die grundsätzliche Schwierigkeit der Herkunftsbestimmung von Geschieben benannt. In Geländestudien in Ost-Småland konnten zahllose Gefügevarianten dokumentiert, aber auch ähnliche Typen an verschiedenen Lokalitäten aufgefunden werden. Aus dem Spannungsfeld zwischen naturgemäßer Variabilität im Erscheinungsbild und einer möglichst exakten Beschreibung ergibt sich eine überschaubare Anzahl an Leitgeschieben.

Ihre Beschreibung in der Geschiebeliteratur ist teils wenig einheitlich, teils sogar unbefriedigend. Hinzu kommt eine verwirrende Vielfalt an Lokalnamen. In der schwedischen Literatur werden nicht selten mehrere Gefügevarianten eines Gebietes unter einem Namen zusammengefasst, in der Geschiebekunde lediglich eine Variante davon unter der gleichen Bezeichnung geführt. Auch lässt sich nicht immer die Einzigartigkeit der empfohlenen Leitgeschiebe überprüfen. Empfehlenswert zur Geschiebebestimmung sind die Beschreibungen in SMED & EHLERS 2002, darin: Vånevik-Granit, Kinda-Granit, Virbo-Granit sowie die jüngeren anorogenen OstSmåland-Granite Uthammar-, Götemar- und Jungfrun-Granit. Ergänzend ist der Flivik-Granit hinzuzufügen. Weitere Anstehendproben bietet die Seite skan-kristallin.de.

Abb. 2: Granite und weitere Leitgeschiebe in Ost- und Nordost-Småland. Nummerierung: Kiesgruben in Smaland: 1-Fårbo, 2-Forshult, 3-Skoretorp, 4-Värlebo. Karte verändert nach: WIK et al 2005: Berggrundskartan Kalmar län – 1:250 000.

1. Granite aus Ost- und Nordost-Småland

1.1. Porphyrische Monzogranite
1.2. Porphyrische NE-Småland-Monzogranite
1.3. Kinda-Granit
1.4. Flivik-Granit
1.5. Granite aus der Umgebung von Flivik
1.6. Vånevik-Granit
1.7. Tuna-Granit
1.8. Weitere Granitoide aus Ost-Småland
1.8.1. Rote grobkörnige Granite
1.8.2. Emsfors-Granit
1.8.3. Augengranit am Campingplatz Gunnersö
1.8.4. Granite mit rotem und grünem Plagioklas
1.8.5. Granodiorit
1.8.6. TIB-Granite im Västervik-Gebiet
1.8.7. Älö-Granit
1.9. Literatur
1.10. Verzeichnis der Probenorte

Grob vereinfacht überwiegen in Ost-Småland grob- bis mittel- und weitgehend gleichkörnige rote Granite vom Växjö-Typ (z. B. Abb. 46), in Nordost-Småland bis ins südliche Östergötland braune und porphyrische Monzogranite (Abb. 1). Ein Blick auf die geologische Übersichtskarte (Abb. 2) zeigt, dass die Verhältnisse im Einzelnen natürlich ungleich komplexer sind.

1.1. Porphyrische Monzogranite

Vom nördlichen Småland bis ins südliche Östergötland sind grobkörnige porphyrische Granitoide wie in Abb. 3-5 weit verbreitet. Ihre Zusammensetzung variiert, manche von ihnen besitzen eine granitische Zusammensetzung, andere enthalten deutlich weniger Quarz (Quarzmonzonite). Der Gesteinstyp, in Norddeutschland häufig als Geschiebe anzutreffen, lässt sich keinem näheren Herkunftsgebiet zuordnen und besitzt die folgenden allgemeinen Merkmale:

  • Brauner Alkalifeldspat in 1-3 cm großen Einsprenglingen, alle anderen Mineralkörner sind deutlich kleiner. Die Alkalifeldspäte weisen mehr oder weniger rechteckige Formen auf, auch mit abgerundeten Ecken, bilden häufig Karlsbader Zwillinge und besitzen einen zonaren Aufbau. Diese Zonierungen sind perthitische Entmischungen, die frühere Wachstumslinien des Kristalls nachzeichnen (s. kristallin.de).
  • Intensiv blauer bis weißer Quarz bildet massige und rundliche Ansammlungen und ist häufig zerdrückt und zuckerkörnig ausgebildet.
  • Plagioklas findet sich in großer Menge in weißen bis grünen oder gelblichen, häufig tafeligen Aggregaten.
  • Der Anteil dunkler Minerale, meist Biotit, ist deutlich höher als in den roten Småland-Graniten vom Växjö-Typ (z. B. Abb. 50) und lässt die Granite insgesamt recht dunkel erscheinen.
Abb. 3: Porphyrischer Monzogranit, Anstehendprobe westlich von Kisa (S142a), Aufnahme unter Wasser.
Abb. 4: Geschiebefund aus dem Tagebau Welzow Süd (Niederlausitz).
Abb. 5: Gleicher Stein; Alkalifeldspäte mit zonierten Wachstumslinien.

1.2. Porphyrische NE-Småland-Monzogranite

Der eben beschriebene porphyrische Monzogranit-Typ ist auch im nordöstlichen Småland und südlichen Östergötland weit verbreitet. Hier treten Merkmale hinzu, die eine Verortung von Geschieben in das genannte Gebiet erlauben. Diese „NE-Småland-Granite“ sind zwar kein Leitgeschiebe, aber regelmäßig in glazialen Ablagerungen mit ostschwedischem Gesteinsmaterial zu finden und Bestandteil der sog. „ostschwedischen Geschiebegemeinschaft“.

  1. Plagioklas besitzt eine gelbe bis orange Färbung, neben grünen oder bräunlichen (Mischfarbe aus grün und orange) Tönungen. Die Färbung des Plagioklas ist eine Folge hydrothermaler Alteration, wobei Ca-reicher Plagioklas in grüne und Na-reicher Plagioklas in gelbe bis orangefarbene Folgeprodukte umgewandelt wird (Smed & Ehlers 2003: 148).
  2. Regelmäßig ist Titanit enthalten, mitunter recht viel davon. Titanit ist braun gefärbt oder gelblich alteriert und an seiner keilförmigen Gestalt leicht erkennbar.

Abb. 1 zeigt einen typischen Nordost-Småland-Granit mit porphyrischem Gefüge aus braunem Alkalifeldspat, Blauquarz und orangefarbenem Plagioklas. Innerhalb der Partien aus dunklen Mineralen (meist Biotit) findet sich keilförmiger, meist gelblicher Titanit in größerer Menge.

Abb. 6: Porphyrischer Monzogranit mit orangegelbem Plagioklas. Geschiebe von Byxelkrog auf Öland, Bildbreite 19 cm.

Die Alkalifeldspäte können auch hellrot bis rötlichgrau gefärbt sowie abgerundet erscheinen. Kiesgrubenfunde aus Ost-Småland belegen, dass ihr Heimatgebiet etwa östlich von Vimmerby und nördlich davon liegen dürfte.

Abb. 7: Porphyrischer Monzogranit (NE-Småland-Granit) mit blassrotem Alkalifeldspat und gelbem Titanit; Geschiebe von Eskilslund auf Öland, Breite 9 cm.
Abb. 8: Porphyrischer Monzogranit mit blassrotem Alkalifeldspat; Geschiebe von Byxelkrog auf Öland.

Im Vergleich zu anderen porphyrischen TIB-Monzograniten ist der Alkalifeldspat der NE-Småland-Granite immer einfarbig (braun oder rötlich), während in Värmland (z. B. Hagfors-Granit) roter, brauner und grauvioletter Alkalifeldspat nebeneinander vorkommen (s. Braunvioletter Filipstad-Granit in SMED & EHLERS 2003:148). Porphyrische Monzogranite mit braunem oder rotem Alkalifeldspat, buntem Plagioklas und Blauquarz werden in SMED & EHLERS 2003 auch als Trikolore-Granite bezeichnet.

1.3. Kinda-Granit

Kennzeichnend für den Kinda-Granit sind neben einer auffälligen Dreifarbigkeit (brauner Alkalifeldspat, klar orangefarbener Plagioklas und blauer Quarz) partielle, seltener auch vollständige Säume aus Plagioklas um einzelne Alkalifeldspäte. Titanit ist immer zu finden, mitunter sehr viel davon. Im Übrigen besteht weitgehende Übereinstimmung mit den porphyrischen NE-Småland-Monzograniten: Grobkörnigkeit, porphyrisches Gefüge aus grob rechteckigen und braunen oder blass rötlichen Alkalifeldspäten; intensiv blauer und milchiger Quarz in größeren, meist zuckerkörnig zerdrückten Massen. Der Quarzgehalt schwankt, auch Quarzmonzonite kommen vor. Plagioklas ist mit 1-3 mm wesentlich kleiner als Alkalifeldspat und bildet häufig tafelige Kristalle. Seine Farbe variiert von gelb über orangegelb bis orangerot; untergeordnet auch grün sowie Mischfarben (z. B. braun aus gelb und grün).

Abb. 9: Kinda-Granit, Geschiebe Geschiebe von Byxelkrog auf Öland, Aufnahme unter Wasser.
Abb. 10: Kinda-Granit, Geschiebe von Nienhagen bei Rostock, Aufnahme unter Wasser.
Abb. 11: Kinda-Granit mit weißem Quarz; Geschiebe von Ramsnäs auf Öland.
Abb. 12: In der Nahaufnahme der nassen Oberfläche ist reichlich gelblicher Titanit erkennbar.

Der Kinda-Granit ist als Geschiebe seltener als die porphyrischen Monzogranite. Eine Verwandtschaft besteht mit dem Braunviolettem Filipstad-Granit (SMED & EHLERS 2003 Nr. 99, 100). Im Kinda-Granit ist der Quarz jedoch immer blau und nur brauner bzw. einfarbiger Alkalifeldspat enthalten. Viele Plagioklasringe sind nur unvollständig ausgebildet und besitzen einen klaren Orangeton (Karte SMED & EHLERS 2003: 79).

Der Kinda-Granit gilt als Leitgeschiebe, besitzt aber ein recht großes Heimatgebiet, das eine Fläche von über 2000 km² in Nord-Småland und im südlichen Östergötland einnimmt (in etwa deckungsgleich mit der historischen Provinz Kinda). Die genauen Verbreitungsgrenzen sind unklar und dürften in etwa denen der porphyrischen Monzogranite entsprechen, wobei der Kinda-Granit womöglich nur eine lokale, aber an mehreren Stellen auftretende Variante ist. Innerhalb des in Abb. 2 als Kinda-Granit markierten Gebiets findet sich eine Vielzahl von Gefügevarianten, darunter auch deformierte und gneisgranitische Varianten, Granite mit weißem oder grünem Plagioklas und dunkle Monzogranite ohne Plagioklassäume. Die Zahl vorliegender Anstehendproben ist klein (vgl. auch skan-kristallin.de). Abb. 13-19 zeigen einige Varianten aus einer Streckenbeprobung im Gebiet des Kinda-Granits (s. Abb. 75; alle Proben als Aufnahmen unter Wasser). Ein dem Kinda-Typ ähnlicher Granit-Typ konnte auch in NE-Småland, in Nachbarschaft zum Flivik-Granit, außerhalb seines Hauptverbreitungsgebietes beprobt werden (Abb. 34-35).

Abb. 13: Kinda-Granit, Björkfors (S145).
Abb. 14: Nahaufnahme.
Abb. 15: Porphyrischer Monzogranit aus dem Kinda-Granitgebiet, Åsunden (S144).
Abb. 16: Porphyrischer Monzogranit, Nahgeschiebe NW Skärpingen (S146).
Abb. 17: Anstehendprobe, Straßenaufschluss bei Skärpingen (S147).

Die nächsten zwei Granite stammen aus einem Straßenaufschluss etwa 20 km westlich von Gamleby (Västervik-Gebiet).

Abb. 18: Porphyrischer Monzogranit, Straßenaufschluss bei Västantorp (S148).
Abb. 19: Kleinkörniger porphyrischer Monzogranit (S148).

1.4. Flivik-Granit

Das Flivik-Granitgebiet liegt auf halber Strecke zwischen Oskarshamn und Västervik in NE-Småland und erstreckt sich über eine Fläche von etwa 100 km². Um Flivik zeugen zahlreiche Steinbrüche von einem regen Abbau der Granite. Sie werden auch heute noch als Werkstein gewonnen, so im Steinbruch Quimbra (Handelsbezeichnungen Quimbra Red bzw. Quimbra Röd und Quimbra Grey).

Abb. 20: Flivik-Granit, Geschiebe von Ramsnäs auf Öland; Breite 21 cm.
Abb. 21: In der Nahaufnahme sind zahlreiche gelbe und keilförmige Titanit-Kristalle erkennbar. Plagioklas ist unauffällig und grau bis bräunlich, stellenweise orange gefärbt.

Der Flivik-Granit ist ein dunkler Monzogranit und auf den ersten Blick ein typischer NE-Småland-Granit (brauner Alkalifeldspat, farbiger Plagioklas, blauer Quarz und viel Titanit). Er weist aber nur ein schwach porphyrisches, eher mittel- bis grobkörniges sowie ein weitgehend gleichkörniges Gefüge auf. Die braunen Alkalifeldspäte sind wenig größer als die nahezu gleichkörnig erscheinende Grundmasse. Vor allem die blauen Quarzkörner fallen durch ihre gleichmäßige Verteilung ins Auge. Die weitgehende Gleichkörnigkeit von Quarz und anderen Mineralkörnern ist ein wichtiges Erkennungsmerkmal und lässt auf eine geringere Deformation des Gesteins schließen, im Unterschied zu den Graniten in der Umgebung (Abb. 32-35) oder anderen Ost-Småland-Graniten, in denen sich Quarz und dunkle Minerale in größeren Aggregaten sammeln. Als Geschiebe ist der Flivik-Granit eher selten. (Beschreibung in KORN 1927:5, ZANDSTRA 1999, Nr. 173; nicht in SMED & EHLERS 2003).

Im Steinbruch Quimbra finden sich mittelkörnige und schwach porphyrische Varianten (Abb. 23-29). Die Korngrößen der mittelkörnigen Variante liegen zwischen 2-5 mm. Die braunen bis rotbraunen Alkalifeldspäte können etwas größer (bis 6 mm) sein und gehen lokal in porphyrische Varianten über. Die Größe dieser Einsprenglinge übersteigt aber selten 1 cm. Alkalifeldspat bildet dicke Tafeln mit undeutlich zonarem Aufbau, die kräftige perthitische Entmischungen aufweisen und von orangefarbenen Flecken begleitet sind.

Alkalifeldspat, Plagioklas und Quarz machen in den Handelsvarianten Quimbra Red und Quimbra Grey jeweils in etwa ein Drittel des Gesteins aus (Quelle: natursteindatenbank.de). Nach KORN 1918 soll der Quarzanteil sogar bis 50% betragen, ein Wert, der etwas zu hoch gegriffen scheint. Quarz ist milchig-blau bis fast weiß, teilweise auch zuckerkörnig ausgebildet. Plagioklas ist unauffällig und grau bis bräunlich, stellenweise auch durch hydrothermale Alteration orange gefärbt. Ein mäßiger Biotit-Anteil bewirkt die dunkle Gesamtfärbung des Gesteins. Der Flivik-Granit enthält zahlreiche keilförmige Aggregate von gelblichem Titanit.

Verwechslungsmöglichkeiten: Der grobkörnige Kinda-Granit weist ein ausgeprochen porphyrisches Gefüge auf und besitzt gelbe bis orangefarbene Plagioklas-Säume um einzelne Alkalifeldspäte. Andere braune NE-Småland-Granite zeigen in der Regel deutliche Spuren einer Deformation, Quarz und dunkle Minerale bilden dann Ansammlungen. Der Vånevik-Granit besitzt größere Aggregate von Quarz und Alkalifeldspat. Im Västervik-Gebiet fand sich ein dem Flivik-Granit ähnliches, aber deutlich deformiertes Gestein mit einer grauen und mittelkörnigen Matrix sowie einzelnen braunen Alkalifeldspat-Einsprenglingen (Abb. 34-35).

Die nächsten Proben stammen aus dem Steinbruch Quimbra bei Flivik (Übersicht der Probenorte in Abb. 75). Neben einer grauen und einer rotgrauen mittelkörnigen Variante kommen auch schwach porphyrische bis porphyrische Granite vor, sowohl in hellen (blassrot), als auch dunklen Tönungen. Charakteristisch und als Referenz zur Bestimmung des Flivik-Granits geeignet sind Abb. 24-27, 30 und der Geschiebefund von Öland (Abb. 20-21).

Abb. 22: Blick in den Steinbruch Quimbra.
Abb. 23: Drei Granit-Varianten aus dem Steinbruch: rechts oben ein gleichkörniger grauer, unten ein brauner porphyrischer Flivik-Granit. Der gleichkörnige blassrote Granit links im Bild unterscheidet sich kaum von anderen Graniten aus NE-Småland (ähnlich Vånevik-Granit).
Abb. 24: Schwach porphyrischer grauer Flivik-Granit, Aufnahme unter Wasser (S65).
Abb. 25: Nahaufnahme.
Abb. 26: Flivik-Granit, rotbraune Variante (S65), vgl. mit Geschiebefund in Abb. 20-21.
Abb. 27: Plagioklas ist gelblichgrau gefärbt. Die orangefarbenen Bereiche sind nicht auf Plagioklas beschränkt, sondern finden sich auch als Flecken oder Saum in den Alkalifeldpäten.
Abb. 28: Weitgehend gleichkörniger grauer Flivik-Granit mit Aplitgang.
Abb. 29: Handstück vom gleichen Stein, Aufnahme unter Wasser (S65).

Eine weitere Probe aus dem Flivik-Granitgebiet enthält reichlich gelben Titanit.

Abb. 30: Flivik-Granit (S64), Aufnahme unter Wasser.
Abb. 31: Flivik-Granit, Geschiebe von Byxelkrog auf Öland, Bildbreite 17 cm.

1.5. Granite aus der Umgebung von Flivik

In der Umgebung von Flivik finden sich typische porphyrische NE-Småland-Granite mit braunem Alkalifeldspat und viel Titanit. Sie sind stärker deformiert und gehören nicht mehr zum Flivik-Granitmassiv.

Abb. 32: Brauner Monzogranit mit grünem Plagioklas, viel Biotit und gelblichem Titanit (S66).

Die nächste Probe ähnelt deutlich dem Kinda-Granit, dessen Verbreitungsgebiet eigentlich weiter nordwestlich liegt. Das Gestein ist ein schöner Beleg für Überschneidungen im Gefüge einzelner Granite eines Gebietes und die Schwierigkeit einer Abgrenzung lokaler Typen. Ähnlichkeiten sind auch zwischen Abb. 41 (Vånevik-Granit) und Abb. 26 (Flivik-Granit) sowie Abb. 19 (Granit aus dem Västervik-Gebiet) und Abb. 24 (Flivik-Granit) erkennbar.

Abb. 34: NE-Småland-Monzogranit, Typ Kinda-Granit, aus der Umgebung des Flivik-Granitgebiets (S67).
Abb. 35: Nahaufnahme.

Der gezeigte Monzogranit-Typ mit reichlich orangefarbenem Plagioklas ist als Geschiebe auffällig, aber relativ selten zu finden.

Abb. 36: Geschiebe von Ramsnäs (Öland), Breite 17 cm.
Abb. 37: Gleicher Stein, Nahaufnahme.
Abb. 38: Vergleichbarer Typ, mit etwas helleren Alkalifeldspäten. Geschiebe von Gässhult am Südrand des Götemar-Plutons (S255d).
Abb. 39: Nahaufnahme.

1.6. Vånevik-Granit

Der Vånevik-Granit nimmt ein größeres Gebiet zwischen Oskarshamn und Mönsteras an der smaländischen Ostküste ein (Abb. 2). Lange Zeit befand sich hier ein wichtiges Zentrum der Werksteinherstellung. Im Stenhuggarmuseet Vånevik kann sich der Besucher über die Geschichte der Steinverarbeitung informieren.

Abb. 40: Im Stenhugermuset Vånevik.

Die Granite des Vånevik-Gebiets sind ziemlich variabel. Allgemein handelt es sich um mittel- bis grobkörnige Granite vom Växjö-Typ (gleichkörnige Småland-Granite) mit mäßigen bis deutlichen Spuren einer Deformation. Die Alkalifeldspäte erreichen eine Größe von 3 cm und sind rot, manchmal auch rotbraun oder hell fleischfarben gefärbt. Milchiger Quarz kann intensiv blau, durch Hämatitimprägnierung auch violett, aber auch hellgrau oder weiß erscheinen und bildet 1-3 cm große, durch Deformation länglich gestreckte Aggregate. Dunkle Minerale kommen nur in sehr geringer Menge vor (Biotit, meist chloritisiert). Regelmäßig findet sich brauner oder gelblich alterierter Titanit. Weißer bis grüner Plagioklas ist nur untergeordnet enthalten und auf der Bruchfläche schwer erkennbar, auf der Verwitterungsrinde hebt er sich besser vom Alkalifeldspat ab.

Im Stenhuggarmuseet steht eine braune Variante an (Referenzprobe in ZANDSTRA 1999:168). Der grobkörnige und porphyrische Granit besteht aus braunem Alkalifeldspat, begleitet von orangefarbenen Flecken, großen blauen Quarz-Aggregaten und enthält braunen bis gelblichen Titanit.

Abb. 41: Orangebrauner Vånevik-Granit, Probe aus dem Stenhuggarmuseet, Aufnahme unter Wasser (S257).
Abb. 42: Nahaufnahme des Gefüges.
Abb. 43: Gewöhnlicher roter Vånevik-Granit; Probe mit polierter Schliffläche im Stenhuggarmuseet; Bildbreite 7 cm.
Abb. 44: Roter Vånevik-Granit im Kontakt zu einem feinkörnigen Rhyolith. Ortseingang Påskallavik, Bildbreite 35 cm.
Abb. 45: Probe vom Kontakt (S34), Aufnahme unter Wasser.
Abb. 46: Roter Vånevik-Granit, 4 km NW Påskallavik (S93); Risse mit Hämatit gefüllt.

Nach SMED & EHLERS 2003:130 eignet sich eine grobkörnige Variante aus blassrotem Alkalifeldspat als Leitgeschiebe. Sie enthält viel intensiv blauen bis violettblauen und leicht milchigen Quarz in 1-3 cm großen Aggregaten, vereinzelt Biotit (nicht in Streifen) und einige braune Titanitkristalle (vgl. Abb. 47).

Abb. 47: Vånevik-Granit, Probe vom Verladehafen (S103), Aufnahme unter Wasser.

Ist der Vånevik-Granit ein Leitgeschiebe? Die Beschreibungen in den Bestimmungsbüchern unterscheiden sich deutlich voneinander. Wichtige Kriterien bei der Bestimmung sind Grobkörnigkeit, die großen und intensiv blauen Quarzaggregate und die Anwesenheit von Titanit. Eindeutig als Vånevik-Granit bestimmbare Geschiebe sind nicht häufig. Insbesondere scheiden die mittelkörnigen roten Granite mit unklaren Korngrenzen und reichlich himmelblauem, intensiv leuchtendem, teilweise durch Hämatit violett gefärbtem Quarz als Leitgeschiebe aus. Ihr Herkunftsgebiet ist zu groß, sie finden sich in Ost-Småland mindestens bis ins Västervik-Gebiet. Auf Öland treten sie als Geschiebe besonders zahlreich auf, auch an Orten, an denen ein Transport aus dem Vånevik-Granitgebiet unwahrscheinlich ist (Abb. 48). Ist Titanit enthalten, lässt sich der mittelkörnige Granittyp allenfalls der ostschwedischen Geschiebegesellschaft zuordnen.

Abb. 48: Vånevik-Granit? Geschiebe von Äleklinta auf Öland; Breite 12,5 cm.
Abb. 49: Mittelkörniger Småland-Granit mit intensivem Blauquarz. Geschiebe von Ramsnäs auf Öland, Breite 10 cm.

1.7. Tuna-Granit

Tuna-Granit ist eine Lokalbezeichnung für gleich- und mittelkörnige, quarzreiche Alkalifeldspatgranite, die größere Flächen in Ost- und Nordost-Småland „landeinwärts zwischen Västervik und Oskarshamn“ (ZANDSTRA 1988:281, HOLMQVIST 1906:158, HESEMANN 1975:37-38) einnehmen. Es handelt sich weitgehend um Småland-Granite vom Växjö-Typ, wie sie allenthalben innerhalb des TIB auftreten. Neben den gewöhnlichen roten Graniten (s. Fundbericht Fårbo) verdienen zwei Varianten eine Erwähnung: klein- bis mittelkörnige Alkalifeldspatgranite mit viel blauem oder violettblauem Quarz, sehr wenig dunklen Mineralen und 1. orangefarbenem bis braunem („Gersebo-Granit“, Abb. 55-56) und 2. blassrotem bis blassbraunem Alkalifeldspat (Abb. 50-53). Eigenständiger Plagioklas ist schwer erkennbar und nimmt bei Verwitterung eine helle Farbe an. Hie und da findet sich ein gelbliches Titanitkorn. Dieser Granittyp dürfte zumindest als Anzeiger einer NE-smaländischen Geschiebegemeinschaft („ostschwedische Geschiebegemeinschaft“) geeignet und an Lokalitäten mit viel Gesteinsmaterial aus NE-Småland entsprechend häufig anzutreffen sein. In anderen Gebieten kommen diese beiden Granittypen nach bisherigem Kenntnisstand nicht oder nur sehr untergeordnet vor.

Abb. 50: Nahgeschiebe aus der Kiesgrube Fårbo, N von Oskarshamn (S84). Links ein gewöhnlicher roter Småland-Granit vom Växjö-Typ, rechts eine blassrote Variante.
Abb. 51: Blassroter Småland-Granit vom Växjö-Typ („Tuna-Granit„) aus der Kiesgrube Fårbo; Aufnahme unter Wasser.
Abb. 52: Ähnlicher Typ („Tuna-Granit„), Geschiebefund von Byxelkrog auf Öland.
Abb. 53: Nahaufnahme.
Abb. 54: NE-Småland-Granit („Tuna-Granit“), Geschiebefund aus Niederlehme bei Berlin.

Eine hübsche Variante (Lokalname: Gersebo-Granit) besteht aus orangerotem, teils auch braunem Alkalifeldspat und blauem Quarz. Einzelne Plagioklas-Aggregate sind rot und grün verfärbt.

Abb. 55: Gersebo-Granit (S69), Aufnahme unter Wasser.
Abb. 56: Nahaufnahme.
Abb. 57: Mit dem Gersebo-Granit vergleichbarer Geschiebefund von Fehmarn.

1.8. Weitere Granitoide aus Ost-Småland

Die folgende Auswahl an Anstehendproben belegt die Vielfalt an Gefügevarianten der Granitoide aus Ost- und Nordost-Småland, neben den bisher behandelten Leitgeschieben. In diesem Zusammenhang sind auch die Fundberichte aus Kiesgruben in diesem Gebiet bedeutsam. Ein weiterer TIB-Granit (Virbo-Granit) wird im Zusammenhang mit dem Uthammar-Granit besprochen.

1.8.1. Rote grobkörnige Granite sind in Småland weit verbreitet, so auch in Ost-Småland. Weniger gewöhnlich, aber ein typischer NE-Småland-Granit stammt aus der Kiesgrube Forshult, ein grobkörniger roter Granit mit orangefarbenem Plagioklas und viel Titanit. Der Granit scheint stark alteriert zu sein, die dunklen Minerale wurden in grünliche Folgeprodukte (Chlorit o. ä.) umgewandelt.

Abb. 58: Roter NE-Småland-Granit mit orangefarbenem Plagioklas; Geschiebe aus der Kiesgrube Forshult (S91), Aufnahme unter Wasser.

1.8.2. Emsfors-Granit: Südlich von Påskallavik liegt der Emsfors-Granitstock, eine annähernd kreisrunde Intrusion mit einem Durchmesser von etwa 8 km. Das Gefüge des Emsfors-Granit weicht von den anderen Ost-Småland-Graniten ab: blassroter Alkalifeldspat, hellgrauer und transparenter Quarz (einzelne größere Quarze sind zoniert) sowie weißer Plagioklas; wenig dunkle Minerale, Titanit ist nicht erkennbar. Trotz seiner Verschiedenheit und möglichen Einzigartigkeit unter den Ost-Småland-Graniten dürfte der Granit als Geschiebe schwer zu identifizieren sein. Auch ein Doppelgänger in einem anderen Granitgebiet ist nicht auszuschließen. Die auf Öland besuchten Geschiebestrände liegen zu weit nördlich, als dass Geschiebe dieses Granittyps zu erwarten wären. Lediglich ein Fund aus Äleklinta besitzt eine gewisse Übereinstimmung (vgl. Abb. 67 in Exkursionsbericht Öland).

Abb. 59: Emsfors-Granit (S104), Aufnahme unter Wasser.
Abb. 60: Nahaufnahme des Gefüges.
Abb. 61: Eine weitere Probe von der gleichen Lokalität mit zonierten bläulichen Quarzen.

1.8.3. Augengranit am Campingplatz Gunnersö: An der Badestelle auf dem Campingplatz Gunnersö in Oskarshamn ist ein Augengranit großflächig aufgeschlossen.

Abb. 62: Badestelle am Campingplatz Gunnersö, am Horizont die Insel Blå Jungfrun.
Abb. 63: Augengranit, Bildbreite 70 cm. Ein etwa 10 cm breiter Gang-Granit weist links und rechts einen tektonischen Versatz auf.
Abb. 64: An einer Stelle wurde das Gestein vor nicht allzu langer Zeit aufgebrochen, die Bruchfläche ist einigermaßen frisch. Das Gestein besteht aus hellrotem Alkalifeldspat, grünem Plagioklas und relativ wenig grauem Quarz.
Abb. 65: Runder mafischer Einschluss, am oberen Bildrand ein Aplitgang. Bildbreite 90 cm.
Abb. 66: Ähnlicher, sehr titanitreicher Granit, Geschiebe von Eskilslund (Öland), Breite 17 cm.

1.8.4. Granite mit rotem und grünem Plagioklas: In Ost-Småland treten lokal biotit- und titanitreiche Granitoide mit hellrotem Alkalifeldspat und grünem sowie teilweise rot pigmentiertem Plagioklas auf. Roter Plagioklas ist auch in einigen TIB-Graniten aus Östergötland verbreitet.

Abb. 67: Anstehendprobe aus der Umgebung des Götemarplutons (S256c), Aufnahme unter Wasser.
Abb. 68: Nahaufnahme des Gefüges.

1.8.5. Granodiorit: Nicht alle Plutonite im nordöstlichen Småland sind Granite. Untergeordnet finden sich Quarzmonzonite (Quarzanteil unter 20 %) oder plagioklasreiche Glieder. Die nächste Probe ist ein Granodiorit aus der Umgebung des Uthammar-Plutons.

Abb. 69: Granodiorit (S89), Aufnahme unter Wasser.

1.8.6. TIB-Granite im Västervik-Gebiet: Im nordöstlichsten Småland, im Västervik-Gebiet, setzen sich die Granitmassive des TIB fort, bevor sie weiter nördlich von den älteren Granitoiden des Loftahammar-Massiv abgelöst werden. Die TIB-Granite sind hier stärker deformiert als ihre südlichen Verwandten. Einige Beispiele zeigt der Exkursionsbericht Västervik-Gebiet (Abb. 41-44, 52 und 53).

Exemplarisch sei der „Edelhammar-Granit“ angeführt. Er wurde in einem Steinbruch bei Västrum als Werkstein gewonnen und ist ein mittel- bis grobkörniger Granit mit braunem, stellenweise orangerot pigmentiertem Alkalifeldspat sowie teilweise zuckerkörnig granuliertem Blauquarz. Titanit ist reichlich enthalten.

Abb. 70: Stillgelegter Steinbruch im „Edelhammar-Granit“ bei Västrum (S77).
Abb. 71: Gefüge einer Probe aus dem Steinbruch, Aufnahme unter Wasser.
Abb. 72: Weitere, stärker deformierte Probe (S77) mit orangefarbenem Alkalifeldspat und reichlich zuckerkörnigem Quarz.

Auch im Västervik-Gebiet treten rote Alkalifeldspatgranite vom Växjö-Typ auf. Teilweise sind sie deutlich deformiert. Die lebhaften Blauquarze erscheinen durch Hämatitimprägnierung stellenweise violett.

Abb. 73: Alkalifeldspatgranit vom Växjö-Typ mit lebhaftem Blauquarz (S72c), Abschlag von einem Geschiebe, Aufnahme unter Wasser.

1.8.7. Älö-Granit: Ebenfalls in der nordöstlichsten Ecke von Småland ist der Älö-Granit beheimatet, nach HOLMQVIST 1906:153 ein sehr saurer, also besonders quarzreicher, und blassroter Alkalifeldspat-Granit mit wenig Plagioklas. Vom Gefüge her, insbesondere durch die hellen Aggregate von zuckerkörnigem Quarz, soll eine gewisse Übereinstimmung mit dem Vänge-Granit bestehen (Beschreibung auch in ZANDSTRA 1988:280, Anstehendproben auf skan-kristallin.de). Die Eignung des Älö-Granits als Leitgeschiebe ist nicht hinreichend belegt. Ein vergleichbarer Granit wurde auf Öland als Geschiebe gefunden.

Abb. 74: Älö-Granit (?), Geschiebe von Ramsnäs auf Öland, Breite 11,5 cm.

1.9. Literatur

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 44 Abb., 8 Taf., 1 Kt., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).
HOLMQVIST P J 1906 Studien über die Granite von Schweden – Bulletin of the Geological Institution of the University of Uppsala VII – S. 77-269.

KORN J 1927 Die wichtigsten Leitgeschiebe der nordischen kristallinen Gesteine im norddeutschen Flachlande – Ein Führer für den Sammler kristalliner Geschiebe – VI + 64 S., 48 Farb-Abb. auf Taf. 1-6, 8 Farb-Karten auf Taf. 7-14, 1 Tab., Berlin (Preußische geologische Landesanstalt).

SMED P & EHLERS 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage 2002.

WIK NG, BERGSTRÖM U, BRUUN A et al 2005 Beskrivning till regional berggrundskarta
över Kalmar län – Sveriges geologiska undersökning serie Ba nr 66, 54 S., ISBN 91-7158-699-7.

WIK NG, BERGSTRÖM U, BRUUN A et al 2005 Berggrundskartan Kalmar län – 1:250 000, Sveriges geologiska undersökning serie Ba nr 66.

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).

ZANDSTRA JG 1999 Platenatlas van noordelijke kristallijne gidsgesteenten, Foto’s in
kleur met toelichting van gesteentetypen van Fennoscandinavië – XII+412 S.,
272+12 unnum. Farb-Taf., 31 S/W-Abb., 5 Tab., Leiden (Backhuys).

1.10. Verzeichnis der Probenorte

Abb. 75: Lage der Probenpunkte Kinda-Granit (S142-148) sowie Flivik-Granit und Umgebung (S64-69). Karte (leicht verändert) aus: https://apps.sgu.se/kartvisare/

S34 Vånevik-Granit – Ortseingang Påskallavik (57.17829, 16.44640)
S64 Flivik-Granit – Str.Aufschl., Abfahrt Flivik von der E 22 (57.49335, 16.52182)
S65 Flivik-Granit – Steinbruch Quimbra (Zufahrt: 57.536078, 16.582352)
S66 Grobkörniger NE-Småland-Granit – Straßenaufschluss (57.52618, 16.57398)
S67 Grobkörniger NE-Småland-Granit, Kinda-Typ – Straßenaufschluss (57.514028, 16.588778)
S69 Tuna-Granit/“Gersebo-Granit“ – Straßenaufschluss 57.498331, 16.657453
S72c Granit vom Växjö-Typ – Geschiebe am Bootsanleger Östra Skälö, Västervik-Gebiet (57,589911, 16,632639)
S77 Edelhammar-Granit; alter Steinbruch bei Västrum (57.698194, 16.460917)
S84 Nahgeschiebe NE-Småland-Granitoide – Kiesgrube Fårbo (57.401891, 16.476663)
S89 Granodiorit – Str. Aufschl. NE Uthammar (57.40145, 16.61318)
S91 Nahgeschiebe Ost-Småland-Granitoide – Kiesgrube 1,5 km SE Forshult (57.24536, 16.34568)
S93 grobkörniger Blauquarzgranit – Str. Aufschl. 4 km NW Påskallavik (57.18682, 16.40905)
S103 Vånevik-Granit – Badplats Vånevik (etwa 57.179302, 16.460733)
S104 Emsfors-Granit – alter Steinbruch an der Str. 216 (57.130338, 16.439972)
S142a Småland-Monzogranit mit Blauquarz – Str. Aufschluß W von Kisa (57.98211, 15.58921)
S144 Kinda-Granit – Str. Aufschl. an der 134, NE von Kisa (58.01092, 15.76710)
S145 Kinda-Granit – Str. Aufschl. (58.00959, 15.90598)
S146 Rötlicher porphyrischer NE-Småland-Granit (Geschiebe) – Weganschnitt (57.94849, 15.91445)
S147 Monzogranit, deformiert – Felsen im Wald (Parken: 57.94748, 15.91537)
S148 Monzogranit – Str. Aufschl. ca. 20 km vor Gamleby (57.90205, 16.08556)
S246b Geschiebe NE-Småland-Kristallin – Strand nahe des Leuchtturms in Byxelkrog/Öland (57.32262, 17.00285)
S255d NE-Småland-Granit (Geschiebe) – Kiesgrube südlich vom Götemar-Pluton (57.45415, 16.60078)
S256c – Roter Småland-Granit mit rotem und grünem Plagioklas – Str. Aufschl. nahe des Götemaren (57.45053, 16.63260)
S257 Vånevik-Granit – Stenhuggermuset Norra Vånevik (57.185717, 16.452244)

Exkursionsbericht Västervik-Gebiet

Abb.1: Schärenlandschaft auf Östra Skälö (Lok. 1).

Die Gegend um Västervik im nordöstlichen Småland bietet neben landschaftlichen Reizen eine interessante geologische Geschichte. Wie im gesamten kristallinen Grundgebirge Schwedens finden sich hier sehr alte, als Besonderheit aber ganz unterschiedliche Gesteine in enger Nachbarschaft. Zum einen sind dies Metamorphite, die aus der svekofennischen Gebirgsbildung vor etwa 1,9 Ga hervorgegangen sind, zum anderen Granite und Vulkanite, die zum Ende der gebirgsbildenen Vorgänge vor etwa 1,7 Ga entstanden.

Die „kleine“ Differenz zwischen den 1,9 und 1,7 Ga alten Gesteinen entspricht in etwa der Zeitspanne, die eine „normale“ Gebirgsbildung in Anspruch nimmt, von der Faltung und Metamorphose von Gesteinen, dem Aufdringen von Granitkörpern sowie der Abtragung, ggf. auch vollständigen Einebnung des Gebirges (Wilson-Zyklus, etwa 250 Millionen Jahre). Im Västervik-Gebiet lassen sich Gesteine aus den unterschiedlichen Phasen dieser Gebirgsbildung an zahlreichen Aufschlüssen studieren.

Das Västervik-Gebiet ist zugleich die Heimat einiger Gesteinstypen, die für die Geschiebekunde als Leitgeschiebe bedeutsam sind (Abb. 2). Auf mehreren Reisen konnten eine Reihe von Anstehendproben gesammelt werden. Ihre Beschreibung findet sich in ausführlichen Einzeldarstellungen an anderer Stelle:

Västervik-Fleckengestein (Västervik-Cordierit-Fleckengranofels),
Västervik-Fleckenquarzit (ehemals „Stockholm-Fleckenquarzit“) und
Västervik-Quarzit.

Dieser Exkursionsbericht vermittelt einen Einblick in die komplexe Geologie des Västervik-Gebietes. Die genannten Leitgeschiebe nehmen nur einen kleinen Teil der Fläche ein. Darüber hinaus finden sich eine Reihe weiterer interessanter und auffälliger Gesteine, die zwar nicht als Leitgeschiebe in Frage kommen, aber aufzeigen, mit welcher Gesteinsvielfalt innerhalb eines einzigen kleinen Gebietes im nordischen Grundgebirge zu rechnen ist. Alle besuchten Lokalitäten sind mit Koordinaten (WGS84DD) referenziert und ermöglichen dem geologisch Interessierten eine individuelle Tourenplanung. Einige der Aufschlüsse wurden dem Exkursionsführer von PRUß 2008 und der Arbeit von GAVELIN 1984 entnommen.

Abb. 2: Leitgeschiebe aus dem Västervik-Gebiet: auf der rechten Seite zwei Fleckenquarzite mit hellen Sillimanit-Granoblasten. Links unten ein Västervik-Fleckengestein (Västervik-Fleckengranofels), links oben ein rotfleckiger Quarzit mit Blauquarz.
  1. Topographie
  2. Geologie des Västervik-Gebiets
  3. Metasedimente der Västervik-Formation
    3.1. Gneise, Migmatite, Fleckengesteine
  4. Granitoide Gesteine
  5. Mylonite
  6. Metavulkanite, Vulkanite des TIB
  7. Metabasite
  8. Verzeichnis der Lokalitäten
  9. Literatur

1. Topographie

Die Landschaft in der Umgebung von Västervik ist weitgehend flach, das Küstengebiet stark geklüftet und in zahlreiche Inseln, Halbinseln und Schären gegliedert. Hier lassen sich gerundete, häufig auch in Richtung der Gletscherbewegung gekritzte Felsen beobachten (Abb. 3). Fossile Strandwälle (Abb. 4) und die heutige Schärenlandschaft (Abb. 1) sind das Ergebnis der Landhebung sowie eines gesunkenen Meeresspiegels seit dem Ende der letzten Vereisung vor etwa 10.000 Jahren.

Abb. 3: Gletscherschrammen an einem Migmatit am Campingplatz Blankaholm (Lok. 2). Bildbreite etwa 3 Meter.
Abb. 4: Fossiler Strandwall südöstlich von Västervik (Lok. 3). Die annähernd kopfgroßen Gerölle sind überwiegend Nahgeschiebe (meist Quarzite).

2. Geologie des Västervik-Gebiets

Abb. 5: Geologische Übersichtskarte des Västervik-Gebiets. Kartenausschnitt aus BERGMAN et al 2012, Quelle: sgu.se.

Einen ersten Überblick über die verschiedenen Gesteinsformationen im Västervik-Gebiet vermittelt die Kartenskizze in Abb. 5. Im Einzelnen sind die geologischen Verhältnisse natürlich deutlich verwickelter. Eine detailierte geologische Karte (1:100.000) findet sich in GAVELIN 1984.

Die ältesten Gesteine im Västervik-Gebiet sind die Metasedimente der Västervik-Formation (hellblaue Signatur in Abb. 5). Sie entstanden während der svekofennischen Gebirgsbildung vor etwa 1,9 – 1,75 Ga und bilden die südlichsten Ausläufer einer geologischen Großprovinz, die sich vom Västervik-Gebiet aus viele hundert Kilometer bis nach Nordschweden erstreckt und große Gebiete einnimmt (sog. svekofennische Domäne).

Magmatische Gesteine, die sog. „älteren Granitoide“ (grün, rosa), grenzen im Norden und Nordosten an die Metasedimente und wurden noch während der Gebirgsbildung deformiert. Im Westen und Süden finden sich ausgedehnte Gebiete mit weitgehend undeformierten Graniten (rot) und Vulkaniten (orange), die zum Transkandinavischen Magmatitgürtel (TIB, Alter ca. 1,7 Ga) gehören und überwiegend nach Beendigung der gebirgsbildenden Vorgänge entstanden. Ein Teil der TIB-Granite sind Alkalifeldspat-Granite mit Blauquarz, wie man sie als Geschiebe aus Norddeutschland kennt („Smaland-Granite“).

Abb. 6: Gesteine des Västervik-Gebiets als Nahgeschiebe auf einem Parkplatz in Västervik (Lok. 4). Mengenmäßig überwiegen hellgraue Quarzite, neben Graniten und Metabasiten sowie einigen Fleckengesteinen. Bildbreite am unteren Bildrand etwa 2 m.

Die geologische Geschichte des Västervik-Gebietes beginnt vor etwa 1,9 Ga mit der Ablagerung von sandigen bis tonig-sandigen Sedimenten, dem Abtragungsmaterial eines oder mehrerer alter Gebirge. Der Transport erfolgte durch Flüsse aus nördlichen Richtungen in ein flaches und von Gezeiten beeinflusstes Meeresbecken oder Deltasystem.

Während der svekofennischen Orogenese wurden die Sedimente an einer Subduktionszone mehrere Kilometer tief versenkt und einer Regionalmetamorphose unterworfen. Die Gesteinsumwandlung vollzog sich unter maximal amphibolitfaziellen Bedingungen und unter weitgehend statischen Bedingungen, d. h. ohne Verfaltung der Gesteine durch gerichteten Druck. So konnten sich primäre Sedimentstrukturen wie Schichtung und sogar Wellenrippel (Abb. 11) erhalten, wie sie heute noch in den Metasedimenten an vielen Stellen zu beobachten sind (s. die hervorragend illustrierte Arbeit von SULTAN L & PLINK-BJÖRKLUND P 2005). Sandige Sedimente wurden in Quarzite, Arkosen in Meta-Arkosen und tonhaltige Sedimente z. B. in glimmerführende Quarzite umgewandelt. Lokal kam es zur Neubildung von Mineralen wie Cordierit, Sillimanit und Andalusit.

In den Metasedimenten konnten mehrere Generationen von Zirkonen nachgewiesen werden. Zirkon ist ein besonders verwitterungsbeständiges Mineral, das geringe Mengen Uran enthält und eine Altersbestimmung über das U/Pb-Isotopenverhältnis ermöglicht. Die ältesten Zirkone (3,64 Ga) repräsentieren Relikte sehr alter Gesteine, die jüngsten weisen ein Alter von 2,12-1,87 Ga auf. Die Sedimentation der Västervik-Formation vollzog sich zwischen dem jüngstem Zirkon-Alter und der ältesten Granit-Intrusion (Loftahammar-Granitoide vor 1,859 Ga). Dieser Zeitraum vor 1,882–1,850 Milliarden Jahren umfasst also „lediglich“ 30 Millionen Jahre (Zahlen aus SULTAN et al 2005).

Annähernd zeitgleich zur Metamorphose der Sedimente begann in tieferen Krustenbereichen die Bildung von Schmelzen, die in der Folge als plutonische Körper in die höheren Stockwerke des Gebirges aufstiegen. Diese „älteren“ Loftahammar-Granitoide wurden in einer zweiten Faltungsphase deformiert. Mit ihrem Aufstieg ist eine Überprägung der Metasedimente durch Kontaktmetamorphose verbunden, bei der es zu einer „Migmatisierung“ sowie zur Fleckenbildung innerhalb der Metasedimente (Fleckengesteine) kam. Der Vorgang wiederholte sich einige Millionen Jahre später beim Aufstieg der „jüngeren“ Granitoide des Transskandinavischen Magmatitgürtels (TIB). Die Fleckengesteine des Västervik-Gebiets (Cordierit- und/oder Sillimanit-Granofelse) gingen also aus mehreren regional- und kontaktmetamorphen Episoden hervor.

Weitere mit der geologischen Geschichte des Västervik-Gebiets assoziierte Gesteinstypen, die in diesem kurzen Abriss unberücksichtigt blieben (verschiedene Generationen von Diabasen und Metabasiten bzw. Amphiboliten, Aplite, Pegmatite, Mylonite, Metavulkanite), werden bei der nachfolgenden Beschreibung von Aufschlüssen anhand von Geländebildern und Proben exemplarisch vorgestellt.

3. Metasedimente der Västervik-Formation

Nach Gavelin 1984 lassen sich die Metasedimente der Västervik-Formation in vier Gruppen einteilen: Quarzite, rote Meta-Arkosen (Quarzite mit erhöhtem Feldspat-Gehalt), graue (glimmerreiche) sowie rotgraue (glimmer- und feldspatreiche) Metasedimente. Weit verbreitet sind hellgraue und glimmerführende Quarzite (Abb. 9). Ein Teil der Quarzite im Västervik-Gebiet zeigt Sedimentstrukturen wie Schrägschichtung (Abb. 7) oder sogar Rippelmarken (Abb. 11). Im südlichen Teil des Västervik-Gebiets kommen vermehrt dunkelgraue Quarzite vor (Abb.10). Lokal finden sich grauviolette, rote, grünliche oder blaue Farbvarietäten. Vererzungen der Quarzite durch Anreicherungen von Schwermineralseifen (Fe-, Cu und Co-Vererzung) wurden bei Gladhammer seit dem 12. Jahrhundert abgebaut. Die Gruben gehören zu den ältesten in ganz Schweden (WILKE 1997: 38f).

Abb. 7: Grauer Quarzit mit reliktischer sedimentärer Schichtung, durchschlagen von einer roten Ader mit granitischer Zusammensetzung. Die dunklen und glimmerreichen Lagen entstanden aus sandigen Sedimenten mit erhöhtem tonigem Anteil. Nahgeschiebe auf dem Parkplatz am ICA-Supermarkt, Västervik (Lok. 4).
Abb. 8: Großflächige Aufschlüsse mit hellgrauen und rötlichen Quarziten der Västervik-Formation am alten Wasserturm in Västervik (Lok. 5).
Abb. 9: Hellgrauer und glimmerarmer Västervik-Quarzit aus einem Straßenaufschluss an der L135, westlich von Gamleby (Lok. 6).
Abb. 10: Dunkelgrauer Quarzit, durchzogen von einer granitisch zusammengesetzten Ader. Aufschluss an der Piste von Blankaholm nach Skjorted (Lok. 7).
Abb. 11: Rund 1,9 Milliarden Jahre alte Wellenrippel in einem grauen Metasediment. Straßenaufschluss an der E4 (Lok. 8), Bildbreite etwa 1 m.
Abb. 12: Das Gestein an dieser Lokalität ist ein graues Metasediment mit feiner Wechsellagerung glimmerarmer (quarzitischer) und glimmerreicher Partien. Bildbreite 30 cm.
Abb. 13: Rotfleckiger Västervik-Quarzit, Straßenaufschluss an der L135 (Lok. 9), Bildbreite 35 cm.
Abb. 14: Grauvioletter bis hellgrauer Västervik-Quarzit, rechts mit gefalteten Sedimentstrukturen, die später durch Bruchtektonik gegeneinander verstellt wurden. Aufschluss an der E4, Abfahrt Segelrum, Lokalität 10. Bildbreite 33 cm.
Abb. 15: Rötlicher und feldspathaltiger Quarzit mit Blauquarz von einer Baustelle bei Piperskärr (Lok. 11).
Abb. 16: Rotfleckiger Västervik-Quarzit mit Blauquarz (nasse Bruchfläche) aus dem Steinbruch Hjortkullen, Lokalität 12.
Abb. 17: Violettblauer Quarzit, Schäre Grönö (Lok. 13). Bildbreite ca. 50 cm.
Abb. 18: Roter Västervik-Quarzit; Straßenaufschluss an der Straße nach Hällingeberg (Lok. 14).
Abb. 19: Grünlicher Quarzit, durchzogen von einem dunkelgrauen Band mit einer breiten roten Saumzone. Loser Stein von 20 cm Breite aus einem Steinbruch westlich von Gamleby (Lok. 15).
Abb. 20: Rotgraue Meta-Arkose (Quarzit mit viel rotem Feldspat); Björnhuvud (Lok. 16), Bildbreite ca. 25 cm.
Abb. 21: Graues gebändertes Metasediment. In der rechten unteren Bildhälfte sind dunkle (Cordierit?)-Flecken erkennbar. Straßenaufschluss an der E4 bei Nytorp (Lok. 17). Bildbreite 90 cm.
Abb. 22: Graues Metasediment mit reliktischer sedimentärer Faziesverzahnung(?); Straßenaufschluss bei Nytorp (Lok. 17), Bildbreite 31 cm.

3.1. Gneise, Migmatite, Fleckengesteine

Nur ein kleiner Teil der Sedimentgesteine wurde während der svekofennischen Orogenese verfaltet und migmatitisiert. Aufschlüsse dieser „echten Migmatite“ finden sich auf dem Campingplatz Blankaholm (Lok. 2). Sie zeigen Fließfalten, primäre sedimentäre Lagenstrukturen sind kaum erkennbar. Wahrscheinlich handelt es sich um vulkanoklastische Sedimente, die durch einen aufsteigenden Granitkörper migmatisiert wurden (PRUß 2008). Das granitische Material der Leukosome (orange) könnte die Sedimente auch ohne Teilaufschmelzung konkordant durchdrungen haben („Adergneis“, s. u.).

Abb. 23: Migmatit am Ufer des Campingplatzes Blankaholm (Lok. 2), Bildbreite 65 cm. Grauer Gneis mit orangerotem Leukosom, umgeben von einem schmalen Saum aus dunklen Mineralen (Melanosom).
Abb. 24: Gleicher Aufschluss; rechts unterhalb der Bildmitte ein Xenolith eines Fleckengesteins, Relikt aus einer früheren metamorphen Episode.
Abb. 25: Gleicher Aufschluss, großer Quarzit-Xenolith im Migmatit; Bildbreite 70 cm.

Während des Aufstiegs von Granitplutonen (ältere Loftahammar- und jüngere Småland-Granitoide) kam es zu einer kontaktmetamorphen Veränderung der Metasedimente und zur Bildung der sog. „Adergneise“ (veined gneiss). Streng genommen sind dies keine Gneise, sondern Granofelse, die von granitischen Leukosom-Adern lagenweise (konkordant) durchdrungen oder diskordant durchschlagen wurden (Abb. 7). Diese granitischen Schmelzen könnten direkt aus dem Granit-Magma stammen (Arterite) oder durch Aufschmelzung aus älteren Gesteinen (z. B. Metasedimenten) mobilisiert worden sein (Venite). GAVELIN 1984 nimmt an, dass es sich vorwiegend um Venite handelt (Abb. 26, 27), da im Gelände keine direkten räumlichen Beziehungen zwischen aufsteigenden Granitkörpern und der Entwicklung von Adergneisen zu beobachten sind. LOBERG 1963 verweist zudem auf die Möglichkeit der Entstehung leukokrater Partien in migmatitähnlichen Metamorphiten durch metamorphe Differentiation im festen Zustand.

Abb. 26: Gesteinsblöcke mit Partien aus blauem und massigem Quarzit, dunklen Gneispartien sowie roten und pegmatitartigen Bereichen. Bildbreite etwa 1 m; Bruchmaterial aus dem Straßenbau, Pepparängsvägen, südöstlich von Västervik, Lokalität 18.
Abb. 27: Gleicher Aufschluss. Blauer und massiger Quarzit, rotgrauer Gneis und rote pegmatitartige Partien („Adergneis“). Breite 42 cm.

Die Fleckengesteine des Västervik-Gebiets sind Metasedimente, in denen eine Neubildung von Mineralen in Gestalt von Granoblasten (Flecken) erfolgte. In älterer Literatur findet sich der Begriff „Fleckengneis“, weil sie eine den Gneisen ähnliche Lagentextur aufweisen. Diese ist in der Regel aber ein Relikt sedimentärer Schichtung und spiegelt unterschiedliche Mineralgehalte der Ausgangsgesteine wider (Abb. 29, 30). In den meisten Fällen handelt es sich bei den Fleckengesteinen ganz eindeutig um Granofelse.

Eine Fleckenbildung kann sowohl unter Bedingungen der Kontakt- als auch der Regionalmetamorphose erfolgt und von metasomatischen Vorgängen begleitet sein (LOBERG 1963). Unter geringem Druck und hohen Temperaturen (max. 650 Grad) kam es in Al- und Mg-reichen Ausgangsgesteinen lokal zur Neubildung von Mineralen wie Sillimanit, Andalusit und Cordierit in Gestalt von Flecken (Granoblasten). Während der retrograden Metamorphose wurden die neu gebildeten Minerale teilweise verändert, so dass heute nur noch Relikte vorliegen (Chloritisierung von Feldspat, Biotit, Andalusit, Cordierit). Cordierit, Andalusit und Sillimanit sind weit verbreitete metamorphe Neubildungen, Kyanit und Granat kommen in den Metasedimenten des Västervik-Gebiets praktisch nicht vor.

Unklar ist meist, ob die Form der Flecken durch vorherige, gleichzeitige oder nachfolgende Tektonik verursacht wurde. Nach GAVELIN 1984 erfolgte die Bildung von Flecken zu unterschiedlichen Zeiten und unterschiedlichen Bedingungen. Abfolgen metamorpher Zonen mit charakteristischen Mineralisationen lassen sich im Anstehenden über größere Areale nicht verfolgen. Weiterhin stehen die Vorkommen von Andalusit und Sillimanit in keiner Beziehung zu Granitkontakten, „Granitisierung“ oder Migmatisierung. Unterschiedliche Metamorphosegrade müssen vereinfacht auf variable Bedingungen wie die Aktivität wässriger Fluide, K-Metasomatose und pH-Wert zurückgeführt werden.

Abb. 28: Dunkle und leicht ausgelängte Flecken in einem hellgrauen Quarzit. Straßenaufschluss bei Segelrum (Lok. 19), Bildbreite etwa 1 m.
Abb. 29: Graues Fleckengestein in der Nähe des Hafens auf Östra Skälö (Lok. 1). Die Bildung der schwarzen Cordierit-Flecken erfolgte bevorzugt innerhalb toniger, Al- und Fe-reicher Lagen. Entsprechend lässt sich die primäre Sedimentstruktur anhand fleckenreicher und fleckenarmer Partien nachvollziehen. Bildbreite etwa 1 m.
Abb. 30: Rotgraues Fleckengestein mit fleckenreichen Lagen und (quarzitischen) Partien ohne Flecken. Aufschluss bei Casimirsborg (Lok. 20), Bildbreite etwa 150 cm.
Abb. 31: Gleicher Aufschluss. Bildbreite: 50 cm.

Die fleckenreichen Partien sind hier weitgehend undeformiert, lediglich im obersten Bildteil erkennt man zerdrückte Flecken. Beim bizarr geformten Bereich handelt es sich vermutlich um eine bereits während der Ablagerung vollzogene Veränderung der Sedimente (tidales Milleu, Verzahnung sandiger und toniger Schichten, s. SULTAN et al 2005). Die Kerne der Fleckengesteine von Casimirsborg enthalten nach RUSSELL 1969 Andalusit und Sillimanit. Im inneren Kern ist manchmal unalterierter (bläulicher) Cordierit erkennbar. Die Kerne könnten ursprünglich vollständig aus Cordierit bestanden haben.

Abb. 32: Aufschluss Casimirsborg, Bildbreite 60 cm. Bereits während der Ablagerung dürfte auch diese konglomeratähnliche Partie entstanden sein, mit grauen und quarzitischen „Klasten“ ohne Flecken (ehemals sandige Sedimente) und weitgehend undeformierten Flecken in der „Matrix“.
Abb. 33: Orangerotes Västervik-Fleckengestein, Aufschluss am See Rummen (Lok. 21). Bildbreite 50 cm.
Abb. 34: Orangerotes Metasediment mit unregelmäßig konturierten schwarzen Flecken und grauen Partien mit reliktischer Schichtung. Schäre Grönö (Lok. 22), Bildbreite 60 cm.
Abb. 35: Rotgraues Fleckengestein mit länglichen Flecken, Aufnahme unter Wasser. Halde am Pepparangsvägen (Lok 18).
Abb. 36: Orangerotes und feldspatreiches Metasediment mit grauen Metasediment-Xenolithen („Krökö-Gneis“); Schäre Braviken (Lok. 23).
Abb. 37: Graue, braune und rote Fleckenquarzite (glimmerhaltige Quarzite mit Sillimanit-Granoblasten). Nahgeschiebe vom Strandwall SE Västervik (Lok. 3), Bildbreite 50 cm. Eine Anstehendprobe dieses Gesteinstyps zeigt Abb. 59.

Im Västervik-Gebiet wurden bisher zwei Geschiebe eines dunklen und biotitreichen Granofels mit orangefarbenen Alkalifeldspat-Porphyroblasten gefunden (Abb. 38). Ein Anstehendes konnte bisher nicht lokalisiert werden. Das Gestein wird an anderer Stelle näher beschrieben, weil sich mittlerweile in Norddeutschland mehrere Geschiebe dieses Typs fanden.

Abb. 38: Glimmereiches Metasediment mit orangefarbenen Alkalifeldspat-Granoblasten. Fossiler Strandwall bei Västervik (Lok. 3). Foto: M. Bräunlich, kristallin.de.

4. Granitoide Gesteine

Eine vereinfachte und auf Feldbeobachtungen gestützte Einteilung unterscheidet “ältere” und “jüngere” Granitoide. Neuere geochemische Untersuchungen (NOLTE et al 2011, KLEINHANNS et al 2014) ergaben ein differenziertes Bild von fünf verschiedenen Gruppen von Plutoniten. Das genetische Modell geht von einer Bildung von Granitplutonen während extensionaler Phasen der Gebirgsbildung aus. Dabei kam es zu einer Teilaufschmelzung von tief versenkten Metasedimenten durch Druckentlastung und mafic underplating. Für die magmatischen Schmelzen wird ein geringer Transportweg angenommen.

Zu den älteren Granitoiden gehören die Granite des Loftahammar-Massivs, die vor 1,86-1,84 Ga entstanden und nachfolgend in einer zweiten Faltungsphase deformiert wurden. Die Gesteine besitzen teilweise ein mylonitisches Gefüge (Abb. 39), können Xenolithe von Metasedimenten enthalten und wurden von zahlreichen jüngeren Diabasgängen durchschlagen (magma mingling mit mafischen Injektionen). Zu den älteren Granitoiden gehört auch ein Gürtel von Granodioriten, der den nördlichen und östlichen Teil der Metasedimente umgibt (s. Abb. 60-62). Eine Beschreibung des Geschiebetyps „Loftahammar-Augengneis“ findet sich hier.

Abb. 39: Loftahammar-Augengneis (Probe: T. Langmann, Lok. 24). Das Gestein erhielt sein mylonitisches Gefüge durch Deformation eines Granitoids an einer duktilen Scherzone. Kennzeichnend sind augenförmige große Feldspat-Porphyroblasten, die von feinkörnigen und welligen Partien mit dunklen Mineralen und granuliertem Quarz umgeben sind.

Die jüngeren Granite des Transskandinavischen Magmatitgürtels („Småland-Granite“) im Süden und Westen des Västervik-Gebiets weisen makroskopisch nur geringe Anzeichen einer Deformation auf und besitzen ein Alter 1,84-1,77 Ga. Lokal finden sich fließende Übergänge von Graniten und Metasedimenten mit „Migmatiten“ oder „Adergneisen“. Manchmal ist der Kontakt auch scharf (Abb. 40). Zum Teil handelt es sich um „typische“ Småland-Granite mit viel rotem Alkalifeldspat und Blauquarz (Abb. 41, 44). Andere Granite sind eher unauffällige Gesteine, wie der Skaftet-Granit, einer heterogenen Mischung mit einem Fließgefüge aus granodioritischem und granitischem Magma (Abb. 45).

Abb. 40: Scharfer Kontakt zwischen Västervik-Quarzit (rechts) und jüngerem Granit („Småland-Granit“, links). Bildbreite ca. 40 cm (Lok. 25).
Abb. 41: Roter Alkalifeldspatgranit mit Blauquarz („jüngerer“ Granit, Småland-Granit), Aufnahme unter Wasser. Straßenaufschluss an der L135 (Lok. 26).
Abb. 42: NE-Småland-Granit mit zerdrücktem („zuckerkörnigem“) Quarz, Aufnahme unter Wasser. Sog. „Edelhammar-Granit“ (vgl. skan- kristallin.de) aus einem aufgelassenen Steinbruch bei Västrum (Lok. 27).
Abb. 43: Gleicher Stein, Nahaufnahme des Gefüges.
Abb. 44. Leicht deformierter „jüngerer“ Granit, Straßenaufschluss am Skälövägen (Lok. 28).
Abb. 45: Skaftet-Granit („jüngerer Granit“); Mischung eines granodioritischen und granitischen Magmas (magma mingling). Aufschluss in der Nähe der Kirche in Västrum (Lok. 29), Bildbreite etwa 1 m.

Zahlreich finden sich in den Aufschlüssen des Västervik-Gebiets Gänge und Adern aus Apliten, Pegmatiten (auch Turmalin-Pegmatite; Lok. 30, kein Foto) oder auch Blauquarz in den Metasedimenten.

Abb. 46: Ader mit Blauquarz in einem grauen Metasediment am Hafen Östra Skälö (Lok. 1).
Abb. 47: Quarz-Feldspat-Ader mit stengeligen Amphibol-Kristallen; Bildbreite 25 cm; Straßenkreuzung Blankaholm/E4 (Lok. 31).

Hierbei könnte es sich um ein Quarz-Plagioklas-Gestein handeln, das GAVELIN 1984 in ähnlicher Form aus einem Aufschluss in der Nähe beschreibt (500 m N der Abzweigung nach Blankaholm). Es durchdringt die Metasedimente in Form heller Adern mit gebleichter und 1-2 cm breiter Reaktionszone und kristallisierte aus Lösungen, die aus Metabasiten innerhalb der älteren Granite mobilisiert wurden (Na-Metasomatose, Anreicherung von Plagioklas). Eine Probenahme und sichere Bestimmung von Plagioklas war nicht möglich.

Am Badplats Gunnebo (Lok. 32) steht ein mittelkörniger und grauer bis rotgrauer Granit an, der Xenolithe von migmatitisierten Metasedimenten führt. Die dunklen Xenolithe weisen eine Lagentextur auf. Teilweise besitzen sie scharfe Konturen, teilweise sind sie weitgehend assimiliert. Die Fragmente könnten beim Magmenaufstieg in der Dachregion des Plutons in den viskosen Granit eingetragen und von der Schmelze nicht mehr vollständig „verdaut“ worden sein.

Abb. 48: Granit vom Badplatz Gunnebo (Lok. 32) mit Xenolithen von Metasedimenten, Aufnahme unter Wasser.

5. Mylonite

Minerale wie Quarz und Feldspat werden in der oberen Erdkruste bei Einwirkung von gerichtetem Druck zerbrochen und granuliert (Sprödbruch). Bei geeigneter Tiefe und entsprechend hohen Temperaturen kommt es innerhalb einer Scherzone jedoch zu einer duktilen Deformation, bei der die Gesteine feinkörnig zermahlen (Mylonit = Mahlstein) und gleichzeitig große und augenförmige Feldspat-Aggregate heranwachsen können (sog. Porphyroblasten). Ein Beispiel für einen mylonitischen Gneis mit großen Feldspat-Porphyroblasten ist der Loftahammar-Augengranit (Abb. 39), der innerhalb einer großen NW-SE streichenden Deformationszone entstand (Loftahammar-Linköping-Deformationszone, LLDZ). Die LLDZ trennt die Gesteine des TIB im Süden von den Gesteinen der svekofennischen Domäne und deformierte in der Zeit ihrer Aktivität vor 1,8-1,78 Ga Gesteine im Umkreis von 10-15 km.

Am Langsjön westlich von Ankarsrum (Lok. 33) befindet sich ein Aufschluss einer kleinen Mylonitzone, die etwas jünger ist und nicht im Zusammenhang mit der LLDZ steht. Hier lässt sich der Einfluss einer duktilen Scherzone auf die umgebenen Gesteine gut studieren. Zwei unterschiedliche Granite sind durch eine nur etwa 1,5 – 2 m breite Scherzone mit Ultramyloniten voneinander getrennt und zu beiden Seiten von einem mehrere Meter breiten Übergangsbereich begleitet.

Abb. 49: Mylonitzone am Langsjön (Lok. 33). Die Scherzone ist der Bereich mit den dunklen Gesteinen. Nach Osten (rechts) geht sie mit scharfer Grenze in ein helles Quarz-Feldspat-Gestein und nach etwa einem Meter in einen hellen Småland-Granit über. Länge des Hammers 60 cm.
Abb. 50: Ultramylonit mit epidot- und chloritreichen Lagen aus dem Zentrum der Scherzone. Das Gestein wurde stark zerschert und ist bedeutend feinkörniger als das Wirtgestein, aus dem es geformt wurde.
Abb. 51: Auf der linken Seite (westlich) der Scherzone steht ein dunkler und mylonitisierter Småland-Granitoid mit großen Feldspat-Porphyroblasten an. Das Gestein ist von einer grünen Epidot-Ader durchzogen.
Abb. 52: Einige Meter weiter findet sich ein biotitreicher und augenscheinlich weitgehend undeformierter Småland-Granit mit wenigen großen Blauquarzen.
Abb. 53: Ganz anders sieht dieser rotgraue porphyrische Småland-Granit östlich der Scherzone aus, etwa 15 m entfernt vom Granit im vorigen Bild.

6. Metavulkanite

Zeugen einer vulkanischen Aktivität, die den TIB-Vulkaniten vorausging, finden sich nur untergeordnet und als Relikte im südlichen Teil des Västervik-Gebiets. Durch metamorphe Überprägung ist von den Ausgangsgesteinen kaum noch etwas zu erkennen (z. B. Migmatite auf dem Campingplatz Blankaholm, Abb. 23-25).

In einem kleinen Gebiet nördlich von Ankarsrum stehen Vulkanite an, die zu den ältesten des TIB gerechnet werden (GAVELIN 1984). Neben Andesiten, Basalten und Rhyolithen finden sich hier auch leicht deformierte Pyroklastite mit Epiklasten von Västervik-Quarzit. Letztere weisen darauf hin, dass die Vulkanite in diesem Gebiet direkt auf den Gesteinen der Västervik-Formation abgelagert wurden und somit zur Basis des TIB gehören dürften.

Abb. 54: Roter und deformierter Pyroklastit, loser Stein auf einer gerodeten Waldfläche nördlich von Ankarsrum (Lok. 34).
Abb. 55: Bruchfläche des gleichen Gesteins, Vulkanit mit grauen und ausgelängten Quarzitklasten. Aufnahme unter Wasser.

7. Metabasite

Verschiedene Generationen von basischen Gesteinen durchziehen als Gänge oder Sills die Metasedimente und die älteren Granitoide. Auch eigenständige kleinere Massive kommen vor. Die ursprünglich basaltischen Gesteine wurden während der Metamorphose in Amphibolite umgewandelt (Metabasite).

Abb. 56: Kontakt eines Amphibolit-Körpers (links) mit hellem Västervik-Quarzit. Temporärer Aufschluss auf einer Baustelle auf Piperskärr (Lok. 11).
Abb. 57: Die Grenze zwischen Quarzit und Amphibolit ist scharf. Mineralneubildungen durch kontaktmetamorphe Überprägung (z. B. Sillimanitflecken) sind nicht erkennbar. Lediglich einige Blauquarz-Partien finden sich im Kontaktbereich. Bildbreite 90 cm.
Abb. 58: Grobkörniger Amphibolit, durchzogen von einer weißen Quarz-Feldspat-Ader. In unmittelbarer Nähe (Kontaktbereich) und vermutlich anstehend fand sich ein dunkelgrauer Fleckenquarzit. Fahrweg vom Parkplatz Tjust Motell Richtung Falkhagen (Lok. 35). Bildbreite 35 cm.
Abb. 59: Dunkelgrauer und glimmerreicher Quarzit mit weißen Sillimanitflecken (Fleckenquarzit), Aufnahme des Gefüges unter Wasser; Lok. 35.

Injektionen mafischer Gesteine kommen besonders zahlreich in den älteren Granitoiden vor. Scharfe Kontakte lassen auf ein Eindringen nach der Erstarrung schließen (Abb. 60).

Abb. 60: Anatektischer Granodiorit (älterer Granitoid). Ein basaltischer Gang drang entlang der Foliation ein und wurde nachfolgend dextral zerschert. Andere Gänge an diesem Aufschluss weisen eine duktile Deformation auf. Händelöp (Lok. 36).

Ein längerer Küstenabschnitt mit diversen Aufschlüssen bei Grimsvik (Lok. 37, Abb. 61-62) zeigt verschiedene Stadien von magma mingling zwischen älteren Granodioriten des zentralen Granodiorit-Gürtels und basischen Intrusionen (Metagabbro). Hier lässt sich beobachten, wie mafische Gesteine durch das mobile Magma zerrissen wurden, teilweise sind auch Auflösungsvorgänge erkennbar.

Abb. 61: Kantige, durch das aufsteigende helle Magma fragmentierte, aber nur wenig assimilierte Metabasite. Küstenaufschluss bei Grimsvik (Lok. 37), Bildbreite 180 cm.
Abb. 62: Duktile Deformation von Metabasiten, erkennbar an der Einregelung länglicher und gerundeter Fragmente („Fließtextur“). Auf eine zeitgleiche Entstehung beider Magmen weisen gelegentlich in den Metabasiten enthaltene Fragmente von Granodiorit hin. Bildbreite 120 cm.
Abb. 63: Aufschluss mit basischen Metatuffiten am Hafen von Östra Skälö. Die vulkanischen Lockergesteine (Tuffe) wurden durch Metamorphose in Amphibolite bzw. Amphibol-Feldspat-Gesteine umgewandelt. Eine sedimentäre Schichtung ist in Gestalt dunkler und heller Partien nachvollziehbar (Lok. 1).
Abb. 64. Gleicher Aufschluss, Nahaufnahme.

8. Verzeichnis der Lokalitäten

Abb. 65: Übersichtskarte der beprobten Lokalitäten. Kartenausschnitt aus BERGMAN et al 2012, Quelle: sgu.se.

1 – Hafen von Östra Skälö – zahlreiche Aufschlüsse im Hafengebiet und an der Fahrstrecke; Västervik-Fleckengestein: orangefarbene und graue Variante; Quarzader im Metasediment; Metabasite. 57.58986, 16.63201

2 – Campingplatz Blankaholm – Migmatite aus Metavulkaniten der Västervik-Formation; gekritzte Felsen. 57.588476, 16.516876.

3 – Fossiler Strandwall an der Straße nach Händelöp, SSE Västervik – Nahgeschiebe (Quarzite, Fleckenquarzite, Feldspat-porphyroblastischer Glimmerquarzit). 57.718765, 16.671451 (Parkplatz).

4 – Nahgeschiebe als Einfassung auf dem Parkplatz des ICA-Stormarknat Västervik.
57.767546, 16.595644

5 – Alter Wasserturm Västervik, Repslagaregatan 5 – Großflächiger Aufschluss mit Quarzit in div. Farbvarianten: hell, rötlich bis dunkelgrau; keine Fleckenbildung. Größter Teil der Quarzite ist mit Flechten bewachsen. 57.753211, 16.647462.

6 – Frischer Straßenaufschluß an der 135, kurz hinter Gamleby- hellgrauer und glimmerarmer Västervik-Quarzit; Västervik-Fleckengestein; graue Quarzite. 57.91547, 16.36795.

7 – Aufschluss an der Piste von Blankaholm nach Skjorted; Dunkelgrauer Västervik-Quarzit m. granitischen Adern; Felsen an einem Bootsanleger, kurz vor Skjorted.
57.623770, 16.511087.

8 – Wellenrippel in dunkelgrauem Quarzit, Straßenaufschluss an der E4; 57.86080, 16.42724 (Parkplatz); vom Parkplatz 300 m nach N gehen.

9 – Straßenaufschluss an der 135 – rotfleckiger Quarzit, div. Västervik-Quarzite. 57.91458, 16.30901 (Parkplatz); vom Parkplatz Richtung Westen gehen.

10 – Straßenaufschluss an der E22, Abfahrt Segelrum – helle Quarzite mit sedimentärer Reliktschichtung; Fleckenbildung. 57.850582, 16.432278.

11 – Großflächige Baustelle auf Piperskärr, temporärer Aufschluss – heller und roter Quarzit; in den Quarzit eingeschalteter Amphibolitkörper (ca. 20x20m). 57.76751, 16.66553.

12 – Aktiver Steinbruch Hjortkullen – rötlich-blauer Västervik-Quarzit. 57.795577, 16.530566.

13 – Schäre Grönö – violettblauer Quarzit. Etwa 57.715430, 16.713416.

14 – Straßenaufschluss an der Straße nach Hällingeberg – roter bis violetter Västervik-Quarzit. 57.88854, 16.33501.

15 – Steinbruch westlich Gamleby – helle, rotfleckige und grüne Quarzite. 57.885434, 16.355187.

16 – Björnhuvud, SW Västrum – migmatitischer Gneis; wenige Aufschlüsse in diesem Gebiet. 57.626283, 16.528614.

17 – Straßenaufschluss an der E4, Abfahrt Nytorp – graue Quarzite, sedimentäre Reliktstrukturen. 57.86056, 16.42667.

18 – Pepparängsvägen S Västervik, Halde aus temporären Strassenbaumaßnahmen – Västervik-Fleckengestein, blaue Quarzite. 57.722189, 16.673201 (Fundstelle erloschen).

19 – Straßenaufschluss an der E4, Abfahrt Segelrum – Västervik-Quarzit. 57.850582, 16.432278.

20 – Felsen an der Küste bei Casimirsborg (Privatgelände!) – Västervik-Fleckengestein. 57.874100, 16.435327.

21 – Großflächige Aufschlüsse am Wegesrand und im Gebiet des Nordufer des Rummen, NW Gamleby – rotes Västervik-Fleckengestein. Etwa 57.937173, 16.285627.

22 – Schäre Grönö bei Västervik – rotes Västervik-Fleckengestein. Etwa 57.715250, 16.720567.

23 – Schäre Braviken; Bratviken – rote Metasedimente. Etwa 57.721625, 16.706725, Gebiet größtenteils Privatbesitz.

24 – Straßenaufschluss an der 213, ca. 1,5 km westlich von Loftahammar – Loftahammar-Augengneis. 57.90857, 16.65788.

25 – Straßenaufschluss am Skälövägen – Kontakt zwischen Västervik-Quarzit und jüngerem Småland-Granit“. 57.60534, 16.60882; Parken: Rävrompan.

26 – Straßenaufschluss an der 135 – roter TIB-Augengranit mit Blauquarz. 57.91006, 16.18458.

27 – Stillgelegter Steinbruch Edelhammar – leicht deformierter NE-Småland-Granit. 57.698194, 16.460917.

28 – Straßenaufschluss am Skälövägen – roter TIB-Granit, leicht deformiert. 57.61278, 16.59978.

29 – Aufschluss in der Nähe der Kirche in Västrum – Skaftet-Granit, jüngerer Granit („Småland-Granit“). Mingling von zwei Granit-Sorten. Parken an der Kirche in Västrum, ca. 57.658305, 16.574750.

30 – Strassenanschnitt an der Hauptstrasse ca. 1 km S von Gunnebo – Pegmatit mit intensivem Blauquarz, Kleiner Aufschluss (30x30cm). Etwa 57.709298, 16.541656.

31 – Frische Straßenaufschlüsse auf dem Parkplatz an der Abfahrt Blankaholm von der E 22 – hellgraue Quarzite; Quarzite mit schwarzen Flecken (deformiert); Quarz-Feldspat-Adern im Quarzit (Plagioklas?). 57.588424, 16.486632.

32 – Badplats Gunnebo – metasedimentäre Xenolithe im Granit; Aufschluss stark verwachsen. 57.716333, 16.563139.

33 – Mylonitzone am Langsjön – duktile Scherzone mit Myloniten und Småland-Graniten am Langsjön, westlich von Ankarsrum. 57.696139, 16.286194. Parken am kleinen Campingplatz auf der anderen Strassenseite.

34 – Waldfläche nördlich Ankarsrum, 1 km E von Stormandebo (Wegweiser: Stormbo) – Vulkanite des TIB mit Quarzit-Epiklasten. 57.738264, 16.351129.

35 – Fahrweg vom Parkplatz Tjust Motell Richtung Falkhagen, Felsen im Wald – Amphibolit; Fleckenquarzit. 57.86883, 16.41978.

36 – Aufschlüsse hinter dem Hafen von Händelöp – mafische Adern im Granodiorit. Etwa 57.674075, 16.748323; Parkplatz: 57.675382,16.744969.

37 – Grimsvik; einzelne Aufschlüsse an der Küste auf 2,5- 3 km Länge – magma mixing von Granodiorit und Gabbro. Parkmöglichkeit: 57.690645, 16.700778; durch den Wald zur Küste (57.692793, 16.703750).

38 – Piperskärr, nordwestlich von Västervik, Ufer des Gamlebyviken – Geschiebefund eines Feldspat-porphyroblastischen Glimmerquarzits. 57.83064, 16.54737.

9. Literatur

BERGMAN, STEPHENS, ANDERSSON, KATHOL & BERGMAN 2012 Sveriges berggrund, skala 1:1 miljon. Sveriges geologiska undersökning K 423. https://apps.sgu.se/geolagret/

GAVELIN S 1983 The Västervik Area in South-eastern Sweden – SGU Ser. Ba No. 32, 172 S, Uppsala.

KLEINHANNS I C, WHITEHOUSE M J , NOLTE N, BAEROC W, WILSKYC F, HANSENC B T, SCHOENBERG R 2014 Mode and timing of granitoid magmatism in the Västervik area
(SE Sweden, Baltic Shield): Sr–Nd isotope and SIMS U–Pb age constraints – Lithos 212–215 (2015) 321–337; Elsevier.

LOBERG B 1963 The Formation of a Flecky Gneiss and Similar Phenomena in Relation to the Migmatite and Vein Gneiss Problem, Geologiska Föreningen i Stockholm Förhandlingar, 85:1, 3-109, DOI: 10.1080/11035896309448874.

NOLTE N 2012 Paläoproterozoisches Krustenwachstum (2.0 – 1.8 Ga) am Beispiel der Västervik-Region in SE-Schweden und dem Kamanjab Inlier in NW-Namibia – Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universität Göttingen; 403 S., Göttingen 2012.

NOLTE N, KLEINHANNS IC, BAERO W & HANSEN BT 2011 Petrography and whole-rock geochemical characteristics of Västervik granitoids to syenitoids, southeast Sweden: constraints on petrogenesis and tectonic setting at the southern margin of the Svecofennian domain, GFF, 133:3-4, 173-196.

PRUß V 2008 The Geology of the Västervik Area in SE-Sweden – A Geological Field Guide – 93 S., Verlag Dr. Müller, Saarbrücken.

RUSSELL V 1969 Porphyroblastic differentiation in fleck gneiss from Västervik, Sweden. GFF Vol. 91/2, Nr. 637, S. 217 – 282.

SULTAN L & PLINK-BJÖRKLUND P 2005 Depositional environments at a Palaeoproterozoic continental margin, Västervik Basin, SE Sweden – Precambrian Research 145 (2006) 243–271, Elsevier.

SULTAN L, CLAESSON S & PLINK-BJÖRKLUND P 2005 Proterozoic and Archaean ages of detrital zircon from the Palaeoproterozoic Västervik Basin, SE Sweden: Implications for provenance and timing of deposition, GFF, 127:1, 17-24, DOI:10.1080/11035890501271017.

TROPPENZ U-M, VINX R & SCHMÄLZLE D 2016 Bemerkenswerte Sedimentstrukturen in der 1,88-1,85 Milliarden Jahre alten Västervik-Formation, Schweden – Mitteilungen der Naturforschenden Gesellschaft Mecklenburg, 16. Jg. (2016), H. 1: 3-9, 9 Abb., Ludwigslust.

Västervik Berggrundskarta 1:250 000, Sveriges geologiska undersökning (SGU), 2009.

WILKE R 1997 Die Mineralien und Fundstellen von Schweden – 200 S., 16 Farb-Taf., München (Christian Weise).