Dieser mehrteilige Exkursionsbericht führt an ausgewählte Lokalitäten in Südwest-Schweden. Zahlreiche Küstenaufschlüsse und aufgelassene Steinbrüche zwischen Kullaberg-Halbinsel und Varberg bieten hervorragende Einblicke in die Geologie eines metamorphen Grundgebirges, das vor rund 1 Milliarde Jahren im Zuge der Svekonorwegischen Gebirgsbildung entstand. Hier treten großflächig Gesteine zutage, die in keiner anderen Region des nordischen Grundgebirges vorkommen, z. B. saure und mafische Granulite. Auf mehreren Reisen konnte eine Reihe von typisch SW-schwedischen Gesteinstypen, darunter auch kristalline Leitgeschiebe, beprobt und in ihrem geologischen Kontextes studiert werden. Als Grundlage für die Planung diente der Exkursionsführer von MÖLLER et al 1996.
Die Zahlen verweisen auf die entsprechenden Abschnitte des Exkursionsberichts. Die meisten Lokalitäten liegen an der Küste, weil dort die Gesteine besonders gut aufgeschlossen sind.
- Zur Geologie SW-Schwedens
1.1. Leitgeschiebe und Geschiebetypen aus SW-Schweden - Kullaberg-Halbinsel
2.1. Kullaberg und Kullaite
2.2. Kullaite als Geschiebe
2.3. Kullaberg: Ransvik
2.4. Nordwest-Dolerit von Arild - SW-schwedische Küstenaufschlüsse
3.1. Söndrum
3.2. Steninge
3.3. Glassvik
3.4. Stensjöhamn
3.5. Träslövsläge - Varberg-Charnockit und Torpa-Granit
4.1. Charnockite als Geschiebe
4.2. Torpa- und Tjärnesjön-Granit - Retroeklogit von Ullared
Im Zusammenhang mit den SW-schwedischen Gesteinen stehen Einzelbeschreibungen der folgenden Gesteinstypen:
- Schonengranulit und Flammenpegmatit
- Mafischer Granulit und Granatcoronit
- Järngneis
- Weißschlieriger Granatamphibolit
- Eklogit
1. Zur Geologie SW-Schwedens
Die svekonorwegische Gesteinsprovinz entstand vor 1,14 – 0,9 Ga und nimmt ausgedehnte Gebiete in Norwegen und in West- und Südwest-Schweden ein (rosa Signatur in Abb. 3). Sie wird in fünf lithotektonische Einheiten unterteilt, die durch fortgesetzte Akkretionsprozesse entstanden und jeweils eine eigene geologische Geschichte besitzen. In Schweden unterscheidet man ein westliches Segment (wT) mit niedriger metamorphen Gesteinen von einem östlichen Segment (öT). Beide Einheiten sind durch eine breite Mylonitzone voneinander getrennt und erstrecken sich nach Osten bis an die Protoginzone. Diese lang gestreckte Störungszone bildet die Grenze zu den weniger deformierten Gesteinen des Transskandinavischen Magmatitgürtels (TIB).
Das Exkursionsgebiet beschränkt sich auf den südwestlichen Teil des östlichen Segment der Svekonorwegiden, einem Gebiet, das als Südwestschwedisches Granulitgebiet (SGR southwest-swedish granulite region) bezeichnet wird (Abb. 4). Innerhalb der SGR finden sich vorwiegend die hochmetamorphen, während der svekonorwegischen Orogenese unter Bedingungen der höheren Amphibolit- bis Granulitfazies gebildeten Gesteine.
Die geologische Geschichte der SGR beginnt weit vor der svekonorwegischen Orogenese. Ein Grundgebirge aus Granitoiden und mafischen Intrusionen, das mit 1.730-1.660 Ma ein ähnliches Alter besitzt wie der Transskandinavische Magmatitgürtel, wurde durch eine ältere, als „Halland-Event“ oder „Halland-Orogenese“ bezeichnete Phase der Gebirgsbildung vor 1.460 und 1.420 Ma einer ersten Migmatisierung unterworfen (SÖDERLUND et al 2008; MÖLLER et al 2007). Mit dieser Orogenese verbunden sind der lokale Aufstieg postorogener Granite (Torpa-/Tjärnesjö-Granit, 1.400-1.380 Ma) und die Bildung von Charnockiten (s. Varberg-Charnockit). Diese Gesteine wurden während der svekonorwegischen Orogenese teilweise deformiert.
Die Gesteine der SGR entstanden vor 1.035 Ma bis 930 Ma während (mindestens) einer Kontinent-Kontinent-Kollision, vermutlich der Vereinigung von Amazonia und Baltica im Zuge der Grenville-Orogenese und der Bildung des Großkontinents Columbia. Heute treten jene Krustenteile des Gebirges zu Tage, die im Falle der granulitfaziellen Gesteine in etwa 35 km, im Extremfall des Eklogits in bis zu 50 km Tiefe gebildet wurden. In ihre gegenwärtige Position gelangten sie durch gravitationalen Kollaps des Orogens und isostatischen Ausgleich der verdickten kontinentalen Kruste nach dem Ende der Gebirgsbildung sowie der Abtragung im Laufe von Jahrmillionen (BINGEN et al 2008).
Das Grundgebirge der SGR besteht überwiegend aus rötlichen und grauen Adergneisen bzw. Migmatiten von granitischer bis intermediärer Zusammensetzung. Teilweise enthalten diese Gesteine als granulitfazielle Neubildung Magnetit in bedeutender Menge und werden dann als „Järngneis“ (Eisengneis) bezeichnet. Eingeschaltete Gänge, Lagen und Linsen von Granatamphiboliten und mafischen Granuliten innerhalb der Gneise entstanden durch Metamorphose (wahrscheinlich mehrerer Generationen) von Intrusionen (und Extrusionen?) basischer Gesteine. Die Vorkommen mafischer Gesteine erreichen eine Ausdehnung von einigen km Länge und maximal 1 km Breite. Die Gesteine mit den höchsten Metamorphosegraden innerhalb der SGR sind kleine Vorkommen von Retro-Eklogiten im Gebiet von Ullared.
Das svekofennische Gebirge war bereits zu Beginn des Paläozoikums vollkommen eingeebnet. Durch einen weltweiten Anstieg des Meeresspiegels (Transgression) kam es auf diesem als Peneplain bezeichneten Gebirgsrumpf im Zeitraum zwischen Kambrium und Silur zur Ablagerung von Sedimenten. Durch Kollision von Baltica und Nordamerika entstand im späten Silur das Kaledonische Gebirge. Kaledonische Gesteine bedecken heute vor allem in Norwegen Teile des älteren Grundgebirges.
Im Permokarbon (vor etwa 300 Millionen Jahren) bildete sich an der Nahtstelle (Sutur) zwischen Baltischem Schild und Mitteleuropa eine etwa 100 km breite Deformationszone bzw. Schwächezone. Der SW-schwedische Teil ist die NW-SE verlaufende Sorgenfrei-Tornquist-Zone. Zur Zeit ihrer Hauptaktivität wurde das proterozoische Grundgebirge von tief reichenden Rissen und Klüften durchzogen. In der Folge stiegen Magmen auf. Ein Gangschwarm aus Tausenden NW-streichender Gänge (NW-Dolerite, untergeordnet auch Kullaite und Lamprophyre) durchschlägt teilweise auch jüngere Sedimentgesteine, die seit dem Unterkambrium auf dem Baltischen Schild abgelagert wurden.
Zusammenfassung der wichtigsten Daten zur geologischen Geschichte der SGR:
- 1,73-1,66 Ga: Entstehung der Ausgangsgesteine der SGR; ähnliches Gesteinsalter wie TIB.
- 1,46-1,42 Ga: „Halland-Event“, Gebirgsbildung und erste metamorphe Phase;
- 1,40-1,38 Ga: postorogene Torpa-Granite, Charnockite.
- 1,03-0,93 Ga: Svekonorwegische Orogenese; Bildung granulitfazieller Gesteine (Granulitgneise, mafische Granulite) und Eklogite.
- Ablagerung von Sedimentgesteinen auf dem Grundgebirgsrumpf seit dem Unterkambrium.
- Permokarbon: Bruchtektonik der Sorgenfrei-Tornqvist-Zone; Aufstieg der NW-Dolerite (Kullaite, Lamprophyre).
1.1. SW-schwedische Leitgeschiebe
Einige Gesteinstypen der SGR eignen sich als Leitgeschiebe. Zu den häufigeren Geschieben gehören die granulitfaziellen Gesteine. Aus sauren Edukten gingen Schonen-Granulit („Granulitgneis von Schonen“ in SMED & EHLERS 2002) und „Flammenpegmatit“ (deformierter bunter Pegmatit in VINX 1998) hervor. Ihre Vorkommen beschränken sich auf Westschonen und Halland. Im gleichen Gebiet und einzelnen Arealen weiter östlich, in Richtung der Protoginzone, kommen auch die Granulite aus basischen Edukten vor: granoblastischer mafischer Granulit und Granatcoronit.
Mit Einschränkung sind migmatitische Granatamphibolite („plagioklasschlieriger Granatamphibolit“, VINX 1996, 1998, 2016) als SW-schwedisches Leitgeschiebe geeignet. Als mögliches Leitgeschiebe werden hier erstmalig Gesteine vorgestellt, die große Orthopyroxen-Kristalle (oder Relikte davon) führen und ebenfalls typische Gesteine der SGR sein dürften, weil die Bildung von Orthopyroxen an granulitfazielle Metamorphosebedingungen geknüpft ist (Granatamphibolite mit Orthopyroxen-Megakristallen sowie charnockitisierte Pegmatite mit Opx-Megakristallen).
Weniger häufig sind Varberg-Charnockit (Varberg-Granit in ZANDSTRA 1999 und HESEMANN 1975) und grobporphyrische Varianten des Torpa-Granits, ein rarer Fund ist der Halland-Retro-Eklogit. Eine grobkörnige und porphyrische Variante des NW-Dolerits eignet sich nach bisherigem Kenntnisstand als Leitgeschiebe und ist nur in NW-Schonen beheimatet.
Neben Gesteinstypen mit eng begrenztem Herkunftsgebiet lassen sich weitere Gesteine mit einiger Wahrscheinlichkeit einer SW-schwedischen Herkunft zuordnen. Aufgrund ihrer weiten Verbreitung sind sie nicht als Leitgeschiebe geeignet. In SW-schwedischen Geschiebegemeinschaften finden sich häufig magnetitführende Järngneise sowie Granatamphibolite (mit Plagioklassäumen um die Granate). Mit einem hohen Anteil an SW-schwedischen Gesteinen ist insbesondere westlich und nördlich der Lübecker Bucht zu rechnen.
Die seltenen und exotischen Kullaite bilden mehrere kleine, aber weit gestreute Vorkommen, nicht nur in SW-Schweden. In SW-schwedischen Geschiebegemeinschaften dürfte eine höhere Wahrscheinlichkeit für Funde bestehen, aufgrund der vergleichsweise großen Anzahl SW-schwedischer Kullait-Gänge.
Darüber hinaus existiert eine Reihe von lokalen, teilweise auch synonymen Bezeichnungen für SW-schwedische Gneise, die geschiebekundlich nur wenig aussagekräftig sind, z. B. Halland-Gneis, Halmstadgneis oder Halmstad-Migmatit. Es handelt sich um rötliche, teils migmatitische Adergneise, wie sie an der Küste von Halland seit langer Zeit als Werkstein gewonnen werden. Granulitgneis ist eine allgemeine Bezeichnung für Gneise, die einer granulitfaziellen Metamorphose unterlagen. Bei einem Teil von ihnen handelt es sich um Schonengranulit. Für gewöhnlich sieht man einem Gneis-Geschiebe die metamorphe Fazies nicht an. Stark magnetithaltige Gneise sind ein Hinweis auf eine SW-schwedische Herkunft und werden als Järngneis bezeichnet.
Innerhalb der Südwestschwedischen Granulitregion (SGR) sind mehrere Vorkommen von Charnockitgneisen bekannt. Diese grünen Gesteine bilden Einschaltungen innerhalb der Grundgebirgsgneise und sind metamorph entstanden, im Unterschied zum Varberg-Charnockit (magmatischer Ursprung).
Das schwarz schraffierte Gebiet in Abb. 5 markiert einen kleinen Teil der svekonorwegischen Gesteine in SW-Schweden, das Südwestschwedische Granulitgebiet (SGR, southwest-swedish granulite region). Es wird von großen Störungszonen begrenzt, im Norden von der Mylonitzone (gelb), im Osten von der Protoginzone (rot).
Auf das gesamte Gebiet der SGR verteilt finden sich Vorkommen von Järngneisen.
Die Gesteine mit den höchsten Metamorphosegraden (Granulite) beschränken sich auf den westlichen Teil der SGR, einem Gebiet nördlich von Helsingborg bis Varberg. Von hier stammen die sauren und basischen Granulite: Schonengranulit, Flammenpegmatit, mafischer Granulit. Gebiete mit den schwarzen Punkten kennzeichnen die Gebiete, in denen Granatcoronite verbreitet sind.
Hervorgehoben sind die Städte Varberg (Massiv des Varberg-Charnockits mit Torpa-Granit) und Ullared (Vorkommen des Halland-Retroeklogits). Blau markiert ist jener Teil des permosilesischen Gangschwarms, in denen NW-Dolerite mit grobkörniger Grundmasse auftreten. Innerhalb dieses bis Ost-Schonen reichenden Gangschwarms liegen auch mehrere Vorkommen von Kullaiten.
2. Kullaberg-Halbinsel
Der geologische Streifzug durch die SGR beginnt auf der Kullaberg-Halbinsel, etwa 35 km NW von Helsingborg. Im südwestlichen Schweden kam es im späten Silur durch Dehnungstektonik zur Bildung sog. Horste und Gräben. Dabei wurden Teile des Grundgebirges als Horste herausgehoben und Gräben mit jüngeren Sedimenten verfüllt. Der Kullaberg als südwestlichste Einheit einer Reihe von Grundgebirgshorsten, zu denen auch der Hallandsåsen und Söderåsen gehören, besitzt ein mittelgebirgsartiges Relief, seine Höhenlagen erheben sich rund 100 m über den Meeresspiegel. An zahlreichen küstennahen Aufschlüssen lassen sich die Gesteine der SGR und ihre Kontaktbeziehungen studieren.
Das Grundgebirge der Kullaberg-Halbinsel besteht im Wesentlichen aus grauen bis rötlichgrauen und meist migmatitisierten Orthogneisen. Gänge und Körper (grün) von Metabasiten (Amphibolite, Granat-Amphibolite und mafische Granulite) durchziehen die Gneise annähernd in N-S-Richtung. Die jüngeren NW-Dolerite (violett; diabase) weisen eine nordwestliche Streichrichtung auf.
Das Gestein ist magnetisch und ein sog. „Järngneis“ (Eisengneis). Järngneise sind in SW-Schweden weit verbreitet und können Magnetit in bedeutender Menge (1-3%) enthalten. Magnetit entsteht als Neubildung unter granulitfaziellen Metamorphosebedingungen.
In die Gneise vom Kullaberg sind stellenweise Gänge und Körper von aplitischen Gesteinen und grobkörnigen Pegmatiten eingeschaltet. Sie dürften postkinematisch, also nach der (svekofennischen) Gebirgsbildung entstanden sein, weil sie ein richtungslos-körniges Mineralgefüge und keine Anzeichen einer tektonischen Deformation aufweisen. Die Gesteine ähneln manchmal dem Schonengranulit oder „Flammenpegmatit“ (Abb. 14). Letztere entstanden jedoch unter granulitfaziellen Bedingungen und weisen eine deutliche Foliation auf. Ihr Hauptverbreitungsgebiet liegt etwas weiter nördlich im Gebiet zwischen Halmstad und Falkenberg.
An der Westspitze der Kullaberg-Halbinsel finden sich innerhalb der rotgrauen Gneise mehrere große Gesteinskörper mit Metabasiten, von fein-, mittel- bis grobkörnigen und meist granatführenden Amphiboliten (<5% Granat) über Granatamphiboliten (>5% Granat) bis mafischen Granuliten. Die Gesteine können weitgehend undeformiert, gneisig, verfaltet oder migmatisiert sein. Abb. 16 zeigt eine größere Intrusion mit einem zentralen Teil aus mafischem Granulit, der zum Rand in einen Amphibolit übergeht.
Mafische Granulite sind typische Gesteine der SGR und durch trockene Hochdruck-Metamorphose aus basischen Ausgangsgesteinen hervorgegangen (Basalte oder Gabbros). Plagioklas wird unter granulitfaziellen Bedingungen instabil und wandelt sich an den Korngrenzen zum Pyroxen in Granat um. Dieser bildet Granoblasten in Gestalt kleiner Körner, ebenso wie Klino- und Orthopyroxen, die durch komplexe Mineralreaktionen aus dunklen Mineralen wie Biotit und Amphibol gebildet werden. Mafische Granulite weisen im kleinen Maßstab also ein weitgehend gleichkörniges und richtungsloses Mineralgefüge auf und sind als Granofelse anzusehen, können auf den ersten Blick aber eine gneisartige Textur besitzen, möglicherweise ein Reliktgefüge der Ausgangsgesteine. Wesentlicher Mineralbestand sind Klinopyroxen (grünlich-schwarz), granoblastischer Granat (rot) in winzigen Körnern, Plagioklas (weiß) sowie schwankende Mengen an schwarzem und glänzenden Amphibol, der durch retrograde Metamorphose entstand.
Mafische Granulite entstehen bei 700-800°C und einem Druck von 8-12 Kbar, was einer krustalen Tiefe von 30-45 km entspricht. Die Kruste muss also zum Zeitpunkt der Metamorphose sehr dick und die Ausgangsgesteine entsprechend tief versenkt gewesen sein. Die Exhumierung bzw. der Aufstieg der mafischen Granulite erfolgte offenbar recht schnell, da sie im Allgemeinen nur in geringem Maße retrograd überprägt wurden (Bildung von Amphibol; MÖLLER et al 1996).
Neben den NS-streichenden Metabasiten, die während der Svekonorwegischen Gebirgsbildung teilweise in mafische Granulite umgewandelt wurden, sind am Kullaberg auch Gänge von jüngeren (permokarbonischen), gänzlich undeformierten und gemäß ihrer vorherrschenden nordwestlichen Streichrichtung als NW-Dolerit bezeichneten Gesteinen aufgeschlossen (s. a. Nordwest-Dolerit von Arild).
In flachen Uferbereichen der Felsküste finden sich die anstehenden Gesteine der unmittelbaren Umgebung als Brandungsgeröll (Gneise, Pegmatite, Amphibolite und mafische Granulite).
Literatur
BINGEN B, NORDGULEN O & VIOLA G 2008 A fourphase model for the Sveconorwegian orogeny, SW Scandinavia – Norwegian Journal of Geology 88, S. 43-72.
MÖLLER C, JOHANSSON L, ANDERSSON J & SÖDERLUND U 1996 Southwest-Swedish Granulite Region – Berichte der Deutschen Mineralogischen Gesellschaft, Beih. z. Eur. J. Mineral. Vol. 8, 1996, No.2.
MÖLLER C, ANDERSSON J, LUNDQVIST I & HELLSTRÖM FA 2007 Linking deformation, migmatite formation and zircon U-Pb geochronology in polymetamorphic gneisses, Sveconorwegian province, Sweden – Journal of Metamorphic Geology 25, S. 727-750.
SÖDERLUND U, HELLSTRÖM FA & KAMO SL 2008 Geochronology of high-pressure mafic granulite dykes in SW Sweden: tracking the P- T-t path of metamorphism using Hf isotopes in zircon and baddeleyite – Journal of Metamorphic Geology 26, 539-560.
SÖDERLUND U, KARLSSON C, JOHANSSON L & LARSSON K 2008 The Kullaberg peninsula – a glimpse of the Proterozoic evolution of SW Fennoscandia – GFF 130, Teil 1, S. 1-10.
VINX R 1996 Granatcoronit (mafischer Granulit): ein neues Leitgeschiebe SW-schwedischer Herkunft – Archiv für Geschiebekunde, Hamburg 1996, Band 2, S. 3-20.
VINX R 1998 Neue kristalline SW-schwedische Leitgeschiebe: Granoblastischer Mafischer Granulit, Halland-Retro-Eklogit und deformierter, bunter Pegmatit – Archiv für Geschiebekunde, Hamburg 1998, Band 2, Heft 6, S. 363-378.
VINX R 2016 Steine an deutschen Küsten; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.).
Pingback: Järngneis | Geologische Streifzüge
Pingback: Mafischer Granulit und Granat-Coronit | Geologische Streifzüge
Pingback: Weißschlieriger Granatamphibolit | Geologische Streifzüge
Pingback: Schonengranulit und Flammenpegmatit | Geologische Streifzüge
Pingback: Geologische Streifzüge in SW-Schweden | Geologische Streifzüge
Pingback: 2.4. Nordwest-Dolerit von Arild | Geologische Streifzüge