Exkursionsbericht Västervik-Gebiet

Abb.1: Schärenlandschaft auf Östra Skälö (Lok. 1).

Die Gegend um Västervik im nordöstlichen Småland bietet neben landschaftlichen Reizen eine interessante geologische Geschichte. Wie im gesamten kristallinen Grundgebirge Schwedens finden sich hier sehr alte, als Besonderheit aber ganz unterschiedliche Gesteine in enger Nachbarschaft. Zum einen sind dies Metamorphite, die aus der svekofennischen Gebirgsbildung vor etwa 1,9 Ga hervorgegangen sind, zum anderen Granite und Vulkanite, die zum Ende der gebirgsbildenen Vorgänge vor etwa 1,7 Ga entstanden.

Die „kleine“ Differenz zwischen den 1,9 und 1,7 Ga alten Gesteinen entspricht in etwa der Zeitspanne, die eine „normale“ Gebirgsbildung in Anspruch nimmt, von der Faltung und Metamorphose von Gesteinen, dem Aufdringen von Granitkörpern sowie der Abtragung, ggf. auch vollständigen Einebnung des Gebirges (Wilson-Zyklus, etwa 250 Millionen Jahre). Im Västervik-Gebiet lassen sich Gesteine aus den unterschiedlichen Phasen dieser Gebirgsbildung an zahlreichen Aufschlüssen studieren.

Das Västervik-Gebiet ist zugleich die Heimat einiger Gesteinstypen, die für die Geschiebekunde als Leitgeschiebe bedeutsam sind (Abb. 2). Auf mehreren Reisen konnten eine Reihe von Anstehendproben gesammelt werden. Ihre Beschreibung findet sich in ausführlichen Einzeldarstellungen an anderer Stelle:

Västervik-Fleckengestein (Västervik-Cordierit-Fleckengranofels),
Västervik-Fleckenquarzit (ehemals „Stockholm-Fleckenquarzit“) und
Västervik-Quarzit.

Dieser Exkursionsbericht vermittelt einen Einblick in die komplexe Geologie des Västervik-Gebietes. Die genannten Leitgeschiebe nehmen nur einen kleinen Teil der Fläche ein. Darüber hinaus finden sich eine Reihe weiterer interessanter und auffälliger Gesteine, die zwar nicht als Leitgeschiebe in Frage kommen, aber aufzeigen, mit welcher Gesteinsvielfalt innerhalb eines einzigen kleinen Gebietes im nordischen Grundgebirge zu rechnen ist. Alle besuchten Lokalitäten sind mit Koordinaten (WGS84DD) referenziert und ermöglichen dem geologisch Interessierten eine individuelle Tourenplanung. Einige der Aufschlüsse wurden dem Exkursionsführer von PRUß 2008 und der Arbeit von GAVELIN 1984 entnommen.

Abb. 2: Leitgeschiebe aus dem Västervik-Gebiet: auf der rechten Seite zwei Fleckenquarzite mit hellen Sillimanit-Granoblasten. Links unten ein Västervik-Fleckengestein (Västervik-Fleckengranofels), links oben ein rotfleckiger Quarzit mit Blauquarz.
  1. Topographie
  2. Geologie des Västervik-Gebiets
  3. Metasedimente der Västervik-Formation
    3.1. Gneise, Migmatite, Fleckengesteine
  4. Granitoide Gesteine
  5. Mylonite
  6. Metavulkanite, Vulkanite des TIB
  7. Metabasite
  8. Verzeichnis der Lokalitäten
  9. Literatur

1. Topographie

Die Landschaft in der Umgebung von Västervik ist weitgehend flach, das Küstengebiet stark geklüftet und in zahlreiche Inseln, Halbinseln und Schären gegliedert. Hier lassen sich gerundete, häufig auch in Richtung der Gletscherbewegung gekritzte Felsen beobachten (Abb. 3). Fossile Strandwälle (Abb. 4) und die heutige Schärenlandschaft (Abb. 1) sind das Ergebnis der Landhebung sowie eines gesunkenen Meeresspiegels seit dem Ende der letzten Vereisung vor etwa 10.000 Jahren.

Abb. 3: Gletscherschrammen an einem Migmatit am Campingplatz Blankaholm (Lok. 2). Bildbreite etwa 3 Meter.
Abb. 4: Fossiler Strandwall südöstlich von Västervik (Lok. 3). Die annähernd kopfgroßen Gerölle sind überwiegend Nahgeschiebe (meist Quarzite).

2. Geologie des Västervik-Gebiets

Abb. 5: Geologische Übersichtskarte des Västervik-Gebiets. Kartenausschnitt aus BERGMAN et al 2012, Quelle: sgu.se.

Einen ersten Überblick über die verschiedenen Gesteinsformationen im Västervik-Gebiet vermittelt die Kartenskizze in Abb. 5. Im Einzelnen sind die geologischen Verhältnisse natürlich deutlich verwickelter. Eine detailierte geologische Karte (1:100.000) findet sich in GAVELIN 1984.

Die ältesten Gesteine im Västervik-Gebiet sind die Metasedimente der Västervik-Formation (hellblaue Signatur in Abb. 5). Sie entstanden während der svekofennischen Gebirgsbildung vor etwa 1,9 – 1,75 Ga und bilden die südlichsten Ausläufer einer geologischen Großprovinz, die sich vom Västervik-Gebiet aus viele hundert Kilometer bis nach Nordschweden erstreckt und große Gebiete einnimmt (sog. svekofennische Domäne).

Magmatische Gesteine, die sog. „älteren Granitoide“ (grün, rosa), grenzen im Norden und Nordosten an die Metasedimente und wurden noch während der Gebirgsbildung deformiert. Im Westen und Süden finden sich ausgedehnte Gebiete mit weitgehend undeformierten Graniten (rot) und Vulkaniten (orange), die zum Transkandinavischen Magmatitgürtel (TIB, Alter ca. 1,7 Ga) gehören und überwiegend nach Beendigung der gebirgsbildenden Vorgänge entstanden. Ein Teil der TIB-Granite sind Alkalifeldspat-Granite mit Blauquarz, wie man sie als Geschiebe aus Norddeutschland kennt („Smaland-Granite“).

Abb. 6: Gesteine des Västervik-Gebiets als Nahgeschiebe auf einem Parkplatz in Västervik (Lok. 4). Mengenmäßig überwiegen hellgraue Quarzite, neben Graniten und Metabasiten sowie einigen Fleckengesteinen. Bildbreite am unteren Bildrand etwa 2 m.

Die geologische Geschichte des Västervik-Gebietes beginnt vor etwa 1,9 Ga mit der Ablagerung von sandigen bis tonig-sandigen Sedimenten, dem Abtragungsmaterial eines oder mehrerer alter Gebirge. Der Transport erfolgte durch Flüsse aus nördlichen Richtungen in ein flaches und von Gezeiten beeinflusstes Meeresbecken oder Deltasystem.

Während der svekofennischen Orogenese wurden die Sedimente an einer Subduktionszone mehrere Kilometer tief versenkt und einer Regionalmetamorphose unterworfen. Die Gesteinsumwandlung vollzog sich unter maximal amphibolitfaziellen Bedingungen und unter weitgehend statischen Bedingungen, d. h. ohne Verfaltung der Gesteine durch gerichteten Druck. So konnten sich primäre Sedimentstrukturen wie Schichtung und sogar Wellenrippel (Abb. 11) erhalten, wie sie heute noch in den Metasedimenten an vielen Stellen zu beobachten sind (s. die hervorragend illustrierte Arbeit von SULTAN L & PLINK-BJÖRKLUND P 2005). Sandige Sedimente wurden in Quarzite, Arkosen in Meta-Arkosen und tonhaltige Sedimente z. B. in glimmerführende Quarzite umgewandelt. Lokal kam es zur Neubildung von Mineralen wie Cordierit, Sillimanit und Andalusit.

In den Metasedimenten konnten mehrere Generationen von Zirkonen nachgewiesen werden. Zirkon ist ein besonders verwitterungsbeständiges Mineral, das geringe Mengen Uran enthält und eine Altersbestimmung über das U/Pb-Isotopenverhältnis ermöglicht. Die ältesten Zirkone (3,64 Ga) repräsentieren Relikte sehr alter Gesteine, die jüngsten weisen ein Alter von 2,12-1,87 Ga auf. Die Sedimentation der Västervik-Formation vollzog sich zwischen dem jüngstem Zirkon-Alter und der ältesten Granit-Intrusion (Loftahammar-Granitoide vor 1,859 Ga). Dieser Zeitraum vor 1,882–1,850 Milliarden Jahren umfasst also „lediglich“ 30 Millionen Jahre (Zahlen aus SULTAN et al 2005).

Annähernd zeitgleich zur Metamorphose der Sedimente begann in tieferen Krustenbereichen die Bildung von Schmelzen, die in der Folge als plutonische Körper in die höheren Stockwerke des Gebirges aufstiegen. Diese „älteren“ Loftahammar-Granitoide wurden in einer zweiten Faltungsphase deformiert. Mit ihrem Aufstieg ist eine Überprägung der Metasedimente durch Kontaktmetamorphose verbunden, bei der es zu einer „Migmatisierung“ sowie zur Fleckenbildung innerhalb der Metasedimente (Fleckengesteine) kam. Der Vorgang wiederholte sich einige Millionen Jahre später beim Aufstieg der „jüngeren“ Granitoide des Transskandinavischen Magmatitgürtels (TIB). Die Fleckengesteine des Västervik-Gebiets (Cordierit- und/oder Sillimanit-Granofelse) gingen also aus mehreren regional- und kontaktmetamorphen Episoden hervor.

Weitere mit der geologischen Geschichte des Västervik-Gebiets assoziierte Gesteinstypen, die in diesem kurzen Abriss unberücksichtigt blieben (verschiedene Generationen von Diabasen und Metabasiten bzw. Amphiboliten, Aplite, Pegmatite, Mylonite, Metavulkanite), werden bei der nachfolgenden Beschreibung von Aufschlüssen anhand von Geländebildern und Proben exemplarisch vorgestellt.

3. Metasedimente der Västervik-Formation

Nach Gavelin 1984 lassen sich die Metasedimente der Västervik-Formation in vier Gruppen einteilen: Quarzite, rote Meta-Arkosen (Quarzite mit erhöhtem Feldspat-Gehalt), graue (glimmerreiche) sowie rotgraue (glimmer- und feldspatreiche) Metasedimente. Weit verbreitet sind hellgraue und glimmerführende Quarzite (Abb. 9). Ein Teil der Quarzite im Västervik-Gebiet zeigt Sedimentstrukturen wie Schrägschichtung (Abb. 7) oder sogar Rippelmarken (Abb. 11). Im südlichen Teil des Västervik-Gebiets kommen vermehrt dunkelgraue Quarzite vor (Abb.10). Lokal finden sich grauviolette, rote, grünliche oder blaue Farbvarietäten. Vererzungen der Quarzite durch Anreicherungen von Schwermineralseifen (Fe-, Cu und Co-Vererzung) wurden bei Gladhammer seit dem 12. Jahrhundert abgebaut. Die Gruben gehören zu den ältesten in ganz Schweden (WILKE 1997: 38f).

Abb. 7: Grauer Quarzit mit reliktischer sedimentärer Schichtung, durchschlagen von einer roten Ader mit granitischer Zusammensetzung. Die dunklen und glimmerreichen Lagen entstanden aus sandigen Sedimenten mit erhöhtem tonigem Anteil. Nahgeschiebe auf dem Parkplatz am ICA-Supermarkt, Västervik (Lok. 4).
Abb. 8: Großflächige Aufschlüsse mit hellgrauen und rötlichen Quarziten der Västervik-Formation am alten Wasserturm in Västervik (Lok. 5).
Abb. 9: Hellgrauer und glimmerarmer Västervik-Quarzit aus einem Straßenaufschluss an der L135, westlich von Gamleby (Lok. 6).
Abb. 10: Dunkelgrauer Quarzit, durchzogen von einer granitisch zusammengesetzten Ader. Aufschluss an der Piste von Blankaholm nach Skjorted (Lok. 7).
Abb. 11: Rund 1,9 Milliarden Jahre alte Wellenrippel in einem grauen Metasediment. Straßenaufschluss an der E4 (Lok. 8), Bildbreite etwa 1 m.
Abb. 12: Das Gestein an dieser Lokalität ist ein graues Metasediment mit feiner Wechsellagerung glimmerarmer (quarzitischer) und glimmerreicher Partien. Bildbreite 30 cm.
Abb. 13: Rotfleckiger Västervik-Quarzit, Straßenaufschluss an der L135 (Lok. 9), Bildbreite 35 cm.
Abb. 14: Grauvioletter bis hellgrauer Västervik-Quarzit, rechts mit gefalteten Sedimentstrukturen, die später durch Bruchtektonik gegeneinander verstellt wurden. Aufschluss an der E4, Abfahrt Segelrum, Lokalität 10. Bildbreite 33 cm.
Abb. 15: Rötlicher und feldspathaltiger Quarzit mit Blauquarz von einer Baustelle bei Piperskärr (Lok. 11).
Abb. 16: Rotfleckiger Västervik-Quarzit mit Blauquarz (nasse Bruchfläche) aus dem Steinbruch Hjortkullen, Lokalität 12.
Abb. 17: Violettblauer Quarzit, Schäre Grönö (Lok. 13). Bildbreite ca. 50 cm.
Abb. 18: Roter Västervik-Quarzit; Straßenaufschluss an der Straße nach Hällingeberg (Lok. 14).
Abb. 19: Grünlicher Quarzit, durchzogen von einem dunkelgrauen Band mit einer breiten roten Saumzone. Loser Stein von 20 cm Breite aus einem Steinbruch westlich von Gamleby (Lok. 15).
Abb. 20: Rotgraue Meta-Arkose (Quarzit mit viel rotem Feldspat); Björnhuvud (Lok. 16), Bildbreite ca. 25 cm.
Abb. 21: Graues gebändertes Metasediment. In der rechten unteren Bildhälfte sind dunkle (Cordierit?)-Flecken erkennbar. Straßenaufschluss an der E4 bei Nytorp (Lok. 17). Bildbreite 90 cm.
Abb. 22: Graues Metasediment mit reliktischer sedimentärer Faziesverzahnung(?); Straßenaufschluss bei Nytorp (Lok. 17), Bildbreite 31 cm.

3.1. Gneise, Migmatite, Fleckengesteine

Nur ein kleiner Teil der Sedimentgesteine wurde während der svekofennischen Orogenese verfaltet und migmatitisiert. Aufschlüsse dieser „echten Migmatite“ finden sich auf dem Campingplatz Blankaholm (Lok. 2). Sie zeigen Fließfalten, primäre sedimentäre Lagenstrukturen sind kaum erkennbar. Wahrscheinlich handelt es sich um vulkanoklastische Sedimente, die durch einen aufsteigenden Granitkörper migmatisiert wurden (PRUß 2008). Das granitische Material der Leukosome (orange) könnte die Sedimente auch ohne Teilaufschmelzung konkordant durchdrungen haben („Adergneis“, s. u.).

Abb. 23: Migmatit am Ufer des Campingplatzes Blankaholm (Lok. 2), Bildbreite 65 cm. Grauer Gneis mit orangerotem Leukosom, umgeben von einem schmalen Saum aus dunklen Mineralen (Melanosom).
Abb. 24: Gleicher Aufschluss; rechts unterhalb der Bildmitte ein Xenolith eines Fleckengesteins, Relikt aus einer früheren metamorphen Episode.
Abb. 25: Gleicher Aufschluss, großer Quarzit-Xenolith im Migmatit; Bildbreite 70 cm.

Während des Aufstiegs von Granitplutonen (ältere Loftahammar- und jüngere Småland-Granitoide) kam es zu einer kontaktmetamorphen Veränderung der Metasedimente und zur Bildung der sog. „Adergneise“ (veined gneiss). Streng genommen sind dies keine Gneise, sondern Granofelse, die von granitischen Leukosom-Adern lagenweise (konkordant) durchdrungen oder diskordant durchschlagen wurden (Abb. 7). Diese granitischen Schmelzen könnten direkt aus dem Granit-Magma stammen (Arterite) oder durch Aufschmelzung aus älteren Gesteinen (z. B. Metasedimenten) mobilisiert worden sein (Venite). GAVELIN 1984 nimmt an, dass es sich vorwiegend um Venite handelt (Abb. 26, 27), da im Gelände keine direkten räumlichen Beziehungen zwischen aufsteigenden Granitkörpern und der Entwicklung von Adergneisen zu beobachten sind. LOBERG 1963 verweist zudem auf die Möglichkeit der Entstehung leukokrater Partien in migmatitähnlichen Metamorphiten durch metamorphe Differentiation im festen Zustand.

Abb. 26: Gesteinsblöcke mit Partien aus blauem und massigem Quarzit, dunklen Gneispartien sowie roten und pegmatitartigen Bereichen. Bildbreite etwa 1 m; Bruchmaterial aus dem Straßenbau, Pepparängsvägen, südöstlich von Västervik, Lokalität 18.
Abb. 27: Gleicher Aufschluss. Blauer und massiger Quarzit, rotgrauer Gneis und rote pegmatitartige Partien („Adergneis“). Breite 42 cm.

Die Fleckengesteine des Västervik-Gebiets sind Metasedimente, in denen eine Neubildung von Mineralen in Gestalt von Granoblasten (Flecken) erfolgte. In älterer Literatur findet sich der Begriff „Fleckengneis“, weil sie eine den Gneisen ähnliche Lagentextur aufweisen. Diese ist in der Regel aber ein Relikt sedimentärer Schichtung und spiegelt unterschiedliche Mineralgehalte der Ausgangsgesteine wider (Abb. 29, 30). In den meisten Fällen handelt es sich bei den Fleckengesteinen ganz eindeutig um Granofelse.

Eine Fleckenbildung kann sowohl unter Bedingungen der Kontakt- als auch der Regionalmetamorphose erfolgt und von metasomatischen Vorgängen begleitet sein (LOBERG 1963). Unter geringem Druck und hohen Temperaturen (max. 650 Grad) kam es in Al- und Mg-reichen Ausgangsgesteinen lokal zur Neubildung von Mineralen wie Sillimanit, Andalusit und Cordierit in Gestalt von Flecken (Granoblasten). Während der retrograden Metamorphose wurden die neu gebildeten Minerale teilweise verändert, so dass heute nur noch Relikte vorliegen (Chloritisierung von Feldspat, Biotit, Andalusit, Cordierit). Cordierit, Andalusit und Sillimanit sind weit verbreitete metamorphe Neubildungen, Kyanit und Granat kommen in den Metasedimenten des Västervik-Gebiets praktisch nicht vor.

Unklar ist meist, ob die Form der Flecken durch vorherige, gleichzeitige oder nachfolgende Tektonik verursacht wurde. Nach GAVELIN 1984 erfolgte die Bildung von Flecken zu unterschiedlichen Zeiten und unterschiedlichen Bedingungen. Abfolgen metamorpher Zonen mit charakteristischen Mineralisationen lassen sich im Anstehenden über größere Areale nicht verfolgen. Weiterhin stehen die Vorkommen von Andalusit und Sillimanit in keiner Beziehung zu Granitkontakten, „Granitisierung“ oder Migmatisierung. Unterschiedliche Metamorphosegrade müssen vereinfacht auf variable Bedingungen wie die Aktivität wässriger Fluide, K-Metasomatose und pH-Wert zurückgeführt werden.

Abb. 28: Dunkle und leicht ausgelängte Flecken in einem hellgrauen Quarzit. Straßenaufschluss bei Segelrum (Lok. 19), Bildbreite etwa 1 m.
Abb. 29: Graues Fleckengestein in der Nähe des Hafens auf Östra Skälö (Lok. 1). Die Bildung der schwarzen Cordierit-Flecken erfolgte bevorzugt innerhalb toniger, Al- und Fe-reicher Lagen. Entsprechend lässt sich die primäre Sedimentstruktur anhand fleckenreicher und fleckenarmer Partien nachvollziehen. Bildbreite etwa 1 m.
Abb. 30: Rotgraues Fleckengestein mit fleckenreichen Lagen und (quarzitischen) Partien ohne Flecken. Aufschluss bei Casimirsborg (Lok. 20), Bildbreite etwa 150 cm.
Abb. 31: Gleicher Aufschluss. Bildbreite: 50 cm.

Die fleckenreichen Partien sind hier weitgehend undeformiert, lediglich im obersten Bildteil erkennt man zerdrückte Flecken. Beim bizarr geformten Bereich handelt es sich vermutlich um eine bereits während der Ablagerung vollzogene Veränderung der Sedimente (tidales Milleu, Verzahnung sandiger und toniger Schichten, s. SULTAN et al 2005). Die Kerne der Fleckengesteine von Casimirsborg enthalten nach RUSSELL 1969 Andalusit und Sillimanit. Im inneren Kern ist manchmal unalterierter (bläulicher) Cordierit erkennbar. Die Kerne könnten ursprünglich vollständig aus Cordierit bestanden haben.

Abb. 32: Aufschluss Casimirsborg, Bildbreite 60 cm. Bereits während der Ablagerung dürfte auch diese konglomeratähnliche Partie entstanden sein, mit grauen und quarzitischen „Klasten“ ohne Flecken (ehemals sandige Sedimente) und weitgehend undeformierten Flecken in der „Matrix“.
Abb. 33: Orangerotes Västervik-Fleckengestein, Aufschluss am See Rummen (Lok. 21). Bildbreite 50 cm.
Abb. 34: Orangerotes Metasediment mit unregelmäßig konturierten schwarzen Flecken und grauen Partien mit reliktischer Schichtung. Schäre Grönö (Lok. 22), Bildbreite 60 cm.
Abb. 35: Rotgraues Fleckengestein mit länglichen Flecken, Aufnahme unter Wasser. Halde am Pepparangsvägen (Lok 18).
Abb. 36: Orangerotes und feldspatreiches Metasediment mit grauen Metasediment-Xenolithen („Krökö-Gneis“); Schäre Braviken (Lok. 23).
Abb. 37: Graue, braune und rote Fleckenquarzite (glimmerhaltige Quarzite mit Sillimanit-Granoblasten). Nahgeschiebe vom Strandwall SE Västervik (Lok. 3), Bildbreite 50 cm. Eine Anstehendprobe dieses Gesteinstyps zeigt Abb. 59.

Im Västervik-Gebiet wurden bisher zwei Geschiebe eines dunklen und biotitreichen Granofels mit orangefarbenen Alkalifeldspat-Porphyroblasten gefunden (Abb. 38). Ein Anstehendes konnte bisher nicht lokalisiert werden. Das Gestein wird an anderer Stelle näher beschrieben, weil sich mittlerweile in Norddeutschland mehrere Geschiebe dieses Typs fanden.

Abb. 38: Glimmereiches Metasediment mit orangefarbenen Alkalifeldspat-Granoblasten. Fossiler Strandwall bei Västervik (Lok. 3). Foto: M. Bräunlich, kristallin.de.

4. Granitoide Gesteine

Eine vereinfachte und auf Feldbeobachtungen gestützte Einteilung unterscheidet “ältere” und “jüngere” Granitoide. Neuere geochemische Untersuchungen (NOLTE et al 2011, KLEINHANNS et al 2014) ergaben ein differenziertes Bild von fünf verschiedenen Gruppen von Plutoniten. Das genetische Modell geht von einer Bildung von Granitplutonen während extensionaler Phasen der Gebirgsbildung aus. Dabei kam es zu einer Teilaufschmelzung von tief versenkten Metasedimenten durch Druckentlastung und mafic underplating. Für die magmatischen Schmelzen wird ein geringer Transportweg angenommen.

Zu den älteren Granitoiden gehören die Granite des Loftahammar-Massivs, die vor 1,86-1,84 Ga entstanden und nachfolgend in einer zweiten Faltungsphase deformiert wurden. Die Gesteine besitzen teilweise ein mylonitisches Gefüge (Abb. 39), können Xenolithe von Metasedimenten enthalten und wurden von zahlreichen jüngeren Diabasgängen durchschlagen (magma mingling mit mafischen Injektionen). Zu den älteren Granitoiden gehört auch ein Gürtel von Granodioriten, der den nördlichen und östlichen Teil der Metasedimente umgibt (s. Abb. 60-62). Eine Beschreibung des Geschiebetyps „Loftahammar-Augengneis“ findet sich hier.

Abb. 39: Loftahammar-Augengneis (Probe: T. Langmann, Lok. 24). Das Gestein erhielt sein mylonitisches Gefüge durch Deformation eines Granitoids an einer duktilen Scherzone. Kennzeichnend sind augenförmige große Feldspat-Porphyroblasten, die von feinkörnigen und welligen Partien mit dunklen Mineralen und granuliertem Quarz umgeben sind.

Die jüngeren Granite des Transskandinavischen Magmatitgürtels („Småland-Granite“) im Süden und Westen des Västervik-Gebiets weisen makroskopisch nur geringe Anzeichen einer Deformation auf und besitzen ein Alter 1,84-1,77 Ga. Lokal finden sich fließende Übergänge von Graniten und Metasedimenten mit „Migmatiten“ oder „Adergneisen“. Manchmal ist der Kontakt auch scharf (Abb. 40). Zum Teil handelt es sich um „typische“ Småland-Granite mit viel rotem Alkalifeldspat und Blauquarz (Abb. 41, 44). Andere Granite sind eher unauffällige Gesteine, wie der Skaftet-Granit, einer heterogenen Mischung mit einem Fließgefüge aus granodioritischem und granitischem Magma (Abb. 45).

Abb. 40: Scharfer Kontakt zwischen Västervik-Quarzit (rechts) und jüngerem Granit („Småland-Granit“, links). Bildbreite ca. 40 cm (Lok. 25).
Abb. 41: Roter Alkalifeldspatgranit mit Blauquarz („jüngerer“ Granit, Småland-Granit), Aufnahme unter Wasser. Straßenaufschluss an der L135 (Lok. 26).
Abb. 42: NE-Småland-Granit mit zerdrücktem („zuckerkörnigem“) Quarz, Aufnahme unter Wasser. Sog. „Edelhammar-Granit“ (vgl. skan- kristallin.de) aus einem aufgelassenen Steinbruch bei Västrum (Lok. 27).
Abb. 43: Gleicher Stein, Nahaufnahme des Gefüges.
Abb. 44. Leicht deformierter „jüngerer“ Granit, Straßenaufschluss am Skälövägen (Lok. 28).
Abb. 45: Skaftet-Granit („jüngerer Granit“); Mischung eines granodioritischen und granitischen Magmas (magma mingling). Aufschluss in der Nähe der Kirche in Västrum (Lok. 29), Bildbreite etwa 1 m.

Zahlreich finden sich in den Aufschlüssen des Västervik-Gebiets Gänge und Adern aus Apliten, Pegmatiten (auch Turmalin-Pegmatite; Lok. 30, kein Foto) oder auch Blauquarz in den Metasedimenten.

Abb. 46: Ader mit Blauquarz in einem grauen Metasediment am Hafen Östra Skälö (Lok. 1).
Abb. 47: Quarz-Feldspat-Ader mit stengeligen Amphibol-Kristallen; Bildbreite 25 cm; Straßenkreuzung Blankaholm/E4 (Lok. 31).

Hierbei könnte es sich um ein Quarz-Plagioklas-Gestein handeln, das GAVELIN 1984 in ähnlicher Form aus einem Aufschluss in der Nähe beschreibt (500 m N der Abzweigung nach Blankaholm). Es durchdringt die Metasedimente in Form heller Adern mit gebleichter und 1-2 cm breiter Reaktionszone und kristallisierte aus Lösungen, die aus Metabasiten innerhalb der älteren Granite mobilisiert wurden (Na-Metasomatose, Anreicherung von Plagioklas). Eine Probenahme und sichere Bestimmung von Plagioklas war nicht möglich.

Am Badplats Gunnebo (Lok. 32) steht ein mittelkörniger und grauer bis rotgrauer Granit an, der Xenolithe von migmatitisierten Metasedimenten führt. Die dunklen Xenolithe weisen eine Lagentextur auf. Teilweise besitzen sie scharfe Konturen, teilweise sind sie weitgehend assimiliert. Die Fragmente könnten beim Magmenaufstieg in der Dachregion des Plutons in den viskosen Granit eingetragen und von der Schmelze nicht mehr vollständig „verdaut“ worden sein.

Abb. 48: Granit vom Badplatz Gunnebo (Lok. 32) mit Xenolithen von Metasedimenten, Aufnahme unter Wasser.

5. Mylonite

Minerale wie Quarz und Feldspat werden in der oberen Erdkruste bei Einwirkung von gerichtetem Druck zerbrochen und granuliert (Sprödbruch). Bei geeigneter Tiefe und entsprechend hohen Temperaturen kommt es innerhalb einer Scherzone jedoch zu einer duktilen Deformation, bei der die Gesteine feinkörnig zermahlen (Mylonit = Mahlstein) und gleichzeitig große und augenförmige Feldspat-Aggregate heranwachsen können (sog. Porphyroblasten). Ein Beispiel für einen mylonitischen Gneis mit großen Feldspat-Porphyroblasten ist der Loftahammar-Augengranit (Abb. 39), der innerhalb einer großen NW-SE streichenden Deformationszone entstand (Loftahammar-Linköping-Deformationszone, LLDZ). Die LLDZ trennt die Gesteine des TIB im Süden von den Gesteinen der svekofennischen Domäne und deformierte in der Zeit ihrer Aktivität vor 1,8-1,78 Ga Gesteine im Umkreis von 10-15 km.

Am Langsjön westlich von Ankarsrum (Lok. 33) befindet sich ein Aufschluss einer kleinen Mylonitzone, die etwas jünger ist und nicht im Zusammenhang mit der LLDZ steht. Hier lässt sich der Einfluss einer duktilen Scherzone auf die umgebenen Gesteine gut studieren. Zwei unterschiedliche Granite sind durch eine nur etwa 1,5 – 2 m breite Scherzone mit Ultramyloniten voneinander getrennt und zu beiden Seiten von einem mehrere Meter breiten Übergangsbereich begleitet.

Abb. 49: Mylonitzone am Langsjön (Lok. 33). Die Scherzone ist der Bereich mit den dunklen Gesteinen. Nach Osten (rechts) geht sie mit scharfer Grenze in ein helles Quarz-Feldspat-Gestein und nach etwa einem Meter in einen hellen Småland-Granit über. Länge des Hammers 60 cm.
Abb. 50: Ultramylonit mit epidot- und chloritreichen Lagen aus dem Zentrum der Scherzone. Das Gestein wurde stark zerschert und ist bedeutend feinkörniger als das Wirtgestein, aus dem es geformt wurde.
Abb. 51: Auf der linken Seite (westlich) der Scherzone steht ein dunkler und mylonitisierter Småland-Granitoid mit großen Feldspat-Porphyroblasten an. Das Gestein ist von einer grünen Epidot-Ader durchzogen.
Abb. 52: Einige Meter weiter findet sich ein biotitreicher und augenscheinlich weitgehend undeformierter Småland-Granit mit wenigen großen Blauquarzen.
Abb. 53: Ganz anders sieht dieser rotgraue porphyrische Småland-Granit östlich der Scherzone aus, etwa 15 m entfernt vom Granit im vorigen Bild.

6. Metavulkanite

Zeugen einer vulkanischen Aktivität, die den TIB-Vulkaniten vorausging, finden sich nur untergeordnet und als Relikte im südlichen Teil des Västervik-Gebiets. Durch metamorphe Überprägung ist von den Ausgangsgesteinen kaum noch etwas zu erkennen (z. B. Migmatite auf dem Campingplatz Blankaholm, Abb. 23-25).

In einem kleinen Gebiet nördlich von Ankarsrum stehen Vulkanite an, die zu den ältesten des TIB gerechnet werden (GAVELIN 1984). Neben Andesiten, Basalten und Rhyolithen finden sich hier auch leicht deformierte Pyroklastite mit Epiklasten von Västervik-Quarzit. Letztere weisen darauf hin, dass die Vulkanite in diesem Gebiet direkt auf den Gesteinen der Västervik-Formation abgelagert wurden und somit zur Basis des TIB gehören dürften.

Abb. 54: Roter und deformierter Pyroklastit, loser Stein auf einer gerodeten Waldfläche nördlich von Ankarsrum (Lok. 34).
Abb. 55: Bruchfläche des gleichen Gesteins, Vulkanit mit grauen und ausgelängten Quarzitklasten. Aufnahme unter Wasser.

7. Metabasite

Verschiedene Generationen von basischen Gesteinen durchziehen als Gänge oder Sills die Metasedimente und die älteren Granitoide. Auch eigenständige kleinere Massive kommen vor. Die ursprünglich basaltischen Gesteine wurden während der Metamorphose in Amphibolite umgewandelt (Metabasite).

Abb. 56: Kontakt eines Amphibolit-Körpers (links) mit hellem Västervik-Quarzit. Temporärer Aufschluss auf einer Baustelle auf Piperskärr (Lok. 11).
Abb. 57: Die Grenze zwischen Quarzit und Amphibolit ist scharf. Mineralneubildungen durch kontaktmetamorphe Überprägung (z. B. Sillimanitflecken) sind nicht erkennbar. Lediglich einige Blauquarz-Partien finden sich im Kontaktbereich. Bildbreite 90 cm.
Abb. 58: Grobkörniger Amphibolit, durchzogen von einer weißen Quarz-Feldspat-Ader. In unmittelbarer Nähe (Kontaktbereich) und vermutlich anstehend fand sich ein dunkelgrauer Fleckenquarzit. Fahrweg vom Parkplatz Tjust Motell Richtung Falkhagen (Lok. 35). Bildbreite 35 cm.
Abb. 59: Dunkelgrauer und glimmerreicher Quarzit mit weißen Sillimanitflecken (Fleckenquarzit), Aufnahme des Gefüges unter Wasser; Lok. 35.

Injektionen mafischer Gesteine kommen besonders zahlreich in den älteren Granitoiden vor. Scharfe Kontakte lassen auf ein Eindringen nach der Erstarrung schließen (Abb. 60).

Abb. 60: Anatektischer Granodiorit (älterer Granitoid). Ein basaltischer Gang drang entlang der Foliation ein und wurde nachfolgend dextral zerschert. Andere Gänge an diesem Aufschluss weisen eine duktile Deformation auf. Händelöp (Lok. 36).

Ein längerer Küstenabschnitt mit diversen Aufschlüssen bei Grimsvik (Lok. 37, Abb. 61-62) zeigt verschiedene Stadien von magma mingling zwischen älteren Granodioriten des zentralen Granodiorit-Gürtels und basischen Intrusionen (Metagabbro). Hier lässt sich beobachten, wie mafische Gesteine durch das mobile Magma zerrissen wurden, teilweise sind auch Auflösungsvorgänge erkennbar.

Abb. 61: Kantige, durch das aufsteigende helle Magma fragmentierte, aber nur wenig assimilierte Metabasite. Küstenaufschluss bei Grimsvik (Lok. 37), Bildbreite 180 cm.
Abb. 62: Duktile Deformation von Metabasiten, erkennbar an der Einregelung länglicher und gerundeter Fragmente („Fließtextur“). Auf eine zeitgleiche Entstehung beider Magmen weisen gelegentlich in den Metabasiten enthaltene Fragmente von Granodiorit hin. Bildbreite 120 cm.
Abb. 63: Aufschluss mit basischen Metatuffiten am Hafen von Östra Skälö. Die vulkanischen Lockergesteine (Tuffe) wurden durch Metamorphose in Amphibolite bzw. Amphibol-Feldspat-Gesteine umgewandelt. Eine sedimentäre Schichtung ist in Gestalt dunkler und heller Partien nachvollziehbar (Lok. 1).
Abb. 64. Gleicher Aufschluss, Nahaufnahme.

8. Verzeichnis der Lokalitäten

Abb. 65: Übersichtskarte der beprobten Lokalitäten. Kartenausschnitt aus BERGMAN et al 2012, Quelle: sgu.se.

1 – Hafen von Östra Skälö – zahlreiche Aufschlüsse im Hafengebiet und an der Fahrstrecke; Västervik-Fleckengestein: orangefarbene und graue Variante; Quarzader im Metasediment; Metabasite. 57.58986, 16.63201

2 – Campingplatz Blankaholm – Migmatite aus Metavulkaniten der Västervik-Formation; gekritzte Felsen. 57.588476, 16.516876.

3 – Fossiler Strandwall an der Straße nach Händelöp, SSE Västervik – Nahgeschiebe (Quarzite, Fleckenquarzite, Feldspat-porphyroblastischer Glimmerquarzit). 57.718765, 16.671451 (Parkplatz).

4 – Nahgeschiebe als Einfassung auf dem Parkplatz des ICA-Stormarknat Västervik.
57.767546, 16.595644

5 – Alter Wasserturm Västervik, Repslagaregatan 5 – Großflächiger Aufschluss mit Quarzit in div. Farbvarianten: hell, rötlich bis dunkelgrau; keine Fleckenbildung. Größter Teil der Quarzite ist mit Flechten bewachsen. 57.753211, 16.647462.

6 – Frischer Straßenaufschluß an der 135, kurz hinter Gamleby- hellgrauer und glimmerarmer Västervik-Quarzit; Västervik-Fleckengestein; graue Quarzite. 57.91547, 16.36795.

7 – Aufschluss an der Piste von Blankaholm nach Skjorted; Dunkelgrauer Västervik-Quarzit m. granitischen Adern; Felsen an einem Bootsanleger, kurz vor Skjorted.
57.623770, 16.511087.

8 – Wellenrippel in dunkelgrauem Quarzit, Straßenaufschluss an der E4; 57.86080, 16.42724 (Parkplatz); vom Parkplatz 300 m nach N gehen.

9 – Straßenaufschluss an der 135 – rotfleckiger Quarzit, div. Västervik-Quarzite. 57.91458, 16.30901 (Parkplatz); vom Parkplatz Richtung Westen gehen.

10 – Straßenaufschluss an der E22, Abfahrt Segelrum – helle Quarzite mit sedimentärer Reliktschichtung; Fleckenbildung. 57.850582, 16.432278.

11 – Großflächige Baustelle auf Piperskärr, temporärer Aufschluss – heller und roter Quarzit; in den Quarzit eingeschalteter Amphibolitkörper (ca. 20x20m). 57.76751, 16.66553.

12 – Aktiver Steinbruch Hjortkullen – rötlich-blauer Västervik-Quarzit. 57.795577, 16.530566.

13 – Schäre Grönö – violettblauer Quarzit. Etwa 57.715430, 16.713416.

14 – Straßenaufschluss an der Straße nach Hällingeberg – roter bis violetter Västervik-Quarzit. 57.88854, 16.33501.

15 – Steinbruch westlich Gamleby – helle, rotfleckige und grüne Quarzite. 57.885434, 16.355187.

16 – Björnhuvud, SW Västrum – migmatitischer Gneis; wenige Aufschlüsse in diesem Gebiet. 57.626283, 16.528614.

17 – Straßenaufschluss an der E4, Abfahrt Nytorp – graue Quarzite, sedimentäre Reliktstrukturen. 57.86056, 16.42667.

18 – Pepparängsvägen S Västervik, Halde aus temporären Strassenbaumaßnahmen – Västervik-Fleckengestein, blaue Quarzite. 57.722189, 16.673201 (Fundstelle erloschen).

19 – Straßenaufschluss an der E4, Abfahrt Segelrum – Västervik-Quarzit. 57.850582, 16.432278.

20 – Felsen an der Küste bei Casimirsborg (Privatgelände!) – Västervik-Fleckengestein. 57.874100, 16.435327.

21 – Großflächige Aufschlüsse am Wegesrand und im Gebiet des Nordufer des Rummen, NW Gamleby – rotes Västervik-Fleckengestein. Etwa 57.937173, 16.285627.

22 – Schäre Grönö bei Västervik – rotes Västervik-Fleckengestein. Etwa 57.715250, 16.720567.

23 – Schäre Braviken; Bratviken – rote Metasedimente. Etwa 57.721625, 16.706725, Gebiet größtenteils Privatbesitz.

24 – Straßenaufschluss an der 213, ca. 1,5 km westlich von Loftahammar – Loftahammar-Augengneis. 57.90857, 16.65788.

25 – Straßenaufschluss am Skälövägen – Kontakt zwischen Västervik-Quarzit und jüngerem Småland-Granit“. 57.60534, 16.60882; Parken: Rävrompan.

26 – Straßenaufschluss an der 135 – roter TIB-Augengranit mit Blauquarz. 57.91006, 16.18458.

27 – Stillgelegter Steinbruch Edelhammar – leicht deformierter NE-Småland-Granit. 57.698194, 16.460917.

28 – Straßenaufschluss am Skälövägen – roter TIB-Granit, leicht deformiert. 57.61278, 16.59978.

29 – Aufschluss in der Nähe der Kirche in Västrum – Skaftet-Granit, jüngerer Granit („Småland-Granit“). Mingling von zwei Granit-Sorten. Parken an der Kirche in Västrum, ca. 57.658305, 16.574750.

30 – Strassenanschnitt an der Hauptstrasse ca. 1 km S von Gunnebo – Pegmatit mit intensivem Blauquarz, Kleiner Aufschluss (30x30cm). Etwa 57.709298, 16.541656.

31 – Frische Straßenaufschlüsse auf dem Parkplatz an der Abfahrt Blankaholm von der E 22 – hellgraue Quarzite; Quarzite mit schwarzen Flecken (deformiert); Quarz-Feldspat-Adern im Quarzit (Plagioklas?). 57.588424, 16.486632.

32 – Badplats Gunnebo – metasedimentäre Xenolithe im Granit; Aufschluss stark verwachsen. 57.716333, 16.563139.

33 – Mylonitzone am Langsjön – duktile Scherzone mit Myloniten und Småland-Graniten am Langsjön, westlich von Ankarsrum. 57.696139, 16.286194. Parken am kleinen Campingplatz auf der anderen Strassenseite.

34 – Waldfläche nördlich Ankarsrum, 1 km E von Stormandebo (Wegweiser: Stormbo) – Vulkanite des TIB mit Quarzit-Epiklasten. 57.738264, 16.351129.

35 – Fahrweg vom Parkplatz Tjust Motell Richtung Falkhagen, Felsen im Wald – Amphibolit; Fleckenquarzit. 57.86883, 16.41978.

36 – Aufschlüsse hinter dem Hafen von Händelöp – mafische Adern im Granodiorit. Etwa 57.674075, 16.748323; Parkplatz: 57.675382,16.744969.

37 – Grimsvik; einzelne Aufschlüsse an der Küste auf 2,5- 3 km Länge – magma mixing von Granodiorit und Gabbro. Parkmöglichkeit: 57.690645, 16.700778; durch den Wald zur Küste (57.692793, 16.703750).

38 – Piperskärr, nordwestlich von Västervik, Ufer des Gamlebyviken – Geschiebefund eines Feldspat-porphyroblastischen Glimmerquarzits. 57.83064, 16.54737.

9. Literatur

BERGMAN, STEPHENS, ANDERSSON, KATHOL & BERGMAN 2012 Sveriges berggrund, skala 1:1 miljon. Sveriges geologiska undersökning K 423. https://apps.sgu.se/geolagret/

GAVELIN S 1983 The Västervik Area in South-eastern Sweden – SGU Ser. Ba No. 32, 172 S, Uppsala.

KLEINHANNS I C, WHITEHOUSE M J , NOLTE N, BAEROC W, WILSKYC F, HANSENC B T, SCHOENBERG R 2014 Mode and timing of granitoid magmatism in the Västervik area
(SE Sweden, Baltic Shield): Sr–Nd isotope and SIMS U–Pb age constraints – Lithos 212–215 (2015) 321–337; Elsevier.

LOBERG B 1963 The Formation of a Flecky Gneiss and Similar Phenomena in Relation to the Migmatite and Vein Gneiss Problem, Geologiska Föreningen i Stockholm Förhandlingar, 85:1, 3-109, DOI: 10.1080/11035896309448874.

NOLTE N 2012 Paläoproterozoisches Krustenwachstum (2.0 – 1.8 Ga) am Beispiel der Västervik-Region in SE-Schweden und dem Kamanjab Inlier in NW-Namibia – Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universität Göttingen; 403 S., Göttingen 2012.

NOLTE N, KLEINHANNS IC, BAERO W & HANSEN BT 2011 Petrography and whole-rock geochemical characteristics of Västervik granitoids to syenitoids, southeast Sweden: constraints on petrogenesis and tectonic setting at the southern margin of the Svecofennian domain, GFF, 133:3-4, 173-196.

PRUß V 2008 The Geology of the Västervik Area in SE-Sweden – A Geological Field Guide – 93 S., Verlag Dr. Müller, Saarbrücken.

RUSSELL V 1969 Porphyroblastic differentiation in fleck gneiss from Västervik, Sweden. GFF Vol. 91/2, Nr. 637, S. 217 – 282.

SULTAN L & PLINK-BJÖRKLUND P 2005 Depositional environments at a Palaeoproterozoic continental margin, Västervik Basin, SE Sweden – Precambrian Research 145 (2006) 243–271, Elsevier.

SULTAN L, CLAESSON S & PLINK-BJÖRKLUND P 2005 Proterozoic and Archaean ages of detrital zircon from the Palaeoproterozoic Västervik Basin, SE Sweden: Implications for provenance and timing of deposition, GFF, 127:1, 17-24, DOI:10.1080/11035890501271017.

TROPPENZ U-M, VINX R & SCHMÄLZLE D 2016 Bemerkenswerte Sedimentstrukturen in der 1,88-1,85 Milliarden Jahre alten Västervik-Formation, Schweden – Mitteilungen der Naturforschenden Gesellschaft Mecklenburg, 16. Jg. (2016), H. 1: 3-9, 9 Abb., Ludwigslust.

Västervik Berggrundskarta 1:250 000, Sveriges geologiska undersökning (SGU), 2009.

WILKE R 1997 Die Mineralien und Fundstellen von Schweden – 200 S., 16 Farb-Taf., München (Christian Weise).

Sörmland-Gneis

Abb. 1: Paragneis vom Sörmland-Typ. Aussichtspunkt Grießen am Tagebau Jänschwalde, Niederlausitz; Breite des Geschiebes ca. 1 m.
  1. Beschreibung
  2. Entstehung und Herkunft
  3. Anstehender Sörmlandgneis
  4. Weitere Paragneise aus Sörmland
  5. Cordieritgneis von Flen
  6. Geschiebefunde vom Typ Sörmland
  7. Granat-Cordierit-Sillimanit-Paragneis
  8. Verzeichnis der Lokalitäten
  9. Literatur

In ostschwedischen Geschiebegesellschaften finden sich regelmäßig größere Blöcke von Metamorphiten, die als Gneise vom Sörmland-Typ bezeichnet werden. Der Geschiebetyp ist ein grauer migmatitischer Paragneis mit großen Granat-Porphyroblasten und größeren Mengen an graublauem Cordierit. Optional kann auch Sillimanit enthalten sein. Solche Paragneise sind anstehend aus dem Sörmlandbecken bekannt. Ob der Gesteinstyp als Leitgeschiebe geeignet ist, bleibt zunächst offen, da sein Verbreitungsgebiet in Sörmland recht groß, zudem die Frage nach weiteren möglichen Heimatgebieten dieser Granat-Cordierit-Gneise nicht hinreichend beantwortet ist.

Abb. 2: Gleicher Stein, Nahaufnahme. Graue und feinkörnige Gneispartien wechseln sich mit linsenförmigen Leukosomen aus Quarz und Feldspat ab. Das Gestein enthält große Mengen von hellrotem Granat.
Abb. 3: Gleicher Stein, Nahaufnahme (Bildbreite 10 cm). Ein grobkörniges Leukosom enthält neben Granat- und Feldspat-Körnern auch graublauen Cordierit.

1. Beschreibung

Die migmatitischen Gneise vom Sörmland-Typ enthalten helle, häufig linsenförmige Partien mit einem grobkörnigen Gefüge aus Quarz und Feldspat (Leukosom), umgeben von dunklen feinkörnigen und glimmerreichen Bereichen (Melanosom bzw. Restit). Auch hellgraue Partien des gneisigen Ausgangsgesteins (Paläosom) sind meist erkennbar. Als Geschiebe finden sich sowohl Adergneise mit hellen und dunklen Partien, als auch stärker deformierte Gneise/Migmatite, in denen die Adertextur nur noch ansatzweise erkennbar ist. Die feinkörnigen und dunklen Partien des Paläosoms bestehen aus Biotit, Quarz und Feldspat mit einem Biotit-Anteil von 40-70%.

Hellroter bis rotvioletter Granat bildet Porphyroklasten, entweder unregelmäßig geformte Partien, aber auch kompakte runde Aggregate mit einem Durchmesser bis 5 cm. Diese sind ungleichmäßig im Gestein verteilt und durch Kataklase zerbrochen. In den Porphyroklasten können Einlagerungen grüner Minerale vorkommen (z. B. Chlorit).

Neben Granat ist reichlich Cordierit enthalten, sowohl in den feinkörnigen, dunklen und biotitreichen Bereichen (Matrix aus Biotit, Quarz und Feldspat), als auch „schwimmend“ in den Leukosomen. Cordierit ist grau, idealerweise bläulich-grau getönt und – im Gegensatz zu den quarzhaltigen Partien – von dunklen Glimmerplättchen durchsetzt. Das Erkennen von Cordierit in Metamorphiten setzt einige Übung voraus, s. kristallin.de. Abb. 13-15 zeigt sehr schön das Erscheinungsbild von Cordierit in einem Cordierit-Gneis.

Optional kann Sillimanit enthalten sein, entweder fein verteilt und makroskopisch kaum erkennbar oder in Form weißer bis silbrig-grauer und feinfaseriger Aggregate. Ein sillimanitreicher Geschiebetyp (Granat-Cordierit-Sillimanit-Gneis) wird weiter unten separat vorgestellt.

Gemäß den international empfohlenen Nomenklaturregeln lassen sich Metamorphite nach Textur-Merkmalen, Mineralbestand oder dem Ausgangsgestein benennen (FETTES & DESMONS 2007). Für unseren Geschiebetyp ergeben sich daher mehrere mögliche Bezeichnungen: „Migmatischer Paragneis“ (Textur), „Granat-Cordierit-Gneis“ (Mineralbestand) oder auch „Meta-Grauwacke“ (mögliches Ausgangsgestein). Daraus lässt sich das Wort-Ungetüm „migmatitischer Granat-Cordierit-Paragneis vom Sörmland-Typ“ zusammensetzen, eine präzise, aber unhandliche Bezeichnung. In Schweden heißt das Gestein (zusammen mit ähnlichen Metasedimenten ohne Granat und Cordierit) schlicht „Sörmland-Adergneis“. Der Gesteinstyp wird in VINX 2016: 118-120 beschrieben. Siehe auch MÖLLER & APPEL 2016, ALTENBURG 2011. HESEMANN 1975: 21 und ZANDSTRA 1988: 204 erwähnen das Gestein nur kurz, SMED P & EHLERS J 2002 führt es gar nicht auf.

2. Entstehung und Herkunft

Das Sörmland-Becken ist ein Teil des svekofennischen Orogens, das sich ungefähr in einem Dreieck zwischen den Städten Stockholm, Västerås und Norrköping erstreckt. In diesem Gebiet finden sich überwiegend graue Metasedimente (Paragneise), hervorgegangen aus Grauwacken und tonigen Sedimenten, die vor etwa 1,9 Ga in einem Meeresbecken zwischen einem Inselbogen und einem Kontinent abgelagert wurden. Während der Akkretion des Inselbogens vor etwa 1,77-1,83 Ga erfolgte die Subduktion und Metamorphose der Sedimente in einer Tiefe von etwa 10-20 km (Andersson 1991). Gleichzeitig kam es zum Aufstieg von Graniten (Stockholm-Granittyp), verbunden mit einer Aufarbeitung und Migmatisierung der Metasedimente. Granat, Cordierit und Kalifeldspat sind metamorphe Neubildungen in Al- und K-reichen Metapeliten unter Bedingungen der oberen Amphibolit- bis unteren Granulitfazies. Vorkommen von Granat-Cordierit-Gneisen scheinen im Sörmland-Becken nur eine begrenzte Ausdehnung zu besitzen, ebenso granatführende Gneise oder Cordierit-Gneise. Ein großer Teil der Metasedimente sind migmatitische Quarz-Feldspat-Gneise ohne signifikante Mengen an Granat oder Cordierit.

Granat-Cordierit-Gneise vom Sörmland-Typ finden sich mitunter gehäuft in ostschwedischen Geschiebegesellschaften, zusammen mit Vänge-, Uppsala- und Sala-Granit. Die graue Signatur in der Übersichtskarte (Abb. 4) zeigt die Verbreitung von Meta-Grauwacken, Meta-Argilliten und Paragneisen im Sörmland-Becken. Innerhalb dieses Gebietes, das für ein mögliches Leitgeschiebe eine respektable Ausdehnung besitzt, ist mit Vorkommen von Granat-Cordierit-Gneisen und den weiter unten vorgestellten Varianten mit viel Sillimanit zu rechnen.

Kleinere Vorkommen ähnlicher Gesteine finden sich nördlich von Gävle im Bottnischen Becken (Andersson et al 2006: 679-697). Granatführende Paragneise (ohne Cordierit) kommen auch weiter nördlich vor: ein riesiges Becken mit Metasedimenten verläuft von Westfinnland aus quer durch die Bottensee bis in die Mitte Nordschwedens (pers. Mitteilung M. Bräunlich, s. Probe aus diesem Gebiet in Abb. 9). Aus dem Schärengarten von Turku in Südfinnland sind granatführende Paragneise (auch Granat-Cordierit-Gneise?) bekannt. Spielen Geschiebe vom finnischen Festland in Norddeutschland auch nur eine sehr untergeordnete Rolle, ist unklar, ob sich diese Vorkommen am Grund der Ostsee nach Westen fortsetzen bzw. weitere Unterwasser-Vorkommen mit Granat-Cordierit-Gneisen existieren.

Abb. 4: Verbreitung von Meta-Grauwacken, Meta-Argilliten und Paragneisen in Sörmland (mögliches Verbreitungsgebiet der Granat-Cordierit-Gneise), graue Signatur. Im Text genannte Fundlokalitäten sind gelb markiert. Karte nach STEPHENS et al 2009.

3. Anstehender Sörmlandgneis

Bisher liegen nur wenige Vergleichsproben von Sörmland-Gneisen mit Granat und Cordierit vor (s. a. skan-kristallin.de). Die folgenden Proben stammen von der Insel Oaxen, wo der Sörmland-Gneis als Umgebungsgestein eines Marmorvorkommens gut aufgeschlossen ist (Lok. 1).

Abb. 5: Anstehender grauer Paragneis auf der Insel Oaxen; große Linse eines Leukosoms aus Feldspat und Quarz, umgeben von einem dunklen Melanosom. Höhe am rechten Bildrand ca. 3 m.
Abb. 6. Granat-Cordierit-Paragneis (Sörmland-Gneis), Block mit frischer Bruchfläche aus einer Uferbefestigung auf der Insel Oaxen.
Abb. 7: Handstück von der gleichen Lokalität, Aufnahme unter Wasser. Bläulicher Cordierit ist u. a. rechts der Bildmitte in den feinkörnigen Gneispartien erkennbar.
Abb. 8: Weitere Probe von der gleichen Lokalität mit rotem Granat sowie graublauem Cordierit in den dunklen und feinkörnigen Gneispartien. Die cordierithaltigen Partien sind von feinen Glimmerplättchen durchsetzt. Im grobkörnigen Leukosom ist zusätzlich bläulicher Alkalifeldspat (perthitische Entmischung) und bläulicher Quarz enthalten.

Die nächste Probe ist ein grauer und migmatischer Paragneis mit Granat (augenscheinlich ohne Cordierit) aus Nordschweden.

Abb. 9: Granatführender Paragneis (ohne Cordierit), Anstehendprobe von Hudiksvall, östlich vom See Dellen (Lok. 2). Foto: M. Bräunlich, kristallin.de.

4. Weitere Paragneise aus Sörmland

Auf mehreren Reisen in das Gebiet des Sörmland-Beckens konnte ein kleiner Eindruck von den variantenreichen Paragneisen dieses Gebietes gewonnen werden, im Anstehenden und anhand von Nahgeschieben. Ein größerer Teil der Metasedimente sind Adergneise bis stark migmatitische Gneise aus Biotit, Quarz und Kalifeldspat, die auf den ersten Blick keine größeren Mengen von Granat oder Cordierit enthalten (gewöhnliche Sörmland-Adergneise, Abb. 10,11). Lokal treten auch migmatitische und granatführende Paragneise mit viel weißem Alkalifeldspat (Abb. 12) auf. An einer weiteren Lokalität fanden sich ausschließlich cordierithaltige Gneise (Cordieritgneis, Abb. 13-15). Die mineralische Zusammensetzung der Metasedimente (mit oder ohne Granat und Cordierit) hängt von der Zusammensetzung (Fe- und Mg-Gehalt) der Ausgangsgesteine und dem Grad ihrer metamorphen Umwandlung ab.

Abb. 10: Adergneise und migmatitische Gneise ohne Granat und Cordierit, Nahgeschiebe am Geröllstrand von Skansholmen, S Stockholm (Lok. 3).
Abb. 11: Grauer Sörmland-Adergneis, Nahgeschiebe am Geröllstrand von Skansholmen; Breite 24 cm.
Abb. 12: Paragneis mit Granat-Porphyroblasten und reichlich weißem Kalifeldspat, Aufnahme unter Wasser. Abschlag von einem großen Block aus der Uferbefestigung am Campingplatz Skansholmen (Lok. 3).

5. Cordieritgneis von Flen

Cordieritgneise kommen verbreitet im nordischen Grundgebirge vor. Geschiebefunde lassen sich keiner näheren Herkunft zuordnen. Die folgenden Proben aus der Nähe von Flen stammen aus einem Kiesabbau, in dem gleichzeitig anstehender Cordieritgneis in einem Steinbruch abgebaut wurde (Lok. 4). Solche kombinierten Lagerstätten sind in Schweden häufiger anzutreffen, wenn die glazialen Deckschichten über dem kristallinen Grundgebirge nur eine geringe Mächtigkeit aufweisen.

Abb. 13: Cordieritgneis aus einem Steinbruch bei Flen. Das Gestein enthält neben weißem Feldspat und Biotit große Mengen an bläulichem Cordierit.
Abb. 14: Nahaufnahme unter Wasser. Die bläulichen Cordierit-Partien sind von feinen Biotit-Plättchen durchsetzt.
Abb. 15: Nahaufnahme, nasse Bruchfläche.
Abb. 16: In der Kiesgrube fanden sich große Nahgeschiebe von Adergneisen und Cordieritgneisen, aber keine granathaltigen Metasedimente. Das Bild zeigt einen grobkörnigen Paragneis mit größeren Mengen an bläulichem Cordierit (Breite 29 cm).

6. Geschiebefunde vom Sörmland-Typ

Die nächsten Bilder zeigen Geschiebe von Granat-Cordierit-Paragneisen aus Norddeutschland. Als Sörmland-Typ können die Adergneise bis migmatitischen Gneise in Abb. 1-3, 17 und 20-21 angesehen werden. Sie dürften teilweise, möglicherweise aber nicht ausschließlich aus dem Sörmland-Becken stammen.

Abb. 17: Migmatitischer Granat-Cordierit-Gneis vom Sörmland-Typ. Graublauer Cordierit findet sich in der Nähe der Granatkörner und innerhalb der biotitreichen Partien. Polierte Schlifffläche eines Geschiebes im Findlingspark Nochten (Niederlausitz).
Abb. 18: Migmatitischer Paragneis, Großgeschiebe aus dem Tagebau Welzow-Süd, Findlingslager Steinitz bei Drebkau (Niederlausitz). Breite 56 cm.
Abb. 19: Nahaufnahme der nassen Oberfläche. Farblose bis hellgraue und von Biotit durchsetzte Partien deuten auf Cordierit hin.
Abb. 20. Granat-Cordierit-Paragneis, Kiesgrube Penkun (Brandenburg); schwach bläulich-graue Cordierit-Partien sind mit Biotit durchsetzt.
Abb. 21: Paragneis mit Granat und grauem Cordierit; Aufnahme einer Bruchfläche unter Wasser. Kiesgrube Teschendorf bei Oranienburg.
Abb. 22: Feinkörniger Adergneis mit großen Granat-Porphyroblasten; Cordierit ist nicht erkennbar. (Findlingslager Steinitz bei Drebkau, Niederlausitz).
Abb. 23: Granat-Cordierit-Gneis, Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 24: Gleicher Stein, polierte Schnittfläche. Die Granate weisen teilweise sechseckige Umrisse und nur geringe Spuren einer Kataklase auf.
Abb. 25: Nahaufnahme; dunkle Partien mit blaugrauem Cordierit.
Abb. 26: Grünlicher Granat-Cordierit-Gneis, Aufnahme unter Wasser. Kiesgrube Hoppegarten bei Müncheberg.
Abb. 27: Nahaufnahme. Neben etwas graublauem Cordierit sowie Biotit sind größere Mengen eines grünen und glimmerähnlichen Minerals enthalten (vermutlich Chlorit als Alterationsprodukt von Cordierit).

7. Granat-Cordierit-Sillimanit-Paragneis

Ein eher seltener Geschiebefund sind Gneise vom Sörmland-Typ, die neben Granat und Cordierit weiße oder silbrig-graue und feinfaserige Aggregate von Sillimanit in bedeutender Menge enthalten. MÖLLER & APPEL 2016 beschreiben einen Geschiebefund von der Eckernförder Bucht, rekonstruieren seine Metamorphosegeschichte anhand mikroskopischer Untersuchungen und diskutieren eine mögliche Herkunft aus dem Sörmland-Becken. Die Paragenese aus Kalifeldspat, Cordierit und Sillimanit ist kennzeichnend für eine granulitfazielle Metamorphose (750 Grad, 4,5-5,5 Kbar). Damit lässt sich das mögliche Herkunftsgebiet dieses Gneis-Typs auf eine etwa 150 x 70 km große Fläche in Sörmland einschränken, nach Ansicht der Autoren ein zu großes Gebiet für ein Leitgeschiebe.

Das von MÖLLER & APPEL 2016 beschriebene Geschiebe enthält rosarote, linsenförmige und xenomorphe Porphyroblasten von Granat, die größer sind als alle anderen Minerale. Die Porphyroblasten enthalten Einlagerungen von grünlichem Chlorit, besitzen einen hellen Saum von Feldspat oder Cordierit und werden von Partien mit Sillimanit und Biotit „umflossen“. Sillimanit ist eng mit Biotit verwachsen und kommt in zwei Generationen vor: fibrolithisch und in Gestalt dickerer Nadeln.

Abb. 28: Migmatitischer Granat-Cordierit-Paragneis mit länglichen und faserigen Aggregaten von weißem bis dunkelgrauem Sillimanit. Kiesgrube Teschendorf bei Oranienburg (Brandenburg), Aufnahme unter Wasser.
Abb. 29: Grauer Granat-Cordierit-Sillimanit-Paragneis. Kiesgrube Althüttendorf (Brandenburg), Aufnahme unter Wasser.
Abb. 30: Gleicher Stein, Anschnitt eines grobkörnigen Leukosoms mit rotem Granat und graublauem Cordierit.
Abb. 31: Nahaufnahme der feinkörnigen Matrix mit parallel orientierten Aggregaten aus faserigem Sillimanit und schwach graublauem Cordierit.

8. Verzeichnis der Lokalitäten

Lok. 1: Insel Oaxen; Sörmland-Gneis in der Umgebung des Marmorvorkommens; Anstehendprobe aus dem NW der Insel (etwa 58.974057, 17.711479).

Lok. 2: Hudiksvall; Baustelle E vom See Dellen (etwa 61.716382, 17.049936).

Lok. 3: Skansholmen, S Stockholm: Nahgeschiebe; Uferbefestigung aus Granatgneis am Campingplatz (59.04647, 17.69313).

Lok. 4: Kiesgrube und Steinbruch SW von Flen; Nahgeschiebe und anstehender Cordieritgneis (59.015037, 16.583747).

9. Literatur

ALTENBURG H-J 2011 Findling Trissow – Neubrandenburger Geologische Beiträge 11 (2011) S. 9-16; Geowissenschaftlicher Verein Neubrandenburg.

ANDERSSON UB 1991 Granitoid episodes and felsic magma interactions in the Svecofennian of the Fennoscandis Shield, with main emphasis on the ca. 1,8 Ga plutonics – Precambrian Research 51: 127-149, 9 Abb., Amsterdam.

ANDERSSON UB et al 2006 Multistage growth and reworking of the paleoproterozoic crust in the Bergslagen area, southern Sweden: evidence from U-Pb geochronology – Geol. Mag. 143 (5): 679-697, 4 Abb., Cambridge.

FETTES DJ, DESMONS J 2007 Metamorphic rocks a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks – Cambridge University Press.

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – GLA Nordrhein-Westfalen.

KOPP G, THOMSEN K-H & HALFMANN B o. J. [um 2008] Findlingsgarten Tarp ; Steinreiches Tarp – Faltblatt: (6 S.), 5 farb. Abb., 1 Tab., Tarp (Druckzentrum Tarp). [Tarp (Bl. 1322 Eggebek) südlich von Flensburg; Findlingsgarten zwischen Flensburg und Schleswig mit 72 Findlingen überwiegend aus der Kiesgrube e Oeversee (1323 Ulsby); am Rande des Treenetals und unweit einer Insel saalezeitlicher Altmoräne; Fröruper Berge im Osten als Teil der weichselzeitlichen Endmoräne; u. a. Sörmlandgneis; Paläoporellenkalk mit 18 t (Harder Schneeball), Kiskelund-Gestein]

MAGNUSSON NH 1934 Nagrå åldersförhållanden inom det mellansvenska urberget – Geologiska Föreningens i Stockholm Förhandlingar 56 (1): 65-76, Stockholm.

MAGNUSSON NH 1950 The origin of the Sörmland gneisses, International Geological Congress, 18. session, 19.

MAGNUSSON NH 1970 The origin of the iron ores in central Sweden and the history of their alterations – Part 1: Text – Sveriges Geologiska Undersökning, Avhandlingar och uppsatser C 643 [Årsbok 63 (6)]: 127 S., unnum. Tab. + separat. Bd. (293 Abb. + Index), Stockholm. Sörmland-Gneis

MÖLLER S & APPEL P 2016 Granat-Cordierit-Sillimanit-Gneis (Sörmland-Granatgneis) von der Eckernförder Bucht- ein Leitgeschiebe? – Der Geschiebesammler 49 (1) 15-37; 10 Abb., 1 Tab., Wankendorf.

RUDOLPH F 2017 Das große Buch der Strandsteine ; Die 300 häufigsten Steine an Nord- und Ostsee – 300 S., zahlr. farb. Abb., Neumünster (Wachholtz Murmann Publishers), Sörmland-Gneis 42 + 43 + 194.

RUDOLPH F, BAYER B, BARTHOLOMÄUS W & LOGA S VON 2015 Steine an Fluss, Strand und Küste sammeln und bestimmen – Kosmos Naturführer: 221 S., 247 Farb-Fot., 8 Übersichts-Ktn., 1 geol. Zeittafel, Stuttgart (Franckh-Kosmos Verlags-GmbH & Co. KG.), ISBN 978-3-440-13531-0. Sörmland-Gneis /Granat-Gneis S. 75.

SMED P & EHLERS J 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage (2002).

STEPHENS M B, RIPA M, LUNDSTRÖM I, PERSSON L, BERGMAN T, AHL M, WAHLGREN C-H, PERSSON P-O, WICKSTRÖM L Synthesis of the bedrock geology in the Bergslagen region, Fennoscandian Shield, south-central Sweden – Sveriges geologiska undersökning Ba 58, 259 S., Uppsala 2009; ISBN 91-7158-883-8.

STÅLHÖS G 1962 Nya synpunkter på Sörlandsgnejsernas geologi med särskild hänsyn till Stockholmstrakten [Aspects of the Sörmland gneisses in Eastern Sweden]. – Sveriges Geologiska Undersökning C587 [Årsbok 56 (3)]: 137 S., 25 Abb., 1 Falt-Taf. (Kte.), Stockholm.

VINX R 2008 Gesteinsbestimmung im Gelände – 2. erweit. Aufl., XI+469 S., 4 S/W-Taf., 399 Abb.(davon 390 in Farbe), 14 Tab., 5 Kästen, München (Spektrum, Akademischer Verl.). Migmatitischer Paragneis mit dem Lokalnamen Sörmland-Gneis von NW-Mecklenburg mit Herkunft Södermanland in SE-Schweden Foto-Abb. 10.8.

VINX R 2016 Steine an deutschen Küsten ; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.), ISBN 978-3-494-01685-6. Sörmlandgneis; Sörmlandgneis-Findling von Naturdenkmal Liether Kalkgrube in Klein-Nordende bei Elmshorn Abb. 113; Sörmlandgneis als Insel Mörkö s Södertälje Abb. 114.

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).

Lamprophyre

Abb. 1: Schonen-Lamprophyr, basaltähnliches Gestein mit orangebraunen Olivin- und schwarzgrünen Pyroxen-Einsprenglingen. Geschiebe von der Halbinsel Wustrow bei Rerik.
Abb. 2: Nahaufnahme
  1. Allgemeines
  2. Schonen-Lamprophyr
  3. Weitere Vorkommen
  4. Lamprophyre und Alkalivulkanite südlicher Herkunft
  5. Literatur

1. Allgemeines

Lamprophyre bilden eine eigenständige Gesteinsgruppe dunkler und basaltähnlicher Ganggesteine unter den Alkaligesteinen. Die Bezeichnung (lamprós griech. hell, glänzend) verweist auf die glänzenden Kristallflächen großer Amphibol- oder Biotit-Einsprenglinge auf der Bruchfläche (Abb. 21). Nur porphyrische Varianten sind auch mit einfachen Mitteln als Lamprophyre erkennbar. Die Grundmasse der Gesteine ist feinkörnig, neben Biotit und/oder Amphibol können Pyroxen oder Olivin als Einsprengling auftreten. Olivin besitzt eine grüne, im alterierten Zustand eine gelbliche bis rötlichbraune Färbung. Lamprophyre reagieren auf einen Handmagneten und enthalten in der Regel einige mit weißen Sekundärmineralen (Kalzit, Zeolithe) verfüllte Blasenhohlräume (sog. Ocelli). Feldspat- und Quarz-Einsprenglinge kommen nicht vor.

Die Gesteine werden in großer Tiefe aus Mantelschmelzen gebildet und steigen in der Spätphase von Intrusionen als Gänge auf, z. B. in Alkaligesteinsvorkommen, aber auch als Begleiter von Granitplutonen. Die einst unüberschaubare Fülle von Lokal- und Spezialbezeichnungen für Lamprophyre und andere Alkaligesteine wurde weitgehend durch eine Klassifikation nach ihrer mineralogischen Zusammensetzung obsolet (DARRELL 2008). Dabei spielt die Zusammensetzung der Grundmasse eine wichtige Rolle, die aber nur durch Laboruntersuchungen ermittelbar ist:

  • Kersantit: Biotit-Hornblende-Augit-Lamprophyr. In der Grundmasse überwiegt Plagioklas über Orthoklas.
  • Minette: Biotit-Hornblende-Augit-Lamprophyr. In der Grundmasse überwiegt Orthoklas über Plagioklas.
  • Spessartit: Hornblende-Augit-Lamprophyr; Grundmasse: Plagioklas > Orthoklas.
  • Vogesit: Hornblende-Augit-Lamprophyr; Grundmasse: Orthoklas > Plagioklas.
  • Sannait: Amphibol-Augit-Olivin-Biotit-Lamprophyr; Grundmasse: Orthoklas > Plagioklas; Foide treten nur untergeordnet auf.
  • Camptonit: Amphibol-Augit-Olivin-Biotit-Lamprophyr; Grundmasse: Plagioklas > Orthoklas; Foide treten nur untergeordnet auf.
  • Monchiquit: Amphibol-Augit-Olivin-Biotit-Lamprophyr, glasige Grundmasse oder ausschließlich Foide in der Grundmasse.

Neben den Lamprophyren existieren weitere alkalireiche Gesteinsgruppen mit einer eigenen Klassifikation (Lamproite, Kimberlite, Melilithite). Als Geschiebe spielen diese Gesteinsgruppen keine Rolle. Früher wurden einige Gesteine zu den Lamprophyren gezählt, z. B. der Alnöit (ultramafischer Lamprophyr, heute zu den melilithführenden Gesteinen gerechnet). Der Damtjernit aus dem Fen-Gebiet (Abb. 8), einst als Kimberlit bezeichnet, ist ein melanokrater Nephelin-Lamprophyr.

Lamprophyre sind ein seltener Geschiebefund. Der bekannteste Vertreter, der Schonen-Lamprophyr (Abb. 1-5), kann lokal gehäuft auftreten. Er besitzt einen Doppelgänger südlicher Herkunft, der als Flussgeröll aus Nordböhmen oder Sachsen nach Norden transportiert wurde und in Brandenburg und Sachsen gefunden wird (Abb. 13-19). In Gebieten mit viel Gesteinsmaterial aus dem Oslo-Graben bestehen Fundmöglichkeiten für Lamprophyre (u. a. Camptonit, Abb. 6-7).

2. Schonen-Lamprophyr

Das basaltähnliche und schwere Gestein besitzt eine feinkörnige Grundmasse und enthält Einsprenglinge von grünlich-schwarzem Pyroxen und hellgrünem Olivin bzw. gelblichbraunen bis rotbraunen Olivin-Relikten. Darüber hinaus finden sich regelmäßig mit weißen Sekundärmineralen gefüllte Blasenhohlräume. Eine feinporphyrische Variante mit 2-5 mm großen Einsprenglingen ist als Geschiebe bedeutend häufiger zu finden als der grobporphyrische Typ (Einsprenglinge über 1 cm). Eine alternative, am Mineralbestand orientierte Bezeichnung für alkalibasaltische Gesteine mit einem hohen Gehalt an Olivin- und Pyroxen-Einsprenglingen ist Ankaramit. Schonen-Lamprophyre können gehäuft an Lokalitäten mit einem hohen Anteil an Schonen-Basaniten zu finden sein (z. B. am Geröllstrand von Steinbeck/Klütz).

Abb. 3: Schonen-Lamprophyr, feinkörniges basaltähnliches Gestein mit Einsprenglingen von Pyroxen (schwarz) und Olivin (gelblichbraun, grün) sowie weißen Hohlraumfüllungen mit Sekundärmineralen. Polierte Schnittfläche, Geschiebe von Steinbeck (Klütz).
Abb. 4: Nahaufnahme der polierten Schnittfläche: Einsprenglinge von schwarzgrünem Pyroxen und Olivin, teils als gelblichbraunes Umwandlungsprodukt, teils unverändert und grün.

Die Gesteine bilden gangförmige Vorkommen in Zentral-Schonen, entstanden im Perm und Karbon und gehören zum Gangschwarm der NW-Dolerite. Anstehendproben liegen aus dem Steinbruch Torpa Klint (Abb. 5) und der Gegend von Tolånga vor. Nach OBST 1999 handelt es sich dabei um Camptonite, basaltische Camptonite und Olivin-Basalte mit einer für Lamprophyre typischen geochemischen Signatur. Weitere Funde sind auf skan-kristallin.de abgebildet.

Abb. 5: Schonen-Lamprophyr, polierte Schnittfläche einer Anstehendprobe aus dem Steinbruch Torpa Klint (Schonen). In einer feinkörnigen Grundmasse liegen große Einsprenglinge von Pyroxen, kleinere braune Körner von Olivin und Mandeln mit weißen Sekundärmineralen. Bild aus skan-kristallin.de.

3. Weitere Vorkommen

Die Vulkanite und Plutonite des Oslograbens werden von alkalischen Ganggesteinen und Lamprophyren begleitet (Camptonit, Jacupirangit, Madeirit, Tinguait u. a., s. BRØGGER 1932, skan-kristallin.de). Fundmöglichkeiten für solche Gesteine bestehen an Lokalitäten mit viel Oslo-Material, aber auch dort sind sie aufgrund der geringen Ausdehnung der Vorkommen ein seltener Fund. Schwierigkeiten dürften sich bei der Bestimmung und Unterscheidung der verschiedenen, meist feinkörnigen Alkaligesteine ergeben.

Einige Oslo-Augit-Basalte, mit oder ohne Plagioklas-Einsprenglingen, enthalten neben gedrungenen Pyroxen-Einsprenglinge oftmals auch rotbraunen Olivin sowie Kalzit-Mandeln (Beschreibung in JENSCH 2014). Auch melanit- bzw. andraditführende Ankaramite treten im Westen des Oslo-Rifts auf (JENSCH 2014, SEGALSTAD 1979: 224). Von Vestby ist ein Lamprophyr mit Orbiculargefüge bekannt (BRYHNI & DONS 1975).

Unter Vorbehalt erkennbar, wahrscheinlich aber kein Leitgeschiebe, sind porphyrische und einsprenglingsreiche Varianten des Camptonits (Abb. 6-7). Das feinkörnige Gestein besitzt eine graue bis grünlichgraue angewitterte Außenseite und eine schwarz bis violettschwarz getönte Bruchfläche. Reichlich schwarzer und idiomorpher Pyroxen und/oder Alkaliamphibol treten als wenige mm bis 1 cm große Einsprenglinge auf. Zusätzlich finden sich weiße Mandeln mit Sekundärmineralen sowie einige Plagioklasleisten bis 5 mm Länge, die infolge magmatischer Korrosion häufig abgerundet sind (Beschreibung nach ZANDSTRA 1988: 400, Anstehendproben auf skan-kristallin.de).

Abb. 6, 7: Camptonit, angewitterte Außenseite und Bruchfläche; Maena (Norwegen), Westfuß von Brandberget, Kirchspiel Brandbu, leg. Finckh 1906; Sammlung der BGR in Berlin/Spandau.

Der folgende Geschiebefund ist ein feinkörniger basischer Vulkanit mit vereinzelten schwarzen Pyroxen-Einsprenglingen und weißen Mandeln. In der Grundmasse sind zahlreiche nadelförmige dunkle Minerale erkennbar. Sollte es sich hierbei um Ägirin (Na-Fe-Pyroxen) handeln, weist dies auf einen Alkalivulkanit hin, ebenso der Olivin-Pyroxen-(Mantel?-)Xenolith in der Bildmitte Abb. 9. Die Herkunft des Gesteins ist unklar, möglicherweise stammt es aus dem Oslograben. Für eine nähere Gesteinsbestimmung bedarf es eines Dünnschliffs.

Abb. 8: Alkalivulkanit mit schwarzen Pyroxen-Einsprenglingen und weißen Mandeln. Geschiebe von Hökholz.
Abb. 9: Nahaufnahme, Peridotit(?)-Xenolith aus Olivin und Pyroxen.

Aus dem südöstlichen Fen-Gebiet (Telemark), westlich des Oslo-Grabens, beschreibt BRÖGGER 1921 den Damtjernit, ein melanokrater Nephelin-Lamprophyr (Abb. 10, Proben auf skan-kristallin.de). Der Alkalivulkanit besitzt eine grünlichgraue und karbonatreiche, teilweise brekziöse Grundmasse und enthält bis cm-große Phlogopit-Einsprenglinge. Geschiebe aus dem Fen-Gebiet dürften nur ausnahmsweise nach Süden gelangt sein.

Abb. 10: Damtjernit, Bjørndalen, Wasserturm, Exk. Bräunlich 2012, Sgl. Figaj. Bild aus skan-kristallin.de.

In Nordschweden (Luleå/Kalix) treten Lamprophyre als Begleiter von Doleritgängen der zentralskandinavischen Doleritgruppe auf (KRESTEN et al 1997). Die Gesteine besitzen eine karbonatreiche Grundmasse, enthalten Glimmer-Einsprenglinge und ähneln möglicherweise dem Alnöit. Weitere Lamprophyr-Vorkommen nennen WAHLGREN et al 2015 (Idefjorden-Terran, West-Schweden), LUNDEGARDH 1998: 184 (Värmland), HEDSTRÖM 1917 (Kartenblatt Eksjö, Småland) und LINDBERG & BERGMANN 1993 (Finnland, Vehmaa). ECKERMANN 1928 beschreibt einen Geschiebefund eines Hamrongits (= Kersantit) aus der Umgebung von Gävle. Das anstehende Vorkommen konnte bisher nicht lokalisiert werden.

4. Lamprophyre und Alkalivulkanite südlicher Herkunft

Im Gebiet südlich von Berlin, im südlichen Brandenburg und in Sachsen finden sich Alkalivulkanite südlicher Herkunft (Tephrite, Basanite, Phonolithe) als Beimengung zu nordischen Geschieben. Die Gesteine wurden mit der sog. Berliner Elbe zwischen Elster- und Saalevereisung, wahrscheinlich mittels Eisschollendrift, aus ihren südlichen Herkunftsgebieten nach Norden transportiert. Das größte Vorkommen im Einzugsbereich der Elbe ist das Böhmische Mittelgebirge, kleinere Vorkommen existieren in Sachsen. Neben den genannten Alkalivulkaniten kommen dort auch zahlreiche Ganggesteine, u. a. Lamprophyre vor (ULRYCH et al 1993, 2000, 2014, ABDELFADIL 2013).

Aus dem Berliner Raum liegen zahlreiche Funde sowohl lamprophyrähnlicher (Abb. 11-12), als auch ankaramitischer, dem Schonen-Lamprophyr (Abb. 13-20) ähnlicher Gesteine mit Pyroxen- und Olivin-Einsprenglingen vor. Sie stammen ausnahmslos von Lokalitäten, an denen vermehrt auch andere südliche Alkalivulkanite vorkommen. Mit dem Schonen-Lamprophyr assoziierte südschwedischen Geschiebe wie Karlshamn-Granit, Schonen-Basanit oder Bornholm-Granite fehlen an diesen Lokalitäten. In Südbrandenburg, in entsprechenden Kiesgruben mit Elbe-Material, sind diese Ankaramite ebenfalls regelmäßig zu finden. Der Schonen-Lamprophyr kann in Gebieten, in denen auch Elbgerölle auftreten, vor allem südlich von Berlin, nicht als Leitgeschiebe verwendet werden.

Abb. 11: Lamprophyrähnliches Gestein mit hellgrauer und feinkörniger Grundmasse, großen Dunkelglimmer- sowie kleinen Pyroxen- und Olivin-Einsprenglingen. Kiesgrube Horstfelde, südlich von Berlin; D. Lüttich leg.
Abb. 12: Bruchfläche des gleichen Steins. Das Gestein ist von Klüften mit feinkörnigen grünen und weißen Sekundärmineralen (u. a. Calcit) durchzogen.
Abb. 13: Olivin- und pyroxenreicher Alkalivulkanit (Ankaramit), Elbgeröll. Kiesgrube Horstfelde südlich von Berlin.
Abb. 14: Nahaufnahme. Die Olivin-Einsprenglinge sind durchweg grün gefärbt und wurden offensichtlich kaum umgewandelt.
Abb. 15: Einsprenglingsreicher Alkalivulkanit mit Olivin- und Pyroxen-Einsprenglingen sowie weißen Mandeln. Kiesgrube Niederlehme bei Berlin.
Abb. 16: Grob porphyrischer ankaramitischer Alkalivulkanit mit großen Einsprenglingen von Pyroxen (grün) und Olivin (orangerot) sowie weißen Mandeln. Kiesgrube Horstfelde.
Abb. 17: Polierte Schnittfläche
Abb. 18: Die Nahaufnahme zeigt einen siebartig durchsetzten grünen Pyroxen-Einsprengling.
Abb. 19: Nahaufnahme der typischen und alterationsbedingten Maschentextur des orangefarbenen Olivins.
Abb. 20: Ankaramitischer Alkalivulkanit, als Nephelinbasanit bezeichneter Fund von Mühlenbeck, N Berlin, leg. W. Bennhold, Juni 1931 (Beschreibung in HESEMANN 1933). Der Fundort liegt außerhalb des Berliner Elbelaufs, weder eine nordische noch südliche Herkunft lässt sich diesem Gestein sicher zuschreiben.

Das letzte Bild zeigt eine Anstehendprobe, diesmal aus Ostsachsen, einen Kontakt zwischen einem Lamprophyr mit großen Glimmer-Einsprenglingen und einem Granodiorit.

Abb. 21: Kontakt zwischen Lamprophyr und Granodiorit. Steinbruch Klunst bei Ebersbach (Oberlausitz).

5. Literatur

DARRELL H 2008 A Web Browser Flow Chart for the Classification of Igneous Rocks: Classification of lamprophyres (en) – Louisiana State University. Link.

ABDELFADIL M K 2013 Geochemistry of Variscan lamprophyre magmatism in the Saxo-Thuringian Zone – Doctoralthesis, Universität Potsdam 2013.

BRØGGER WC 1921 Die Eruptivgesteine des Kristianiagebietes IV. Das Fengebiet in Telemark, Norwegen – Videnskaps-Selskabets Skrifter (I) Matematisk-Naturvidenskapelig Klasse 1921 (9): VIII+408 S., 30 Taf., 46 Abb., 2 geol. Ktn. i. Anl., Kristiania (Oslo).

BRØGGER WC 1932 Die Eruptivgesteine des Oslogebietes VI. Über verschiedene Ganggesteine des Oslogebietes. Skr. Norske Videns.-Akad. i Oslo I. Mat.-naturv. Kl. I Nr. 7, 1932.

BRYHNI I & DONS JA 1975 Orbicular lamprophyre from Vestby, southeast Norway – Lithos 8 (2): 113-122, 9 Abb., 2 Tab., Oslo.

ECKERMANN H VON 1928 Hamrongite, a new Swedish alkaline mica lamprophyre – Fennia, Societas Geographica Fenniae 50 (13): 21 S., 10 Abb., Helsinki.

HEDSTRÖM H 1917 Beskrivning till kartanbladet Eksjö – Sveriges Geologiska Undersökning, Kartblad i skalan 1 : 50000 med beskrivningar Aa 129: 107 S., 19 Abb., unnum. Tab., 1 farb. Mini-Kte. im Anh., Stockholm.

JENSCH J-F 2014 Bestimmungspraxis Oslo-Basalte – Der Geschiebesammler 47 (1): 25-36; 15 Abb. – Wankendorf, Feb. 2014.

KRESTEN P, REX D C & GUISE P G 1997 40Ar-39Ar ages of ultramafic lamprophyres from the Kalix area, northern Sweden – Geologische Rundschau 70: 1215-1231.

LINDBERG B & BERGMAN L 1993 Vehmaan kartta-alueen kallioperä – Geological map of Finland 1 : 100.000: 56 S., 24 Abb., 4 Tab. i. Anh., 1 Kte. in Tasche, Espoo.

OBST K 1999 Die permosilesischen Eruptivgänge innerhalb der Fennoskandischen Randzone (Schonen und Bornholm)- Untersuchungen zum Stoffbestand, zur Struktur und zur Genese. – Greifswalder Geowissenschaftliche Beiträge, Heft 7 ; Selbstverlag des Instituts für Geologische Wissenschaften der Ernst-Moritz-Arndt-Universität Greifswald, 1999.

SEGALSTAD TV 1979 Petrology of the Skien basaltic rocks, southwestern Oslo Region, Norway. – Lithos 12: 221-239, 11 Abb., 7 Tab.; Oslo.

ULRYCH J & BALOGH K 2000 Roztoky Intrusive Centre in the Ceské stredohorí Mts.: differentiation, emplacement, distribution, orientation and age of dyke series. – Geologica Carpathica 51/6: 383–397.

ULRYCH J, PIVEC E, ZÁK K, BENDL J & BOSÁK P 1993 Alkaline and ultramafic carbonate lamprophyres in Central Bohemian carboniferous basins, Czech Republic – Mineralogy and Petrology volume 48, S. 65–81.

ULRYCH J, ADAMOVIČ J, KRMÍČEK L & ACKERMAN L & BALOGH K 2014 Revision of Scheumann´s classification of melilitic lamprophyres and related melilitic rocks in light of new analytical data. Journal of Geosciences. 59. 3-22. 10.3190/jgeosci.158.

VINX R 2016 Steine an deutschen Küsten. Finden und bestimmen.- S. 102, Quelle & Meyer.

WAHLGREN C H, PAGE L M, KÜBLER L & DELIN H 2015 40Ar-39Ar biotite age of a lamprophyre dyke and constraints on the timing of ductile deformation inside the Idefjorden terrane and along the Mylonite Zone, Svekonorwegian Orogen, southwest Sweden – GFF 138: 311-319.

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).

Fleckengranite

1. Allgemeine Beschreibung
2. Leitgeschiebe?
3. Stockholm-Fleckengranit
4. Fleckengesteine mit körniger Grundmasse
5. Blekinge-Fleckengranit
6. Geschiebefunde
7. Verzeichnis der Lokalitäten
8. Literatur

1. Allgemeine Beschreibung

Fleckengranite (spotted granite) sind kleinkörnige Plutonite mit einer Fleckentextur. Nicht alle Fleckengesteine mit einer klein- und gleichkörnigen Matrix aus Quarz, Feldspat und Biotit sollten als Fleckengranit bezeichnet werden, auch andere Zusammensetzungen kommen in Frage (z. B. Quarzdiorit). Allerdings können die Mengenanteile an Quarz, Alkalifeldspat und Plagioklas von Hand nur schwer abschätzbar sein.

Unter den Metamorphiten gibt es Gesteine mit einem ähnlichen Erscheinungsbild (Migmatite, Granofelse). Mögliche Anhaltspunkte auf eine metamorphe Entstehungsgeschichte sind eine Lagen- oder Gneistextur, eine inhomogene Grundmasse sowie das Vorhandensein von feinfaserigem Sillimanit oder dunklen Cordieritflecken.

Die Flecken in Fleckengraniten besitzen meist einen zonaren Aufbau aus einer hellen, selten auch roten Randzone aus Feldspat und Quarz und einem dunkleren Kernbereich mit braunem oder rötlichem Titanit und/oder schwarzen Biotitplättchen. Titanit kann an seiner charakteristischen keilförmigen Kristallform erkennbar sein.

Abb. 1: Blekinge-Fleckengranit, Anstehendprobe vom Yasjön im Eringsboda-Massiv (Lok. 4), Aufnahme unter Wasser. Das kleinkörnige Gestein besitzt eine Quarz-Feldspat-Biotit-Matrix und enthält Flecken mit einem zonaren Aufbau. Die Säume bestehen aus Quarz und Feldspat, die roten Kerne aus Titanit und etwas Feldspat.
Abb. 2: Nahaufnahme der nassen Oberfläche.

2. Leitgeschiebe?

Mehrere kleine Vorkommen von Fleckengraniten sind aus dem Stockholm-Gebiet („Stockholm-Fleckengranit“) und aus Blekinge („Blekinge-Fleckengranit“) bekannt. Mit weiteren und bisher nicht entdeckten Vorkommen, möglicherweise auch in anderen Regionen, muss gerechnet werden. Die petrographische Variabilität des Gesteinstyps – kaum ein Geschiebefund gleicht dem anderen – erschwert eine Referenzierung mit den wenigen vorliegenden Vergleichsproben, die allesamt aus Kleinvorkommen stammen. Fleckengranite eignen sich daher nicht als Leitgeschiebe. Auch eine grobe Unterscheidbarkeit von Geschiebefunden nach Herkunft (Stockholm oder Blekinge) ist aufgrund ganz ähnlicher Merkmale wohl kaum möglich.

Die Darstellung des Stockholm-Fleckengranits in der Geschiebeliteratur ist wenig befriedigend. Hesemann 1975: 188-191 nennt neben den Gesteinen aus dem Stockholm-Gebiet weitere „abweichende“ Fleckengranite, die er (methodisch problematisch) von Geschiebefunden aus Norddeutschland ableitet und annimmt, dass sie aus dem gleichen Gebiet stammen. Zandstra 1988: 205 unterscheidet zwei Typen und ordnet ihnen ein größeres Herkunftsgebiet zu („Södermanland und Uppland“). Für den ersten Typ, ein kleinkörniger Fleckengranit, der dem „normalen“ (?) Stockholm-Granit ähnelt, übernimmt er die Beschreibungen von Geijer 1913b. Der zweite Typ ist eine dunklere und feinkörnige Variante, die in Zandstra 1999, Nr. 123 als Migmatit bezeichnet wird. Hier werden also zwei verschiedene Gesteinstypen, Plutonite und Metamorphite, unter der gleichen Bezeichnung zusammengefasst. Feldstudien ergaben, dass dieser zweite Typ nicht im Zusammenhang mit dem Stockholm-Granit steht, sondern im Gebiet von Kolmården, etwa 100 km südwestlich von Stockholm, verbreitet als Geschiebe auftritt (s. Abb. 5).

3. Stockholm-Fleckengranit

Geijer 1913b beschreibt elf anstehende Vorkommen von Fleckengraniten aus dem Gebiet des Stockholm-Granits. Ihre Ausdehnung beträgt wenige bis einige Hundert Quadratmeter. Bis auf eine Lokalität (Almnäs, 30 km SW Stockholm) liegen sie innerhalb des Stadtgebiets von Stockholm. In fast allen Proben ist Titanit das dominierende Mineral in den Kernen der Flecken, Biotit tritt viel seltener auf. Der Titanit ist meist braun und als kompaktes Mineralkorn von max. 3-4 mm Länge oder als schwammartige Masse ausgebildet. Die hellen Säume um die Kerne der Flecken bestehen aus Quarz und Feldspat und können bis 6-7 mm breit werden.

Fleckenbildungen im Stockholm-Granit treten im Abstand von wenigen Metern zum Kontakt mit älteren Gneisen auf (Geijer 1913b). Die Minerale in den Flecken könnten z. B. durch metasomatische Vorgänge aus den Metamorphiten mobilisiert worden sein. Nach Lohberg 1963 sind die Kerne der Fleckengranite postkinematische, dicht unter 500 Grad gebildete Rekristallisationsprodukte als Folge metamorpher Differenzierungen (in Hesemann 1975).

Möller & Stålhös 1969 (Kartenblatt Stockholm SV) nennen zwei Vorkommen von Fleckengraniten innerhalb des Stockholm-Granits. Die Gesteine besitzen 1-3 cm große und runde oder elliptische Flecken mit einer hellroten Randzone aus Quarz und Feldspat und dunklen Kernen aus Biotit, Titanit oder beiden Mineralen.

Abb. 3: Stockholm-Fleckengranit, Anstehendprobe, wahrscheinlich südwestlich vom Thorsvikssvängen, Stockholm, Insel Lidingö (leg. o. A. 1960, Slg. Geozentrum Hannover). Foto aus skan-kristallin.de.

Während mehrerer Exkursionen in das Gebiet zwischen Norrköping und Stockholm konnte ich lediglich ein einziges Fleckengranit-Geschiebe in einer Kiesgrube unmittelbar westlich von Stockholm finden, das aller Wahrscheinlichkeit nach mit dem Stockholm-Granit im Zusammenhang steht (Abb. 4).

Abb. 4: Fleckengranit, Geschiebe aus der Kiesgrube Järna, W von Stockholm (Lok. 2). Die Flecken weisen einen undeutlichen Zonarbau auf, mit einer Randzone aus Feldspat und Quarz und einem unbekannten Mineralgemisch im Kern.

4. Fleckengesteine mit körniger Grundmasse

Graue Fleckengesteine mit einer kleinkörnigen, nicht näher differenzierbaren Grundmasse aus Quarz, Feldspat und Biotit sowie einer Gneistextur, manchmal auch einer kaum erkennbaren Foliation (Streifung, Einregelung der Flecken) konnten vor allem im südlichen Södermanland und östlichen Östergötland, etwa 100 km südwestlich von Stockholm, verbreitet als Geschiebe beobachtet werden. Dabei scheint es sich offenbar um etwas körnigere Varianten der feinkörnigen Fleckengesteine zu handeln, die in diesem Gebiet verbreitet auftreten (vgl. auch Geschiebefunde Abb. 15, 17 und 26 im Artikel Fleckengesteine). Aus der näheren Umgebung von Stockholm liegt lediglich ein Einzelfund dieses Typs  (Abb. 7) vor.

Ein Teil der Funde entspricht dem zweiten Typ in Zandstra 1988, einem dunklen, biotit- und hornblendereichem Metamorphit (migmatitischer Gneis) mit einer Flecken-Struktur (Nr. 123 in Zandstra 1999, auch Rudolph 2017: 214). Die Bezeichnung „Stockholm-Fleckengranit“ für diesen Gesteinstyp dürfte obsolet sein, ebenso der Begriff „Stictolith“ oder stictolithische Textur für Migmatite mit Flecken von Reliktmineralen (Fettes & Desmons 2007).

Flecken von 0,5-3 cm Größe sind annähernd rund bis länglich geformt und liegen regellos im Gestein verteilt oder sind in Reihen angeordnet. Einfache Flecken bestehen meist aus einem Gemenge von Quarz und Feldspat. Zonierte Flecken zeigen einen weißen oder rötlichen Saum aus Feldspat und Quarz um einen dunklen Kern. Der schwarze, graue, rötliche, selten auch grün getönte Kernbereich kann aus einem einzelnen Mineral oder einem Mineralgemisch bestehen, z. B. schwarzen Biotitplättchen (manchmal nur ein einzelnes größeres Korn), grünlich-schwarzen Chloritmineralen oder gelbem, braunem oder rotem Titanit (gelegentlich an seiner keilförmigen Kristallform erkennbar).

Abb. 5: Graues Fleckengestein mit kleinkörniger Grundmasse aus Quarz, Feldspat und Biotit sowie länglichen und zonierten Flecken. Das hellbraune und transparente Mineral im Kern der Flecken könnte Titanit sein, keilförmige Kristallaggregate waren jedoch nicht erkennbar. Geschiebe vom Campingplatz Kolmården (Lok. 1).
Abb. 6: Ähnlicher Geschiebefund von Kolmården (Lok. 1) mit feinkörniger Grundmasse und gelb- bis rötlich-braunem Titanit in den Kernen der Flecken (keilförmige Kristalle erkennbar).
Abb. 7: Ähnlicher Typ eines Fleckengesteins mit einfachen Flecken, einige auch mit rötlichen Kernen; Geröllstrand in Skansholmen, südlich Stockholm (Lok. 3).

5. Blekinge-Fleckengranit

Kleinkörnige Granite mit einer Fleckentextur kommen an mehreren Lokalitäten in Nordost-Blekinge vor (Wiklander 1974: 52f). In der Nähe von Tving, innerhalb des Yasjö-Granits, einer Variante des 1,45 Ga alten Eringsboda-Granits, ist ein etwa 6 m breiter Gang eines Fleckengranits („sphen-spotted granite“) aufgeschlossen. Der etwas jüngere Fleckengranit durchschlägt den Yasjö-Granit und enthält Flecken mit rotem Titanit.

Abb. 8: Blekinge-Fleckengranit, angefeuchtete Anstehendprobe mit frischer Bruchfläche (Lok. 4).

Das hellgraue Gestein (s. a. Abb. 1 und 2) besitzt ein klein- und gleichkörniges Mineralgefüge aus Quarz, Feldspat und Biotit. Die annähernd runden, bis 10 mm großen Flecken besitzen einen zonaren Aufbau aus einer hellen Quarz-Feldspat-Aureole (2-4 mm) und einen roten Kern (3 mm) aus Titanit und etwas Feldspat. Die Ränder der Flecken setzen sich nur unscharf von der Matrix ab.

Abb. 9: Nahaufnahme unter Wasser.

6. Geschiebefunde

Fleckengesteine mit körniger Grundmasse (Korngrößen bis etwa 1 mm) treten als Geschiebe ebenso variantenreich in Erscheinung wie die feinkörnigen Vertreter. Gesteinstypen, die den folgenden Geschiebefunden aus Norddeutschland ähneln, konnten im Gebiet südlich und westlich von Stockholm sowie in Sörmland und Östergötland nicht beobachtet werden.

Abb. 10: Kleinkörniger Fleckengranit, Geschiebefund von Travemünde, E. Figaj leg.

Das Gestein ähnelt dem Geschiebetyp des Stockholm-Granits. Die länglichen Flecken scheinen eine bevorzugte Ausrichtung zu besitzen, während die hellgraue Matrix ein gleichkörnig-richtungsloses Mineralgefüge aufweist.

Abb. 11: Nahaufnahme der zonierten Flecken mit einem weißen Saum aus Quarz und Feldspat und einem dunklen Kern mit Biotit.
Abb. 12: Roter Fleckengranit. Die Matrix enthält roten Alkalifeldspat und Quarz (Mengenanteile nicht abschätzbar) und reichlich dunkle Minerale. Die Randzone der Flecken besteht aus Quarz und Feldspat, der dunkle Kern enthält Biotit und vermutlich Titanit. Nahaufnahme einer polierten Schnittfläche, Geschiebe aus der Kiesgrube Arendsee (Brandenburg).
Abb. 13: Biotitreiches und feinkörniges Fleckengestein mit roten Flecken aus Biotit und Titanit, Aufnahme unter Wasser. Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg.
Abb. 14: Ähnlicher Geschiebetyp aus der Kiesgrube Gusow, Ost-Brandenburg; Aufnahme unter Wasser.

Weitere Abbildungen von Geschiebefunden finden sich auf skan-kristallin.de.

7. Verzeichnis der Lokalitäten

Lokalität 1: Geschiebe Fleckengesteine, Rollsteinstrand am Campingplatz Kolmården; 58.65718, 16.40712.
Lokalität 2: Geschiebe Fleckengranit; aktive Kiesgrube zwischen Järna und Nykvarn; 59.12040, 17.46764.
Lokalität 3: Geschiebe Fleckengestein; Geröllstrand am Campingplatz Skansholmen/S Sandviken; 59.04647, 17.69313
Lokalität 4: Anstehender Blekinge-Fleckengranit; Gang im Eringsboda-Granit, ca. 3,5 km N Tving, am Fahrweg N des Yasjön; 56.33846, 15.48692.

8. Literatur

Fettes DJ & Desmons J 2007 Metamorphic rocks – A classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks – Cambridge University Press.

Geijer P 1913b Zur Petrographie des Stockholm-Granites – GFF 35: 123-150

Hesemann J 1975 Kristalline Geschiebe der nordischen Vereisungen – GLA Nordrhein-Westfalen, S. 188-191.

Loberg B 1963 The Formation of a Flecky Gneiss and Similar Phenomena in Relation to the Migmatite and Vein Gneiss Problem – Geologiska Föreningen i Stockholm Förhandlingar, 85:1, 3-109, Stockholm.

Möller H & Stålhös G 1969 Beskrivning till geologiska kartbladet Stockholm SV. SGU Ae 4, S. 28.

Rudolph F 2017 Das große Buch der Strandsteine – 320 S., zahlr. Abb., Kiel/Hamburg (Wachholz-Verlag – Murmann Publishers).

Wiklander U 1974 Precambrian petrology, geochemestry and age relations of northeastern Blekinge, southern Sweden – Sveriges Geologiska Undersökning (C) Avhandlingar och uppsatser 704 [Årsbok 68 (11)]: 142 S., 59 Abb., 9 Tab., 1 Kte., Uppsala.

Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).

Zandstra J G 1999: Platenatlas van noordelijke kristallijne gidsgesteenten – Backhuys Leiden, Nr. 123 und 124.

Fleckengesteine

1. Allgemeine Beschreibung
2. Funde aus Schweden
2.1. Kolmården
2.2. Sörmland
2.3. Almesåkra-Formation
2.4. Linköping
3. Verzeichnis der Lokalitäten
4. Literatur

Teil 2: Geschiebefunde aus Norddeutschland
Fleckengranite

1. Allgemeine Beschreibung

Fleckengestein ist eine allgemeine Bezeichnung für feinkörnige Metamorphite mit einer Fleckentextur. Die runden bis linsenförmigen und meist ebenfalls feinkörnigen Flecken unterscheiden sich in Farbe und Mineralbestand von der Matrix (Grundmasse). Solche kleinkörnigen lokalen Konzentrationen von Mineralen, die während der Gesteinsumwandlung neu gebildet wurden, nennt man Granoblasten. Fleckentexturen können auch in kleinkörnigen Plutoniten auftreten („Fleckengranite“). Eine grobe Differenzierung von Fleckengesteinen lässt sich anhand der texturellen Merkmale der Matrix vornehmen:

  • Fleckengneis (flecky gneiss): Metamorphite mit einem Gneisgefüge und meist ovalen bis länglichen Flecken (Abb. 1 und 3);
  • Flecken-Granofels: Metamorphite mit richtungslosem Mineralgefüge und runden bis ovalen Flecken (Abb. 2).
  • Flecken-Glimmerschiefer: überwiegend aus Glimmer bestehendes Gestein mit dunklen Flecken (Cordierit, Andalusit), Abb. 4.
  • Fleckengranit (spotted granite): kleinkörniger Granit mit regellos-gleichkörniger Matrix und einer Fleckentextur (Abb. 5); makroskopisch nicht immer sicher von metamorphen Granofelsen unterscheidbar. Die Flecken enthalten häufig Biotit oder Titanit.

Zur genaueren Bezeichnung der Metamorphite können die Texturmerkmale mit dem metamorphen Mineralbestand kombiniert werden, z. B. Cordierit-Granofels (Abb. 2) oder sillimanit-granoblastischer Gneis (Abb. 3).

Metamorphite mit einer Fleckentextur gehen vor allem aus Al-reichen Sedimentiten hervor (seltener auch aus Vulkaniten oder basischen Gesteinen). In Sedimentiten wird unter geeigneten Bedingungen die Bildung von Sillimanit, Andalusit oder Cordierit begünstigt. Die Flecken entstehen unter statischen Metamorphose-Bedingungen, das heißt durch Einwirkung von hohen Temperaturen, ohne maßgebliche Beteiligung von gerichtetem Druck. Häufig dürfte es sich dabei um  kontaktmetamorphe Vorgänge im Rahmen einer Gebirgsbildung handeln, bei denen das Nebengestein (z. B. Gneise, Granofelse, Migmatite) durch einen aufsteigenden Pluton verändert wird. Relativ undeformierte Flecken (Granoblasten) in deformierten Gesteinen (z. B. Gneise) müssen also nach der tektonischen Deformation und der eigentlichen Gebirgsbildung entstanden sein. Kommt erneut mäßiger und gerichteter Druck hinzu, erhalten auch die Flecken eine elliptische oder augenförmige Gestalt. Permanenter gerichteter Druck zerstört die Fleckentextur.

Der Mechanismus der Fleckenbildung in plutonischen Gesteinen („Fleckengranite“) ist nicht vollständig geklärt. Wahrscheinlich handelt es sich um Schmelzen, die in einer Spätphase der Bildung von Granitplutonen entstehen, da die Flecken häufig Titanit als typisch spätmagmatische Ausscheidung enthalten. Fleckengranite sind aus dem Stockholm-Gebiet („Stockholm-Fleckengranit“) und aus Blekinge bekannt. Der Gesteinstyp wird in einem separaten Artikel besprochen.

Abb. 1: Fleckengestein, Strandgeröll von Hökholz bei Eckernförde, Slg. E. Figaj.

Das dunkle und kleinkörnige Fleckengestein besteht aus einer Quarz-Feldspat-Biotit-Matrix und enthält helle Flecken aus Quarz und Feldspat (und sehr wenig Biotit). Wahrscheinlich sind noch weitere Minerale enthalten, von Hand aber nicht bestimmbar. Das Gestein besitzt eine Gneistextur, erkennbar an der Einregelung der Glimmerplättchen in der Matrix (Fleckengneis).

Abb. 2: Metamorphe Fleckengesteine (Flecken-Granofelse), Nahgeschiebe aus dem Västervik-Gebiet (Lok. 1). Links unten ein Västervik-Fleckengestein (Cordierit-Granofels), rechts zwei Västervik-Fleckenquarzite (glimmerführender Quarzit mit Sillimanit-Granoblasten). Links oben ein rotfleckiger Västervik-Quarzit.
Abb. 3: Fleckengneise mit einer Matrix aus Quarz, Feldspat und Biotit sowie länglichen Flecken, teilweise mit feinfaserigem Sillimanit. Nahgeschiebe aus Kolmården in Östergötland (Lok. 2).
Abb. 4: Flecken-Glimmerschiefer („Knoten-Glimmerschiefer“); hauptsächlich aus Glimmer bestehendes Gestein mit dunklen Flecken (Cordierit oder Andalusit). Geschiebe von Altenteil/Fehmarn.
Abb. 5: Blekinge-Fleckengranit, kleinkörniger Plutonit mit einer Quarz-Feldspat-Biotit-Matrix und zoniert aufgebauten Flecken. Der Saum der Flecken besteht aus Quarz und Feldspat, der Kern enthält roten Titanit und Feldspat. Anstehendprobe vom Yasjön in Blekinge, Aufnahme unter Wasser.

Bei der Untersuchung von Fleckengestein-Geschieben mit Lupe oder Bino wird man sich aufgrund der Feinkörnigkeit der Gesteine in vielen Fällen mit einer unvollständigen Mineralbestimmung begnügen müssen. Ist die Grundmasse quarzitisch zusammengesetzt oder enthält sie auch Feldspat in nennenswerter Menge? Wenn ja, welchen? Dunkle Flecken könnten Cordierit sein, der durch retrograd gebildeten Glimmer pigmentiert ist. Auch granoblastischer Andalusit kann in Form dunkler Flecken auftreten. Cordierit kann durch Alteration in grünlich-graue Folgeprodukte (Serizit, Chlorit) umgewandelt sein. Weiße Flecken mit einem feinfaserigen Interngefüge deuten auf Sillimanit hin. In anderen Fällen scheinen die weißen Flecken nur aus einem Quarz-Feldspat-Gemenge zu bestehen. Flecken können einen einfachen oder mehrfach zonaren Aufbau besitzen. Besteht der rote Kern aus Titanit? Genauere Aussagen zum Mineralbestand sind meist nur durch eine dünnschliffmikroskopische Untersuchung möglich.

2. Funde aus Schweden

Ausgehend von der Frage, ob es Doppelgänger der Västervik-Fleckengesteine in anderen Regionen gibt, konnten im Laufe mehrerer Exkursionen nach Schweden Fleckengesteine an zahlreichen Lokalitäten gefunden werden, als Geschiebe, Nahgeschiebe oder anstehend. Fast alle Fundorte liegen innerhalb des svekofennischen Grundgebirges. Insgesamt erstreckt sich das untersuchte Gebiet aber nur über einen kleinen Teil des südlichen Segments der Svekofenniden. Weiter nördlich sowie in anderen Regionen ist mit weiteren Vorkommen zu rechnen, zumal Geschiebefunde aus Norddeutschland eine größere petrographische Diversität aufweisen als die hier gezeigten Varianten (siehe Teil 2).

Als Leitgeschiebe eignen sich nach derzeitigem Kenntnisstand nur einige Flecken-Granofelse aus dem Västervik-Gebiet (Abb. 2). Sie werden an anderer Stelle ausführlich besprochen und mit ähnlichen Fleckengesteinen aus anderen Gebieten verglichen:

– Västervik-Cordierit-Granofels (Västervik-Fleckengestein). Undeformierte und feinkörnige Varianten sind als Leitgeschiebe verwendbar. Ähnliche Fleckengesteine kommen in Östergötland (Kolmården, Linköping) und im westlichen Småland vor (Almesåkra-Formation).

Västervik-Fleckenquarzit (ehemals „Stockholm-Fleckenquarzit“). Undeformierte und glimmerführende Quarzite bis Glimmerquarzite mit kleinen Sillimanit-Granoblasten finden sich anstehend sowie in großer Menge und Vielfalt als Nahgeschiebe im Västervik-Gebiet.

Die Einzigartigkeit und Unverwechselbarkeit der Västervik-Fleckengesteine erklärt sich aus ihren besonderen Bildungsbedingungen, einer weitgehend statischen Regionalmetamorphose. Unter vergleichbaren Bedingungen könnten auch Fleckengesteine in anderen Regionen entstanden sein, allerdings sind bisher keine größeren und lokal begrenzten Vorkommen bekannt. Abgesehen von den Västervik-Gesteinen dürften Fleckengesteine prinzipiell nicht als Leitgeschiebe geeignet sein, weil Fleckenbildung in metamorphen Gesteinskomplexen weit verbreitet ist und eine Vielzahl kleiner und weit verstreuter Vorkommen existiert. Zudem unterliegen die Gesteine einer hohen petrographischen Variabilität, wie die nächsten Bilder zeigen.

Abb. 6: Besuchte Fundlokalitäten mit Fleckengesteinen in Schweden. Das Gebiet mit der höchsten Funddichte und Vielfalt an Fleckengesteinen liegt im südlichen Södermanland und östlichen Östergötland (Kolmården und Umgebung). Nach Norden und Osten werden Geschiebefunde seltener, südlich und westlich von Stockholm finden sich kaum noch Fleckengesteine.

2.1. Kolmården

Im Gebiet von Kolmården in Östergötland, etwa 100 km nördlich von Västervik, fanden sich Fleckengesteine in beispielloser Menge und Variabilität als Geschiebe. In den meisten Fällen dürfte es sich um Nahgeschiebe handeln, da einige Gesteinstypen in der näheren Umgebung auch anstehend vorkommen. Die Funde stammen vom Geröllstrand am Ufer des Braviken am Campingplatz Kolmården (Lok. 2, Abb. 7-19).

Rote Fleckengesteine: Sehr häufig finden sich die sog. Gneise vom Marmorbruket-Typ. Die grauen Gneise enthalten gröber kristallisierte fleckige Partien aus rotem Feldspat und Quarz sowie einen dunklen Kern. Der Gesteinstyp ähnelt teilweise den Fleckengesteinen aus dem Västervik-Gebiet. Weitere Bilder sowie Anstehendproben siehe Abschnitt 3.2. im Artikel zum Västervik-Fleckengestein.

Abb. 7: Graues Metasediment mit roten Flecken am Geröllstrand in Kolmården, Breite 41 cm.
Abb. 8: Kleine Gerölle von Fleckengesteinen vom Marmorbruket-Typ (Geröllstrand Kolmården), Aufnahme unter Wasser.
Abb. 9: In einigen der roten Fleckengneise sind die Flecken etwas grobkörniger als die Grundmasse. Neben grauem Cordierit und dunklem Glimmer finden sich grünlichbraune, teilweise rot alterierte Mineralkörner (möglicherweise Andalusit).

Auch graue Fleckengesteine kommen am Geröllstrand in Kolmården in großer Menge vor. Gefüge und Textur sind variabel, kaum ein Fund gleicht dem anderen. Zum einen handelt es sich um glimmerreiche Fleckengneise (Abb. 13-19; siehe auch Abb. 3) mit einer kleinkörnigen Matrix aus Quarz, Feldspat und Glimmer. Andere Fleckengesteine lassen keinen Feldspat in der Matrix erkennen und scheinen eine quarzitische Zusammensetzung zu besitzen (Abb. 10-12). Die Länge der Flecken beträgt wenige Millimeter bis 1 cm, im Ausnahmefall bis 5 cm (Abb. 18). Sie zeigen eine augen- bis linsenförmige oder schmale und längliche Gestalt, je nach Anschnitt der Flecken zur Foliationsrichtung. In manchen Flecken ist fibroblastischer Sillimanit erkennbar.

Abb. 10: Feinkörniger Flecken-Granofels (Kolmården) mit quarzitischer Grundmasse und weißen Sillimanit-Flecken. Im Zentrum einiger Flecken ist ein einzelnes größeres Biotitkorn erkennbar. Die bräunlichen Flecken könnten Alterationsprodukte von Cordierit sein (Chlorit).
Abb. 11: Feinkörniges quarzitisches Fleckengestein (Kolmården) mit augenförmigen weißen Flecken und dunklen Schlieren (Cordierit?).
Abb. 12: Gleicher Stein, Nahaufnahme. Die feinkörnigen hellen Flecken enthalten Quarz und Feldspat. In der Matrix ist kein Feldspat erkennbar.
Abb. 13: Grauer Fleckengneis mit Sillimanit-Granoblasten (Kolmården). Der Blick auf die Foliationsebene zeigt breite und ovale Flecken, in der Seitenansicht (unterer Bildteil) sind sie flach und linsenförmig ausgebildet.
Abb. 14: Nahaufnahme, radialstrahlig ausgebildete Aggregate von feinfaserigem (fibroblastischem) Sillimanit.
Abb. 15: Hellgrauer und feinkörniger Fleckengneis (Kolmården). In den gelb- bis rötlich-braunen Kernen der Flecken sind Kristalle von keilförmiger Gestalt erkennbar (Hinweis auf Titanit).
Abb. 16: Feinkörniger Fleckengneis mit stark ausgelängten weißen Flecken. Geröllstrand Kolmården, Breite des Steins 10 cm.
Abb. 17: Grauer Quarz-Feldspat-Biotit-Gneis. Die länglichen Flecken enthalten einen gelblichbraunen Kern (Titanit?) und eine helle Randzone aus Quarz und Feldspat.

Ein vergleichbarer Gesteinstyp wird in Hesemann 1975 und in ZANDSTRA 1988 als feinkörnige Variante des „Stockholm-Fleckengranits“ angeführt. Offensichtlich stammt er aber aus zahlreichen Kleinvorkommen, die in Södermanland ein größeres Gebiet einnehmen. Im Stockholm-Gebiet wurden Geschiebe dieses Typs nur vereinzelt gefunden.

Abb. 18: Grauer Fleckengneis (Quarz-Feldspat-Biotit-Gneis) mit ungewöhnlich großen augenförmigen Flecken bis 5 cm Länge. Kolmården, Breite des Steins 32 cm.
Abb. 19: Gleicher Stein, nass fotografiert. Biotit fehlt innerhalb der weißen und roten Quarz-Feldspat-Flecken und tritt vermehrt in der schmalen Randzone auf.

Anstehendproben aus dem Gebiet von Kolmården: Das Kartenblatt Katrineholm SO verzeichnet in den Metasedimenten der weiteren Umgebung von Kolmården lokale Anreicherungen von Sillimanit, Cordierit und Andalusit sowie Fleckentexturen (SGU 1960, Beschreibung Wikström 1979). Zwei Anstehendproben von roten Fleckengneisen werden im Artikel zum Västervik-Fleckengestein gezeigt (Abb. 31, 32 sowie 38). Im Dorf Snörom (Lokalität 3) fand sich ein grauer Fleckengneis in einem temporären Aufschluss (Baustelle).

Abb. 20: Anstehender Fleckengneis mit hellen Flecken bis 2 cm Länge (Snörom, Lokalität 3), Bildbreite 22 cm.
Abb. 21: Die weißen Bereiche der Flecken bestehen aus Quarz und Feldspat. Die hellgrauen Kerne, ein feinkörniges und unbestimmtes Mineralgemisch, treten nur beim Anschnitt des Gesteins zur Foliationsebene in Erscheinung. Bildbreite 15 cm.
Abb. 22: Polierte Schnittfläche einer Probe aus dem gleichen Aufschluss, ein Quarz-Feldpat-Biotit-Gneis mit eingeregelten Glimmerblättchen, hellen Quarz-Feldspat-Flecken und größeren dunklen Flecken (wahrscheinlich Cordierit).

Das Kartenblatt Katrineholm SO zeigt ein weiteres Vorkommen mit fleckigen Metasedimenten in unmittelbarer Nähe. Der Aufschluss konnte nicht lokalisiert werden, aber in Snörom fanden sich mehrere lose Gesteinsbrocken eines Fleckengneises, der vom anstehenden Typ abweicht und aus unmittelbarer Nähe stammen dürfte.

Abb. 23: Brauner Fleckengneis mit weißen und dunklen Flecken. Die dunklen Flecken sind im Vergleich zur Matrix gröber kristallisiert und von roten Quarz-Feldspat-Partien umgeben. Nahgeschiebe von Snörom, Bildbreite 36 cm.
Abb. 24: Gleicher Stein, polierte Schlifffläche.
Abb. 25: Nahaufnahme. Die hellen Säume der Flecken bestehen aus Quarz und Feldspat, der Kern aus einem unbestimmten Mineralgemisch. Unten rechts der Anschnitt eines roten Flecks mit dunklem Kern (wahrscheinlich Cordierit).

2.2. Sörmland

Bedeutend weniger Fleckengestein-Geschiebe, insgesamt etwa ein Dutzend, fanden sich in einer Kiesgrube bei Nyköping, etwa 20 km östlich von Kolmården (Lok. 4). Überwiegend handelte es sich um graue, kleinkörnige und biotitreiche Fleckengesteine mit weißen Flecken. Die Grundmasse aus Quarz, Feldspat und Biotit besitzt ein weitgehend regelloses Gefüge, die länglichen Flecken zeigen eine gerichtete Textur (Abb. 26). Vereinzelt kamen auch dunkle und feinkörnige Gneise mit Sillimanit-Flecken vor (Abb. 27). Etwa 30 km weiter nördlich, in einer Kiesgrube bei Flen, wurden überhaupt keine Fleckengestein-Geschiebe gefunden.

Abb. 26: Kleinkörniges Fleckengestein mit einer Quarz-Feldspat-Biotit-Matrix (Kiesgrube Nyköping). Breite 12 cm.
Abb. 27: Feinkörniger Gneis mit weißen Sillimanit-Flecken (Kiesgrube Nyköping).

In der Kiesgrube fand sich auch ein kleinkörniger Granofels (Abb. 28) mit einer Quarz-Feldspat-Biotit-Matrix, der zahlreiche gelbbraune Granat-Granoblasten enthält, die von einem schmalen hellen Plagioklas-Saum umgeben sind. Dies ist der erste (und einzige) Fund eines granathaltigen Metasediments in diesem Gebiet. Weder im Västervik-Gebiet noch in der Umgebung von Kolmården kommt der Gesteinstyp vor.

Abb. 28: Granat-Granofels (Kiesgrube Nyköping).

Auch das nächste Fleckengestein-Geschiebe ist ein Einzelfund und stammt vom Campingplatz in Hölö (Lok. 5), etwa 45 km SW von Stockholm. Auch an weiter östlich gelegenen Lokalitäten sowie südlich von Stockholm fanden sich entweder nur einzelne oder gar keine Geschiebe von Fleckengesteinen: 1. Kiesgrube bei Järna, unmittelbar westlich von Stockholm (Lok. 6, 1 Fleckengranit); 2. Skansholmen, südlich von Stockholm (Lok. 7, 1 kleinkörniges Fleckengestein, vergleichbar mit dem Typ in Abb. 26); 3. Kiesgruben auf Nynäshamn, südlich von Stockholm (keine Geschiebe von Fleckengesteinen, pers. Mitteilung M. Bräunlich).

Abb. 29: Geschiebe eines Fleckengesteins von Hölö mit polierter Schnittfläche. Die fleckig-inhomogene Matrix besteht im Wesentlichen aus Quarz und Feldspat sowie grünen und dunklen, nicht näher bestimmbaren Mineralen.
Abb. 30: Gleicher Stein, Nahaufnahme.

Die Flecken besitzen eine helle Saumzone und weiße oder grüne Kerne. Weiße Kerne enthalten fibroblastischen Sillimanit, grüne Kerne wahrscheinlich Chlorit als Alterationsprodukt von Cordierit. Die Vermutung stützt sich auf den Befund einer Dünnschliffuntersuchung eines ähnlichen Fleckengestein-Geschiebes (s. Teil 2).

2.3. Almesåkra-Formation

Im westlichen Småland, unmittelbar südlich der Almesåkra-Formation, finden sich vermehrt Geschiebe von Fleckengesteinen. Die Metasedimente zeigen teilweise noch Relikte des sedimentären Mineralgefüges (runde Quarzkörner). Mit einiger Wahrscheinlichkeit sind sie aus tonhaltigen Sedimenten hervorgegangen, die beim Aufstieg des Almesåkra-Diabas kontaktmetamorph verändert wurden. Anstehendproben liegen bisher nicht vor. Einige dieser Metamorphite ähneln dem Västervik-Fleckengestein und werden im betreffenden Artikel besprochen (Abschnitt 3.1.).

Abb. 31: Fleckengestein-Geschiebe aus einer Kiesgrube bei Komstad, westlich von Sävsjö, Lok. 8.
Abb. 32: Fleckengestein-Geschiebe (Kiesgrube bei Komstad). Unregelmäßig geformte dunkle Flecken sind von roten Säumen aus Quarz und Feldspat umgeben. Die Matrix enthält größere Mengen Hellglimmer.

2.4. Linköping

In einer Kiesgrube bei Linköping (Lok. 9) fand sich ein einzelnes rotes Fleckengestein (s. Västervik-Fleckengestein, Abschnitt 3.3, Abb. 40) sowie ein grünliches Fleckengestein. Nördlich von Linköping ist demnach mit weiteren, bisher nicht näher untersuchten Vorkommen von Fleckengesteinen zu rechnen.

Abb. 33: Feinkörniges Fleckengestein mit länglichen hellen Flecken.
Abb. 34: Gleicher Stein, Nahaufnahme. Der Mineralbestand ist bis auf ein blaues Quarzkorn und feine Flitter eines glimmerähnlichen Minerals nicht näher bestimmbar.

3. Verzeichnis der Lokalitäten

Lokalität 1: Geschiebe Västervik-Fleckengesteine; Böschung am Fahrradweg in Västervik Jenny, nahe der Autorennbahn (Motorbana); 57.768130, 16.585394.
Lokalität 2: Geschiebe Fleckengesteine; Rollsteinstrand am Campingplatz Kolmården; 58.65718, 16.40712.
Lokalität 3: Fleckengneis, anstehend; Snörom bei Kolmården, temporärer Aufschluss; 58.66476, 16.41711.
Lokalität 4: Geschiebe Fleckengesteine; aktive Kiesgrube NW von Nyköping; 58.774022, 16.819400.
Lokalität 5: Geschiebe Fleckengestein; Campingplatz Hölö/Norrvra; 59.00824, 17.53729.
Lokalität 6: Geschiebe Fleckengranit; aktive Kiesgrube zwischen Järna und Nykvarn; 59.12040, 17.46764.
Lokalität 7: Geschiebe Fleckengestein; Geröllstrand am Campingplatz Skansholmen/S Sandviken; 59.04647, 17.69313.
Lokalität 8: Geschiebe Fleckengesteine; Kiesgrube bei Komstad, 3 km westlich Sävsjö; 57.391392, 14.616904.
Lokalität 9: Geschiebe Fleckengesteine; Kiesgrube südlich Linköping; 58.329789, 15.631448.

4. Literatur

Gavelin S 1983 The Västervik Area in South-eastern Sweden – SGU Ser. Ba No. 32, 172 S, Uppsala.

Wikström A 1979 Beskrivning till berggrundskartan 1:50000 – Katrineholm SO – Sveriges Geologiska Undersökning (Af) 123: 101 S., 44 Abb., 14 Tab., 3 Ktn. in 1 Mappe, Stockholm.

Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim    tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).

Teil 2: Fleckengesteine- Geschiebefunde aus Norddeutschland

Die folgenden Geschiebefunde aus Norddeutschland illustrieren die petrographische Vielfalt von Fleckengesteinen. Kaum ein Fund gleicht dem nächsten, kaum ein Geschiebe lässt sich einem näheren Herkunftsgebiet zuordnen. Mögen in einigen Fällen auch Ähnlichkeiten mit den Funden aus Schweden bestehen (siehe 1. Teil), ist der Umkehrschluss nicht zulässig, dass der betreffende Gesteinstyp nur an einer einzigen Lokalität vorkommt. – Das erste Geschiebe stammt aus einer Kiesgrube in Brandenburg (E. Fuchs leg.) und wurde freundlicherweise von Herrn U. Maerz dünnschliffmikroskopisch untersucht.

Abb. 1: Grünlichbraunes und feinkörniges Fleckengestein, Aufnahme unter Wasser.
Abb. 2: Nahaufnahme der polierten Schnittfläche. Die Flecken sind mehrfach zoniert und bestehen aus einem grünlichen Kern, einer hellen Zwischenzone und einer schmalen grünlichen Randzone.

Die Dünnschliffuntersuchung ergab, dass die Matrix aus xenomorphen, teilweise polygonalen Kristallen von Quarz, Kalifeldspat (überwiegend Mikroklin) und Plagioklas sowie idiomorphen Biotit-Kristallen besteht. Die äußere Randzone der Flecken ist deutlich grobkörniger als die Matrix und enthält ebenfalls Quarz, Kalifeldspat und Plagioklas. Die helle Zwischenzone enthält zusätzlich Serizit, die dunklen Kerne Serizit und Chlorit. Diese Minerale dürften Alterationsprodukte von Cordierit sein, der durch wässrige Fluide instabil wurde. Unalterierter Cordierit konnte nicht beobachtet werden. In den Kernen wurde weiterhin feinnadeliger Sillimanit gefunden. Die grünen Umwandlungsprodukte von Cordierit finden sich auch außerhalb der Blasten und umschließen die Körner der Matrix.

Abb. 3: Dünnschliffaufnahme einer Fleckenzone unter linear polarisiertem Licht. Bildbreite 3 mm. Foto: U. Maerz.
Abb. 4: Gleicher Ausschnitt unter gekreuzten Polarisatoren. Foto: U. Maerz.

Das Zentrum des Kerns bilden Büschel von wirrstrahlig angeordneten, mit Serizit verwachsenen Sillimanitnadeln. Rechts und links schließen sich Bereiche an, die von überwiegend feinst verwachsenem Serizit ausgefüllt werden. Der Randbereich mit den größeren Kristallen aus Quarz und Feldspat setzt sich gut von der feiner körnigen Matrix ab.

Abb. 5: Polierte Schnittfläche eines grünen Fleckengesteins, Kiesgrube Damsdorf/Bochow, Brandenburg (D. Lüttich leg.).
Abb. 6: Nahaufnahme.

Die Flecken besitzen eine dunkelgrüne äußere Randzone, eine helle Zwischenzone und grüne oder weiße Kerne, teilweise aus feinfaserigem Sillimanit. Bei den grünen Mineralen könnte es sich ebenfalls um Chlorit als Alterationsprodukt von Cordierit handeln.

Abb. 7: Grauer Fleckengneis mit biotitreicher Grundmasse aus der Kiesgrube Ruhlsdorf bei Bernau (Brandenburg). Aufnahme unter Wasser.
Abb. 8: Nahaufnahme des gleichen Steins, Flecken mit grünen Kernen und hellem Saum.
Abb. 9: Grauer Fleckengneis mit weißen Flecken aus Quarz und Feldspat. Kiesgrube Teschendorf bei Oranienburg, Brandenburg.
Abb. 10: Quarz-Feldspat-Biotit-Gneis mit großen Flecken aus Quarz und Feldspat, umgeben von einer dunklen und biotitreichen Randzone. Kiesgrube Penkun, Ost-Brandenburg; Slg. A. Bräu.
Abb. 11: Grauer Fleckengneis mit einzelnen größeren Biotitplättchen innerhalb der feinkörnigen weißen Flecken. Kiesgrube Hoppegarten bei Müncheberg, Brandenburg.
Abb. 12: Sehr feinkörniges Fleckengestein mit quarzitischer Grundmasse. Kiesgrube Hohensaaten, Brandenburg.
Abb. 13: Muskovithaltiger Quarz-Feldspat-Gneis; helle Flecken mit rötlichem Kern. Fundort: Geröllstrand Hökholz bei Eckernförde, Schleswig-Holstein.
Abb. 14: Nahaufnahme, nasse Oberfläche. Die hellen Säume enthalten Quarz, Feldspat sowie ein feinfaseriges Mineral, vermutlich Sillimanit. Die Minerale in den roten Kernen sind feinkörnig und nicht bestimmbar.
Abb. 15: Feinkörniger Fleckengneis, Strandgeröll von Travemünde (E. Figaj leg.).
Abb. 16: Nahaufnahme.

Bemerkenswert ist ein mehrphasiger Aufbau der Flecken: 1. Kernbereich mit einem einzelnen Biotit- und/oder hellem Feldspat-Korn, 2. quarzreicher Saum, umgeben von 3. gelben Mineralen mit stumpfem Glanz (angewitterter Feldspat?). 4. Heller und stärker ausgelängter Bereich aus Quarz und Feldspat, schließlich 5. eine biotitreichere Hülle, ohne klare Abgrenzung zur Matrix aus Quarz, Feldspat und Biotit (+Amphibol?).

Abb. 17: Schnittfläche eines Fleckengneises, Aufnahme unter Wasser. Das Gestein ist auffällig schwer und enthält neben Biotit wahrscheinlich auch Amphibol in bedeutender Menge. Die länglichen Flecken bestehen aus feinfaserigem Sillimanit. Strandgeröll von Nienhagen bei Rostock, leg. G. Engelhardt.
Abb. 18: Nahaufnahme der faserigen Sillimanit-Aggregate.
Abb. 19: Fleckengestein als Windkanter. Die Kernbereiche der Flecken weisen Vertiefungen auf, während die hellen Säume der erosiven Einwirkung des Windes widerstehen konnten. Kiesgrube Rietz bei Treuenbietzen, Brandenburg; Slg. D. Lüttich.
Abb. 20: Feinkörniger Gneis mit länglichen und glimmerreichen Flecken. Kiesgrube Gusow, Ost-Brandenburg.
Abb. 21: Grünlicher Flecken-Granofels mit dunklen Cordierit- und weißen Sillimanit-Granoblasten (Strandgeröll von Misdroy in Westpolen). Das undeformierte Gestein könnte aus dem Västervik-Gebiet stammen, ein vergleichbares grünes Fleckengestein wurde dort bisher allerdings nicht gefunden.
Abb. 22: Roter Fleckengneis, Geschiebe von der Ostsee. Foto: M. Bräunlich.
Abb. 23: Nahaufnahme der länglichen Flecken mit wellenförmig ausgebildeten Aggregaten eines feinfaserigen Minerals, wahrscheinlich Sillimanit.

Als Geschiebe weniger verbreitet sind Glimmerschiefer oder glimmerreiche Metasedimente mit einer Fleckentextur (Flecken- oder Knoten-Glimmerschiefer, Abb. 24-26). In den meisten Fällen dürfte es sich um Kontaktmetamorphite mit Andalusit oder Cordierit als Mineralneubildung handeln.

Abb. 24: Knoten-Glimmerschiefer aus der Kiesgrube Vogelsang bei Eisenhüttenstadt, Brandenburg (St. Schneider leg.).
Abb. 25: Metamorphit mit einer grünlich-grauen und an Hellglimmer reichen Matrix sowie dunklen Flecken (Kiesgrube Hohensaaten, Ost-Brandenburg).
Abb. 26: Glimmerreicher Metamorphit (Metasediment) mit dunklen Flecken und einigen einzelnen hellen Feldspatkörnern (Kiesgrube Niederlehme bei Berlin).
Abb. 27: Fleckengestein mit dunkler und feinkörniger Grundmasse aus der Kiesgrube Kröte (Wendland, Ost-Niedersachsen).
Abb. 28: Für den Mineralbestand des Kernbereichs mit rötlich-gelben Mineralkörnern und der feinkörnigen weißen Randzone gibt es bisher keine Anhaltspunkte.
Abb. 29: Polierte Schnittfläche eines Fleckengneises mit länglichen dunklen Flecken aus der Kiesgrube Althüttendorf in Brandenburg.
Abb. 30: Helle und graugrüne Partien scheinen eine quarzitische Zusammensetzung zu besitzen, während die roten Partien zusätzlich Feldspat enthalten. Das Gestein ist von senkrecht verlaufenden Klüften durchzogen, die einzelnen Bereiche weisen einen leichten Versatz auf.
Abb. 31: Eine schmale rote Partie enthält kleine nadelförmige Porphyroblasten (wahrscheinlich Amphibol).
Abb. 32: Dunkle Cordierit-Flecken mit hellem Saum in einem feinkörnigen Granofels. Kiesgrube Waltersdorf bei Berlin.
Abb. 33: Heller Quarz-Feldspat-Biotit-Gneis mit grünlich-braunen Flecken (alterierter Cordierit?). Polierte Schnittfläche eines Geschiebes aus der Kiesgrube Damsdorf/Bochow, Brandenburg; leg. D. Lüttich.
Abb. 34: Dunkles Metasediment (Granofels) mit gelblichen Flecken (Kiesgrube Niederlehme bei Berlin).
Abb. 35: Nahaufnahme der nassen Gesteinsoberfläche. Die gelblichgrauen Flecken auf der Außenseite weisen auf der Bruchfläche eine unvollständige Spaltbarkeit, einen lebhaften Glasglanz und eine dunkelgraue Tönung auf (Cordierit oder Andalusit).

Ein seltener Geschiebefund sind Vulkanite mit einer Fleckentextur. Die Neubildung von Mineralen könnte bevorzugt von sekundär entstandenen Strukturen mit abweichender chemischer Zusammensetzung ausgegangen sein (z. B. Lithophysen).

Abb. 36: Metavulkanit, Aufnahme unter Wasser. Fundortangabe: „Roth“, wahrscheinlich aus der Umgebung von Parchim (D. Schmälzle leg.).
Abb. 37: Nahaufnahme der polierten Schnittfläche. Innerhalb der kugeligen Aggregate ist ein feinfaseriges gelbbraunes Mineral als metamorphe Neubildung erkennbar (z. B. ein Amphibol wie Anthophyllit).

Vänge-Granit

Der Vänge-Granit gehört zu den etwa 1,89-1,87 Ga alten mittelschwedischen Uppland-Graniten und kommt im gleichen Gebiet wie der Uppsala-Granit vor. Das Gestein ist zumindest in Brandenburg bei praktisch jedem Kiesgrubenbesuch anzutreffen, meist in größeren Blöcken, seltener in Handstückgröße.

Abb. 1: Vänge-Granit aus der Kiesgrube Horstfelde südlich von Berlin.

Als Leitgeschiebe geeignet sind grobkörnige und besonders quarzreiche Varianten dieses Alkalifeldspatgranits. Alkalifeldspat ist blassrot, seltener auch kräftig rot oder orangefarben getönt und bildet unregelmäßig begrenzte Kristalle von 1-3 cm Länge. Weißer Plagioklas ist deutlich kleiner und nur in geringer Menge enthalten (max. 10 %). Er erscheint häufig an den Rändern der Alkalifeldspäte. Quarz kommt reichlich in Form grauer bis gelblich- oder grünlich-grauer und zerdrückter („zuckerkörniger“) Massen vor. Daneben finden sich meist auch einzelne größere und trübe Quarzkörner von bläulichgrauer Farbe, die nicht zerdrückt sind. Durch den hohen Quarzgehalt „schwimmen“ die Alkalifeldspäte regelrecht in der Quarzmasse und das Gefüge wirkt auf den ersten Blick porphyrisch. Dunkle Minerale (Biotit) sind nur in geringer Menge enthalten.

Das Mineralgefüge ist insgesamt undeformiert (richtungslos-körniges Gefüge, keine länglichen Aggregate von dunklen Mineralen). Lediglich Quarz wurde weitgehend granuliert, nachdem der Granitkörper bereits erstarrt war. Nach Zandstra 1988 ist der Vänge-Granit mittelkörnig, nach Lundegardh 1956: 55 „grob mittelkörnig“. Die Alkalifeldspäte in Anstehendproben (vgl. skan-kristallin.de) sind in der Regel größer als 1 cm.

Mittelschwedische Granite verschiedener Vorkommen besitzen teilweise ähnliche Merkmale wie der Vänge-Granit. Dies betrifft den Norrtälje-/Vätö-Granit und einige Granite des Hedesunda-Massivs (s. Abb. 2). Der Vätö-Granit ist mittelkörnig, enthält weniger, zudem kräftiger rot gefärbten Alkalifeldspat und mehr dunkle Minerale. Die zerdrückten Quarze zeigen eine mittelgraue Tönung. Nur einige Varianten des Vätö-Granits besitzen blassrote Alkalifeldspäte. Proben auf skan-kristallin.de. Proben aus dem Hedesunda-Massiv (siehe skan-kristallin.de) zeigen Ähnlichkeiten zum Vänge-Granit in Farbe und Gefüge. Der Quarzanteil ist hier geringer, die Quarze sind nicht oder nicht durchgängig granuliert. Der Älö-Granit aus Nordost-Småland ist ein sehr quarzreicher Granit mit vollständig granuliertem Quarz. Im Vergleich zum Vänge-Granit bestehen Gefüge- und Farbunterschiede: mittelkörniges Gefüge, hellroter bis braunroter Alkalifeldspat, manchmal bläulicher Quarz, mehr dunkle Minerale. Proben auf skan-kristallin.de.

Die drei genannten Granite konnten bisher nicht als Geschiebe identifiziert werden. Ihr Status als Leitgeschiebe ist umstritten oder noch nicht geklärt.

Abb. 2: Herkunftsgebiet des Vänge-Granits und anderer im Text erwähnter Granit-Vorkommen.
Abb. 3: Vänge-Granit, Abschlag mit frischer Bruchfläche aus einem größeren Block  (Kiesgrube Hohensaaten, Brandenburg).
Abb. 4: Die Nahaufnahme zeigt hellroten Alkalifeldspat und gelblichgrüne Massen von zerdrücktem Quarz.
Abb. 5: Vänge-Granit, Großgeschiebe aus der Niederlausitz (Findlingshalde Steinitz bei Drebkau, Bildbreite etwa 30 cm).
Abb. 6: Gleicher Stein, Nahaufnahme. Das Gefüge besteht aus hellrotem Alkalifeldspat und kleineren weißen Plagioklaskörnern. Granulierter Quarz bildet eine grünlichgraue Masse, daneben finden sich einige größere milchig-hellgraue Quarzkörner. Stellenweise „schwimmen“ die Alkalifeldspäte in der Quarzmasse.
Abb. 7: Diese leicht angewitterte Bruchfläche eines Vänge-Granits zeigt schön die Gruppierung kleiner weißer Plagioklaskörner um hellrote Alkalifeldspäte. Geschiebe aus Merzdorf am ehemaligen Tagebau Cottbus-Nord.
Abb. 8: Vänge-Granit aus der Kiesgrube Teschendorf bei Oranienburg (Brandenburg), Breite 14 cm.
Abb. 9: Vänge-Granit, polierte Schnittfläche, Kiesgrube Schweinrich (Brandenburg), Slg. F. Wilcke (Wittstock).
Abb. 10: Nahaufnahme.
Abb. 11: Granit vom Vänge-Typ mit einem höheren Anteil dunkler Minerale. Breite 40 cm, Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 12: Gleicher Stein, Nahaufnahme.
Abb. 13: Heller Granit mit orangefarbenem Alkalifeldspat, mäßig hohem Quarzgehalt und wenig dunklen Mineralen. Kiesgrube Teschendorf bei Oranienburg (Brandenburg).
Abb. 14: Quarz ist weitgehend granuliert, einige Plagioklase besitzen einen rötlichen Kern.
Abb. 15: Heller Granit mit wenig dunklen Mineralen aus dem ehem. Tagebau Cottbus-Nord, Breite 45 cm.
Abb. 16: Nahaufnahme des Gefüges. Der Granit ist nicht grob-, sondern mittelkörnig. Die übrigen Gefügemerkmale stimmen ansonsten mit denen des Vänge-Granits überein.
Abb. 17: Grobkörniger Granit mit hellrotem Alkalifeldspat und weißem bis grünlich-grauem Plagioklas. Quarz ist grünlich-grau getönt, bildet aber einzelne Körner aus und ist nicht zerdrückt (kein Vänge-Granit gemäß der Beschreibung des Leitgeschiebes). Findlingslager Steinitz am Tagebau Welzow-Süd.

Das letzte Großgeschiebe zeigt einige Merkmale des Vänge-Granits (hellroter Alkalifeldspat, grünliche Massen aus zerdrücktem Quarz, größere trübe Quarzkörner). Durch den hohen Gehalt an Plagioklas ist das Gestein aber kein Granit, sondern ein Granodiorit. Die Art des Gefüges der kleinen Plagioklaskörner erinnert an andere Uppland-„Granite“, z. B. den Uppsala-Granit. Im Vänge-Massiv kommen auch Plutonite mit intermediärer Zusammensetzung vor (Lundegardh 1956: 55). Ob das Geschiebe tatsächlich von dort stammt, lässt sich allerdings nicht mit Sicherheit feststellen.

Abb. 18: (Uppland?-)Granodiorit, Findlingslager Steinitz am Tagebau Welzow-Süd (Brandenburg), Bildbreite 30 cm.
Abb. 19: gleicher Stein, Nahaufnahme.

Literatur

Lundegårdh P-H & Lundqvist G 1956 Beskrivning kartbladet Uppsala – SGU Serie Aa 199, Uppsala.

Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië –    XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).

Karbonatite

In Nordeuropa gibt es nur kleine Karbonatit-Vorkommen. Als Geschiebe spielt der Gesteinstyp bisher keine Rolle, weil er sehr selten zu finden und wahrscheinlich nur schwer erkennbar sein dürfte. Dennoch lohnt ein Blick auf diese kuriosen Gesteine, da es sich um die einzigen Magmatite handelt, die nicht aus silikatischen, sondern aus karbonatreichen Schmelzen hervorgehen.

Karbonatite enthalten mindestens 50 % Karbonat. Häufig ist dies Calcit, aber auch Ankerit, Siderit, Dolomit oder Na-Karbonate kommen als bestimmende Karbonatphase in Frage. Verbreitet sind Varianten mit einem Anteil von 70-90% Calcit. Mittel- bis grobkörnige Calcit-Karbonatite werden als Sövit, feinkörnige als Alvikit bezeichnet. Als Begleitminerale können Glimmer (Phlogopit), Olivin, Magnetit und Apatit auftreten. Spezifische, aber nur gelegentlich enthaltene Karbonatit-Minerale sind Ägirin, Pyrochlor und Nephelin.

Abb. 1: Karbonatit (Sövit) von Alnö, grobkörniges Gefüge aus kristallinem Calcit und Dunkelglimmer. Foto: M. Bräunlich.
Abb. 2: Nahaufnahme des Gefüges.

Vorkommen des seltenen Gesteinstyps sind mit Alkaligesteinen assoziiert und an kontinentale Riftsysteme mit Hot-spot-Vulkanismus gebunden. Karbonatite bilden meist kleine subvulkanische Körper in Form von Gängen oder Stöcken. Effusive, also an der Erdoberfläche austretende Karbonatite sind nur von einer einzigen Lokalität bekannt, dem Ol Doinyo Lengai in Tansania. Dort konnten auch sehr dünnflüssige, aber nur etwa 500°C heiße und eigenartig blau glühende Lavaströme beobachtet werden (Video auf youtube, Bilder auf nationalgeographic.com).

Die Karbonatit-Schmelzen entstehen nicht etwa durch Aufschmelzung von karbonatreichen Sedimenten, sondern werden im Erdmantel gebildet. Karbonatitische Schmelze, einmal durch magmatische Differenziationsprozesse vom Mantelgestein (Peridotit) abgesondert, ist mit Silikatschmelzen nicht mehr mischbar und steigt als eigenständiger Intrusivkörper auf. Karbonatite sind eine wichtige Lagerstätte. In keinem anderen Gesteinstyp kommt es zu einer vergleichbaren Anreicherung von Elementen wie Nb, P, vor allem aber Seltenen Erden.

Aus Skandinavien sind mehrere kleine Karbonatit-Vorkommen bekannt. Im Fen-Komplex (Norwegen) treten neben Söviten auch Fe- und Mg-reiche Karbonatite auf (Abb. 4, weitere Proben auf skan-kristallin.de). Kleinere Massive existieren in Nordschweden: Alnö in Västernorrlands län (Abb. 1-3, s. a. skan-kristallin.de sowie Kresten & Troll 2018) und Kalix in Norrbottens län (Kresten et al 1981). Im Gebiet von Gävle wurde ein karbonatitisches Gestein aus einem unbekannten Vorkommen als Geschiebe gefunden (Nyström et al 1985). Auch in Finnland gibt es mehrere kleine Karbonatit-Vorkommen (O´Brien 2015)

Geschiebe könnten, wenn auch sehr selten, in den Ablagerungen eines norwegischen Eisstroms (Karbonatite aus dem Fen-Komplex) und in mittelschwedischen Geschiebegemeinschaften (Karbonatite aus Alnö) zu erwarten sein. Fundberichte liegen bislang nicht vor. Entweder sind die Gesteine zu unscheinbar, können mit Marmor verwechselt werden oder wirken als Geschiebe unattraktiv, weil sie bei der Verwitterung rostige Gesteinsoberflächen ausbilden. Marmor kann – wie Calcit-Karbonatit / Sövit – ebenfalls grobkörnig ausgebildet sein und Dunkelglimmer als Begleitmineral enthalten (s. Abb. 26 im Artikel über Marmor). Magnetit ist kein eindeutiger Hinweis auf Karbonatit, weil er hin und wieder auch in Marmor auftritt. Karbonatit-typische Minerale wie Pyrochlor, Ägirin oder Nephelin dürften erst durch eine mikroskopische Untersuchung sicher erkennbar sein.

Abb. 3: Grobkörniger Karbonatit (Sövit) von Alnö aus weißem Calcit, braunem Nephelin (laut Etikett) und wenigen dunklen Mineralen. Sammlung der BGR in Berlin-Spandau.
Abb. 4: Rødbergit, ein eisenreicher Karbonatit aus Ankerit, Calcit und Hämatit. Anstehendprobe aus dem Fen-Gebiet. Foto: M. Bräunlich.

In Süddeutschland gibt es ein größeres Karbonatitvorkommen im Kaiserstuhl. Das Gestein ist in mehreren kleinen Steinbrüchen aufgeschlossen und wurde in den 50er-Jahren versuchsweise bergmännisch abgebaut, da es lagenweise Anreicherungen des Nb-haltigen Minerals Pyrochlor (Koppit) enthält.

Abb. 5: Mittelkörniger und glimmerhaltiger Karbonatit (Sövit) aus dem Steinbruch Orberg im Kaiserstuhl. Aufnahme einer frischen Bruchfläche unter Wasser.
Abb. 6: Nahaufnahme einer weiteren Probe vom Orberg. Das Gestein reagiert nur mäßig auf einen Handmagneten. Es dürfte sich also nicht bei allen dunklen und teilweise oktaedrisch ausgebildeten Mineralkörnern um Magnetit handeln, auch Minerale der Spinellgruppe (Magnesioferrit) und/oder Pyrochlor kommen in Frage.

Literatur

Kresten P & Troll VR 2018 The Alnö Carbonatite Complex, Central Sweden – 194 S., Springer International Publishing AG.

Kresten P, Ahmann E & Brunfelt AO 1981 Alkaline ultramafic lamprophyres and associated carbonatite dykes from the Kalix area, northern Sweden. – Geologische Rundschau 70, S. 1215-1231.

Nyström JO 1985 Apatite iron ores of the Kiruna Field, northern Sweden: Magmatic textures and carbonatitic affinity – Geologiska Föreningen i Stockholm Förhandlingar, 107:2, S. 133-141, DOI: 10.1080/11035898509452625

O´Brien H 2015 Mineral Deposits of Finland, Chapter 4.1 – Introduction to Carbonatite Deposits of Finland, S. 291-303, Elsevier.

Ein ausführlicher Artikel zum Thema Karbonatite findet sich auf wikipedia.de und weitere Probenbilder auf mineralienatlas.de.

Jotnischer Sandstein

Rote Sandsteine wurden zu verschiedenen Zeiten abgelagert. unter anderem im „Jotnium“ vor etwa 1,4-1,2 Ga. Als Jotnischen Sandstein bezeichnet man rote oder violette Sandstein-Geschiebe, meist mit erkennbarer Schichtung sowie hellen und runden Entfärbungsflecken. Eine Zuordnung von Funden zu einem Herkunftsgebiet, allein anhand lithologischer Merkmale, ist nicht möglich.

In den meisten Fällen handelt es sich um Arkosen, also Sandsteine, die neben Quarzkörnern auch verwitterte Feldspat-Körner in größerer Menge enthalten (s. Abb. 4). Jotnischer Sandstein ist eines der häufigsten Sedimentärgeschiebe.

Abb. 1: Jotnischer Sandstein mit hellen Entfärbungsflecken, Geschiebe aus der Kiesgrube Hohensaaten, Brandenburg.
Abb. 2: Violetter Jotnischer Sandstein mit gelben Entfärbungsflecken, Geschiebe aus dem ehemaligen Tagebau Cottbus-Nord, Breite 35 cm.
Abb. 3: Jotnischer Sandstein mit Schrägschichtung und gelben Entfärbungsflecken. Im oberen Teil sind tonige Intraklasten („Tongallen“) erkennbar. Geschiebe aus dem ehem. Tagebau Cottbus-Nord, Bildbreite 45 cm.
Abb. 4: Kiesiger Arkose-Sandstein. Der hohe Feldspatgehalt (orangefarbene Körner) ist hier ausnahmsweise mit bloßem Auge erkennbar. Geschiebe aus der Kiesgrube Niederlehme, Brandenburg, Aufnahme unter Wasser.

Geschiebe vom Typ Jotnischer Sandstein sind in der Regel rot oder grauviolett gefärbt. Seltener kommen auch fast weiße, gelb- oder orangerote Tönungen vor. Die fein- bis mittelkörnigen Sandsteine besitzen ein kieseliges Bindemittel. Lagenweise können sich Rundung und Sortierung der Quarzkörner ändern. In feldspatarmen Partien sind die Quarze besser gerundet (Zwenger 2010). Neben Quarz und Feldspat findet sich meist auch etwas Glimmer. Die meisten Jotnischen Sandsteine sind geschichtet. Schrägschichtung oder dunkelrote intraformationelle Tonklasten („Tongallen“, Abb. 13, 14) lassen sich häufig, Kreuzschichtung (Abb. 9), Trockenrisse (Abb. 16) oder Wellenrippel eher selten beobachten. Weiterhin können kiesige bis konglomeratische Lagen mit Milchquarzen (in Ausnahmefällen bis Walnussgröße, Abb. 15) sowie Fragmente von Vulkaniten, Graniten, basischen Gesteinen, selten auch Achatgerölle vorkommen.

Die Entfärbungsflecken, manchmal auch größere helle Partien im Gestein, dürften durch Hydrolyse von enthaltenen Pyritkörnern entstanden sein. Durch Wasser- und Sauerstoffzufuhr wurde Schwefelsäure freigesetzt, die den roten Hämatit in der näheren Umgebung auflöste und diese Bereiche entfärbte.

Der Jotnische Sandstein gehört zur Gruppe der Rotsandsteine. Bei der Abtragung und Einebnung eines Gebirges sammelt sich Gesteinsschutt in intramontanen Senken. Unter ariden Klimabedingungen und fehlender Vegetation wird die Bildung von rotem Hämatit begünstigt, der sich als feiner Überzug auf den Quarzkörnern anlagert. Weil in trockenem und heißem Klima kaum eine chemische Lösungsverwitterung stattfindet, bleibt auch Feldspat erhalten.

Rotsandsteine entstanden in mehreren Epochen der Erdgeschichte. Neben dem etwa 1,4-1,25 Ga alten Jotnischen Sandstein gibt es Rotsandsteine auch im Unterkambrium (z. B. Nexö-Sandstein von Bornholm) und im Devon des Baltikums („Old-Red-Sandstein“, als Geschiebe wohl sehr selten). Mit einer variantenreichen Lithologie in Bezug auf Farbe, Korngröße, Schichtungsphänomene und Feldspatgehalt ist in allen Vorkommen zu rechnen, da die Merkmale diagenetisch bedingt und nur von beschränkter Aussagekraft sind. Zumindest ein Teil der Rotsandstein-Geschiebe dürfte weder auf ein Alter („jotnisch“), noch auf eine Herkunft zurückzuführen sein. Auch unter den verschiedenen lokalen Vorkommen Jotnischer Sandsteine (Abb. 5) lassen sich keine Merkmale herausstellen, die auf ein bestimmtes Herkunftsgebiet schließen lassen (Vinx 2016: 228f.). So sind die Entfärbungsflecken im Jotnischen Sandstein nicht etwa ein Alleinstellungsmerkmal für Dalarna, wie von Smed (2002: 162) behauptet, sondern z. B. auch aus dem Gävle-Sandstein (Lundegardh 1967 in Zwenger 2010) und aus Westfinnland bekannt. Man sollte also Rotsandstein-Geschiebe nicht als „Dala-Sandstein“ bezeichnen.

Abb. 5: Übersichtskarte der Vorkommen von Jotnischem Sandstein (nach Paulamäki & Kuivamäki 2006).

Der Jotnische Sandstein bedeckte einst größere Areale des nordischen Grundgebirgsrumpfes. Heute sind davon nur noch Relikte erhalten. Die einzelnen Vorkommen besitzen Lokalnamen (Dala-Sandstein, Mälar-Sandstein, Gävle-Sandstein usw.) und spielen für die Bestimmung von Geschieben keine Rolle. Lediglich in Geschiebezählungen kann das gemeinsame Auftreten bestimmter Kristallingeschiebe und Jotnischem Sandstein auf ein mögliches Herkunftsgebiet hinweisen. So lassen gehäufte Funde von Braunem Ostsee-Quarzporphyr und Aland-Rapakiwigraniten im Massenvorkommen von Jotnischem Sandstein bei Trebus in Brandenburg („Trebuser Sandstein“) auf eine Herkunft aus der nördlichen Ostsee oder südlichen Bottensee schließen (Abb. 19-22). Jotnische Sandsteine können bei Geschiebezählungen nach der Circle-Map-Methode (Smed) eine gewisse Aussagekraft besitzen.

Das Jotnium ist eine veraltete Zeiteinheit. Die Ablagerung der Sandsteine dürfte hauptsächlich im Ectasium vor etwa 1,4-1,2 Ga stattgefunden haben. Im Gelände eignet sich der Begriff „jotnisch“ zur groben Charakterisierung der Altersstellung von Gesteinen: den Sandstein unterlagernde magmatische Gesteine werden als subjotnisch bezeichnet. Das Ende der Sedimentationsphase markieren 1,27-1,25 Ga alte (postjotnische) Olivindiabas-Gänge, die den Sandstein durchschlagen. Nach Paulamäki & Kuivamäki 2006 wurden aber nicht alle Rotsandsteine im genannten Zeitraum abgelagert. Geophysikalische Untersuchungen in der Alandsee sprechen für eine kontinuierliche Sedimentation vom Mittel-Riphäikum bis zum Kambrium.

Abb. 6: Jotnischer Sandstein mit Entfärbungsflecken und größeren entfärbten Partien. Findlingslager Steinitz, Tagebau Welzow-Süd, Breite 70 cm.
Abb. 7: Jotnischer Sandstein mit Schrägschichtung (Kreuzschichtung). Die wulstigen Schichtungsphänomene könnten durch Auflast (convolute bedding) oder Entwässerung entstanden sein. Steinitz, Welzow-Süd, Bildbreite 50 cm.
Abb. 8: Heller Sandstein mit Schrägschichtung und kiesigen bis konglomeratischen Lagen. Tagebau Cottbus-Nord, Bildbreite 20 cm.
Abb. 9: Rotsandstein mit fein- und grobkörnigen Lagen, stellenweise mit Kreuzschichtung. Tagebau Jänschwalde, Bildbreite 35 cm.
Abb. 10: Gelb-rotbrauner Sandsteinohne Entfärbungsflecken. Steinitz, Tagebau Welzow-Süd, Breite 60 cm.
Abb. 11: Entfärbungsflecken zeigen manchmal konzentrisch schalige Strukturen (Liesegangsche Ringe). Steinitz, Tagebau Welzow-Süd, Breite 40 cm.
Abb. 12: Gleicher Stein, Detailaufnahme.
Abb. 13: Jotnischer Sandstein mit feinsandigen bis tonigen Intraklasten („Tongallen“). Tagebau Cottbus-Nord, Bildbreite 30 cm.
Abb. 14: Violetter Jotnischer Sandstein mit gelben Entfärbungsflecken und einem feinsandigen bis siltigem Intraklast. Tagebau Jänschwalde, Bildbreite 30 cm.
Abb. 15: Rotsandstein mit großen Milchquarz-Geröllen. Bildbreite 40 cm, Tagebau Cottbus-Nord.
Abb. 16: Helle Trockenrisse in einem violettgrauen Sandstein. Findlingslager Steinitz, Tagebau Welzow-Süd, Breite 110 cm.
Abb. 17: Gebogene Schichtlagen in einem Jotnischen Sandstein. Kiesgrube Hohensaaten, Brandenburg. Breite des Steins 23 cm.

Geschiebe von Jotnischem Sandstein können gehäuft bis massenhaft auftreten (s. Schulz 2003: 193). Im ehemaligen Tagebau Cottbus-Nord fanden sich zahlreiche große Blöcke. Teilweise machte der Jotnische Sandstein hier ein Drittel aller Großgeschiebe aus (Abb. 18).

Abb. 18: Ansammlung von Großgeschieben bis 60 cm Länge im ehem. Tagebau Cottbus-Nord.

Trebuser Sandstein

Das bekannteste Massenvorkommen dürfte in der Umgebung von Trebus in Brandenburg liegen. Hier wurde der rote Sandstein so zahlreich gefunden, dass man ein Vorkommen im Untergrund vermutete und im Jahre 1782 sogar eine Erkundungsbohrung vornahm (ausführliche Beschreibung in Zwenger 2010). Ein Besuch des alten Weinbergs vor Ort vermittelt eindrucksvoll, welche Mengen an Jotnischem Sandstein in diesem Gebiet einst gefunden wurden.

Abb. 19: Die Trockenmauern des alten Weinbergs unterhalb vom Restaurant „Seeblick“ in Trebus bestehen fast ausschließlich aus Jotnischem Sandstein.
Abb. 20: Nahaufnahme der Trockenmauer, Bildbreite 70 cm.
Abb. 21: Vereinzelt wurden Geschiebe von Braunem Ostsee-Quarzporphyr oder Aland-Rapakiwis in das Mauerwerk eingearbeitet.
Abb. 22: Konglomeratischer Rotsandstein mit Milchquarzen und Gesteinsfragmenten, Breite 22 cm.

Rotsandstein-Konglomerate und -Brekzien

Als Geschiebe finden sich auch Konglomerate und Brekzien mit einer Rotsandstein-Matrix. Intraformationelle, meist monomikte Bildungen entstehen in der Frühphase der Diagenese durch Fragmentierung des Sedimentkörpers (Brekzien) oder Ablagerung durch fluide Phasen. Beispiele für ein intraformationelles Konglomerat sind die runden „Tongallen“ in Abb. 13. Intraformationelle Brekzien (Sandstein in Sandstein) zeigt Abb. 23 und 24.

Extraformationelle Bildungen enthalten grobklastisches Gesteinsmaterial (z. B. Granite, Vulkanite und Gangquarze, seltener auch Achatgerölle), das durch Wasser, Eis oder Massenbewegungen seinen Weg in die sandigen Schichten fand, ohne dabei der vollständigen Verwitterung zu unterliegen. Eckige Klasten sprechen für einen kurzen, gerundete Klasten für einen weiten Transportweg. Beispiele sind das extraformationelle Konglomerat mit großen Milchquarz-Klasten in Abb. 15 und das Konglomerat in Abb. 25.

Aus Dalarna sind eine Vielzahl von Brekzien und Konglomeraten dokumentiert, die an der Grenze zwischen Dala-Sandstein und den älteren Dala-Vulkaniten auftreten, siehe die hervorragend illustrierte Dokumentation von Lundqvist & Svedlund 2009. Diese Bildungen dürften bis 1,6 Ga alt sein, teilweise sind sie „jotnisch“, teilweise gehören sie zur älteren Digerberg-Serie. Zwei bekannte Geschiebetypen sind das Digerberg-Konglomerat und das Transtrand-Konglomerat. Sie werden an anderer Stelle besprochen. Die Dala-Basalbrekzien oder vergleichbare Bildungen aus anderen Jotnischen Sandsteinvorkommen könnten auch in Norddeutschland als Geschiebe zu finden sein (Abb. 26, 27). Eine Herkunftsbestimmung dürfte in den meisten Fällen nicht möglich sein.

Abb. 23: Intraformationelle Brekzie von roten Sandsteinklasten in einem hellen Sandstein, unterlagert von massivem roten Sandstein. Strandgeröll von Misdroy (Polen).
Abb. 24: Intraformationelles Konglomerat mit orangeroten und grauvioletten Sandsteinklasten und einer hellen Sandstein-Matrix. Kiesgrube Fresdorfer Heide bei Potsdam.
Abb. 25: Konglomerat mit roter Sandstein-Matrix und Klasten aus Milchquarz, Sandstein und Porphyren. Kiesgrube Penkun (Vorpommern).
Abb. 26: Brekzie mit violetten Sandstein und gelblichen Feinsandstein-Klasten in einer Arkose-Matrix, die teilweise von einem jaspisartigen orangerotem Zement durchsetzt ist. Kiesgrube Ruhlsdorf bei Bernau (Brandenburg).
Abb. 27: Konglomerat mit Sandstein-, Granit-, Porphyr- und Basaltklasten in einer sandigen Matrix, teilweise mit jaspisartigem Zement. Kiesgrube Niederlehme bei Berlin.

Literatur

Lundegårdh P H 1967 Berggrunden i Gävleborgs län. Petrology of the Gävleborg County in Central Sweden. Med kartor i skalorna 1:200 000 och 1:75 000 – Sveriges geologiska undersökning Ser. Ba 22, S. 1-303, Stockholm.

Lundqvist T & Svedlund J-O 2009 Dokumentation av breccior och andra bergarter i norra Dalarna – SGU-Rapport 2009:01, 60 S., SGU 2009.

Paulamäki S & Kuivamäki A 2006 Depositional history and tectonic regimes within and in the margings of Fennoscandian shield during the last 1300 Million years. – Working Report 2006-43, Geological Survey of Finnland, 137 S., Olkiluoto.

Schulz W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 446+42 meist farb. kapitelweise num. Abb., 1 Kte. als Beil., Schwerin (cw Verlagsgruppe).

Smed P & Ehlers 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage 2002.

Vinx R 2016 Steine an deutschen Küsten; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.).

Zwenger W 2010 Der Trebuser Sandstein ‒ ein Massenvorkommen jotnischer Sandsteingeschiebe – Brandenburger Geowissenschaftliche Beiträge 17 (1/2): 77-90, 10 Abb., 1 Tab., Kleinmachnow.

Skarn

Abb. 1: Grobkörniger Skarn aus weißem Kalkspat, transparentem Quarz, grünem Ca-Pyroxen (Diopsid bis Hedenbergit) und hellgrünem Epidot. Anstehendprobe von Sunnerskog in Småland.

Skarn ist ein alter schwedischer Bergmannsbegriff. Die petrographische Verwendung der Bezeichnung geht auf die Beschreibung erzführender Granat-Pyroxen-Gesteine in der Region Persberg durch den schwedischen Geologen Törnebohm zurück (TÖRNEBOHM 1875). Heute ist Skarn ist eine Sammelbezeichnung für eine variantenreiche Gruppe metasomatisch gebildeter und meist Fe- und Ca-reicher Gesteine, die eine wichtige Rolle als Erzlieferant spielen. Ihre Entstehung ist an eine sog. Kontakt-Metasomatose zwischen einem aufsteigenden magamtischen Körper (z. B. Granit oder Diorit) und karbonatischen Sedimentgesteinen gebunden.

Unter Metasomatose versteht man eine Gesteinsumwandlung unter maßgeblicher Beteiligung von Fluiden. Sie unterscheidet sich von der dynamischen Metamorphose, der Gesteinsumwandlung durch geänderte Temperatur- und Druckbedingungen, bei der Fluide nur in kleiner Menge mobilisiert werden und die Summe der chemischen Komponenten weitgehend erhalten bleibt (sog. isochemische Metamorphose). Metasomatose hingegen führt zu einer durchgreifenden Änderung der chemischen Zusammensetzung der Ausgangsgesteine durch anhaltenden Zu- und Abfluss von Ionen.

  1. Entstehung von Skarnen
  2. Vorkommen
  3. Skarnvorkommen von Sunnerskog
  4. Skarn als Geschiebe
  5. Literatur
Abb. 2: Nahaufnahme des Gefüges der Probe in Abb. 1.

1. Entstehung von Skarnen

Die Bildung von Skarnen ist subduktionsgebunden und erfolgt in mehreren Stufen während der sog. Kontakt-Metasomatose (EINAUDI & BURT 1982, MEINERT 1992, ausführliche Informationen und umfangreiches Literaturverzeichnis auf www.science.smith.edu):

  1. Subduzierte Kalksteine, Dolomite oder karbonathaltige Sedimentgesteine gelangen in die Nähe eines aufsteigenden Intrusivkörpers, z. B. ein Granit- oder Dioritpluton.
  2. Das Karbonatgestein wird durch den Intrusivkörper zunächst kontaktmetamorph bei ca. 500-700°C unter Bildung von Marmor oder Kalksilikatgesteinen verändert. Die Entstehung von Porenräumen infolge Volumenabnahme durch Dehydration und Dekarbonisierung bereitet Wegbarkeiten für Fluide für die nachfolgende Metasomatose.
  3. Die eigentliche Skarn-Bildung erfolgt bei etwa 400-600°C. Im sedimentären Ausgangsgestein kommt es durch Stoffaustausch mit dem aufsteigenden Pluton zur Bildung weiterer Silikatminerale. Ebenso wird der Plutonit durch Zufuhr von Ionen verändert. Unter bestimmten Bedingungen kann sich eine regelrechte Fluidkonvektion zwischen beiden Systemen entwickeln. Dabei werden fortwährend Wasser und CO2 aus den Kalksteinen sowie Fluide und Volatile (Cl, F) aus dem Pluton mobilisiert. Die aggressiven Fluide transportieren Fe-, Ca- und Si-Ionen, aber auch Cu und andere Buntmetalle in gelöster Form, und führen zu einer durchgreifenden Veränderung der Gesteine. Grad der Umwandlung und Mineralneubildungen sind abhängig von Temperatur, Druck und den variablen Fluidphasen, daher sind Skarne eine sehr heterogene Gesteinsgruppe mit einer Vielfalt möglicher Mineralparagenesen.
  4. Die Ausscheidung von Erzen erfolgt bei 300-500°C. Skarn-Vorkommen werden nach dem nutzbaren Erz als Fe-, W-, Cu-, Zn/Pb oder Sn-Skarne klassifiziert.
  5. Eine späte (retrograde) hydrothermale Alteration bei 200-400°C führt zur Bildung von Epidot, Quarz, Chlorit, Pyrit, Magnetit etc. durch Zerfall von Granat und Pyroxen.

Das umgewandelte Sedimentgestein wird als Exoskarn, das veränderte magmatische Intrusivgestein als Endoskarn bezeichnet. Exoskarne treten nach Wimmenauer 1985 im unmittelbaren Kontaktbereich bis in Entfernungen von mehreren hundert Metern vom Intrusivgestein auf. Am häufigsten sind kalzitische Exoskarne mit Ca-Mg-Fe-Al-Silikaten wie Wollastonit Ca3[Si3O9] (sehr heiß), grünen Ca-Fe-Mg-Pyroxenen (Endglieder Diopsid CaMg[Si2O6] und Hedenbergit CaFe[Si2O6]), rotem oder braunem Granat (Grossular Ca3Al2[SiO4] und Andradit Ca3Fe2[SiO4]3) sowie Ca-Amphibolen, Vesuvian, Epidot, Scheelit, evtl. Erzen und weitere Minerale. Granat und Pyroxen entstehen nicht simultan; Pyroxen kann unter oxidierenden Bedingungen in Granat umgewandelt werden, etwa:

          Hedenbergit + O2 = Andradit + Qz + Magnetit

Typische mineralische Neubildungen in Mg-reichen Sedimentgesteinen sind Foyait und Phlogopit. In der Nähe zum Intrusivkontakt können sehr grobkörnige Skarne entstehen. Mit zunehmendem Abstand zum Kontakt, abhängig von der Menge zugeführter Metallionen, verändert sich die Zusammensetzung der Mineralgemeinschaft (z. B. Granat proximal, Pyroxen distal). Gemeinsam sind den Exoskarnen ein granoblastisches (massiges) Mineralgefüge und zonierte Mineralabfolgen.

Endoskarne, also durch metasomatischen Zustrom von Stoffen aus dem Sedimentgestein veränderte Teile des aufsteigenden Plutons, enthalten oftmals Pyroxen als Neubildung. Dabei kann es ebenfalls zur Anreicherung seltener Metalle wie W und Mo kommen.

2. Vorkommen

Aus dem gesamten nordischen Grundgebirge, vor allem aus Mittelschweden ist eine Vielzahl von Skarn-Vorkommen bekannt (GEIJER & MAGNUSSON 1952). Die meisten von ihnen besitzen nur eine kleinräumige Ausdehnung, einige sind als Erzlagerstätte bedeutend. Im wichtigsten schwedischen Vorkommen in Falun (Dalarna) werden Cu-Skarne mit einer Cu-Zn-Ag-Au-Pb-Vererzung übertage abgebaut. Die Gesteine entstanden bei der Intrusion von Graniten und Doleriten in Metavulkanite (Leptite) mit eingeschalteten Kalkstein-/Dolomit-Lagen. Eine weitere bedeutende hydrothermal entstandene Magnetit-Hämatit-Apatit-Lagerstätte ist Kiruna (Nordschweden). W-Mo-führende Granite (Endoskarne) im Gebiet von Gasborn in West Bergslagen beschreiben BAKER et al 1988, DAMANN & KIEFT 1990. Einige schwedische Geologen bezeichnen Einschaltungen von metamorphen Kalksilikatgesteinen in Marmorvorkommen als „Skarngneis“ (s. Abb. 15 im Artikel „Marmorvorkommen in Mittelschweden“).

3. Skarnvorkommen von Sunnerskog

Abb. 3: Grubensohle der Skarngrube Sunnerskog.

Bei Sunnerskog, etwa 6 km südöstlich von Holsbybrunn in Småland, wurde periodisch vom 17. Jahrhundert bis 1894 ein Exoskarn mit einer Cu-(W-Mo)-Vererzung abgebaut. Die Grube liegt im etwa 1,8 Ga alten Oskarshamn-Jönköping-Gürtel (OJB), einer svekofennischen Exklave innerhalb der etwas jüngeren Gesteine des Transkandinavischen Magmatitgürtels (TIB). Der Skarn von Sunnerskog ist ein typisches Beispiel für die weit verbreiteten Ca-Fe-Skarne und entstand durch Metasomatose von Kalksteinen und kieselig-kalkigen Sedimenten in Nachbarschaft zu granitischen Intrusionen. Gesteinsbildende Minerale sind weißer Calcit, roter bis brauner Granat, grüner bis schwarzgrüner Pyroxen, Epidot (hellgrün), Quarz (milchig weiß bis klar) sowie evtl. Wollastonit (Abb. 11). In einigen Proben fanden sich spärliche Butzen mit Erzmineralen (Cu-Sulfide). Eine Untersuchung aller Proben auf Wolfram-Minerale (Scheelit, Ca[WO4], orange Fluoreszenz unter niederwelligem UV-Licht) verlief negativ.

An der alten Grube (57.40679, 15.22564), unterhalb des Hanges auf der gegenüberliegenden Straßenseite, lassen sich auf einer Halde zahlreiche Belege bunter Skarn-Gesteine mit unterschiedlichen Graden metasomatischer Umwandlung aufsammeln:

  • von Neubildungen augenscheinlich freie Metasedimente (Abb. 6),
  • quarzitische Metasedimente, mit oder ohne Granat und Pyroxen (Abb. 8),
  • mittelkörnige Skarne aus Calcit, Quarz, rotem Granat, grünem bis schwarzgrünem Pyroxen und hellgrünem Epidot,
  • grobkörnige Skarne aus Pyroxen und/oder Granat (Abb. 12, 15).
  • vom Abstand zum Intrusivkontakt abhängige Mineralzusammensetzungen: Gesteine, die nur roten Granat (proximaler Intrusivkontakt, Abb. 10), beide Minerale (Abb. 15) oder nur grünen Pyroxen (distaler Intrusivkontakt, Abb. 1) enthalten.
Abb. 4: Ausschnitt aus dem geologischen Kartenblatt Vetlanda SV (Quelle: SGU, s. a. PERSSON 1989). Metasedimente der Vetlanda-Formation (hellblau) mit tuffitischen Areniten, Metagrauwacken und Einschaltungen von phyllitischem Glimmerschiefer mit Muskovit und Biotit in unmittelbarer Nähe zu Graniten des OJB (hellbraune Signatur mit schwarzen Punkten).
Abb. 5: Feinkörniges, dem Augenschein nach kaum verändertes sedimentäres Nebengestein (Metasediment). Lediglich eine leichte Grünfärbung weist auf eine niedrig metamorphe oder metasomatische Überprägung hin. Mit verdünnter Salzsäure zeigt sich keine Reaktion.
Abb. 6: Ein häufiger Haldenfund sind quarzitische Kalksilikatgesteine mit scherbiger Bruchfläche. Sie bestehen im Wesentlichen aus Quarz und können geringe Mengen roter und grüner Ca-Silikate (Granat, Pyroxen) enthalten.
Abb. 7: Schnittfläche einer ähnlichen Probe (E. Figaj leg.), Aufnahme unter Wasser. Quarzitisches Gestein mit Bändern von Silikatmineralen: roter Granat, schwarzgrüner Pyroxen und hellgrüner Epidot.
Abb. Abb. 8: Hellgrüner Epidot, dunkelgrüner Pyroxen und etwas roter Granat im Kontakt zu einem feinkörnigen und rötlichen Nebengestein (Metasediment).
Abb. 9: Gebänderter Skarn. Das Gestein besteht im Wesentlichen aus feinkörnigem Calcit, wird von einigen Quarzadern durchzogen und zeigt die für Metasomatite typische Lagentextur. Die hellbraunen und roten Partien enthalten feinkörnige Einlagerungen von Silikatmineralen, z. B. Granat.
Abb. 10: Abb. 10: Gleicher Stein, Nahaufnahme. An der Grenze zwischen Kalkstein und einer Partie aus transparentem Quarz sind farblose und radialstrahlige Kristallnadeln erkennbar, vermutlich Wollastonit. Die Umwandlung von Calciumkarbonat (CaCO3) + SiO2-Phase zu Wollastonit (CaSiO3) + CO2 ist das klassische Beispiel einer kontaktmetamorphen Mineralneubildung. Für seine Bildung sind relativ hohe Temperaturen von etwa 600°C erforderlich.
Abb. 11: Grobkörniger bunter Skarn, Breite 15 cm. Links eine massige Partie aus rotem Granat, auf der rechten Seite runde Aggregate von Granat in Calcit, der durch Einschlüsse von Silikatmineralen hellgrün gefärbt ist. Die feinkörnigen apfelgrünen Beläge sind Epidot.
Abb. 12: Idiomorpher brauner Granat (Grossular) in Calcit.
Abb. 13: Skarn aus grün pigmentiertem Calcit und einem Erzmineral mit metallischem Glanz, wahrscheinlich Chalcosin (wichtigstes Kupfermineral in Sunnerskog).
Abb. 14: Grobkörniger Skarn aus grünem Pyroxen und rotem Granat sowie etwas Quarz und Epidot.
Abb. 15: Pyroxen-Megakristall in einem grobkörnigen Pyroxen-Granat-Skarn. Granat füllt die Zwickel zwischen den großen Pyroxen-Kristallen. Aufnahme unter Wasser.
Abb. 16: Bruchstück eines großen Pyroxen-Einkristalls. Gut erkennbar sind die deutliche Spaltbarkeit und die typischen Spaltwinkel von etwa 90º.

4. Geschiebefunde

Gesteine aus Skarn-Vorkommen sind auch als Geschiebe einigermaßen sicher identifizierbar, wenn es sich um mittel- bis grobkörnige Gesteine mit den typischen Paragenesen der Ca-Fe-Skarne handelt: roter Granat und/oder grüner Pyroxen, optional mit hellgrünem Epidot, Calcit und Quarz. Abb. 17-21 zeigt historische Funde aus Brandenburg. Bei der Bestimmung von grünem Pyroxen-Skarn besteht eine Verwechslungsmöglichkeit mit grobkörnigen grünen Amphiboliten. Amphibole zeigen aber häufig eine idiomorphe Ausbildung, eine faserige Internstrukur (Aktinolith) oder intensiven Glas- oder Seidenglanz (auch bei Orthopyroxenen!). Auf der Bruchfläche weisen sie Spaltwinkel von 120º auf.

Ein anderer Lithotyp sind feinkörnige, sehr schwere und quarzitische Gesteine mit ähnlicher Paragenese (roter Granat, grüner Pyroxen). Durch ihre rostbraun angewitterte Außenseite können die Gesteine ausgesprochen unattraktiv erscheinen (Abb. 24), fallen aber durch ihr hohes Gewicht auf und besitzen meist eine Lagentextur (Abb. 22-27).

Weitere Gesteine aus Skarn-Vorkommen ähneln in Erscheinungsbild und Zusammensetzung ihren metamorphen Äquivalenten (Marmor, Kalksilikatgesteine). Schwer erkennbar dürften auch die pyroxenhaltigen Endoskarne (metasomatisch veränderte Plutonite) sein. BÖSE & EHMKE 1996 erwähnen den Fund eines Skarn-Geschiebes, RIES 2005 diskutiert den Fund eines Cer-Orthit-haltigen quarzitischen Skarns.

Abb. 17: Pyroxen-Skarn aus grobkörnigem grünem Pyroxen und etwas rotem Granat in den Zwickeln (vgl. Abb 15). Fundort: bei Stahnsdorf, leg. Hermann Müller, Slg. Museum Fürstenwalde.
Abb. 18: Nahaufnahme.
Abb. 19: Pyroxen-Skarn, Fundort: Berlin-Buch, H. Müller leg. am 12.09.1935, Geschiebesammlung der FU in Berlin-Lankwitz.
Abb. 20: Pyroxen-Skarn, Fundort Saarmund bei Potsdam, leg. W. Boschann; Sammlung W. Bennhold im Museum Fürstenwalde.
Abb. 21: Nahaufnahme. W. Bennhold notiert: „Silikatische Zone aus Kontakt-(Ur-)Kalk. Quarz + grüner Diopsid + glänzende Körnchen (nicht Magnetit, Titaneisen, Turmalin) + Kalkspat (fein verteilt)“.

Ein feinkörniges und sehr schweres Geschiebe mit rostiger Verwitterungsrinde erschien auf den ersten Blick wenig attraktiv. Mit großer Mühe konnte eine Bruchfläche erzeugt werden, die ein quarzitartiges Gestein mit reichlich rotem Granat zeigt.

Abb. 22: Feinkörniger quarzitischer Granat-Pyroxen-Skarn aus der Kiesgrube Penkun (Vorpommern), Bruchfläche.
Abb. 23: Die Nahaufnahme der polierten Schnittfläche zeigt neben Quarz und rotem Granat ein grünes Mineral, vermutlich Pyroxen.

Während einer Sammeltour am Strand von Skeldekobbel (Broager/DK) entdeckte Dr. Frank Rudolph ein großes Skarngeschiebe, das nur mit Mühe, unter Zuhilfenahme eines schweren Hammers zerlegt werden konnte.

Abb. 24: Stark angewitterter Skarn (quarzitischer Granat-Pyroxen-Skarn) mit ausgeprägter Lagentextur, Breite ca. 30 cm.
Abb. 25: Die polierte Schnittfläche zeigt die typische lagenweise Zonierung von Metasomatiten mit Partien mit grünem Diopsid, schwarzgrünem Hedenbergit und rotem Granat.
Abb. 26: Nahaufnahme; wolkige graue Partien bestehen aus Quarz.
Abb. 27: Nahaufnahme. Das Gestein wurde offensichtlich tektonisch überprägt; rechts unterhalb der Bildmitte reflektiert ein größeres grünes und gestreiftes Kristallaggregat (Diopsid?) das einfallende Licht.
Abb. 28: Aus einem Geschiebeblock stammt ein grobkristallines Gestein, das wahrscheinlich aus einem Skarn-Vorkommen stammt. Es besteht aus dunkelgrünem Hedenbergit, hellgrünem Diopsid, weißem Skapolith, und bronze-metallischem Magnetkies (det. F. Mädler 1985). Fundort: Tagebau Jänschwalde, Rinne Gosda Klinge; leg. K. Baumann, R. Kloß; Geschiebesammlung im Museum Fürstenwalde.
Abb. 29: Nahaufnahme
Abb. 30: Als „Skapolithfels“ bezeichnetes Geschiebe vom Molkenberg bei Fürstenwalde, leg. 1927 W. Bennhold. Sammlung Bennhold, Museum Fürstenwalde.

Auf dem Etikett vermerkt Bennhold: „Heimat: wahrsch. Norwegen; v.d.L.: mit Kobaltnitrat blaues Email; H=5; In HCl ganz allmählich weißlich werdend. Blättr. Minerale: v.d.L. bläht sich nicht auf, brennt sich mit Kobaltnitrat nicht blassrot, schmilzt an den Kanten nicht, wird nicht hart; in H2SO4 unveränderlich; H> Biotit. Also nicht Talk sondern Muskovit.“

Walter Bennhold verwendet hier die sog. Lötrohrprobierkunst, eine einfache Methode zur qualitativen Analyse von Metallionen (v.d.L. = vor dem Lötrohr). Das blaue Email nach Behandlung mit Kobaltnitrat ist ein Nachweis für Aluminium. Bennhold bestimmt das grüne Mineral als Skapolith, ein Gerüst-Alumosilikat mit der Summenformel (Na, Ca)4(Si, Al)12O24(Cl, CO3). Es kommt sich in Kontaktmetamorphiten, Skarnen, Metabasiten und Gneisen vor. Die Anionen Cl und CO3 weisen auf eine Bildung unter metasomatischen Bedingungen hin.

Abb. 31: Nahaufnahme. Die Paragenese mit rotem Granat (links im Bild) spricht für eine Herkunft des Geschiebes aus einem Skarn-Vorkommen.

Die teilweise sechseckigen Anschnitte der großen grünen Porphyroblasten im letzten Geschiebefund sprechen für einen Amphibol mit Ca-Vormacht. Auch roter Granat tritt auf, vor allem im Kontakt zum grünen Silikatmineral. In der ungleichkörnigen, wahrscheinlich durch Kataklase überprägten Grundmasse ist transparenter Feldspat erkennbar (keine perthitische Entmischunge, keine polysynthetische Verzwilligung). Ein Säuretest mit HCl verlief negativ.

Abb. 32: Skarn? Geschiebe mit polierter Schnittfläche, Kiesgrube Schweinrich (N-Brandenburg), leg. F. Wilcke.
Abb. 33: Nahaufnahme.

5. Literatur

science.smith.edu

BAKER J H & HELLINGWERF R H 1988 The geochemistry of tungsten-molybdenum- bearing granites and skarns from western Berslagen, central Sweden- In ZACHRISSON E (Herausgeber) Proc. of the 7th Quadrennial IAGOD Symposium, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, S. 327-338.

BÖSE M & EHMKE G 1996 Geotope und ihre Unterschutzstellung in Berlin – Brandenburgische Geowissenschaftliche Blätter 3 (1): 155-159, 2 Tab., Kleinmachnow.

DAMMAN A H & KIEFT C 1990 W-Mo polymetallic mineralization and associated calc- silicate assemblages in the Gasborn area, West Bergslagen, central Sweden – Can. Mineralogist 28, S. 17-36.

EINAUDI M T & BURT D M 1982 A Special Issue Devoted to Skarn Deposits – Introduction Terminology, Classification, and Composition of Skarn Deposits. – Economic Geology. V77/4, Society of Economic Geologists, 1982.

GEIJER P & MAGNUSSON N H 1952 The iron ores of Sweden: International Geological Congress, 19th Algiers 1952, v. 2, S. 477-499.

MEINERT L D 1992 Skarns and skarn deposits – Geoscience Canada 19, S. 145-162.

PERSSON L 1989 Beskrivning till berggrundskartorna 1 : 50000 – Vetlanda SV och SO – Sveriges Geologiska Undersökning (Af) 170+171: 130 S., Uppsala.

RIES G 2005 Ein Cer-Orthit-haltiger Quarzit als Geschiebe – Geschiebekunde aktuell 21 (1): 29-30, 2 Abb., 1 Tab., Hamburg / Greifswald.

TÖRNEBOHM A E 1875 Geognostisk beskrifning öfver Persbergets grufvefält –
SGU C 14.

WIMMENAUER W 1985 Petrographie magmatischer und metamorpher Gesteine; 297 Abb., 106 Tab., Enke-Verlag, Stuttgart.