Schlagwort-Archive: Diabas

Einschlussführende Diabase

Abb. 1: Einschlussführender Diabas mit feinkörniger Grundmasse. Das Gestein enthält abgerundete Xenolithe von Alkalifeldspat und eckige Quarz-Feldspat-sowie Quarz-Fragmente. Polierte Schnittfläche eines Geschiebes aus der Kiesgrube Niederlehme bei Berlin.
AAbb. 2: Die runden Feldspäte sind stark alteriert, teilweise auch zoniert durch wechselnde Anteile dunkler Minerale, die vermutlich infolge von Reaktionen mit dem heißen basischen Magma entstanden.

1. Beschreibung
2. Anstehendproben
2.1. Brevik
2.2. Ålsarp
2.3. Björbo
2.4. Södregården
2.5. Forserum
2.6. Värlebo
3. Geschiebefunde
4. Lokalitäten
5. Literatur

1. Beschreibung

Beim Aufstieg basaltischer Magmen aus dem Erdmantel oder von der Mantel-Kruste-Grenze können Teile des Nebengesteins mitgerissen und als Einschlüsse im basischen Gestein konserviert werden. Im nordischen Grundgebirge und als Geschiebe sind solche „einschlussführenden Diabase“ weit verbreitet. Sie besitzen eine feinkörnige oder doleritische, selten auch für das bloße Auge dicht erscheinende und mittel- bis dunkelgraue, manchmal auch etwas grünliche Grundmasse.

Menge, Art und Größe der Xenolithe (Gesteinsfragmente oder Einzelkristalle) sind variabel. Abgerundete Einschlüsse weisen auf eine teilweise Assimilation durch das basische Magma hin, dessen Temperatur deutlich über dem Schmelzpunkt quarz- und feldspatreicher Gesteine liegt. Runde Einschlüsse führten in der Vergangenheit wahrscheinlich zu der unglücklichen Bezeichnung „Gerölldiabas“. Nur in wenigen Fällen dürfte es sich tatsächlich um Geröll-Horizonte handeln, die in eine basaltische Schmelze eingetragen wurden.

Einschlussführende Diabase können monomikt (nur eine Gesteinsart als Fremdeinschluss) oder oligomikt/polymikt (mehrere Gesteinsarten) zusammengesetzt sein. Als Einschluss finden sich Plutonite und Gneise aller Art, Sandsteine und Quarzite (bzw. durch den Kontakt zum heißen basaischen Magma in Quarzite umgewandelte Sandsteine) sowie einzelne Quarze und Feldspäte. Häufiger als Fremdgesteins-Einschlüsse in Diabasen ist übrigens das umgekehrte Phänomen zu beobachten: Xenolithe feinkörniger basaltischer Gesteine in basischen bis sauren Plutoniten (Abb. 3).

Abb. 3: Basische Xenolithe (Basaltoide, Gabbro) in einem dioritischen Gestein. Kiesgrube Arendsee/Weggun, Brandenburg.

Die Geschiebekunde unterscheidet mehrere Typen einschlussführender Diabase: Björbo-Diabas, Brevik-Gerölldiabas und Ålsarp-Diabas. Neben diesen Typlokalitäten (Abb. 4) sind rund ein Dutzend weitere Vorkommen aus Blekinge, Mittelschweden (Grängesberg), von Bornholm sowie aus Norwegen und Finnland bekannt (HESEMANN 1975, KORN 1927, MEYER 1981, BARTOLOMÄUS & HERRENDORF 2003). Zu bedenken ist, dass einschlussführende Partien lokal begrenzt und ausschließlich in kleiner Ausdehnung innerhalb verschieden alter Gangschwärme in einem großen Gebiet zwischen Bornholm bis nach Dalarna auftreten. Die tatsächliche Anzahl der Vorkommen dürfte also bedeutend höher sein und es ist kaum möglich, spezifische Gesteinstypen mit einem begrenzten Herkunftsgebiet herauszustellen. Einschlussführende Diabase sind daher nicht als Leitgeschiebe geeignet. Dies gilt auch für den markanten Brevik-Typ mit Sandstein- bzw. Quarzit-Xenolithen (s. a. BARTOLOMÄUS & HERRENDORF 2003). Allenfalls eine grobe Typ-Bestimmung nach Art der Einschlüsse und/oder Beschaffenheit der Grundmasse ist möglich. So ähneln sich Björbo- und Alsarp-Typ hinsichtlich der Einschlüsse, der Ålsarp-Diabas besitzt eine ophitische, der Björbo-Diabas eine feinkörnige Grundmasse.

Abb. 4: Übersichtskarte einiger postorogener Diabas-Gangschwärme sowie im Text genannter Lokalitäten.

2. Anstehendproben

2.1. Brevik (West-Småland)

Abb. 5: „Brevik-Gerölldiabas“, Anstehendprobe, polierte Schnittfläche, Foto aus skan-kristallin.de.

Der „Brevik-Gerölldiabas“ enthält eckige bis schwach gerundete Einschlüsse von Sandsteinen sowie bis zu 10 % Granit- und Porphyr-Lithoklasten. Im Schwedischen heißt das Gestein diabaskonglomerat. Vorkommen dieses Gesteinstyps sind nicht auf das Gebiet von Brevik beschränkt (BARTOLOMÄUS & HERRENDORF 2003). Diabase dieses Typs haben Sandsteine jotnischen Alters (Lokalbezeichnung: Almesåkra-Sandstein) aufgenommen und besitzen „postjotnisches“ Alter (jünger als ca. 1.200 Millionen Jahre). Zur Zeit des Aufstiegs dieser basaltischen Magmen dürften die Sedimentgesteine der Almesåkra-Formation eine wesentlich größere Fläche eingenommen haben als heute, vgl. Anstehendprobe von Lokalität 2.4. (Abb. 11).

2.2. Ålsarp

Abb. 6: Alsarp-Diabas, Anstehendprobe mit polierter Schnittfläche, K.-D. Meyer leg., Foto aus skan-kristallin.de.

Der einschlussführende Ålsarp-Diabas besitzt eine ophitische Grundmasse und führt gerundete Xenolithe von roten Feldspäten. Für eine ausführliche Beschreibung und weitere Anstehendproben vgl. skan-kristallin.de und HESEMANN 1975:176. Der Besuch eines Straßenaufschlusses in der Nähe der Typlokalität Ålsarp in Ost-Småland (Lokalität 4) verlief eher enttäuschend, weil der anstehende Diabasgang keine Einschlüsse von runden Feldspäten enthielt. Lediglich der benachbarte Småland-Granit wies zahlreiche basische Xenolithe sowie unterschiedliche Stadien einer Vermengung mit basischen Gesteinen auf. Nach MEYER KD 1981 liegt der Aufschluss mit den einschlussführenden Partien 650 m weiter südwestlich (etwa 57.52943, 16.02641).

Abb. 7: Småland-Granit mit Diabas-Einschlüssen vom Straßenaufschluss bei Ålsarp. Breite des Abschlags ca. 15 cm.
Abb. 8: Anstehender Småland-Monzogranit mit teilweise assimilierten Diabas-Xenolithen (dunkle und feinkörnige Partien); Aufnahme unter Wasser.

2.3. Björbo

Abb. 9: Björbo-Diabas aus Dalarna (4 km westlich von Björbo, K.-D. Meyer leg.) , Foto aus skan-kristallin.de.

Der Björbo-Diabas besitzt eine feinkörnige bis dichte Grundmasse und enthält runde und eigentümlich korrodierte Xenolithe aus rotem Feldspat. Quarz fehlt in dieser Probe, kann aber in Diabasen dieses Typs zusätzlich enthalten sein. Beschreibung eines Aufschlusses in MEYER 1981.

2.4. Södregården

Nördlich von Växjö wurde ein Diabasgang mit einer ungewöhnlichen Kombination von Einschlüssen aus Anorthosit und Sandstein/Quarzit beprobt (Lokalität 1). Nach WIKMAN 2000 (Kartenblatt Växjö NO, SGU) existieren in diesem Gebiet weitere Aufschlüsse mit ähnlichen Gesteinen.

Abb. 10: Große Anorthosit-Xenolithe und quarzitartige Einschlüsse in einem Diabas an der Lokalität Södregården. Bildbreite 30 cm.
Abb. 11: Probe aus dem gleichen Aufschluss; Bruchfläche eines feinkörnigen Diabas mit doleritischem Gefüge sowie milchig-trüben Quarz-Einschlüssen. Aufnahme unter Wasser.

Die Xenolithe in Abb. 11 sind Sandsteine der Almesåkra-Formation, die bei der Aufnahme in das basaltische Magma in Quarzit umgewandelt wurden. Die in etwa zeitlich mit dem jotnischen Sandstein gebildeten Sedimentite der Almesåkra-Formation dürften einst ein wesentlich größeres Gebiet eingenommen haben, weil sie in einschlussführenden Diabasen weit außerhalb ihrer heutigen Verbreitung gefunden wurden. Die Lokalität Södregården liegt über 40 km südlich davon.

2.5. Forserum

In der Nähe der Lokalität Brevik fand sich ein einschlussführender Diabas mit gerundeten Feldspat-Xenolithen im Kontakt zu einem Småland-Granit (Lokalität 2). Es war nicht erkennbar, ob es sich dabei um die Grenze zu einem basischen Gang oder einen Xenolith im Granit handelt.

Abb. 12: Einschlussführender Diabas im Småland-Granit (Lokalität 2).

2.6. Värlebo

Einige Vorkommen von Gangporphyren im östlichen Småland werden von Diabasen begleitet, die den gleichen Aufstiegsweg nutzten und bevorzugt an den Flanken der sauren Gänge auftreten (bimodaler Magmatismus). Im Kontakt zu einem Påskallavik-Porphyr fand sich in der Nähe der Ortschaft Värlebo ein grüner Diabas, der gerundete Feldspäte und Blauquarz als Xenolithe führt (Lokalität 3).

Abb. 13: Graugrüner Diabas mit runden Einschlüssen von Feldspat und Blauquarz, die aus dem benachbarten Påskallavik-Porphyr stammen. Aufnahme unter Wasser.
Abb. 14: Gleicher Stein, nasse Bruchfläche.

3. Geschiebefunde

Einschlussführende Diabase vom Brevik-Typ fallen manchmal durch ihr eigentümliches Verwitterungsverhalten auf: die quarzitischen Xenolithe widerstehen der Verwitterung stärker als das basische Gestein und treten als Relief auf der Geschiebeoberfläche hervor.

Abb. 15: Einschlussführender Diabas, Typ Brevik, trocken fotografiert, Geschiebe von den Spargelfeldern bei Schlunkendorf (S Potsdam), Slg. D. Lüttich.
Abb. 16: Nahaufnahme der quarzitischen Klasten.
Abb. 17: Brevik-Typ, nass fotografiert, Kiesgrube Hohensaaten (Brandenburg), Breite 19 cm.
Abb. 18: Einschlussführender Diabas, Brevik-Typ, Geschiebefund mit polierter Schnittfläche. Die feinkörnige, graue und basaltartige Matrix führt eckige bis schwach gerundete Einschlüsse von Sandstein und ist leicht magnetisch, der Sandstein nicht. Fundort: Kiesgrube Fresdorfer Heide bei Potsdam, leg. G. Engelhardt.
Abb. 19: Nahaufnahme. Auffällig sind die schwarzen Reaktionsränder um die Sandsteinfragmente, eine Folge mineralischer Veränderung des basaltischen Gesteins durch Stoffaustausch mit dem Sandstein (oder darin enthaltenen Fluiden), wahrscheinlich eine Umwandlung von Pyroxen in Amphibol.
Abb. 20: Einschlussführender Diabas, Björbo-Typ mit feinkörniger Grundmasse. Geschiebe aus der Kiesgrube Penkun bei Stettin, Aufnahme unter Wasser.
Abb. 21: Nahaufnahme, runde Einschlüsse mit orangerotem Alkalifeldspat, grauem Quarz und wenigen dunklen Mineralen.
Abb. 22: Einschlussführender Diabas, polierte Schnittfläche, Kiesgrube Niederlehme bei Berlin (D. Lüttich leg.).
Abb. 23: Runde und eckige Feldspäte sowie bläulichgraue Quarzkörner als Einschlüsse in einem feinkörnigen Diabas. Strandgeröll von Westermarkelsdorf, Fehmarn, Aufnahme unter Wasser.
Abb. 24: Grenze eines feinkörnigen basaltischen Gesteins zu einem Quarzporphyr, ähnlich dem Åland-Quarzporphyr. Mitten im Basalt befindet sich ein einzelnes Porphyr-Fragment. Während basische Xenolithe in Rapakiwi-Graniten, z. B. Granitporphyren, regelmäßig zu finden sind, kommen basaltische Gesteine mit Rapakiwi-Einschlüssen wesentlich seltener vor. Strandgeröll von Misdroy in Westpolen, Aufnahme unter Wasser.
Abb. 25: Einschlussführender Diabas aus der Kiesgrube Hohensaaten (Brandenburg), Aufnahme einer frischen Bruchfläche unter Wasser.

Das Gestein enthält runde Feldspat- und Blauquarz-Einschlüsse sowie feinkörnige basaltische Xenolithe. Die Einschlüsse, besonders gut erkennbar ist dies an den Quarzen, weisen einen dunklen Reaktionssaum auf. Solche Säume, wie sie auch vom Åland-„Ringquarzporphyr“ bekannt sind, weisen auf Mineralumwandlungen an der Grenzfläche zweier Minerale hin. In diesem Fall dürfte es sich um Pyroxen und Quarz handeln, die aus chemischer Sicht „Antagonisten“ sind und für gewöhnlich nicht nebeneinander existieren, sondern ein chemisches Gleichgewicht anstreben (Bildung von Hornblende, die dunklen Säume um die Quarze).

Abb. 26: Einschlussführender Diabas mit großen Alkalifeldspat-Xenokristallen und runden Blauquarzen. Kiesgrube Niederlehme bei Berlin.
Abb. 27: Einschlussführender Diabas, Großgeschiebe vom Rand des Tagebaus Welzow-Süd in Brandenburg, Höhe 90 cm.
Abb. 28: Das Gestein enthält schwach gerundete Fragmente von Gneisen, Graniten und quarzreichen Partien.
Abb. 29: Diabas mit Xenolithen bis 20 cm Größe. Einige der Xenolithe dürften Anorthosite sein, einige der größeren Feldspat-Xenokristalle wurden als Plagioklas bestimmt. Kiesgrube Hohensaaten, Breite des Steins 80 cm.
Abb. 30: Gleicher Stein, Feldspat-Megakristall von ca. 12 cm Länge.

Gelegentlich finden sich Geschiebe einschlussführender basischer Gesteine, die deutliche Spuren einer tektonischen und metamorphen Überprägung aufweisen (Abb. 31-34). Sie stammen mit Sicherheit nicht aus postorogenen Dolerit-Gangschwärmen (Abb. 4), sondern dürften bedeutend älter sein.

Abb. 31: Einschlussführender Metabasit, Kiesgrube Niederlehme, Aufnahme unter Wasser.
Abb. 32: Gleicher Stein, Detail der trockenen Geschiebeoberfläche.
Abb. 33: Einschlussführender Metabasit oder Metakonglomerat mit basischer Matrix und Lithoklasten basischer bis intermediärer Gesteine, Breite 50 cm, Tagebau Profen, ca. 20 km S Leipzig.
Abb. 34: Detailaufnahme der nassen Oberfläche.

4. Lokalitäten

Lokalität 1: Einschlussführender Diabas mit Anorthosit- und quarzitähnlichen Sandstein-Fragmenten; Diabasgang 850 m OSO Södregården, Kartenblatt Växjö NO; WGS84DD 57.20566, 14.73403.

Lokalität 2: Småland-Granit mit Partien einschlussführender Diabase; lose Steine vom Anstehenden am Wegesrand; Waldweg bei Olstorp, SW Forserum; 57.67967, 14.44153.

Lokalität 3: Einschlussführender Diabas im Kontakt zum Påskallavik-Porphyr; Bahnanschnitt 1 km NW des ehemaligen Bahnhofs Värlebo; 57.06050, 16.19424.

Lokalität 4: Diabasgang und Diabas-Xenolithe im Småland-Granit; Aufschluss an der Straße von Alsarp nach Sjunnarp (57.53253, 16.03591), Typlokalität liegt ca. 650 m weiter südwestlich (57.52943, 16.02641).

5. Literatur

BARTHOLOMÄUS WA & HERRENDORF G 2003 Ein großes Gerölldiabas-Geschiebe von Varel in Oldenburg – Geschiebekunde aktuell 19 (1): 1-15, 2 Taf., 6 Abb., 1 Tab., Hamburg / Greifswald.

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 8 Taf. (1 Taf. im Anh.), 44 Abb., 29 Tab., 1 Kte., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

KORN J 1927 Die wichtigsten Leitgeschiebe der nordischen kristallinen Gesteine im norddeutschen Flachlande ; Ein Führer für den Sammler kristalliner Geschiebe – VI+64 S., 48 farb. Abb. auf Taf. 1-6, 8 Farb-Ktn. auf Taf. 7-14, 1 Tab., Berlin (Preußische geologische Landesanstalt).

MEYER K-D 1981 Ein Vorkommen einschlußführender Diabase bei Björbo, 60 km WSW Falun, Dalarna / Mittelschweden – Der Geschiebesammler 15 (3): 93-98 (-106), 3 Taf., 3 Abb., Hamburg.

WIKMAN H 2000 Berggrundskartan 5E Växjö NO, skala 1:50 000. Sveriges geologiska undersökning Af 201.

Småland-Vulkanite – Teil 2

2.11. Vena
2.12. Kisa
2.13. Vulkanite in NW-Småland
2.14. Väderstad-Konglomerat

3. Gebiet um Lönneberga (Sjögelö-Vulkanitgebiet)
3.1. Straßenaufschluss Silverdalen
3.1.1. Lönneberga-Lapillituff
3.2. Lönneberga – gerodete Waldfläche
3.3. Lönneberga Kyrka
3.4. Kiesgrube Silverdalen
3.5. Weg zum See Linden
3.6. Umgebung von Karlstorp („Kolsjön-Vulkanite“)

4. Literatur

Abb. 1: Kartenskizze aller Fundpunkte, Angabe von Probenummer und Koordinate im Text in der Form (S44; 57.10998, 15.21005). Karte verändert nach www.sgu.se.

2.11. Vena

In einem kleinen Steinbruch 2 km NE von Vena (S28; etwa 57.53024, 15.99391) treten Vulkanite und Granitoide des TIB nebeneinander auf: rote und hälleflintartige Vulkanite, feinkörnige rhyolithische Mischgesteine, kleinkörnige Granitoide und ein bunter und porphyrischer Småland-Granit mit reichlich Titanit. Scharfe Grenzen zwischen Vulkaniten und Granit sind nicht erkennbar. Die Vulkanite dürften im Kontaktbereich des aufsteigenden Granits verändert worden sein, z. B. durch Umkristallisation unter Mitwirkung zirkulierender Fluide.

Abb. 2: Kleiner Steinbruch bei Vena.
Abb. 3: Hälleflintartiger roter Vulkanit ohne Einsprenglinge.
Abb. 4: Feinkörniges Mischgestein, wahrscheinlich ein umkristallisierter Vulkanit.
Abb. 5: Gleicher Stein, Nahaufnahme unter Wasser. Das Mischgestein enthält undeutlich begrenzte Bereiche mit dunklen, wahrscheinlich sekundär gebildeten Mineralen.
Abb. 6: Kleinkörniger Granitoid mit größeren Quarz- und Biotit-Aggregaten.
Abb. 7: Stark alterierter, von Chlorit und Epidot durchsetzter Granitoid; Bildbreite 20 cm.
Abb. 8: Mit violettem Fluorit und hellgrünem Epidot gefüllte Kluft im Granit.
Abb. 9: Handstück des anstehenden porphyrischen Småland-Granits aus rotem Alkalifeldspat, Blauquarz und grünem Plagioklas. Aufnahme unter Wasser.
Abb. 10: Nahaufnahme. Vergrünte Plagioklase, hellgrüne Ausscheidungen von Epidot und chloritisierte Glimmerminerale sprechen für eine starke hydrothermale Überprägung. Der Granit enthält reichlich Titanit in gelben, teils perfekt keilförmig ausgebildeten Kristallen.
Abb. 11: Gelbe Titanitkristalle auf der nassen Oberfläche.

2.12. Kisa

Bereits in Östergötland liegt ein Vulkanit-Gebiet, aufgeschlossen in einem Steinbruch wenige Kilometer südlich von Kisa (S141; 57.940431, 15.665029). Weiter nördlich gibt es nur noch vereinzelte kleine und isolierte Vorkommen, dort überwiegen die Granitoide des TIB. Entsprechend ihrer Lage im Grenzbereich zu den TIB-Graniten erscheinen die Vulkanite an dieser Lokalität stark verändert. Alle Proben besitzen deutlich körnige („zuckerkörnige“) Grundmassen, ein Hinweis auf eine Rekristallisation, wahrscheinlich durch die in der Nähe aufgestiegenen Granite. Auch tektonische Gleitflächen (Harnische) lassen sich im Steinbruch beobachten.

Neben einem weitgehend homogenen und rotbraunen Vulkanit finden sich gestreifte violettgraue sowie grün- und rotschlierige Gesteine, die eher wie feinkörnige Gneise aussehen und eine gewisse Ähnlichkeit mit den Leptiten Mittelschwedens aufweisen. Solche feinkörnigen Metavulkanite kommen auch immer wieder, wenn auch untergeordnet, in den weiter südlich gelegenen Vulkanit-Gebieten vor.

Abb. 12: Steinbruch südlich von Kisa.
Abb. 13: Rotbrauner Metavulkanit mit körniger Grundmasse, Aufnahme unter Wasser.
Abb. 14: grauvioletter und gestreifter Metavulkanit.

2.13. Vulkanite in NW-Småland

Auf die zwischen Jönköping, Eksjö und Tranås gelegenen Vulkanitgebiete im nordwestlichen Småland soll nur kurz eingegangen werden, ein separater Exkursionsbericht folgt an anderer Stelle. Beobachtungen an Nahgeschieben ergaben, dass auch hier hälleflintartige und einsprenglingsarme Vulkanite zu finden sind und denen aus anderen Gebieten ähneln. Besonderheiten sind das gehäufte Auftreten von:

  • einsprenglingsreichen Quarzporphyren mit dichter Grundmasse (z. B. Abb. 15 und 19; vgl. auch Probe aus Skurugata in Teil 1, Abb. 47) und
  • einsprenglingsreichen bunten Gangporphyren und Granitporphyren (Abb. 17, 20-22 und 25).

Anstehendproben waren nur schwer zu gewinnen, die wenigen zugänglichen Aufschlüsse lieferten ganz überwiegend einsprenglingsarme Vulkanite (Hälleflinta).

Abb. 15: Einsprenglingsreicher fluidaler Vulkanit, Nahgeschiebe aus einer Kiesgrube NW Eksjö (S126; 57.69015, 14.93066).
Abb. 16: Vulkanite und Gangporphyre, Nahgeschiebe aus der gleichen Kiesgrube NW Eksjö.
Abb. 17: Bunter Gangporphyr (Kiesgrube NW Eksjö).
Abb. 18: Brauner Rhyolith, Aufnahme unter Wasser (Nahgeschiebe, Kiesgrube NW Eksjö).
Abb. 19: Einsprenglingsreicher rotbrauner Vulkanit (Quarzporphyr), Nahgeschiebe aus der Kiesgrube Nödavägen (S128; 57.74888, 15.16735).

Abb. 20-22: Beispiele von Gangporphyren und einem Granitporphyr; Nahgeschiebe aus der Kiesgrube Nödavägen.

Abb. 23: Nahgeschiebe von Vulkaniten aus der Kiesgrube Älghult (östlich Eksjö, S127; 57.68151, 15.01129), Aufnahme unter Wasser.
Abb. 24: Rotgrauer Quarzporphyr aus Älghult, Aufnahme unter Wasser.
Abb. 25: Bunter porphyrischer Granit (Älghult, nasse Schnittfläche).

Aus dem Vulkanitgebiet bei Tranås stammt die folgende Probe. Eine „fluidale Hälleflinta“ ist auf skan-kristallin.de abgebildet.

Abb. 26: Brauner und inhomogener, mit Pyrit imprägnierter Vulkanit. Anstehendprobe aus einem Steinbruch bei Tranås, Aufnahme unter Wasser.

2.14. Väderstad-Konglomerat

Das „Väderstad-Konglomerat“ ist ein polymiktes Konglomerat mit Småland-Vulkaniten. Es entstand bei der Abtragung der Vulkanite und Granite, dürfte aber nur wenig jünger sein als die enthaltenen Lithoklasten. Weitere Vorkommen solcher TIB-Konglomerate sind kaum bekannt, zumal es sich um Klein- und Kleinstvorkommen handeln dürfte, die bisher nicht entdeckt wurden oder unter quartärer Bedeckung liegen. Das vorgestellte Gestein kommt nicht als Leitgeschiebe in Betracht.

Der weitläufige Aufschluss, beschrieben von BRUUN et al 1995:14, liegt in einem Wald in der Nähe von Väderstad. Gute Geländefotos waren kaum möglich, weil das Gestein stark mit Flechten bewachsen ist. Zudem erschwerte eine engständige Klüftung die Beprobung.

Abb. 27: Aufschluss des Väderstad-Konglomerats (S220; 58.294655, 14.935558).
Abb. 28: Väderstad-Konglomerat, Bildbreite 25 cm.
Abb. 29: Dicht gepackte Lithoklasten im Väderstad-Konglomerat, Bildbreite ca. 20 cm.
Abb. 30: Väderstad-Konglomerat mit frischer Bruchfläche, Aufnahme unter Wasser. Beim Formatieren entstand leider die Bruchlinie in der Mitte der Probe.

Das klastengestützte Konglomerat enthält Lithoklasten von Vulkaniten, Granitoiden und basaltischen Gesteinen bis 20 cm Größe und mehr. In kleinkörnigeren und matrixgestützten Lagen erreichen die Lithoklasten eine Größe von 1-3 cm. Die Matrix besteht aus klastischen Quarzen und Feldspäten sowie kleinen Vulkanit-Fragmenten. Streifen dunkler Minerale (Glimmer) weisen auf eine Foliation und leichte metamorphe Überprägung des Gesteins hin. Die eckigen bis schwach gerundeten Lithoklasten erscheinen insgesamt etwas eingeregelt, für sich genommen aber weitgehend undeformiert. Als Lithoklasten treten auf: meist bräunlich-rote Vulkanite mit oder ohne Blauquarz; kleinkörnige granitische Klasten von hell rötlicher bis bräunlicher Farbe, gelegentlich mit Blauquarz, darunter aplitähnliche Gesteine und wohl auch Subvulkanite; vereinzelt schwarze bis schwarzgrüne und dichte basaltähnliche Gesteine.

Abb. 31: Väderstad-Konglomerat, Aufnahme unter Wasser.

An der Lokalität fand sich auch ein feinkörniger Aschentuff (oder Tuffit). Braune Flecken auf der angewitterten hellen Oberfläche folgen in ihrer Anordnung der Schichtung. Auf der Bruchfläche ist das Gestein blassrötlich gefärbt. Die regelhaft verteilten schwarzen Glimmer-Butzen könnten ein Hinweis auf eine sekundäre Entstehung sein. Grüne, orangefarbene und violette Flecken dürften Ausscheidungen von Pigmenten sein (z. B. Fe-Verbindungen), wie sie häufiger in Aschentuffen auftreten. Auch einige größere Vulkanoklasten sind erkennbar, teilweise diffus, teilweise klar von der Matrix abgegrenzt und dann von einem schmalen gebleichten Hof umgeben.

Abb. 32: Aschentuff, angewitterte Außenseite.
Abb. 33: Bruchfläche, Aufnahme unter Wasser.
Abb. 34: Nahaufnahme.

3. Gebiet um Lönneberga (Sjögelö-Vulkanitgebiet)

Das nördlichste der vier großen Vulkanitgebiete, von NORDENSKJÖLD 1893 als „Sjögelö-Gebiet“ bezeichnet, beheimatet eine Reihe von Gesteinstypen, die im übrigen Småland nicht oder nur untergeordnet vorkommen. Dazu gehören die einsprenglingsreichen und weitgehend quarzfreien Porphyre vom Lönneberga-Typ, der Nymåla-Porphyr, Gangporphyre vom Typ Emarp und Sjögelö, Granitporphyre vom Typ Funghult, Ignimbrite (Typ Idekulla und Mariannelund), Aschentuffe mit akkretionären Lapilli („vulkanische Pisolithe“), Lapillituffe („Lönneberga-Lapillituff“) sowie die in der älteren Literatur als „Kugelhälleflinta“ und „Eutaxite“ bezeichneten Vulkanite. Im Süden des Sjögelö-Gebietes treten vermehrt pyroklastische Gesteine in Erscheinung. Die als Leitgeschiebe geeigneten Vulkanite werden an anderer Stelle beschrieben. Im Folgenden geht es um die Vielfalt und Wechselhaftigkeit der vulkanischen Gesteine in diesem begrenzten Gebiet, in dem fließende Übergänge zwischen den Gefügen die Regel sind. Das Kartenblatt Vetlanda NO (PERSSON 1986) verzeichnet alle besuchten Lokalitäten. Teilweise wurden sie auch der dazu gehörigen Kartenbeschreibung entnommen (PERSSON 1985).

3.1. Straßenaufschluss Silverdalen
3.1.1. Lönneberga-Lapillituff
3.2. Lönneberga – gerodete Waldfläche
3.3. Lönneberga Kyrka
3.4. Kiesgrube Silverdalen
3.5. Weg zum See Linden
3.6. Umgebung von Karlstorp („Kolsjön-Vulkanite“)

Abb. 35: Alle Fundorte im Gebiet um Lönneberga/Sjögelö-Gebiet, verzeichnet in einem Ausschnitt aus dem Kartenblatt Vetlanda NO (PERSSON 1985).

3.1. Straßenaufschluss Silverdalen (Lönneberga-Lapillituff)

Ein Straßenanschnitt in Silverdalen schließt auf etwa 100 m Länge eine braune bis rötlichbraune vulkanische Brekzie auf, die von Einschaltungen eines feinkörnigen grünlichen Tuffs begleitet wird (S138; 57.548333 15.726389). Die Brekzie ist ein saurer Lapillituff, eine pyroklastische Ablagerung aus einer Episode explosiven Vulkanismus (PERSSON 1973).

Abb. 36: Straßenaufschluss in Silverdalen. Links ein Vulkanit mit engständiger Klüftung, rechts eine ebene Kluft- oder Scherfläche.
Abb. 37: Lapillituff, in unterschiedliche Richtungen einfallende Klüftung im dm-Maßstab.
Abb. 38: Anstehender Lapillituff, nass fotografierte Bruchfläche, Bildbreite 10 cm. In einer gelblichbraunen Grundmasse liegen graue bis rotbraune und überwiegend scharfkantige Vulkanitklasten.
Abb. 39: Probe mit frischer Bruchfläche, Aufnahme unter Wasser.

Das Gestein enthält rote, braune und graue Vulkanit-Klasten, die etwas eingeregelt erscheinen, aber nicht deformiert sind. Die hellbraune Matrix sowie einige der kantigen Vulkanit-Klasten enthalten wenige und mm-große weiße Feldspat-Einsprenglinge. Eine nachträgliche Umkristallisation des Gesteins ist offenbar nicht erfolgt, da scharfe Grenzen zwischen Vulkanoklasten und einbettender Tuffmatrix erkennbar sind. Nach PERSSON 1973 stammen alle Gesteinsbestandteile aus dem gleichen Magma, ältere vulkanische Gesteine dürften nur akzessorisch enthalten sein.

Abb. 40: Gleiche Probe, Nahaufnahme.

3.1.1. Lönneberga-Lapillituff

Ähnliche Lapillituffe kommen auch in der weiteren Umgebung vor, in einem begrenzten Gebiet zwischen Lönneberga und Karlstorp (weitere Proben Abb. 56-57, 89 und auf skan-kristallin.de). Der Gesteinstyp ist nach VINX 2017:168 als Leitgeschiebe geeignet („Lönneberga-Lapillituff“). Der Autor präzisiert die Beschreibungen der sog. „Småland-Agglomeratlava“ in der älteren Literatur. Agglomerate sind nach heutiger Nomenklatur (LEMAITRE et al 2002) pyroklastische Gesteine mit >75% Bomben (=Vulkanoklasten über 64 mm Größe). Im genannten Gebiet finden sich jedoch ganz überwiegend Lapillituffe, also Aschentuffe mit 2-64 mm großen Vulkanoklasten (Lapilli).

Kennzeichnend für den Lönneberga-Lapillituff ist eine sehr helle, manchmal fast weiße Verwitterungsrinde, auf der das brekziöse Gefüge deutlicher hervortritt. Auf der Bruchfläche ist die Matrix braun bis rotbraun gefärbt und enthält einige weiße und mm-große Feldspat-Einsprenglinge. Scharfkantige dunkelgraue und braune bis rotbraune Vulkanit-Fragmente sind locker im Gestein verteilt und machen einen Anteil von etwa 10% aus. Das Gefüge ist insgesamt kaum oder nur mäßig deformiert. Ähnliche, aber deutlich deformierte Vulkanite mit linsenförmigen Vulkanoklasten sind z. B. aus dem Gebiet um Oskarshamn bekannt.

Die nächsten drei Bilder zeigen Geschiebefunde aus Brandenburg.

Abb. 41: Lönneberga-Lapillituff, Geschiebefund aus der Kiesgrube Ruhlsdorf bei Bernau (Brandenburg).
Abb. 42: Lönneberga-Lapillituff, leicht deformiert. Kiesgrube Teschendorf bei Oranienburg.
Abb. 43: Deutlich deformierter Lapillituff, genauere Herkunft nicht bestimmbar. Kiesgrube Niederlehme bei Berlin.

Im Sjögelö-Gebiet finden sich Übergänge von pyroklastischen Brekzien mit scharfkantigen Vulkanoklasten zu fluidal-brekziösen Vulkaniten mit undeutlich konturierten, teils ausgelängt erscheinenden Vulkanoklasten und schließlich „eutaxitischen“ (schlierig-fluidalen) Vulkaniten. Beispiele hierfür und eine Erläuterung des Begriffes „Eutaxit“ finden sich im Abschnitt 3.6.

3.2. Lönneberga – gerodete Waldfläche

Einige hundert Meter südlich vom Straßenaufschluss in Silverdalen bietet eine gerodete Waldfläche Gelegenheit zum Sammeln von Nahgeschieben sowie kantigem, aus der unmittelbaren Umgebung stammendem Gesteinsschutt (S24; 57.54628, 15.72610). Die Bestimmung der Gesteine ist meist nur auf der Bruchfläche möglich, fast alle sind von einer hellen Verwitterungsrinde überzogen. Im Einzelfall können Gefügemerkmale auch auf der Außenseite deutlicher hervortreten.

Abb. 44: Gerodete Waldfläche an der Straße von Silverdalen nach Haddarp.

Erst nach mehreren Besuchen konnte das Anstehende eines Aschentuffs mit akkretionären Lapilli („vulkanischer Pisolith“) lokalisiert werden, ausgehend von der etwas vagen Angabe in PERSSON 1985:46 („700 m SE von Lönneberga Station“). Der Ausbiss misst gerade mal einen Quadratmeter. Mit etwas Glück findet sich der Gesteinstyp auch als loser Stein (s. ausführliche Beschreibung des Gesteinstyps).

Abb. 45: Aschentuff mit akkretionären Lapilli, loser Stein.

Weiterhin steht an der Lokalität ein grünlichbrauner und geschichteter Aschentuff an.

Abb. 46: Aschentuff, trocken fotografiert. Das Gestein enthält keine Feldspat-Einsprenglinge, wenige rötliche Vulkanitfragmente (Lapilli) sowie einige Quarzaggregate, die auch sekundär entstanden sein können (vgl. Abb. 51).

Weitere Funde auf der Rodung sind Porphyre vom Lönneberga-Typ, dichte und hälleflintartige Vulkanite mit wenigen Einsprenglingen, vulkanische Brekzien, ein Ignimbrit mit eutaxitischem Gefüge (Nahgeschiebe) sowie vereinzelt Diabase mit Plagioklas-Megakristallen.

Abb. 47: Vulkanische Brekzie mit Fluidaltextur und eingeregelten, meist gerundeten Vulkanoklasten (Ignimbrit?).
Abb. 48: Ignimbrit mit eutaxitischem Gefüge, Aufnahme der angewitterten Oberfläche unter Wasser; s. a. Abschnitt Småland-Ignimbrite.
Abb. 49: Hälleflintartiger Vulkanit mit scherbiger Bruchfläche.
Abb. 50: Graubrauner Vulkanit mit wenig Einsprenglingen und dunklen Schlieren.
Abb. 51: Nahaufnahme unter Wasser. Die undeutlich konturierten Quarzaggregate sehen nicht wie Einsprenglinge aus und könnten auch sekundär, während der Entglasung entstanden sein.
Abb. 52: Fluidaler Vulkanit mit ovalem Einschluss eines Porphyrs, angewitterte Außenseite.
Abb. 53: Quarzfreier Porphyr vom Nymåla-Typ mit eckigen Feldspat-Einsprenglingen.
Abb. 54: Plagioklas-Megakristalle bis 6 cm Größe in einem grünlichen Diabas, Bildbreite ca. 17 cm.

Der Größenunterschied zwischen den Plagioklas-Megakristallen und dem kleinkörnigen Diabas lässt vermuten, dass die Plagioklase keine Einsprenglinge sind, die allmählich im basischen Diabas-Magma heranwuchsen, sondern mitgerissene Xenokristalle aus einer Kumulationszone innerhalb der Magmakammer.

3.3. Lönneberga Kyrka

Auf einer weiteren Rodung, an der Piste von Lönneberga nach Lönneberga Kyrka (schlechte Wegstrecke), fanden sich Porphyre vom Lönneberga-Typ, eine „Kugelhälleflinta“, deformierte Porphyre vom Nymåla-Typ sowie ähnliche Lapillituffe wie im Straßenaufschluss in Silverdalen (S25; 57.54588, 15.71006).

Abb. 55: Porphyr vom Lönneberga-Typ, Aufnahme unter Wasser.
Abb. 56: Lapillituff, ähnlich dem Typ in Silverdalen, aber mit geringerem Anteil roter Vulkanoklasten; Aufnahme unter Wasser.
Abb. 57: Nahaufnahme, nass fotografiert; zahlreiche grüne Epidot-Adern durchsetzen die Grundmasse.
Abb. 58: „Kugelhälleflinta“, loser Stein. Der außergewöhnliche Vulkanit-Typ wird in einem gesonderten Artikel vorgestellt.
Abb. 59: Lönneberga Kyrka.

Westlich von Lönneberga Kyrka erhebt sich der Lammerhatten. An seinem Fuße stehen kleinkörnige und dichte Aschentuffe (Hälleflinta) in Wechsellagerung an (S132; 57.53512, 15.68672).

Abb. 60: Kleinkörniger Lammerhatten-Tuff, Aufnahme unter Wasser.
Abb. 61: Nahaufnahme der nassen Oberfläche. Die hell- und rotbraunen Vulkanit-Fragmente sind mehrheitlich kleiner als 2 mm (=Aschentuff), Lapilli (über 6 mm) nur vereinzelt enthalten.

3.4. Kiesgrube Silverdalen

In einer Kiesgrube bei Silverdalen trifft man überwiegend auf gerundete Steine, zumeist wohl Nahgeschiebe (S199; 57.52934, 15.77246). Ein Ignimbrit-Geschiebe mit eutaxitischem Gefüge wird im Abschnitt Småland-Ignimbrite gezeigt.

Abb. 62: Kiesgrube bei Silverdalen.
Abb. 63: Einsprenglingsreiche Quarzporphyre sind eher untypisch für dieses Gebiet und wurden anstehend bisher nicht beobachtet. Breite 11 cm.
Abb. 64: Tektonische Brekzie, Breite 60 cm. Der Gesteinstyp fand sich mehrfach und stammt wahrscheinlich aus der näheren Umgebung.
Abb. 65: Gleicher Stein. Die Risse in diesem Vulkanit, entstanden beim Zerbrechen des Gesteins durch tektonische Einwirkung in der oberen Erdkruste, wurden mit Ausscheidungen von Milchquarz aus hydrothermalen Lösungen verfüllt. Dabei kam es auch zu einer starken Alteration des Wirtgesteins.

Granitoide des TIB sind im Vergleich zu den Vulkaniten in der Grube deutlich in der Überzahl, darunter grobkörnige rote Alkalifelspatgranite und blassrote, teils quarzarme Granite bis Quarzmonzonite.

3.5. Weg zum See Linden

Auf der Piste zur Nordspitze des Sees Linden, im Gebiet des Nymåla- und Lönneberga-Porphyrs, gelangt man zu einem Kiesschurf mit großen Findlingen (S133; 57.53736, 15.63313). Neben Nahgeschieben des Nymåla-Porphyrs fanden sich auch zahlreiche basische Gesteine des TIB, von denen zumindest ein Teil aus dem größeren und unmittelbar nördlich gelegenen Gabbro-Gebiet stammen dürfte (s. Karte Abb. 35).

Abb. 69: Diabas mit Plagioklas-Megakristallen, Breite 80 cm, Plagioklase bis 5 cm Länge (vgl. Abb. 54).
Abb. 70: Mittelkörniger Gabbro (S133e), Abschlag von einem größeren Block.
Abb. 71: Nahaufnahme. Das Gestein reagiert deutlich auf einen Handmagneten und besteht im Wesentlichen aus Plagioklas (weiß, teilweise transparent) und Pyroxen (teilweise umgewandelt in Amphibol).
Abb. 72: Doleritischer Metabasit, deutlich magnetisch, mit größeren und runden Amphibol-Granoblasten. Breite 40 cm.
Abb. 73: Handstück vom gleichen Stein, frische Bruchfläche (S133f). Die Kristallflächen der großen und metamorph entstandenen Amphibol-Aggregate spiegeln bei geeignetem Einfallen das Licht (links unten).
Abb. 74: An der Nordspitze vom See Linden.

Ein weiteres mafisches bis intermediäres Gestein konnte wenige Kilometer entfernt in einem Straßenanschnitt beprobt werden (NW Sjöarp; S 137; 57.56108, 15.62788), laut geologischem Kartenblatt Vetlanda NV ein „Quarzdiorit bis Gabbro“. Mineralbestand und Erscheinungsbild sprechen für einen Diorit, eine sichere Bestimmung und Unterscheidung von einem Gabbro ist aber erst nach mikroskopischer Ermittlung des Anorthitanteils im Plagioklas möglich.

Abb. 75: Mittelkörniger Plutonit (Diorit?) aus transparentem bis trübem Plagioklas und schwarzem Amphibol sowie etwas Erz. Eine Epidotader durchzieht den oberen Teil der Probe.
Abb. 76: Nahaufnahme unter Wasser. Aus der Masse aus grauem Plagioklas und schwarzem Amphibol stechen einige weiße Feldspäte hervor, bei denen es sich ebenfalls um Plagioklas handelt. Alkalifeldspat und Quarz wurden nicht beobachtet.

3.6. Umgebung von Karlstorp („Kolsjön-Vulkanite“)

Das Kartenblatt Vetlanda NO (PERSSON 1985) weist mehrere Gebiete mit sauren Ignimbriten aus, so auch westlich von Karlstorp und NW vom See Linden (gelbe und gestrichelte Signatur in Abb. 35). Den Vulkaniten ist ihre ignimbritische Entstehung in der Regel aber nicht anzusehen, weil ihnen das eutaxitische Gefüge fehlt. Man findet Übergänge von pyroklastischen Brekzien mit scharfkantigen Vulkanoklasten (ähnlich Abb. 38) zu fluidal-brekziösen Vulkaniten mit undeutlich konturierten, teils ausgelängt erscheinenden Vulkanoklasten und schließlich fluidal-schlierigen („eutaxitischen“) Vulkaniten.

Die Texturen dieser Vulkanite lassen sich mitunter schwer deuten. Kantige Vulkanit-Fragmente können aus dem gleichen Magma stammen und innerhalb eines Lavaflusses brekziiert worden sein. Vulkanite mit runden und kantigen Vulkanoklasten werden von NORDENSKJÖLD 1893: 81 als „Eutaxitbreccien“, die fluidalen Vulkanite vom Kolsjön in älterer Literatur als „Eutaxite“ bezeichnet. Eutaxit ist ein Begriff aus der Frühzeit der Vulkanologie (FRITSCH & REISS 1868) für Vulkanite mit einer lagig-schlierigen, gefleckten oder einer Fließtextur. Dabei kann es sich um Vulkanoklasten handeln, die zum Zeitpunkt der Entstehung noch verformbar waren. Unterschiedliche Tönungen der Grundmasse können aber auch auf schwankende Anteile von umgewandeltem Gesteinsglas zurückführen sein (WIMMENAUER 1985:175). Die Veränderung primärer vulkanischer Texturen wie Sphärolithe, Perlite, Lithophysen oder eutaxitischem Gefüge durch Entglasung und/oder leichte metamorphe Überprägung führt oftmals zu einer durchgreifenden Veränderung von Gefüge, Textur und Mineralbestand, sogar zu einer Segregation und Neubildung von Mineralen. Die Bezeichnung „Eutaxit“ ist daher wenig spezifisch, zudem veraltet, und sollte nicht mehr verwendet werden. Gebräuchlich – und nicht damit zu verwechseln – ist nur noch der Begriff „eutaxitisches Gefüge“ als spezifisches Merkmal einiger Ignimbrite.

Der Leitwert dieser fluidalen, in der Geschiebeliteratur als „Kolsjön-Vulkanite“ bezeichneten Gesteine (ZANDSTRA 1988:310, HESEMANN 1975:200-201) sowie des grauen Lapillituffs von Gåskullen bei Vimmerby dürfte zweifelhaft sein. Die große Wechselhaftigkeit der Vulkanite auf kleinstem Raum erschwert das Herausstellen von „Normaltypen“. Eine weitere Zusammenstellung von Proben der Kolsjön-Vulkanite, u. a. eines durch Mn-haltigen Epidot violett gefärbten Porphyrs, findet sich auf skan-kristallin.

Abb. 77: Aufschluss am Straßenabzweig zur Badestelle am Kolsjön.
Abb. 78: Im dm-Maßstab sind farbliche Übergänge innerhalb der Grundmasse erkennbar. Der dichte Vulkanit enthält kleine weiße Feldspat-Einsprenglinge und teils kantige, teils unscharf begrenzte dunklere Vulkanoklasten. Bildbreite etwa 30 cm.
Abb. 79: Handstück mit angewitterter Oberfläche aus dem gleichen Aufschluss, nass fotografiert (S195; 57.52114, 15.52706).

Die Ränder der teils kantigen dunkelbraunen Fragmente grenzen sich undeutlich von der Grundmasse ab. Es dürfte sich um bereits erstarrte, von der heißen Lava aufgenommene und randlich angeschmolzene Vulkanoklasten handeln. Ob die kleineren runden und dunklen Flecken den gleichen Ursprung besitzen, ist unklar. Dies könnten auch Relikte primärer vulkanischer, z. B. sphärolithischer Texturen sein.

Abb. 80: Vulkanit vom Kolsjön, 100 m hinter dem Abzweig zur Badestelle (S30; 57.521111, 15.527019, T. Langmann leg.), Aufnahme unter Wasser.

Hellbrauner Vulkanit mit weißen Feldspat-Einsprenglingen, überwiegend von scharfer Kontur, sowie runden bis kantigen und klaren Quarzkörnern. Wenige dunkelbraune und locker im Gestein verteilte Flecken gehen ohne deutliche Begrenzung in die Grundmasse über. Oben rechts ein weitgehend assimilierter Vukanoklast mit abweichender Zusammensetzung.

Abb. 81: Nahaufnahme.

Nach NORDENSKJÖLD 1893:86 treten in den Vulkaniten vom Kolsjön sphärolithische, perlitische oder lithophysenartige Bildungen auf. Die Perlitstruktur soll teilweise auch makroskopisch wahrnehmbar sein (ebenda S. 102f). Nach PERSSON 1973 könnten die dunklen Flecken als Sphärolithe und runde Quarzaggregate weniger als Einsprenglinge, sondern als entglaste Perlite oder Lithophysen anzusehen sein. Entsprechend nachweisen lässt sich dies erst durch dünnschliffmikroskopische Untersuchungen. HESEMANN 1975:200 bezeichnet das Gestein „Perlitischer und sphärolithischer Ignimbrit von Kolsjön-Kulla“ und nennt ebenfalls primäre vulkanische Texturen, die mit bloßem Auge erkennbar sein sollen. An Hand der vorliegenden und hier gezeigten Proben lässt sich dies allerdings nicht bestätigen. Weitere Bilder von dieser Fundstelle auf strand-und-steine.de.

Abb. 82: Badestelle am Kolsjön.

Im Vulkanitgebiet östlich von Karlstorp (Ignimbrit-Signatur in Abb. 35) treten Lapillituffe und brekziöse bis fluidale Vulkanite sowie hälleflintartige Vulkanite mit wenigen Einsprenglingen auf.

Abb. 83: Straßenaufschluss, etwa 2 km östlich von Karlstorp (S191; 57.51109, 15.54663).
Abb. 84: Rotbrauner, teils brekziöser, teils fluidaler Vulkanit. Angewitterte Seite eines losen Steins, nass fotografiert. Breite 14 cm.
Abb. 85: Gleicher Stein, Aufnahme einer polierten Schnittfläche unter Wasser; unten links ein runder Vulkanoklast, der wiederum kantige Bruchstücke von Vulkaniten enthält.
Abb. 86: Nahaufnahme.

Dieser Vulkanit dürfte unter turbulenten Bedingungen und hohen Temperaturen in einem pyroklastischen Strom abgelagert worden sein: einige der runden bis länglichen Vulkanoklasten sind mit der Matrix verschweißt, andere weisen scharfe Kanten auf. In der Grundmasse sind Ansätze eines eutaxitischen Gefüges erkennbar (Fiamme), das aber keiner Vorzugsrichtung zu folgen scheint. Alle Deformationen dürften primär vulkanisch sein, da die Vulkanite dieses Gebietes kaum oder nur geringfügig tektonisch überprägt wurden.

Abb. 87: Fleckiger und hell- bis dunkelbrauner Vulkanit (S191) mit wenigen, teils klar, teils unscharf konturierten Bruchstücken.
Abb. 88: Wenig weiter östlich steht ein schlieriger brauner Lapillituff mit verschiedenfarbigen Vulkanoklasten an (S192; 57.51218, 15.54955).
Abb. 89: Lapillituff vom See Kolsjön, ähnlich dem Gestein in Silverdalen (Abb. 39); Handstück in der Sammlung der BGR in Berlin („gekauft von Dr. F. Krantz/Bonn“).
Abb. 90: Ein ganz anderer Vulkanit-Typ aus dem gleichen Gebiet, ein grünlichgrauer Porphyr mit weißen Plagioklas-Einsprenglingen, ähnlich dem Lönneberga-Typ. Aufnahme unter Wasser (S193; 57.51237, 15.55107).
Abb. 91: In der Vergrößerung der Nahaufnahme ist diagonal zur Klüftung eine feine fluidale Textur erkennbar, ähnlich der Fiamme des eutaxitischen Gefüges.
Abb. 92: Aufschluss am Weg zwischen Kulltorp und Kulla, Bildbreite 35 cm. Hellbrauner, teils grünlicher Porphyr mit weißen Feldspat- (Alkalifeldspat erkannt), runden und farblosen Quarz-Einsprenglingen sowie einzelnen braunen bis rotbraunen Lapilli (S194; 57.51811, 15.55337).
Abb. 93: Der Vulkanit wird scharf von einem Diabas-Gang durchschnitten; Bildbreite ca. 40 cm.
Abb. 94: Probe aus dem Aufschluss, Aufnahme unter Wasser.
Abb. 95: Nahaufnahme.

Auch im Gebiet NW des Linden, aus dem die folgenden Proben stammen, stehen laut geologischem Kartenblatt Vetlanda NO (PERSSON 1985) großflächig Ignimbrite an (Abb. 35). Aber in keinem der braunen, überwiegend aber grünlichen und einsprenglingsreichen, dem Lönneberga-Typ ähnlichen Vulkanite, ist eutaxitisches Gefüge erkennbar.

Abb. 96: Stark geklüfteter Vulkanit, ähnlich den Gesteinen vom Kolsjön, mit einem dunkelgrauen Vulkanoklast und undeutlich begrenzten Partien mit bläulichem Quarz. Aufnahme unter Wasser (S196; 57.53554, 15.55710).
Abb. 97: Alterierter Vulkanit mit wenigen größeren und weißen (Plagioklas-), ansonsten zahlreichen kleineren und stark vergrünten Einsprenglingen durchsetzt; grüne Grundmasse mit orangebraunen Partien (S197: 57.53519, 15.59475).

Ausgedehnte Straßenaufschlüsse an der Lokalität Rubborna (S198; 57.53444, 15.59532) lieferten Proben grüner und brauner, teils gebänderter Vulkanite (Tuffe und Lapillituffe). Quarzeinsprenglinge waren in keiner der Proben erkennbar. Einige Vulkanite entsprechen dem Lönneberga-Typ, vgl. Abb. 6-7 im Artikel Lönneberga-Porphyr.

Abb. 98: Hell- bis dunkelgrüner, teils rötlichbrauner Tuff, Aufnahme unter Wasser (S198c).
Abb. 99: Nahaufnahme. Die Tuffmatrix wurde offenbar weitgehend epidotisiert bzw. chloritisiert.

Bemerkenswert ist der Fund eines Vulkanits mit runden Vulkanoklasten vom Lönneberga-Typ. Die Vulkanoklasten enthalten mehr Feldspat-Einsprenglinge als die hellgrüne, teils rotbraune Grundmasse, dürften aber eine ähnliche Zusammensetzung besitzen und aus dem gleichen Magma stammen.

Abb. 100: Lapillituff mit runden Vulkanoklasten (Lönneberga-Typ), Aufnahme unter Wasser (S198b, Rubborna)
Abb. 101: Nahaufnahme; die Ränder der Vulkanoklasten grenzen sich nur unscharf von der Matrix ab. Ihre Abrundung könnte im noch schmelzflüssigen Zustand erfolgt sein.
Abb. 102: Blick über die leicht hügelige Landschaft bei Eksjö.

4. Literatur

APPELQUIST K, ELIASSON T, BERGSTRÖM U & RIMSA A 2009 The Palaeoproterozoic Malmbäck Formation in S Sweden: age, composition and tectonic – GFF Volume 31, 2009 – Issue 3, S. 229-243.

BRUUN, NILSSON, SUNDBERG et al 1995 Malmer, industriella mineral och bergarter i Östergötlands län – Rapport och meddelanden nr 80, Uppsala 1995.

FRITSCH R VON & REISS W 1868 Geologische Beschreibung der Insel Tenerife – 494 S., Wurster und Co, Winterthur.

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 44 Abb., 8 Taf., 1 Kt., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).
HÖGDAHL K, ANDERSSON U B & EKLUND O 2004 The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution – Geological Survey of Finland, Special Paper 37, 125 S., Espoo 2004.

HOLMQVIST P J 1906 Studien über die Granite von Schweden – Bulletin of the Geological Institution of the University of Uppsala VII – S. 77-269.

KORN J 1927 Die wichtigsten Leitgeschiebe der nordischen kristallinen Gesteine im norddeutschen Flachlande – Ein Führer für den Sammler kristalliner Geschiebe – VI + 64 S., 48 Farb-Abb. auf Taf. 1-6, 8 Farb-Karten auf Taf. 7-14, 1 Tab., Berlin (Preußische geologische Landesanstalt).

LE MAITRE R W et al 2002 A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks- 2nd Edition, Cambridge University Press.

LUNDQVIST T 2009 Porfyr i Sverige – en geologist översikt – 66S., Sveriges Geologiska Undersökning, ISBN 978-91-7158-960-6.

NILSSON & WIKMAN in LUNDQVIST 1997 Radiometric Dating Results 3 -Division of Bedrock Geology, Geological Survey of Sweden, SGU Series C830:31-34, Uppsala 1997.

NORDENSKJÖLD O 1893 Ueber archaeische Ergussgesteine aus Småland, Bulletin of the Geological Institution of the University of Upsala, N:2, Vol.I, Ser. C. No. 135 (Buchabdruck 1894, Almqvist & Wiksells).

PERSSON L 1973 Sura vulkaniter, graniter och associerade bergarter i en del av nordöstra Småland, Diss. Geologiska Institutionen, Lunds Universitet, Lund S. 1-160
in deutscher Übersetzung durch A. P. Meyer in: Der Geschiebesammler 12, 4, S.1-28 und 13,1, S.1-14, Hamburg 1979.

PERSSON L 1974 Precambrian Rocks and Tectonic Structures of an Area in Northeastern Småland, Southern Sweden – SGU Ser. C Nr. 703, Stockholm 1974.

PERSSON L 1985 Beskrivning till berggrundskartorna 1 : 50000 – Vetlanda NV och NO [Description to the maps of solid rocks Vetlanda NV and NO with a section of geophysical aspects by Bo Hesselström] – Sveriges Geologiska Undersökning Af 150+151: 138 S., 65 Abb., 30 Tab., Uppsala.

PERSSON L 1986 Berggrundskartan 6F Vetlanda NO – SGU Ser Af nr 151.

SCHMINCKE H-U 2010 Vulkanismus; 264 S., 307 Farbabb. – 3. Auflage (2010), Wissenschaftliche Buchgesellschaft, Darmstadt.

SMED P & EHLERS 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage 2002.

VINX R 2010 Gesteinsbestimmung im Gelände, 3. Auflage, Spekrum-Verlag (2010).

VINX R 2016 Steine an deutschen Küsten; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.).

WIMMENAUER W 1985 Petrographie der magmatischen und metamorphen Gesteine – 396 S., 297 Einzelabb., 106 Tab., Enke-Verlag, Stuttgart (1985).

WIK NG, BERGSTRÖM U, BRUUN A et al 2005 Beskrivning till regional berggrundskarta
över Kalmar län – Sveriges geologiska undersökning serie Ba nr 66, 54 S., ISBN 91-7158-699-7.

WIK NG, BERGSTRÖM U, BRUUN A et al 2005 Berggrundskartan Kalmar län – 1:250 000, Sveriges geologiska undersökning serie Ba nr 66.

WIKMAN H 1997 U-Pb zircon ages of three granitoids from the Växjö region, south central Sweden. I T. Lundqvist (red): Sveriges geologiska undersökning
C 830, 63–72.

WIKMAN H 1997 Berggrundskartan 5E Växjö SV, SGU Af nr 188

WIKMAN H 1998 Beskrivning till berggrundskartona Växjö SV och SO – 59 S. Sveriges Geologiska Undersökning – Uppsala 1998.

WIKMAN H 2000 Berggrundskartan 5E Växjö SO, SGU Af nr 200

WIKMAN H 2000 Berggrundskartan 5E Växjö NO, SGU Af nr 201

WIKMAN H 2000 Beskrivning till berggrundskartona 5E Växjö NO och NV – 75 S. Sveriges Geologiska Undersökning – Uppsala 2000.

WIKMAN H 2004 Berggrundskartan 5E Växjö NV, SGU Af nr 201

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).

ZANDSTRA JG 1999 Platenatlas van noordelijke kristallijne gidsgesteenten, Foto’s in
kleur met toelichting van gesteentetypen van Fennoscandinavië – XII+412 S.,
272+12 unnum. Farb-Taf., 31 S/W-Abb., 5 Tab., Leiden (Backhuys).