Schlagwort-Archive: Fleckengestein

Geschiebegarten und Geschiebeausstellung auf dem Großen Ravensberg in Potsdam-Waldstadt – Die Sammlung G. Engelhardt

Abb. 1: Geschiebegarten auf dem Großen Ravensberg in Potsdam-Waldstadt.
  1. Einleitung
  2. Dokumentation der Geschiebefunde
    2.1. Kristallingeschiebe
    2.2. Sedimentärgeschiebe
    2.3. Elbgerölle
  3. Literatur

1. Einleitung

Ein Geschiebegarten und eine Geschiebe-Fossilien-Ausstellung auf dem Großen Ravensberg in Potsdam-Waldstadt bietet dem erdgeschichtlich interessierten Besucher einen Einblick in die Vielfalt an Gesteinen und Fossilien, die mit den Gletschern der nordischen Inlandvereisungen als Geschiebe in dieses Gebiet gelangten. Die Sammlung auf dem Gelände der Waldschule wurde ab 2004 durch Mitglieder der Fachgruppe Mineralogie, Geologie und Paläontologie Potsdam angelegt und wird seitdem gepflegt und erweitert. Der überwiegende Teil dieser Lokalsammlung ist der jahrzehntelangen und regen Sammeltätigkeit von Herrn Georg Engelhardt (Potsdam) zu verdanken. Die Funde stammen fast ausschließlich aus der Kiesgrube Fresdorfer Heide (abgekürzt KFH).

Geschiebegarten und Geschiebesammlung sind thematisch nach Erdzeitaltern (Sedimentärgeschiebe), Herkunft (kristalline Leitgeschiebe, Elbgerölle) oder petrographischen Kriterien geordnet. Eigens für diese Ausstellung wurden mehrere Großgeschiebe aus der KFH auf den Ravensberg gebracht. Beachtenswert ist weiterhin die hohe Fundanzahl an Windkantern. Das Gelände ist zu Fuß vom Bahnhof Rehbrücke oder von Parkmöglichkeiten am Caputher Heuweg aus erreichbar. Neuerdings säumen zahlreiche Großgeschiebe den Waldweg und geleiten den Besucher bis zum Großen Ravensberg. Der Geschiebegarten ist unregelmäßig geöffnet, Besuchern wird eine Anmeldung empfohlen. Für kleinere Gruppen und Schulklassen werden Führungen angeboten.

Abb. 2: Sammlung kristalliner Geschiebe und Leitgeschiebe, teilweise mit polierter Schnittfläche.

2015 bat mich Georg Engelhardt um eine Erfassung und Bestimmung der Kristallingeschiebe seiner Sammlung. Mittlerweile liegt die dritte Revision einer ausführlichen Dokumentation (129 S., 193 Abb.) vor, die in der Waldschule als Paperback käuflich erworben oder als pdf-Datei zum Download bereit steht. Im Folgenden wird nur eine kleine Auswahl nordischer Geschiebe aus der Sammlung G. Engelhardt gezeigt. Der Schwerpunkt liegt auf den kristallinen Geschieben und Leitgeschieben, ein kurzer Abriss ist den Sedimentärgeschieben und Elbgeröllen gewidmet.

Abb. 3: Eisrandlagen des Brandenburger Stadiums südlich von Berlin. Der annähernd in N-S-Richtung verlaufende Saarmunder Endmoränenlobus (SEZ) ist grün markiert. Lokalität 1: Kiesgrube Fresdorfer Heide, 2: Geschiebegarten auf dem Großen Ravensberg. Kartenskizze verändert nach: FRANZ & WEISSE 1965.

Die Kiesgrube Fresdorfer Heide liegt etwa 10 km südlich von Potsdam, im Saarmunder Endmoränenzug, einem etwa 20 km langen, annähernd in N-S Richtung streichenden Moränenrücken im unmittelbar rückwärtigen Raum der weichselkaltzeitlichen Brandenburgischen Eisrandlage (Abb. 3). In der KFH treten sandige, kiesige und schluffige sowie gröbere Gesteinslagen in ständigem Wechsel. Sie werden als eisrandnahe glaziale Ablagerungen einer Satzendmoräne aufgefasst. Die Basis bildet ein saalezeitlicher, aus Norden gestauchter Till (WEIßE 1997; Beschreibungen der Lokalität in ENGELHARDT 1997, ENGELHARDT 2016 und ENGELHARDT & SEIBERTZ 2023.

Abb. 4: Überkornhalde in der Kiesgrube Fresdorfer Heide (KFH) mit Herrn Georg Engelhardt.

In der KFH konnten mehrere Eisvorstöße dokumentiert werden, die jeweils unterschiedliche Vergesellschaftungen von Geschieben aufweisen. In den Ablagerungen des älteren Saale-Vorstoßes finden sich viele Gesteine der ostbaltischen Geschiebegemeinschaft (Åland-Kristallin, Roter Ostsee-Quarzporphyr), im ersten weichselzeitlichen Vorstoß zahlreiche Geschiebe aller Stufen der Oberkreide, Kristallingeschiebe aus Dalarna sowie Muschelkalk-Geschiebe. Letztere stammen aus dem östlich von Berlin gelegenen Vorkommen von Rüdersdorf. Der zweite weichselzeitliche Eisvorstoß zeichnet sich durch zahlreiche violette Quarzite (darunter Västervik-Quarzite), unterkambrische Sandsteine und Åland-Gesteine aus. In den höchsten weichselzeitlichen Schmelzwasserlagen konnten temporär Anhäufungen umgelagerter Gerölle der mittelpleistozänen „Berliner Elbe“ aufgesammelt werden. Eine große Anzahl an Windkantern lässt auf eine Anreicherung größerer Steine durch Deflation und äolische Einwirkung schließen. Gegenwärtig (2024) sind sowohl Muschelkalk-Geschiebe als auch Elbgerölle nur vereinzelt in der KFH anzutreffen.

2. Dokumentation der Geschiebefunde

Die Herkunftsgebiete der Geschiebe erstrecken sich vom Oslograben über Schweden und den Grund der Ostsee bis nach SW-Finnland. Bei den kristallinen Geschiebetypen und Leitgeschieben lassen sich einige Besonderheiten hinsichtlich Fundhäufigkeit und Vergesellschaftung festhalten:

  • Kristallingeschiebe aus Dalarna, insbesondere Vulkanite, sind für weichselzeitliche Ablagerungen ungewöhnlich häufig zu finden. Ein Teil von ihnen dürfte aus saalekaltzeitlichen Ablagerungen umgelagert worden sein. Hierzu gehören Bredvad-Porphyr, Grönklitt-Porphyrit, Älvdalen-Ignimbrite, Einsprenglingsreiche Porphyre aus Dalarna, Heden-Porphyr, Kallberget-Porphyr, Särna-Quarzporphyr und Särna-Tinguait.
  • Von großer Häufigkeit sind auch Gesteine der baltischen Geschiebegemeinschaft, vor allem Åland-Rapakiwis. Das ungefähr gleiche Aufkommen von Rotem und Braunem Ostsee-Quarzporphyr weist auf einen ostbaltischen Einschlag hin, allerdings fehlen die damit assoziierten Dolomite und Kugel-sandsteine weitgehend.
  • Eine Besonderheit im Vergleich zu anderen Brandenburger Kiesgruben sind häufige Funde westschwedischer Leitgeschiebe wie Kinne-Diabas sowie Småland-Värmland-Granitoide vom Filipstad-Typ (porphyrische Monzogranite mit Plagioklas-Säumen um einzelne Alkalifeldspat-Ovoide). Einen westschwedischen Einfluss belegen auch klar drei Funde des Weißen Filipstad-Granits.
  • Die typischen Blauquarzgranite des TIB (Småland-Granite, Typ Växjö) treten eher zurück. Småland-Porphyre vom Typ Påskallvik fanden sich mehrfach, der Typ Emarp ist selten.
  • Leitgeschiebe aus NE-Småland sind durch zahlreiche Funde von Gesteinen aus dem Västervik-Gebiet belegt: Västervik-Quarzit, Västervik-Fleckengestein, Västervik-Fleckenquarzit. Vergleichs-weise selten kommen hingegen die etwas weiter südlich oder westlich beheimateten Granitoide vor (Vånevik-, Kinda- oder Flivik-Granit).
  • Leitgeschiebe aus dem Oslograben treten im Brandenburger Stadium etwas häufiger als in den jüngeren weichelkaltzeitlichen Randlagen auf. Aus der KFH liegen bisher acht Funde von Rhombenporphyren sowie zwei Larvikite vor.
  • Auch SW-schwedische Leitgeschiebe wurden beobachtet, u.a. ein Schonen-Granulit mit charnockitisierter Partie (Abb. 47-48).
  • Insgesamt ist ein Zurücktreten der ost-mittelschwedischen Geschiebegemeinschaft zu beobachten (Granite vom Typ Stockholm, Uppsala-Granit, Sala-Granit, Vänge-Granit; auch schwarz-weiße Granitoide im Allgemeinen). Granat-Cordierit-Gneise vom „Sörmland-Gneis“ sind nur vereinzelt anzutreffen.
  • Das Leitgeschiebe mit der weitesten „Anreise“ sind vier Funde von Nordingrå-Rapakiwis aus Nordschweden.
  • gelegentliche Funde von Bornholm-Granit. Belege südschwedischer Geschiebe, z. B. Karlshamn-Granit aus Blekinge oder Schonen-Basanit und Schonen-Lamprophyr fehlen bisher.
Abb. 5: Herkunftsgebiete der in der KFH gesammelten Leitgeschiebe.

1 Rhombenporphyr (Oslograben)
2 Larvikit (Oslograben)
3 Kinne-Diabas (Västergötland)
4 Schonen-Granulit (NW-Schonen, Halland)
5 Filipstad-Granitfamilie, weißer Filipstad-Granit (Värmland)
6 Bornholm-Granite
7 Siljan-Granit (Dalarna)
8 Öje-Basalt, Heden-Porphyr, Kallberget-Porphyr (SW-Dalarna)
9 Särna-Quarzporphyr (rot/violett), Särna-Tinguait
10 Kristallin aus Dalarna (Bredvad-Porphyr, Grönklitt-Porphyr, Venjan- Porphyr, Älvdalen-Ignimbrite, ESR-Dalaporphyr, Digerberg- Konglomerat, Garberg-Granit)
11 Påskallavik-Porphyr, Småland-Gangporphyre
12 Lönneberga-Porphyr und Lönneberga-Lapillituff
13 Västervik-Fleckengestein, Västervik-Fleckenquarzit, Västervik- Quarzit (NE-Småland)
14 Åland-Kristallin: Åland-Quarzporphyr, Åland-Ignimbrit, Hammarudda-Quarzporphyr, Åland-Ringquarzporphyr, Åland- Wiborgite, Åland-Pyterlite; post-svekofennischer Lemland-Granit
15 Brauner Ostsee-Quarzporphyr
16 Roter Ostsee-Quarzporphyr und Ostsee-Rapakiwi, wahrscheinlich vom Nordbaltischen Pluton
17 Nordingrå-Rapakiwi

2.1. Kristallingeschiebe

Alle abgebildeten Funde stammen aus der Kiesgrube Fresdorfer Heide (KFH) und sind, soweit nicht anders vermerkt, unter der jeweiligen Nummer in der Sammlung G. Engelhardt inventarisiert.

Abb. 6: Rhombenporphyr aus dem Oslograben (Nr. 1), Länge 15 cm.

Geschiebe aus dem Gebiet des Oslograbens finden sich nur vereinzelt in Brandenburg. Funde von Rhombenporphyren sind bis in das Gebiet der Oder belegt, vergleichsweise häufig kommen sie im Brandenburger Stadium vor (SCHNEIDER & TORBOHM 2020). Aus der KFH liegen bislang 8 Funde vor.

Bedeutend seltener sind Larvikit-Geschiebe, von denen bisher 2 Exemplare in der KFH gefunden wurden. Die im angewitterten Zustand eher unauffälligen Gesteine können mit den wesentlich häufigeren Anorthositen verwechselt werden. Zur Unterscheidung gilt es, auf teils rhombenförmige Anschnitte der ternären Feldspäte im Larvikit zu achten. Ternäre Feldspäte zeigen eine Streifung, die unabhängig vom Lichteinfall sichtbar ist; die polysynthetische Verzwilligung der Plagioklase in Anorthositen nur in Reflektionsstellung.

Abb. 9: Die Nahaufnahme zeigt ein coronitisches Gefüge der dunklen Minerale, wahrscheinlich Pyroxen mit dunklen Amphibol-Rändern.

Vulkanite aus Dalarna treten in der KFH häufig und in großer Vielfalt auf. Bredvad- und Grönklitt-Porphyr sind die häufigsten Vertreter, gefolgt von Älvdalen-Ignimbriten, Einsprenglingsreichen Porphyren und Särna-Quarzporphyr. Seltener sind der Kallberget-Porphyr (bisher 3 Funde) und der Heden-Porphyr (1 Fund) aus dem südlichen Vulkanitgebiet in Dalarna, ebenso der Särna-Tinguait (1 Fund). Ebenfalls aus Dalarna stammt das Digerberg-Konglomerat (Abb. 14).

Abb. 10: Bredvad-Porphyre im Geschiebegarten, Bildbreite ca. 35 cm.
Abb. 11: Brauner Älvdalen-Ignimbrit mit roter Fiamme, Aufnahme unter Wasser (Slg. Torbohm).
Abb. 12: Violetter Särna-Quarzporphyr (Nr. 103), nasse Schnittfläche („Bruine Särnakwartporfier“ in ZANDSTRA 1999: 216, vgl. rapakivi.dk).
Abb. 13: Särna-Tinguait (Nr. 3032, Slg. Torbohm), Aufnahme unter Wasser.

Der Särna-Tinguait ist mit einem Alter von 285 Mill. Jahre wesentlich jünger als die ca. 1,7 Milliarden Jahre alten Dala-Vulkanite, zudem ein seltenes Leitgeschiebe. Es stammt aus Gängen in der Nähe eines kleinen Alkaligestein-Massivs im nördlichen Dalarna, die das Grundgebirge und den Dala-Sandstein durchschlagen.

Abb. 14: Digerberg-Konglomerat aus Dalarna (Nr. 48), polierte Schnittfläche.
Abb. 15: Plagioklas-porphyrischer Basalt-Mandelstein (Nr. 43), angefeuchtete Schnittfläche.

In der rotbraunen und sehr feinkörnigen Grundmasse liegen weiße Mandeln (Quarz, HCl-Test negativ) sowie grüne Plagioklas-Einsprenglinge mit einer auffälligen Streifung entlang der Spaltflächen. Die Plagioklase weisen teilweise „ausgefranste“ Ränder auf (links im Bild) und befanden sich zum Zeitpunkt der Erstarrung des Magmas in Auflösung (magmatische Korrosion).

Abb. 16: Gleicher Stein, Nahaufnahme eines magmatisch korrodierten Plagioklases (randliche Auflösung). Entlang der Spaltflächen sind Einschlüsse der feinkörnigen rotbraunen Grundmasse erkennbar.

Solche in der Geschiebekunde als „Öje-Diabasporphyrit“ bezeichnete feinkörnige basaltische Gesteine mit großen Plagioklas-Einsprenglingen, die eine auffällige parallele Zeichnung entlang ihrer Spaltrichtung aufweisen, stammen nicht aus Dalarna, wie Untersuchungen von M. Bräunlich vor Ort ergaben. Die Herkunft dieses Geschiebetyps ist unbekannt (nördliche Ostsee?). Der Geschiebetyp wurde in der KFH gehäuft gefunden.

Einen attraktiven basaltischen Mandelstein aus der KFH mit weißem und rotem Achat zeigt Abb. 47-50 im Artikel Basaltische Mandelsteine, einen einschlussführenden Diabas Abb. 18-19 im gleichnamigen Artikel.

Von den Småland-Vulkaniten ist der Påskallavik-Porphyr ein häufiger Fund in der KFH, während der Emarp-Porphyr bisher nicht in Erscheinung trat. In großer Zahl fanden sich auch die als Hälleflinta bezeichneten Metavulkanite, von denen ein großer Teil aus Småland stammen dürfte (Småland-Hälleflinta). Mehrere Funde heller Aschentuffe mit kantigen und rotbraunen bis braunen Vulkanit-Fragmenten wurden als Lönneberga-Lapillituff bestimmt, ein Leitgeschiebe für das mittlere Småland.

Abb. 17: Påskallavik-Porphyr (Nr. 117), Aufnahme einer Schnittfläche unter Wasser. Fleischfarbene und abgerundete Feldspäte sowie leuchtend blaue Quarze bilden ein kontrastreiches Gefüge.
Abb. 18: Fluidaler Metavulkanit mit wenigen hellen Feldspat-Einsprenglingen (Småland-Hälleflinta), Slg. Torbohm, Nr. 2571.

Zu den Vulkaniten aus der nördlichen Ostsee zählen der Rote und der Braune Ostsee-Quarzporphyr. Biede sind ein häufiger Fund in der KFH. Der in der Geschiebekunde als Ostsee-Syenitporphyr bezeichnete Geschiebetyp wurde einmal, Bottensee-Porphyre bisher nicht angetroffen. Der Rote Ostsee-Quarzporphyr stammt sehr wahrscheinlich aus einem Rapakiwi-Vorkommen (Nordbaltischer Pluton). Bemerkenswert ist der Fund eines Roten Ostsee-Quarzporphyrs als Ignimbrit mit einem Fremdgestein-Einschluss eines Granophyrs (Rapakiwi-Gefügevariante).

Abb. 19: Ignimbritischer Roter Ostsee-Quarzporphyr (Nr. 116) mit braunroter Grundmasse, eutaxitischem Gefüge und Granophyr-Xenolith. Bild: M. Bräunlich (kristallin.de)
Abb. 20: Nahaufnahme des granophyrischen Xenoliths (Bild: M. Bräunlich, kristallin.de). Der Xenolith ist ein sog. Granophyr und besteht fast vollständig aus graphischen Verwachsungen aus Quarz und Feldspat.

Alle Varianten quarzporphyrischer Rapakiwis aus Vorkommen von Åland fanden sich in großer Zahl in der KFH: Åland-Quarzporphyr (Skeppsvik-Typ, Toedding-Typ, dunkle Variante), Hammarudda-Quarzporphyr, Ringquarzporphyr. Ein seltener Fund sind Åland-Quarzporphyre mit eutaxitischem Gefüge (Åland-Ignimbrit, Abb. 21-22). Das ungewöhnlich große Stück von etwa 20 cm Breite entspricht nur bedingt den Anstehendproben von der kleinen Schäre Blå Klobben, westlich von Åland. Vermutlich gibt es weitere, bisher unbekannte Vorkommen unter Wasser. Die dicken und aushaltenden, quer durch das Gestein verlaufenden roten Fiamme sind ein Indiz für eine hohe Dynamik bzw. explosive Wucht während seiner Ablagerung in einem pyroklastischen Strom.

Abb. 21: Åland-Ignimbrit (Nr. 1686) mit eutaxitischem Gefüge, polierte Schnittfläche.
Abb. 22: Nahaufnahme unter Wasser. Typisches Merkmal der Quarzporphyre von Åland sind durch magmatische Korrosion abgerundete Quarze mit einem radialen Muster von Rissen („Fischchen“), gefüllt mit rotbrauner Grundmasse.

Auffällige Geschiebefunde sind Vulkanite mit primär vulkanischen Gefügemerkmalen wie Aschentuffe mit akkretionären Lapilli, Sphärolithporphyre und Vulkanite mit kugeligen Lithophysen („Kugelfelse“).

Abb. 23: Aschentuff mit akkretionären Lapilli (Nr. 109), polierte Schnittfläche.

Die helle und feinkörnige Tuffmatrix enthält wenige Einsprenglinge aus weißem Feldspat und transparentem Quarz sowie feine Schuppen dunkler Minerale (Glimmer, Chlorit o.ä.). Die eiförmigen Lapilli sind grünlich gefärbt und scheinen eine von der Tuffmatrix abweichende Zusammen-setzung zu besitzen. Der Geschiebetyp (Abb. 23) sollte nicht als „Dala-Pisolith“ bezeichnet werden. Zum einen ist „Pisolith“ eine sedimentologische Bezeichnung, zum anderen sind ganz ähnliche Vulkanite auch aus Småland (Lönneberga-Silverdalen) und den Svekofenniden bekannt.

Sphärolithe (Sphärolithporphyre Abb. 24-27) sind aus radialstrahligen Kristallaggregaten aufgebaute, meist aus Alkalifeldspat und Quarz bestehende Gebilde. Sphärolithische Texturen entstehen, wenn glasreiche rhyolithische bis dacitische und hinreichend unterkühlte Schmelzen zur Kristallisation gezwungen, aber nur wenige Kristallisationskeime vorhanden sind.

Abb. 24: Roter sphärolithischer Quarzporphyr (Nr. 18), polierte Schnittfläche. Die Sphärolithe bilden Aureolen um sämtliche Feldspat- und Quarz-Einsprenglinge und sind etwas kräftiger gefärbt als die Grundmasse.
Abb. 25: Erst in der Makroaufnahme wird der radialstrahlige Aufbau der Sphärolithe sichtbar. Die eckigen und magmatisch korrodierten Quarz-Einsprenglinge (ehemalige Hochquarze) ähneln denen im Roten Ostsee-Quarzporphyr. Foto: T. Langmann.

Der graue Sphärolithporphyr in Abb. 26-27 besitzt eine helle und feinkörnige Grundmasse aus Quarz, Feldspat und einem dunklen und nadelförmigen Mineral. Vereinzelt finden sich Butzen aus Quarz und rotem Alkalifeldspat. Das dunkle Mineral ist auch innerhalb der Sphärolithe erkennbar. Es könnte sich um Riebeckit handeln, einem Na-Amphibol, dafür spricht auch der auffallende bläuliche Farbstich der polierten Schnittfläche. Sphärolithe mit dunklen Mineralen (Riebeckit) sind selten, nach ZANDSTRA 1988: 149-152 sollen sie aus Nordschweden stammen.

Abb. 26: Grauer Sphärolithporphyr (Nr. 16), trocken fotografiert.
Abb. 27: Nahaufnahme der polierten Schnittfläche.

Das harte und sehr zähe Gestein Abb. 29-30 besitzt eine feinkörnige braune Matrix, in die zahlreiche mit Quarz gefüllte Lithophysen (mineralgefüllte Hohlräume in Vulkaniten) eingebettet sind, teils mit erkennbar konzentrischem Aufbau. Wenige eckige Feldspat-Einsprenglinge finden sich sowohl in der Matrix, als auch innerhalb der Lithophysen. Ungeklärt ist bei diesem Fund, ob es sich um ein nordisches Geschiebe oder einen Vulkanit südlicher Herkunft handelt, der mit der Berliner Elbe in dieses Gebiet gelangte.

Der Quarzporphyr (Rhyolith) Abb. 30 steht exemplarisch für die zahlreichen Einzelfunde von Vulkaniten mit auffälligem, „exotischem“ oder besonders farbenfrohem Erscheinungsbild. Vor allem Rhyolithe („Quarzporphyre“) zeichnen sich durch eine große Vielfalt und Variabilität hinsichtlich Farbe und Einsprenglingsdichte aus. Der verständliche Wunsch nach einer Beheimatung solcher Geschiebe lässt sich oftmals nicht befriedigen, weil im nordischen Grundgebirge unzählige Gänge und Kleinvorkommen existieren, von denen nur ein Bruchteil beprobt wurde, zudem Porphyre in verschiedenen, auch weit voneinander entfernten Vorkommen ganz ähnlich aussehen können.

Abb. 32: Grobkörniger Gabbro (Dolerit), Breite 40 cm.

Das Gestein ist für einen Gabbro, dessen Korngrößen sich im Regelfall zwischen 3-5 mm bewegen, ausgesprochen grobkörnig. Die Plagioklasleisten erreichen eine Länge von 5 cm Länge, dazwischen liegen grünlich angewitterte Pyroxen-Aggregate. Die Einregelung der Plagioklase dürfte auf magmatische Lamination zurückzuführen sein. Das Mineralgefüge weist nicht die für Plutonite typische Verzahnung der Mineralkörner auf, eher ähnelt es dem eines Dolerits.

Abb. 33: Porphyrischer Garberg-Granit aus Dalarna(Nr. 42), angefeuchtete Schnittfläche, Bildbreite 14 cm.

Småland-Värmland-Granitoide: die typischen roten und bunten Småland-Granite mit Blauquarz sowie regional spezifische Vertreter aus Ost- und Nordost-Småland (Kinda-Granit, Vanevik-Granit etc.) sind in der KFH nur vereinzelt anzutreffen. Im Vergleich zu anderen brandenburgischen Fundlokalitäten ist aber eine bemerkenswerte Fundhäufung Filipstad-Granittypen zu verzeichnen, deren Herkunft zumindest teilweise in Westschweden (Värmland) liegen dürfte. Es handelt sich um biotitreiche und schwach bis mäßig deformierte porphyrische Granite („Trikolore-Granite“) aus rotem und/oder grauviolettem Alkalifeldspat, Blauquarz und hellem Plagioklas; dieser bildet auch Säume um einzelne gerundete Alkalifeldspäte. Für Anteile einer westschwedischen Geschiebegemeinschaft sprechen mehrere Funde von Kinne-Diabas und drei Funde des seltenen Weißen Filipstad-Granits (Abb. 34). Das Anstehende dieses Gesteins ist nicht bekannt, es wurde bisher nur als Nahgeschiebe in Värmland (SCHEERBOOM H & A 2010) gefunden. Sein Gefüge dürfte in Skandinavien einzigartig sein, damit ist er ein guter Kandidat für ein Leitgeschiebe.

Abb. 34: Weißer Filipstad-Granit (Nr. 5), polierte Schnittfläche. Einige der cremefarbenen und runden Alkalifeldspat-Einsprenglinge sind von einem helleren Saum aus Plagioklas umgeben. Die Matrix besteht aus xenomorphem und hell- bis blaugrauem Quarz sowie Alkalifeldspat. Dunkle Minerale sind nur in sehr geringer Menge enthalten.

Rapakiwi-Granite treten der in KFH in allen bekannten Gefügevarianten auf: Quarzporphyre, Granitporphyre, Aplitgranite, Porphyraplite, Granophyre, Prick-Granite, gleichkörnige Granite, porphyrische Granite, Pyterlite und Wiborgit. Zahlreiche Funde konnten dem Åland-Pluton zugeordnet werden. Das Satelliten-Vorkommen von Kökar lieferte offenbar nur wenige Geschiebe. Ebenfalls von Åland stammt, aber nicht zu den Rapakiwi-Graniten gehört der Lemland-Granit. Rapakiwis vom westfinnischen Festland (Vehmaa- und Laitila-Pluton) sowie vom nordschwedischen Rödö-Massiv sind nicht dokumentiert. Drei Rapakiwi-Geschiebe wurden dem Vorkommen von Nordingrå (Nordschweden) zugeordnet (Abb. 36-37), ein weiteres (Ostsee-Rapakiwi) dem Nordbaltischen Pluton, ein vollständig unter Wasser liegendes Rapakiwi-Vorkommen zwischen den Åland-Inseln und den Inseln Hiiumaa und Saaremaa vor der estnischen Küste (BRÄUNLICH 2016).

Abb. 35: Åland-Wiborgit, Breite 12 cm.

Die Leitgeschiebe mit der weitesten „Anreise“ sind die Nordingrå-Rapakiwis aus Nordschweden. Der auf den ersten Blick eher unscheinbare porphyrische Rapakiwi enthält helle und rechteckige Alkalifeldspat-Einsprenglinge, wenige hellgraue und größere Quarze sowie grünlichbraun verwitternde Hornblende als dunkles Mineral. In der Grundmasse sind blassrote graphische Quarz-Feldspat-Verwachsungen erkennbar.

Als weitere Funde von granitoider Geschieben sind zu nennen: „Bottnischer“ Gneisgranit, Granite aus Bornholm und aus Mittelschweden (Uppsala-Granit), diverse Pegmatite, Aplite und Schriftgranite, turmalinführende granitoide Gesteine („Turmalingranit“) und Zweiglimmergranite.

Auf dem Gelände der Waldschule wurden mehrere Großgeschiebe von Metamorphiten aufgestellt, die mit einer angeschliffenen Fläche versehen wurden, darunter zwei Augengneise und ein migmatitischer Paragneis mit großen roten Granat-Porphyroblasten („Sörmland-Typ“). Herausragende Exponate sind ein großer Amphibolit (Abb. 38-39) sowie ein Västervik-Fleckengestein (Abb. 44-45) mit einem bemerkenswerten, durch partielle Verwitterung entstandenen Relief auf der Oberfläche.

Abb. 38: Dunkler Amphibolit, größtes Geschiebe im Findlingsgarten. Breite ca. 60 cm.
Abb. 39: Die dunkleren und eingeregelten Aggregate in der grauen Grundmasse sind größere, während der Metamorphose gewachsene Amphibole. Dem Gestein haftet eine Partie eines Quarz-Feldspat-Gesteins an, entweder ein Xenolith oder ein Kontakt zum Nebengestein. Bildbreite 30 cm.

Marmor entsteht bei der Metamorphose von Kalksteinen und Dolomiten. Tonige Verunreinigungen begünstigen die Entstehung von Silikat-mineralen, z. B. grünem forsteritischem (Mg-reichem) Olivin bzw. Ser-pentinmineralen oder Diopsid. Diese petrographisch korrekt als unreiner Marmor bezeichneten Gesteine werden auch „Silikatmarmor“ oder „Ophicalcit“ genannt, können sehr attraktiv aussehen und fallen als Geschiebe ins Auge.

Abb. 40: Unreiner Marmor, auch „Silikatmarmor“ oder „Ophicalcit“), Nr. 64, polierte Schnittfläche.
Abb. 41: Die grünen Minerale sind von Hand nicht sicher bestimmbar. Meist handelt es sich in diesem Gesteinstyp um Olivin, Serpentinminerale und/oder Diopsid (BARTOLOMÄUS & SCHLIESTEDT 2006). Hier weist die unregelmäßig-netzartige Struktur einiger grüner Mineralkörner auf serpentinisierten Olivin hin.

Das Västervik-Gebiet ist die Heimat mehrerer Leitgeschiebe (grauvioletter Västervik-Quarzit, Västervik-Fleckenquarzit, Västervik-Fleckengestein). Alle wurden mehrfach in der KFH gefunden, wobei die grauvioletten Västervik-Quarzite zeitweise ungewöhnlich häufig im südöstlichen Grubenvortrieb auftraten, viele davon auch als Windkanter.

Abb. 42: Ansammlung grauvioletter Sandsteine und Quarzite, darunter viele Quarzite vom Västervik-Typ, Bildbreite 70 cm. Die glatten Oberflächen erschweren manchmal die Unterscheidung von diagenetisch verkieselten Sandsteinen und Quarziten mit granoblastischem Gefüge.
Abb. 43: Rotfleckiger Västervik-Quarzit, Breite 35 cm. Quarzite dieser Art sind bisher nur aus dem Västervik-Gebiet bekannt.

Vom Västervik-Fleckengestein (Västervik-Cordierit-Granofels) liegen aus der KFH etwa ein halbes Dutzend Funde vor. Ein herausragendes Exponat ist ein Großgeschiebe, an dem die Verwitterung zwischen den dunklen Cordieritflecken und der Grundmasse ein deutliches Relief gezeichnet hat. Der Granofels ist aus einem Sandstein mit tonigen Anteilen hervorgegangen. Die Tonminerale begünstigten zunächst die Bildung von orangerotem Feldspat und Glimmer. Nachfolgende Kontaktmetamorphose ist für die Bildung der runden Cordierit-Granoblasten verantwortlich, die von retrograd gebildetem schwarzem Biotit durchsetzt sind. Das zur Bildung von Cordierit erforderliche Eisen stammt aus unmittelbarer Nähe, aus den nun an Fe-Mineralen verarmten Säumen um die dunklen Flecken.

Abb. 44: Västervik-Fleckengestein, Breite etwa 50 cm.
Abb. 45: Detailansicht der nassen Geschiebeoberfläche mit Vertiefungen, entstanden durch stärkere Verwitterung der dunklen Flecken. Bildbreite ca. 18 cm.
Abb. 46: Västervik-Fleckenquarzit, Aufnahme unter Wasser.

Der Gesteinstyp in Abb. 46 wurde in der Vergangenheit fälschlicherweise häufig dem Stockholm-Gebiet zugeordnet („Stockholm-Fleckenquarzit“). Genauere Untersuchungen vor Ort ergaben aber, dass solche glimmerführenden Quarzite mit weißen Sillimanit-Fibroblasten („Flecken“) aus dem Västervik-Gebiet stammen (s. Västervik-Fleckenquarzit).

Leitgeschiebe aus SW-Schweden gehören, ebenso wie Rhombenporphyre und Gesteine aus dem Oslograben, zu den seltenen Geschiebefunden in Brandenburg. Ein zeitweise verstärkter Einfluss eines von Norwegen kommenden Eisstroms im Brandenburger Stadium der Weichsel-Kaltzeit könnte auch für den Transport SW-schwedischer Leitgeschiebe verantwortlich sein, z. B. des feingneisigen Schonen-Granulits (Abb. 47-48). Dieses Gestein entstand unter granulitfaziellen Bedingungen während der Svekonorwegischen Gebirgsbildung vor etwa 1 Milliarde Jahren. Es besteht ausschließlich aus rotem bis orangefarbenem Alkalifeldspat und dunkelgrauem Quarz. Kennzeichnend sind die feinen ausgewalzten, für Granulite typischen „Plattenquarze“. Dunkle Minerale fehlen, weil sie während der granulitfaziellen Metamorphose instabil wurden.

Abb. 47: Schonen-Granulit, Aufnahme unter Wasser (Slg. Torbohm, Nr. 2299).
Abb. 48: Gleicher Stein, Nahaufnahme der Rückseite.

Eine Besonderheit dieses Fundes ist die Grünfärbung auf der Rückseite, wahrscheinlich die Folge einer „Charnockitisierung“, einer „trockenen“ Hochdruckmetamorphose, bei der es zur Bildung von Pyroxen kommt. Charnockitisierte Grundgebirgspartien sind von mehreren Lokalitäten in SW-Schweden bekannt. Im Unterschied zur Vorderseite des Geschiebes sind dunkle, von Hand aber nicht bestimmbare Minerale erkennbar (Pyroxen oder Amphibol/Biotit als retrograde Umwandlungsprodukte?). Ein Hinweis auf granulitfazielle Metamorphose ist die Anwesenheit von Magnetit, nachweisbar mit einem Handmagneten.

2.2. Sedimentärgeschiebe

Zu den häufigen Funden in der KFH gehören, wie auch in vielen anderen Kiesgruben in Brandenburg, Rotsandsteine aus dem Mesoproterozoikum (Jotnischer Sandstein), rotbraune und helle Sandsteine aus dem Unterkambrium, diese häufig mit Ichnofauna, weiterhin Kalksteine aus Ordovizium und Silur sowie Feuersteine und Kalksteine aus Oberkreide und Dan. Eine statistische Auswertung sedimentärer Geschiebefunde kann ENGELHARDT 1997: Abb. III 6-1 entnommen werden. Die Arbeit von ENGELHARDT & HOFFMANN 2012 zum Spurenfossil Syringomorpha zeigt Funde aus der KFH. Besonderheiten der KFH sind Muschelkalk-Geschiebe aus dem Vorkommen von Rüdersdorf (SCHNEIDER 2017) sowie mehrfache Funde von Konglomeraten, die der Trias zugerechnet werden (TORBOHM & BARTOLOMÄUS 2018).

Abb. 49: Mesoproterozoische („Jotnische“) Sandsteine mit Wellenrippel, Alter ca. 1200-1400 Millionen Jahre. Bildbreite 60 cm.
Abb. 50: Spurenfossil Plagiogmus (Nr. 3031) in einem glaukonitischen Sandstein, Breite 12 cm.
Abb. 51: Bunter Orthocerenkalk (Ordovizium), sog. Blomminge bladet („Blumenschicht“), polierte Schnittfläche.
Abb. 52: Echinosphaeriten-Kalk (Ober-Ordovizium), Breite 9 cm. Die runden Gehäuse der ausgestorbenen Beutelstrahler sind radialstrahlig mit Calcit ausgefüllt.
Abb. 53: Lavendelblauer Hornstein (verkieselter ordovizischer Schwamm).

Der Geschiebetyp der Lavendelblauen Hornsteine wurde durch den Baltischen Urstrom abgelagert, einem hypothetischen Flusssystem, das vor etwa 40 Millionen Jahren entstand, im Gebiet der heutigen Ostsee verlief und im Pleistozän verschwand (SCHULZ 2003, VAN KEULEN et al. 2012). Ein Teil der Lavendelblauen Hornsteine sind lose ordovizische bis silurische Einzelfossilien von lavendelblauer bis grauer Farbe. Ihr Herkunftsgebiet wird in der Bottensee und im westlichen Finnland vermutet. Funde sind von mehreren Lokalitäten und unterschiedlichen Horizonten (etwa Miozän bis Pliozän) bekannt, lokal treten sie auch gehäuft auf (Sylt, Niederlausitz, Emsland, SW-Mecklenburg, Niederlande und weitere Vorkommen). Aus der KFH liegen wenige Einzelfunde vor.

Abb. 54: Crinoidenkalk mit ausgewitterten Seelilien-Stielgliedern als „Naturpräparat“, Bildbreite 6 cm.

Eine Besonderheit der KFH ist das häufige Auftreten von Muschelkalk-Geschieben (über 80 Funde). Aller Wahrscheinlichkeit nach handelt es sich um Lokalgeschiebe aus dem Vorkommen bei Rüdersdorf. Dieses liegt allerdings nicht in direkter Bewegungsrichtung des Eises, daher wird von einer Umlagerung aus saalezeitlichem Geschiebemergel ausgegangen, der aus dem Gebiet nördlich von Potsdam bzw. dem Berliner Raum stammt (SCHNEIDER 2017).

Abb. 55: Muschelkalk-Geschiebe, kristalliner Kalk mit Rippenbruchstück von Nothosaurus sp.; Oberer Muschelkalk (Ceratiten–Schichten), det. St. Schneider.
Abb. 56: Muschelkalk-Geschiebe; gelbgrauer, dichter Kalkstein mit Steinkern eines Ammoniten (Ceratites sp.); Oberer Muschelkalk (Ceratiten-Schichten), det. St. Schneider.

Ebenfalls bemerkenswert sind gehäufte Funde (bisher 8 Exemplare) eines bunten und monomikten Konglomerat-Typs (Trias– oder “Caliche“-Konglomerat). Es handelt sich um semiterrestrische und intraformationale Bildungen mit sparitischer Zementierung, sandiger Matrix und bunten Mergelklasten. Einige der Klasten weisen calcitgefüllte Risse auf und wurden als Caliche-Knollen aus aufgearbeiteten ariden Bodenhorizonten gedeutet. Ungeklärt ist bisher die genaue Herkunft der Konglomerate. Wahrscheinlich stammen sie aus einer mesozoischen Grabenfüllung in der Ostsee, südlich von Bornholm (Rønne-Graben) und sind dem Keuper bzw. der Oberen Trias zuzurechnen. Der Geschiebetyp wird von TORBOHM & BARTOLOMÄUS 2018 beschrieben, s.a. KNAUST 1997 und den ausführlichen Artikel auf dieser Seite.

Abb. 57: Caliche-Konglomerat, Schnittfläche, Aufnahme unter Wasser. Die roten Ränder einiger Mergelstein-Lithoklasten weisen auf ein arides Ablagerungsmilieu hin.

Jurassische Kelloway-Geschiebe (Dogger/Callovien), im östlichen Brandenburg ein häufiger Geschiebefund, treten in der KFH nur selten in Erscheinung. Feuersteine aus Oberkreide und Dan sind sehr häufig zu finden, gelegentlich auch gefleckte Feuerstein aus dem Turon, „Hanaskog-Flint“ (Campan) oder „geschichtete“ Feuersteine. Weiterhin treten reichlich weiße Kalksedimente, teils weiche Schreibkreide, teils härtere Kalk- und Mergelsteine, teilweise mit Schwämmen, Schnecken, Muscheln und Seeigeln auf. Alle Stufen der Oberkreide konnten durch Bestimmungen der stratigraphisch leitenden Muschel Inoceramus nachgewiesen werden (SEIBERTZ 2004 und ENGELHARDT & SEIBERTZ 2023). Aus der Oberkreide SE-Schonens stammt das Tosterup-Konglomerat (Abb. 58). Zu den Geschieben des Dan gehören Bryozoenkalk, Faxekalk, Saltholmskalk und helle Feuersteine (Abb. 59-60).

Abb. 58: Tosterup-Konglomerat (Oberkreide), polierte Schnittfläche. Am linken Bildrand ist eine Belemnitenspitze angeschnitten.
Abb. 59: heller Dan-Feuerstein mit Linsen aus bläulichem Chalcedon.
Abb. 60: Gleicher Stein, Nahaufnahme der Bryozoen-Fauna.

In Horizonten mit gehäuften Funden von Elbgeröllen traten auch rote Feuersteine in großer Zahl auf. Eingelagerte Fe-(III)-Verbindungen (Hämatit) und schwarze, teils windpolierte und wüsten-lackartige Beläge sprechen für eine Exposition in einem warmen und trockenen Klima, z. B. zur Zeit des Holstein-Interglazials.

Abb. 61: Rote bis schwarzrote Feuersteine; oben rechts ein roter Wallstein mit Schlagmarken und konkaver Eintiefung.
Abb. 62: „Wallsteine„, abgerollte Feuersteine als Brandungsgerölle eines tertiären Meeres.

Aus der KFH liegen mehrere Hundert Exemplare von „Wallsteinen“ vor. Wallsteine sind gut gerundete, ellipsoidisch geformte Feuersteine mit unregelmäßigen, parabelartigen Schlagmarken. Sie werden als Brandungsgerölle eines tertiären Meeres (Paläozän bis Unter-Eozän) aufgefasst und erhielten ihre Form durch gegenseitige Abrollung bei fortwährender Umlagerung. An ihren gegenwärtigen Fundort gelangten sie als Geschiebe oder stammen aus glazial aufgearbeiteten Horizonten aus Hebungsstrukturen der näheren und weiteren Umgebung (SCHULZ 2003, ANSORGE 2018).

An Geschieben des Tertiärs wurden in der KFH dokumentiert: Aschgraues Paläozängestein (Paläozän); Faserkalke, Zementsteine (Eozän); Braunkohle, „Braunkohlenquarzit“, „Wurzel-Quarzit“, „Tertiär-Quarzit“, „Urtorf“ (Abb. 63), helle verkieselte Nadelhölzer bis zu einer Größe von 80 cm (Miozän); Bernstein, Stettiner Gestein, Stettiner Kugeln, Septarien aus dem Rupelton (Oligozän).

Abb. 63: „Urtorf“ (Nr. 607), verkieselter Braunkohlentorf.

Urtorf“ ist ein poröses, kieseliges, dünnplattiges und von nicht bestimmbaren Pflanzenresten vollgestopftes Gestein, das wahrscheinlich aus Verkieselungszentren in der Braunkohle stammt (verkieselter Braunkohlentorf). Funde sind südlich und östlich von Berlin sowie aus der Umgebung von Fürstenwalde belegt. GOTHAN & BENNHOLT 1929 beschreiben den Geschiebetyp sowie ein anstehendes Vorkommen aus einer Ziegeleigrube bei Saarow, wo das Gestein in Gestalt flacher, bis 5 cm mächtiger Linsen mitten in der Braunkohle beobachtet wurde. Die im Anstehenden braune bis rötlichgraue Farbe kommt Geschiebefunden durch Bleichung/Verwitterung abhanden. Die Autoren nennen grasartige und schilfähnliche Pflanzen als Hauptbestandteil des Urtorfs. Selten sind Blätter von Laubhölzern oder Reste von Wasserpflanzen (Seerosen-rhizome).

Raseneisenerz und lösskindelartige Kalk-Sand-Konkretionen sind wahrscheinlich quartäre Bildungen. In der KFH treten gelegentlich Knochen von Großsäugern auf (Mammut, Wollnashorn und Wildpferd). Funde der Sumpfdeckelschnecke Viviparus diluvianus werden dem Holstein, ein Massenfund der Schnauzenschnecke Bithynia tentaculata der Eem-Warmzeit zugeordnet.

2.3. Elbgerölle

In der KFH fanden sich zeitweise Gerölle der mittelpleistozänen Berliner Elbe in großer Zahl in den oberen weichselzeitlichen Schmelzwassersanden. Die Gesteine wurden aus ihren südlichen Herkunftsgebieten zwischen ausklingender Elster- und einsetzender Saale-Vereisung in das Gebiet von Potsdam transportiert und in ausgedehnten Schotterfächern abgelagert. Sie liegen heute unter mächtigen glazialen Ablagerungen. Ein Teil wurde durch das vorrückende Inlandeis des Saale- und Weichsel-Glazials in jüngere glaziale Sedimente eingetragen und ist im Gebiet zwischen Teltow und Fläming gelegentlich als geringe Beimengung zu nordischen Geschieben zu finden. Funde südlicher Gerölle aus dem Gebiet zwischen Teltow und Fläming werden an anderer Stelle ausführlich dokumentiert (Link folgt in Kürze).

Die Herkunftsgebiete der Elbgerölle erstrecken sich vom südlichen Brandenburg über den östlichen Teil Sachsens bis weit nach Westböhmen, in das Gebiet zwischen Pilsen und Prag, sowie nach Osten bis ins Riesengebirgsvorland. Grundlage für die Bestimmung der Elbgerölle sind die Arbeiten von Kurt Genieser (GENIESER 1953a, 1955, 1957, 1962, GENIESER & MIELECKE 1957). Seine Beschreibungen wurden durch SCHWARZ et al. 2012, SCHWARZ & LANGE 2013, 2017, SCHWARZ & RIEDRICH 2010 und SCHWARZ 2021 teilweise revidiert und erweitert. Die wichtigsten Gerölltypen sind:

  • Milchquarz-Varietäten (streifig durchscheinende Quarze; Gerüst-, Strahlen- und Zellenquarze)
  • Cherts und Hornsteine („Lydite“ und „Kieselschiefer“)
  • Böhmische Quarz-Lydit-Konglomerate
  • Achat-, Amethyst-, Chalcedon- und Jaspisgerölle sowie
  • Gangbrekzien aus dem Osterzgebirge mit Paragenesen dieser Minerale
  • Paläozoische Kieselhölzer (Döhlener Becken, permokarbonische Becken in Nordböhmen)
  • kontaktmetamorphe „Knotengrauwacken“
  • Kreidesandstein
  • „Tertiärquarzite“/“Knollensteine“
  • Postvariszische rhyolithische Vulkanite
  • Känozoische Alkalivulkanite (Tephrite, Basanite, Phonolithe).
  • Erdbrandgesteine
  • Grüne „Serizitschiefer“

Außer Erdbrandgestein und Kreidesandstein konnten alle genannten Gerölltypen in der KFH dokumentiert werden. Am häufigsten sind Hornsteine/Cherts („Lydite“), tektonische Brekzien bzw. Gangbrekzien und Milchquarze. Alkalivulkanite (Tephrite, Olivinbasalte bzw. -basanite) treten in der KFH jedoch vergleichsweise selten auf, obwohl sie der häufigste Gerölltyp der Berliner Elbe sind.

Abb. 64: Zusammenstellung schwarz-weißer, als „Lydite“ bezeichneter Hornsteine und Cherts. Dokumentiert wurden mehr als hundert Funde des Gerölltyps aus der KFH.

Die schwarzweißen „Lydite“ sind die häufigsten Vertreter und zuver-lässiger Anzeiger einer südlichen Geröllgemeinschaft. Ein großer Teil der massigen und sehr zähen Gesteine stammt aus den Brdy südwestlich von Prag. Von dort sind keine allerdings Radiolarien bekannt, daher sollte der Gerölltyp nicht als Lydit (= paläozoische Radiolarite), sondern allgemeiner als Chert oder Hornstein bezeichnet werden. Neben den schwarz-weißen Cherts und Hornsteinen treten als typische Vertreter einer südlichen Geröll-gemeinschaft eine Reihe weiterer Farbvarianten sowie geschichtete Hornsteine („Kieselschiefer“) auf.

Abb. 65: Böhmisches Quarz-Lydit-Konglomerat, nass fotografiert. Das grünliche Konglomerat enthält gut gerundete Milchquarz- und einige Chert-Lithoklasten. Lagenweise sind Übergänge in einen Sandstein erkennbar. Das Elbeleitgeröll stammt aus den Brdy und wurde über die Berounka der Elbe zugeführt.

In der Grobkies-Fraktion finden sich gelegentlich Einzelgerölle von Amethyst, Achat, Chalcedon und Jaspis. Die folgende Chalcedon-Varietät ähnelt der Beschreibung des „rötlichgelben und weinroten Gelits“ in GENIESER 1955. Diese stammt aus Melaphyr-Mandelsteinen im Einzugsgebiet der Iser (Jizera) und Cidlina und ist das einzige Leitgeröll der oberen Elbe (alle anderen kommen aus dem Moldau-Beraun-Einzugsgebiet).

Abb. 66: Orange-gelb gebänderter Chalcedon, „rötlichgelber und weinroter Gelit“ aus dem Isergebirge.

Aus dem Osterzgebirge stammen charakteristische Paragenesen aus Quarz, Amethyst, Achat und Jaspis. Solche Quarz-Amethyst-Brekzien, „Trümmerachate“ und „Strahlenquarze“ wurden in der KFH vielfach gefunden und bilden die „osterzgebirgische Geröllgemeinschaft“ (GENIESER 1957).

Abb. 67: Kastenquarz mit Amethyst, osterzgebirgische Paragenese. Die weißen Milchquarz-Kästchen sind mit kristallinem Amethyst ausgefüllt und von feinen roten und jaspisartigen Adern umrahmt.
Abb. 68: Paläozoisches Kieselholz, durch Windeinwirkung glatt poliert. Paläozoische Hölzer stammen aus dem Döhlener Becken oder Permo-karbonischen Becken in Nordböhmen. Die nordböhmischen Hölzer weisen in der Regel eine bessere Strukturerhaltung auf.

Die sog. „Knollensteine“ oder „Tertiärquarzite“ sind verkieselte konglomeratische Quarzsandsteine (Diamiktite) und eine charakteristische Erscheinung in südlichen Geröllgemeinschaften. Knollensteine bilden verstreute Vorkommen in Sachsen und Böhmen und sind oligozänen bis miozänen Alters. Typisches Merkmal vieler „Tertiärquarzite“ sind eckige bis abgerundete Quarzkörner, die in einer feinkörnigen und kieselig gebundenen Grundmasse „schwimmen“.

Abb. 69: Detailansicht eines Amethystgerölls in einem „Tertiärquarzit“, Aufnahme unter Wasser.

Die Alkalivulkanite aus der Eruptivprovinz des Egergrabens (Tephrite, Olivinbasalte bzw. -basanite, Phonolithe etc.) treten im Berliner Elbelauf in großer Zahl auf und sind der häufigste Gerölltyp in der Überkorn-Fraktion, in der KFH fehlen die Gesteine jedoch weitgehend. Vermutlich erlagen sie durch oberflächennahe Exposition weitgehend der Verwitterung oder wurden zeitweise nicht transportiert.

Abb. 70: Tephrit, der häufigste Vertreter unter den südlichen Alkalivulkaniten aus der Eruptivprovinz des Egergrabens. Die meisten Alkalivulkanit-Gerölle dürften aus dem Böhmischen Mittelgebirge (České středohoří) stammen.
Abb. 71: Pfau auf dem Gelände der Waldschule.

3. Literatur

ANSORGE J 2018 Wallsteine als Schiffsballast auf Gotland – [Cretaceous Flint Pebbles as Ship Ballast on Gotland, Sweden] – Geschiebekunde aktuell 34 (4): 106-117, 8 Abb., Hamburg/Greifswald.

BARTOLOMÄUS W & SCHLIESTEDT M 2006 Marmore als Urkalkgeschiebe – Archiv für Geschiebekunde 5 (1-5):27-56, 5 Taf., 6 Abb., Hamburg/ Greifswald 2006.

BRÄUNLICH M 2016 Kristallingesteine der nördlichen Ostsee (Teil 1: Rapakiwis) – Geschiebekunde aktuell 32 (2): 38-54, 17 farb. Abb., 3 Ktn., Hamburg/Greifswald.

EIßMANN L 1967 Rhombenporphyrgeschiebe in Elster- und Saalemoränen des Leipziger Raumes – Abhandlungen und Berichte des natur- kundlichen Museums „Mauritianum” Altenburg 5: 37-46, 2 Abb., 1 Tab., Altenburg.

ENGELHARDT G 1997: III-6 Sedimentärgeschiebe im Exkursionsgebiet, insbesondere in der Kiesgrube Fresdorfer Heide. – In: SCHROEDER JH [Hrsg.]: Führer zur Geologie von Berlin und Brandenburg. 4: Potsdam und Umgebung, 161-171, 8 Abb.; Berlin (Verl. Geo- wissenschaftler Berlin Brandenburg).

ENGELHARDT G 2016 Geschiebe aus der Kiesgrube „Fresdorfer Heide“ südlich von Potsdam. Teil I. Geologischer Rahmen der Kiesgrube und der Geschiebe-Garten auf dem Großen Ravensberg – Der Geschiebesammler 48 (4): 99-115, 8 Abb, 2 Taf; Wankendorf. (Link zum Artikel)

ENGELHARDT G & HOFFMANN R 2012 Zur unterkambrischen Ichnogattung Syringomorpha anhand norddeutscher Geschiebefunde I – Archiv für Geschiebekunde 6 (5): 281-324, 9 Taf., 9 Abb., 3 Tab., Hamburg/Greifswald Dezember 2012. ISSN 0936-2967

ENGELHARDT G & SEIBERTZ E 2023 Geschiebe aus der Kiesgrube „Fresdorfer Heide“ südlich von Potsdam (Brandenburg, N- Deutschland), Teil II. Oberkreide-Faunen und ihre Herkunft: Ein Überblick – Geschiebekunde aktuell 39 (4): 113-124, 7 Abb., Hamburg/Greifswald.

FRANZ HJ & WEISSE R 1965 Das Brandenburger Stadium. – In: Gellert HJ [Hrsg.]: Die Weichseleiszeit im Gebiet der DDR, S. 69-81; Berlin (Akad.-Verl.).

GENIESER K 1953a Einheimische und südliche Gerölle in den Deckgebirgsschichten von Dobrilugk. – Geologie, 2 (1): 35–57, Berlin.

GENIESER K 1955 Ehemalige Elbeläufe in der Lausitz. – Geologie, 4 (3): 223-279, Berlin.

GENIESER K & MIELECKE W 1957 Die Elbekiese auf der Teltowhochfläche südlich von Berlin. – Sonderheft Berichte d. Geolog. Gesellschaft, Bd II, Heft 4, S. 242-263, Berlin 1957.

GENIESER K 1957 Neue Beobachtungen im böhmischen Quartär. Geologie 6 (3): 331–337, Berlin.

GENIESER K 1962 Neue Daten zur Flussgeschichte der Elbe. – Eiszeitalter u. Gegenwart 13: 141–156, Öhringen/Württ.

GOTHAN W & BENNHOLT W 1929 Über Verkieselungszentren in der Märkischen Braunkohle – Braunkohle 1929, Heft 37, 7 S., 1 Tafel.

GOTHAN W & BENNHOLT W 1929 Über pflanzenführende Tertiärgeschiebe und ihren Ursprung – Zeitschrift für Geschiebeforschung und Flachlandsgeologie (5), S. 81-87, Berlin.

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 8 Taf. (1 Taf. im Anh.), 44 Abb., 29 Tab., 1 Kte., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

KEULEN VAN P, SMIT F & RHEBERGEN F 2012 Ordovizische Lavendelblaue Hornsteine in miozänen bis altpleistozänen Ablagerungen des “Baltischen Flußsystems – Archiv für Geschiebekunde 6 (3): 155- 204, 39 Abb., 5 Tab., Hamburg/Greifswald Januar 2012.

KNAUST D 1997 Triassische Leitgeschiebe im pleistozänen Vereisungs- gebiet Nordostdeutschlands und deren Beziehung zur Kågerød- Formation von Bornholm (Dänemark) – Zeitschrift der Deutschen Geologischen Gesellschaft 148 (1): 51-69, 3 Taf., 5 Abb., 1 Tab., Stuttgart.

LANGMANN T & TORBOHM M 2017 Fleckenquarzite im Västervik-Gebiet – Geschiebekunde aktuell 33 (3): 77-82, 3 Abb. Hamburg/Greifswald, August 2017.

LE MAITRE RW et al. 2002 A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks.

OBST K, ANSORGE J, MATTING S et al. 2015 Early Eocene volcanic ashes on Greifswalder Oie and their depositional environment, with an overview of coeval ash-bearing deposits in northern Germany and Denmark – Int J Earth Sci (Geol Rundsch) (2015) 104: 21-79.

SCHEERBOOM H & SCHEERBOOM A 2010 „Witte Rapakivi“ is witte Filipstad- graniet – Grondboor & Hamer Nr. 2, 2010. S. 42.

SCHNEIDER 2017 Geschiebe aus der Kiesgrube „Fresdorfer Heide“ südlich von Potsdam, Teil II. Muschelkalk-Geschiebe – Der Geschiebesammler 49 (2): 47-71, 6 Abb., 4 Taf., Wankendorf, November 2017.

SCHNEIDER S & TORBOHM M 2020 Rhombenporphyre aus der Region Berlin/Brandenburg – Geschiebekunde aktuell 36 (1): 2-11, 6 Abb., Hamburg/Greifswald Februar 2020, ISSN 0178-1731.

SCHROEDER J H, WEIßE R et al. 1997 Geologie von Berlin und Brandenburg, Nr.4: Potsdam und Umgebung, Selbstverlag Berlin 1997.

SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 446+42 meist farb. kapitelweise num. Abb., 1 Kte. als Beil., Schwerin (cw Verlagsgruppe).

SCHWARZ D, LANGE JM & RIEDRICH G 2012 Elbeleitgerölle aus den Brdy (Mittelböhmisches Waldgebirge) – Veröff. Museum für Naturkunde Chemnitz 35 (2012) 61-72.

SCHWARZ D & LANGE JM 2013 Leitgerölle in den pleistozänen Elbeterrassen zwischen Riesa und Torgau. – Veröff. Museum für Naturkunde Chemnitz 36 (2013): 143-156.

SCHWARZ D & LANGE JM 2017 Gravitationsgebänderte Achate in Elbeschottern nördlich von Dresden – Veröff. Museum für Naturkunde Chemnitz 40 (2017): 167-178.

SCHWARZ D & RIEDRICH G 2010 Neue südliche Gerölle in Ostsachsen und Südbrandenburg – Ein Beitrag zur Frage nach dem Ursprung fluviatilen Gerölls aus Böhmen. – Der Aufschluss, 61: 187–193; Heidelberg.

SCHWARZ D 2021 Funde südlichen Gerölls in Südbrandenburg und Ostsachsen von der Neiße bis zum nördlichen sächsischen Elbtal – www.agates.click

SMED P & EHLERS J 2002 Steine aus dem Norden – Geschiebe als Zeugen der Eiszeit in Norddeutschland – 194 S., 83 Abb., 34 Taf.; Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage (2002).

STACKEBRANDT W & FRANKE D 2015 Geologie von Brandenburg. – 805 S., 313 Abb., 60 Tab.; Schweizerbartsche Verlagsbuchhandlung Stuttgart.

SEIBERTZ E 2004 Neue Funde von Inoceramen aus der Oberkreide Zentral-Brandenburgs (Turon bis Campan, Nord-Deutschland) und ihre paläobiogeographischen Beziehungen. – Geobiologie, 1: 223- 224; Göttingen.

SEIBERTZ E, BRUER T & NIEMANN J 2002 Geobiologische Prozesse während der Hauterive-Transgression in die unterkretazische Braunschweiger Bucht (NW-Deutschland). – Schr.-R. dt. geol. Ges., 21: 312-313; Hannover.

THIEKE HU 2002 Mittelpleistozäner Berliner Elbelauf. – In: STACKEBRANDT & MANHENKE [Hrsg.]: Atlas zur Geologie von Brandenburg, 42-43, Kt. 7; Kleinmachnow.

TORBOHM M & BARTOLOMÄUS W 2018 Funde monomikter Konglomerat-Geschiebe aus der Kiesgrube Fresdorfer Heide bei Potsdam – Geschiebekunde aktuell 34 (2): 34 – 41, 6 Abb., Hamburg/Greifs- wald, Mai 2018. ISSN 0178-1731.

TORBOHM M 2018 Südliche Gerölle des mittelpleistozänen Berliner Elbelaufes südlich und südwestlich von Berlin. – Manuskript, 141 S.

KEULEN PSF VAN, SMIT R & RHEBERGEN F 2012 Ordovizische Lavendelblaue Hornsteine in miozänen bis altpleistozänen Ablagerungen des “Baltischen Flußsystems – Archiv für Geschiebekunde 6 (3): 155-204, 39 Abb., 5 Tab., Hamburg/Greifswald Januar 2012. ISSN 0936-2967.

VINX R 2016 Steine an deutschen Küsten; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verlag).

VINX R 2011 Gesteinsbestimmung im Gelände – 3. Aufl., XI+480 S., 4 S/W-Taf., 418 Abb., 14 Tab., 5 Kästen, Heidelberg etc. (Spektrum Akademischer Verlag in Springer SBM).

WEISSE R 1997 II-3 Satzendmoräne auf gestauchtem Sockel in der Fresdorfer Heide. – In: SCHROEDER JH [Hrsg.]: Führer zur Geologie von Berlin und Brandenburg. 4: Potsdam und Umgebung. 95-100, 5 Abb., 1 Kt.; Berlin (Verl. Geowissenschaftler Berlin Brandenburg).

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).

ZANDSTRA J G 1999 Platenatlas van noordelijke kristallijne gidsgesteenten, Foto’s in kleur met toelichting van gesteentetypen van Fennoscandinavië – XII+412 S., 272+12 unnum. Farb-Taf., 31 S/W- Abb., 5 Tab., Leiden (Backhuys).

Alkalifeldspat-pokiloblastischer Glimmerquarzit aus dem Västervik-Gebiet

Abb. 1: Alkalifeldspat-pokiloblastischer Glimmerquarzit, Nahgeschiebe aus einem fossilen Strandwall, südöstlich von Västervik, Aufnahme unter Wasser.
Abb. 2: Nahaufnahme der angewitterten Außenseite.

Ein ungewöhnlicher Typ eines Fleckengesteins wurde zweimal als Geschiebe im Västervik-Gebiet gefunden, ein Anstehendes ließ sich bisher nicht lokalisieren. Das Gestein ist reich an Dunkelglimmer und besitzt eine glimmerquarzitische Zusammensetzung. Auf der angewitterten Außenseite sind ovale und orangefarbene Granoblasten („Flecken“) erkennbar, die zunächst keine regelhafte Kristallstruktur aufweisen. Erst auf der Bruchfläche (Abb. 3,4) sieht man, dass es sich um einzelne große Alkalifeldspat-Einkristalle handelt: bei geeignetem Lichteinfall reflektiert die gesamte Kristallfläche. Die „Flecken“ sind also als Porphyroblasten, genauer gesagt, Poikiloblasten anzusehen, weil die Feldspäte von kleinen Körnern heller Minerale (Quarz) siebartig durchsetzt werden (sog. poikiloblastisches Gefüge).

Abb. 5: Nahaufnahme der polierten Schnittfläche.

Offenbar erfolgte die Bildung von Alkalifeldspat auf Kosten von Dunkelglimmer (z. B. Biotit), weil dieses Mineral innerhalb der Granoblasten fehlt, ansonsten aber in großer Menge enthalten ist. Eine Dünnschliff-Untersuchung, die nähere Hinweise zur Metamorphosegeschichte dieses Gesteins liefern könnte, steht noch aus.

In der Literatur finden sich zur metamorphen Bildung von Alkalifeldspat in vergleichbaren Gesteinen nur wenige Hinweise. Eine sog. „Feldspat-Sprossung“ kann im Zuge einer K-Metasomatose im Kontaktbereich einer Granitintrusion erfolgen (VINX 2011: 438). MÜLLER G & WURM F 1970 nennen kontaktmetamorphe Metaarkosen und Metatuffite mit Feldspat-Porphyroblasten aus dem Stavanger-Gebiet (Norwegen). GAVELIN 1984 beschreibt ausführlich die Bildung von sekundärem Feldspat in den Västervik-Quarziten, Gesteine mit großen Feldspat-Poikiloblasten werden aber nicht erwähnt.

Abb. 6: Ähnlicher Gesteinstyp, zweiter Fund aus dem Västervik-Gebiet, Geschiebe von Piperskärr, nordwestlich von Västervik.
Abb. 7: Nahaufnahme der nassen Außenseite.

Geschiebefunde aus Brandenburg

Ein ähnlicher Gesteinstyp befindet sich im Findlingsgarten Seddin (S Potsdam). Eine nähere Untersuchung (Bruchfläche) ist kaum möglich, allenfalls könnte an einer unauffälligen Stelle zu gegebener Zeit eine Kernbohrung zur Anfertigung eines Dünnschliffs vorgenommen werden.

Abb. 8: Geschiebe im Findlingsgarten Seddin, Breite 90 cm.
Abb. 9: Nahaufnahme der trockenen Oberfläche.
Abb. 10: Nahaufnahme der nassen Oberfläche. Die orangefarbenen Flecken werden siebartig von kleinen hellen Mineralkörnern durchsetzt (poikiloblastisches Gefüge).

Auch an einem Großgeschiebe wenig südlich von Gut Geisendorf am Rand des Tagebaus Welzow-Süd (Niederlausitz) ist eine Probenahme nicht ohne weiteres möglich.

Abb. 11: Feldspat(?)-poikiloblastischer Granofels, Gut Geisendorf, Breite 46 cm.
Abb. 12: Detailaufnahme.
Abb. 13: Nahaufnahme der nassen Oberfläche.

Literatur

GAVELIN S 1984 The Västervik Area in South-eastern Sweden – SGU Ser. Ba No. 32, 172 S., Uppsala.

MÜLLER G & WURM F 1970 Die Gesteine der Halbinsel Strand : Die Gesteine der Inseln des zentralen Boknfjords : Beiträge zur Metamorphose und zum Aufbau der kambro-silurischen Gesteine des Stavanger-Gebietes II und III – Norges Geologiske Undersøkelse Nr.267, 90 S., 3 Taf. – Oslo 1970 Universitetsforlaget.

VINX R 2011 Gesteinsbestimmung im Gelände – 3. Auflage, 480 S., 418 Abb. – Spektrum Akademischer Verlag Heidelberg 2011

Västervik-Fleckengestein

Das Västervik-Fleckengestein, auch Västervik-Cordierit-Granofels, gilt als schönes und leicht erkennbares Leitgeschiebe für das nordöstliche Småland. Der auffällige Gesteinstyp besitzt eine feinkörnige, graue bis bräunlich-graue Grundmasse und eine kontrastreiche Textur aus runden und dunklen Flecken, die von orangeroten Säumen umgeben sind. Die Flecken erreichen eine Größe von 1-2 cm, die Breite der Säume ist variabel.

Abb. 1: Anstehendprobe eines Västervik-Fleckengesteins mit graubrauner und feinkörniger Grundmasse. Wenige Flecken sind von schmalen, orangeroten Säumen umgeben. Loser Stein vom Anstehenden in Casimirsborg (Lokalität 1).
Abb. 2: Die Rückseite des gleichen Steins zeigt eine dichtere Belegung mit Flecken, teilweise berühren sie sich. Auch die Säume sind etwas breiter, während von der graubraunen Grundmasse viel weniger zu erkennen ist. Dieser eine Lesestein zeigt bereits, dass Fleckendichte und Saumbreite auch in kleinem Maßstab variabel sind.
  1. Beschreibung
    1.1. Mineralbestand
    1.2. Entstehung
    1.3. Anstehendproben aus dem Västervik-Gebiet
    1.4. Nahgeschiebe aus dem Västervik-Gebiet
  2. Doppelgänger und ähnliche Gesteine
    3.1. Fleckengesteine aus der Almesåkra-Formation
    3.2. Gebiet um Kolmården in Östergötland
    3.3. Kiesgrube südlich Linköping
  3. Geschiebefunde
  4. Verzeichnis der Lokalitäten mit Koordinaten
  5. Literatur

1. Beschreibung

Im Västervik-Gebiet findet sich das Gestein in undeformierter und deformierter Ausprägung, mitunter im gleichen Aufschluss. Als Leitgeschiebe eignen sich nur die undeformierten Varianten, ideale Ausbildungen gehören eher zu den seltenen Geschiebefunden. Darüber hinaus gilt es, bei der Bestimmung von Geschieben alle unten genannte Merkmale zu überprüfen. Auf keinen Fall genügt es, ein Geschiebe allein aufgrund oranger oder roter Färbung und dunkler Flecken dem Västervik-Gebiet zuzuordnen.

Mehrere Exkursionen nach Schweden haben gezeigt, dass Fleckengesteine auch an anderen Orten vorkommen und denen aus Västervik erstaunlich ähneln können (Abb. 37-49). Die Beschreibung des Leitgeschiebes ist daher entsprechend eng gefasst. Fleckengesteine mit Deformationserscheinungen, gneisartigem Gefügen oder deutlich körnigen Grundmassen scheiden von vornherein aus. Abb. 1 und 2 zeigen eine Probe des Gesteinstyps, wie er nach derzeitigem Kenntnisstand nur im Västervik-Gebiet vorkommt.

Als Leitgeschiebe geeignet sind Fleckengesteine mit folgende Eigenschaften:

  • Die Grundmasse ist feinkörnig und von grauer bis bräunlich-grauer, selten grünlich-grauer Farbe. Mit der Lupe sind einzelne Mineralkörner nicht oder nur mit Mühe unterscheidbar. Fleckengesteine mit gröber körnigen Grundmassen, in denen z. B. ein Quarz-Feldspat-Gefüge deutlich erkennbar ist, scheiden als Leitgeschiebe aus.
  • Die orangefarbenen und feinkörnigen Säume können wenige Millimeter schmal sein (Abb. 1); in diesem Fall ist mehr graue Grundmasse zu erkennen. Sie können auch so breit sein, dass das Gestein vollständig aus orangefarbener Grundmasse zu bestehen scheint (Abb. 30). Diese sieht dann oft etwas „wolkig“ aus durch wechselnde Anteile dunkler Minerale. Zwischen den Extremen (schmale Säume – orangefarbene „Grundmasse“) existieren alle möglichen Übergänge. Charakteristisch sind orangefarbene bis orangerote Tönungen. Auch Farbvarianten mit roter, rotbrauner und roségrauer (Abb. 32) Tönung sind bekannt, treten aber seltener auf. Ob sie ebenfalls als Leitgeschiebe geeignet sind, ist nicht sicher.
  • Die dunklen Flecken sind rund bis elliptisch geformt und besitzen Durchmesser von mindestens 0,5 cm, gewöhnlich von 1 bis 2 cm. Idealerweise sind die Flecken einer Probe annähernd gleich groß (Abb. 1 und 30) und ihre Ränder heben sich kontrastreich von der Saumzone ab. Anteil und Verteilung der Flecken sind variabel, von lockerer bis dichter, von regelloser bis einigermaßen gleichmäßiger Verteilung. Die Flecken sollten überwiegend voneinander getrennt liegen, jedenfalls keine zusammenhängenden Ketten bilden. Sie können auch unregelmäßige Umrisse (Abb. 8 und 9) oder z. B. eine sternförmige Gestalt (Abb. 34) aufweisen.
  • Fehlen von Deformationserscheinungen: als Leitgeschiebe geeignete Västervik-Fleckengesteine sind Granofelse mit einem richtungslosen Mineralgefüge, die unter weitgehend statischen Metamorphose-Bedingungen entstanden. Fleckengesteine mit Gneisgefüge, erkennbar an der Gleichrichtung plättchenförmiger, dunkler Minerale wie Biotit, kommen sowohl im Västervik-Gebiet als auch an anderen Orten vor und sind der Herkunft nach nicht bestimmbar. In diesem Zusammenhang sollte auf die Bezeichnung „Västervik-Fleckengneis“ (Zandstra 1999:191-193, Smed 2002:133) verzichtet werden.

1.1. Mineralbestand

Die Minerale sind wegen ihrer Feinkörnigkeit von Hand nicht bestimmbar. Lediglich in den dunklen Flecken erkennt man manchmal Blättchen von Biotit; auf der angewitterten Außenseite von Geschieben können diese Bereiche schwarzgrün gefärbt sein. Nach VINX 2016 besteht die Grundmasse aus Quarz, Feldspat und Biotit. Die Flecken sind stark durch Biotit pigmentierter Cordierit, der sich meist einer direkten Beobachtung entzieht, gelegentlich aber blau gefärbt sein kann (Abb. 25). Die feinkörnige orangefarbene Saumzone enthält Feldspat und Quarz, Biotit tritt hier stark zurück oder fehlt vollständig. Optional enthaltener weißer Sillimanit ist an seiner feinfaserigen Ausbildung erkennbar (Abb. 11 und 57).

1.2. Entstehung

Vor etwa 1,85 – 1,88 Milliarden Jahren wurden in einem Flussdelta große Mengen von Sand abgelagert. Dazwischen gab es Flächen, die auch tonhaltige Sedimente enthielten. Während der nachfolgenden svekofennischen Gebirgsbildung entstanden nach Versenkung der sandigen Ablagerungen unter mäßigem Druck und hohen Temperaturen Quarzite, aus den aluminiumreichen sandig-tonigen Sedimenten die schwarz-orange oder schwarz-grau gefärbten Fleckengesteine. Die Bildung der Cordierit-Flecken (Granoblasten) erfolgte im festen Zustand durch Stoffwanderung. Zu ihrer Bildung wurden Eisen und Magnesium aus der näheren Umgebung „abgezogen“, z. B. aus Biotit, der daher in den orangefarbenen Saumzonen fehlt. Die Neubildung von Mineralen in Gestalt feinkörniger Granoblasten („Flecken“) ist typisch für kontaktmetamorphe Vorgänge, z. B. in der Nähe aufsteigender Granitplutone.

1.3. Anstehendproben

Die nächsten Bilder zeigen Aufschlüsse, Anstehendproben und Nahgeschiebe des Västervik-Fleckengesteins. Es existieren zahlreiche kleine und größere Vorkommen, von nur wenigen Dezimetern breiten Einschaltungen (Abb. 11, 23) bis zu einigen Hundert Metern Mächtigkeit. Im Gebiet zwischen Västervik und Gamleby wurden mittlerweile alle größeren, von GAVELIN 1984 kartierten Vorkommen von Metasedimenten mit einer Fleckentextur besucht (s. Abb. 3), im Einzelnen: Östra Skälö (Lok. 3), nördlich vom See Rummen (Lok. 16), Stadtgebiet Gamleby und Kasimirsborg (Lok. 1), Schäre Grönö (Lok. 17; nicht Mjödö und Krokö). Lediglich östlich vom See Hjorten konnten keine Fleckengesteine anstehend beobachtet werden. Eine Liste mit Koordinaten der Lokalitäten findet sich am Ende des Textes.

Abb. 3: Übersichtskarte mit Fundpunkten im Västervik-Gebiet. Kartenausschnitt aus: BERGMAN et al 2012 (https://apps.sgu.se/geolagret/).

In der Karte hellblau markierte Bereiche sind die Metasedimente der Västervik-Formation. Ganz überwiegend handelt es sich um Quarzite, das Västervik-Fleckengestein kommt innerhalb dieser Signatur nur untergeordnet vor.

Abb. 4: Västervik-Fleckengestein (Casimirsborg, Lokalität 1) in perfekter Ausbildung: Dunkle Flecken mit schmalen orangefarbenen Säumen sind einigermaßen dicht „gepackt“. Die Lagentextur bildet eine sedimentäre Abfolge von sandigen und tonig-sandigen Schichten ab. Eine Fleckenbildung fand nur in den tonhaltigen Schichten statt. Bildbreite an der Basis etwa 60 cm.
Abb. 5: Wenige Meter entfernt fand sich diese Partie mit wesentlich mehr grauer Grundmasse und lose verteilten Flecken mit schmalen Säumen. Casimirsborg (Lokalität 1).
Abb. 6: Variante mit unregelmäßig verteilten Flecken; Casimirsborg (Lokalität 1).
Abb. 7: Abfolge verschiedener Fleckentexturen: im unteren Bildteil wenige größere und bizarr geformte Flecken, in der Mitte mehr Flecken mit breiteren Säumen, die scharf in eine schmale Deformationszone mit zerdrückten Flecken übergehen. Casimirsborg (Lokalität 1).
Abb. 8: Handstück mit diffus begrenzten Flecken unterschiedlicher Größe und Form. Unten ist mehr graue Grundmasse, oben mehr orangefarbene „Saum-Masse“ erkennbar. Probe von der Lokalität „Tjust Motell“ (Lokalität 2).
Abb. 9: Weitere Probe von Tjust Motell, etwa hundert Meter östlich von Lokalität 2, Aufnahme unter Wasser.
Abb. 10: Nahaufnahme, nass fotografiert.
Abb. 11: Orangefarbenes Fleckengestein mit feinkörniger Grundmasse, Übergang in eine quarzitische Partie mit weißen Sillimanit-Flecken (rechts).

Probe eines Fleckengesteins aus einer dezimeterbreiten Partie in einem Cordierit-Sillimanit-Quarzit („Fleckenquarzit“), wiederum eingeschaltet in eine meterbreite Sequenz aus grauen Fleckengesteinen (Östra Skälö, Lokalität 3, s. a. Abb. 26-29).

Die nächsten Bilder (Abb. 12-17) entstanden im Gebiet nördlich des Sees Rummen (Lokalität 16), wo das undeformierte Västervik-Fleckengestein großflächig ansteht. Neben den orangefarbenen Partien mit Flecken sind graue Partien ohne Flecken erkennbar. Sie weisen auf eine Bewegung weicherer Sedimente vor der Metamorphose hin (vgl. SULTAN & PLINK-BJORKLUND 2006).

Abb. 18: Anstehendprobe vom See Rummen (Lokalität 16), Aufnahme unter Wasser.
Abb. 19: Nahaufnahme.

Es folgen Bilder von Varianten, die nicht als Leitgeschiebe geeignet sind, weil sie entweder körnige Grundmassen besitzen, ein deformiertes Gefüge zeigen oder Fleckengesteinen aus anderen Regionen Schwedens ähneln.

Abb. 20: Fleckenbildung in einem orangeroten Metasediment. Teilweise sind die Sediment-Wechsellagen noch erkennbar. Schäre Grönö (Lokalität 17), Bildbreite 60 cm.
Abb. 21: Probe mit körniger Grundmasse. In der roten bis hellgrauen Grundmasse lassen sich stellenweise Quarz, Feldspat und Glimmer mit der Lupe klar unterscheiden. Die Flecken sind unregelmäßig verteilt und unterschiedlich groß. Loser Stein von einer Halde mit frischem Bauschutt südöstlich von Västervik (Lokalität 4, Pepparängsvägen).
Abb. 22: Leicht deformiertes rotbraunes Fleckengestein mit kleinen und länglichen Flecken (Lokalität 5).
Abb. 23: Dunkle Flecken mit hellem Saum in einem Gneis. Fleckengesteine mit Gneisgefüge sind nicht als Leitgeschiebe geeignet, da sie auch an anderen Orten vorkommen. Die kräftig rote Ader, die das Gestein durchzieht, ist granitischer Zusammensetzung und später entstanden. Anstehender Felsen am Übergang zur Schäre Borgö (Lokalität 6).
Abb. 24: Probe von der Insel Borgö (Lokalität 6) mit polierter Schnittfläche. Die welligen Streifen der Grundmasse sind wahrscheinlich Reste einer sedimentären Schichtung. Sie weisen ein Gneisgefüge bzw. eine Foliation auf, erkennbar an der Ausrichtung dunkler Glimmerminerale (s. Abb. 25).
Abb. 25: Flecken und Saumzone sind etwas körniger als die gneisige Grundmasse. Ausnahmsweise tritt hier bläulicher Cordierit in Erscheinung. So hübsch das Gestein aussieht, die Variante ist nicht als Leitgeschiebe geeignet, da es ähnliche Typen im Gebiet von Kolmården gibt (s. u.)!

Auch graue Fleckengesteine kommen im Västervik-Gebiet vor. Ob diese Varianten als Leitgeschiebe geeignet sind, ist unsicher. T. Langmann berichtet von Nahgeschieben ähnlicher Fleckengesteine (hellgraue Granofelse mit dunklen Flecken) bei Mästocka, östlich von Halmstad in SW-Schweden.

Abb. 26: Graues Fleckengestein, Aufschluss auf Östra Skälö (Lokalität 3), Bildbreite 80 cm.
Abb. 27: Handstück aus obigem Aufschluss (Lokalität 3) mit feinkörniger, hell- bis dunkelgrauer Grundmasse. Die Flecken weisen schmale helle Säume auf, sind überwiegend elliptisch geformt und in Reihen gruppiert.
Abb. 28: Graues Metasediment mit lagenweise entwickelter Fleckentextur; Straßenaufschluss etwa hundert Meter westlich von Lokalität 3, Bildbreite ca. 60 cm.
Abb. 29: Anstehendprobe aus dem Waldstück, etwa 100 m südlich von Lokalität 3. Die Probe zeigt diffuse graue Flecken und enthält zusätzlich weißen Sillimanit; Aufnahme unter Wasser.

1.4. Nahgeschiebe aus dem Västervik-Gebiet

Fleckengesteine finden sich im Västervik-Gebiet in großer Anzahl und Vielfalt auch als Nahgeschiebe. Abb. 30, 31 und 33 zeigen als Leitgeschiebe geeignete Varianten. Die übrigen Funde sind eher als „Exoten“ anzusehen.

Abb. 30: Geschiebe mit breiten orangefarbenen Saumzonen, die sich „wolkig“ in der graubraunen Grundmasse verlieren (Lokalität 7).
Abb. 31: Nahgeschiebe aus einem fossilien Strandwall an der Straße nach Händelöp (Lokalität 8), Aufnahme unter Wasser.
Abb. 32: Geschiebe mit roségrauer Grundmasse und unregelmäßig begrenzten Flecken (Lokalität 8). Solche Farbvarianten sind im Västervik-Gebiet nur selten zu finden und wahrscheinlich nicht als Leitgeschiebe geeignet.
Abb. 33: Graues Fleckengestein mit gleichmäßig verteilten Flecken. Teilweise sind unvollständige und kräftig orangefarbene Säume erkennbar. Der Stein ist etwa 20 cm breit und liegt auf dem Parkplatz des ICA-Supermarkts in Västervik (Lokalität 9).
Abb. 34: Ausgefallene Variante mit diffus sternförmigen Flecken und hellen Säumen in einer grauen Grundmasse, trocken fotografiert (Lokalität 9).
Abb. 35: Undeutlich konturierte Flecken mit orangefarbenen Säumen in einer grauen und quarzitischen Grundmasse (Lokalität 9).

2. Doppelgänger und ähnliche Fleckengesteine in Schweden

Mehrere Reisen nach Schweden lieferten Erkenntnisse über „Doppelgänger“ bzw. dem Västervik-Fleckengestein ähnliche Gesteine. Sie wurden bisher an drei Lokalitäten gefunden (s. Karte Abb. 36). Man kann davon ausgehen, dass es weitere Vorkommen gibt, denn ihre Entdeckung war eher zufällig. Die Beobachtungen an diesen Gesteinen führten zur Einsicht, dass nur ein kleiner Teil der Västervik-Fleckengesteine als Leitgeschiebe geeignet sein kann, nämlich die feinkörnigen und weitgehend undeformierten Varianten.

Abb. 36: Übersichtskarte der Fundorte in Südschweden. Lokalitäten 1-9, 16-17: Västervik und Umgebung, Lokalitäten 10, 11: Almesåkra-Formation, Lokalitäten 12-14: Kolmården und Umgebung, Lokalität 15: Kiesgrube südlich Linköping.

2.1. Fleckengesteine aus der Almesåkra-Formation

In einer Kiesgrube westlich von Sävsjö (Lokalität 10) fanden sich in großer Anzahl Gesteine der sedimentären Almesåkra-Formation sowie Dolerite als Nahgeschiebe. Die Almesåkra-Formation ist in etwa so alt wie der jotnische Sandstein. Die jüngeren Dolerite drangen in die Sedimentgesteine ein und veränderten diese im Kontaktbereich (Kontaktmetamorphose). Vor allem aus tonhaltigen Sedimentiten könnten die in Abb. 37-39 gezeigten Fleckengesteine entstanden sein. Sie sind eindeutig sedimentären Ursprungs und treten an der Fundlokalität sehr häufig auf, neben Hornfelsen. Nach einer pers. Mitteilung von S. Madsen (rapakivi.dk) könnten die Fleckengesteine aber auch aus dem nördlich gelegenen Oskarshamn-Jönköping-Gürtel (OJB) stammen, wo Metasedimente in der Nachbarschaft von Granit-Intrusionen zu beobachten sind.

Abb. 37: Fleckige Kontaktmetamorphite, Nahgeschiebe aus einer Kiesgrube bei Sävsjö (Lokalität 10). Die meisten Funde Gesteine aus der Kiesgrube ähneln den beiden oberen Varianten. Orangefarbene, auf den ersten Blick dem Västervik-Fleckengestein ähnliche Gesteine treten nur vereinzelt auf.
Abb. 38: Fleckiger Metamorphit im Detail, Aufnahme unter Wasser.

Schaut man genauer hin, erkennt man die Unterschiede: 1. recht kleine Flecken bis 5 mm; 2. farblich und texturell inhomogene Grundmasse, in der runde bis eckige und klastische Quarzkörner zu sehen sind, die das sedimentäre Ausgangsgestein noch deutlich erkennen lassen; 3. stellenweise viel Hellglimmer. Klastische Quarze und Hellglimmer kommen im Västervik-Fleckengestein nicht vor.

Eine erschreckende Ähnlichkeit mit dem Västervik-Fleckengestein weist ein Geschiebe vom See Vallsjön auf (Abb. 39). T. Langmann fand dort mehrere vergleichbare Exemplare, die sich in Textur und Gefüge von den Fleckengesteinen der nahe gelegenen Kiesgrube (Lokalität 10) unterscheiden. Hier liegen die Unterschiede zum Västervik-Fleckengestein in den Details: 1. die Grundmasse ist fleckig inhomogen und 2. von Hellglimmer durchsetzt; 3. das Gestein, auch die Flecken, sind teilweise von feinen Rissen durchzogen. Vergleichbare Fleckengesteine könnten in Geschiebegesellschaften mit viel Material aus dem westlichen Småland anzutreffen sein, dürften zu den seltenen Funden gehören. Die Unterscheidung vom Västervik-Fleckengestein setzt eine genaue Untersuchung voraus, im Zweifelsfalle ist sie vielleicht auch gar nicht möglich.

Abb. 39: Fleckengestein vom See Vallsjön (Lokalität 11), Foto und Probe: T. Langmann.

2.2. Gebiet um Kolmården im nordwestlichen Östergötland

Fleckengesteine treten weiterhin in einem größeren Gebiet etwa 100 km nördlich von Västervik auf. Mehrheitlich sind dies Gneise mit Flecken, die ein ausgesprochen körniges Mineralgefüge besitzen. Zwei Exkursionen in das Gebiet von Kolmården lieferten eine Vielzahl an Nahgeschieben sowie einige Anstehendproben der variantenreichen Gesteine. Die roten Gneise (mit oder ohne Flecken) von Kolmården und Umgebung sind auffällige Erscheinungen inmitten der gewöhnlich grauen svekofennischen Metasedimente und bekamen von schwedischen Geologen einen eigenen Namen: Gneise vom „Marmorbruket-Typ“ (WIKSTRÖM 1979).

Abb. 40: Orangeroter Gneis mit sehr großen dunklen Flecken. Der Gesteinstyp ist im Gebiet von Kolmården häufig anzutreffen. Fundort: Strand des Campingplatzes in Kolmården (Lokalität 12), Breite 31 cm.
Abb. 41: Die Vergrößerung zeigt ein deutlich körniges Mineralgefüge. Die dunklen Flecken sind sogar grobkörniger als die Grundmasse und bestehen aus dunklen und hellen Mineralen. Eine sichere Mineralbestimmung von Hand war nicht möglich (etwa Cordierit + Andalusit? + Biotit + Quarz).

Abb. 42 zeigt einen anstehenden Fleckengneis am Bahnhof Stävsjö bei Kolmården (Lokalität 14). Die länglichen Flecken mit orangefarbenen Säumen folgen der Foliation und bestehen aus Biotit und einem bläulich-grauen Mineral, wahrscheinlich Cordierit.

Abb. 42: Rot-grauer Fleckengneis, Bahnhof Stävsjö (Lokalität 14), Aufnahme unter Wasser.

Am Strand des Campingplatzes in Kolmården (Lokalität 12) lassen sich Gerölle roter bis orangefarbener Fleckengesteine in großer Zahl aufsammeln. Insgesamt überwiegen Gneisgefüge, körnige Quarz-Feldspat-Grundmassen und diffuse Flecken-Texturen. Regelhaft entwickelte oder durchgehend runde bis ovale Flecken wie im Västervik-Fleckengestein finden sich kaum. Das Mineralgefüge der Flecken ist gewöhnlich recht grobkörnig, nur selten feinkörnig, dunkel und homogen. Abb. 43-46 und 48 zeigt einige Geröllfunde im Detail.

Abb. 43: Brauner, feinkörniger Gneis mit einer gröber kristallisierten Partie aus dunklen Flecken mit orangefarbenen Säumen.
Abb. 44: Detailansicht eines orange-grauen Gneises, hier ausnahmsweise mit feinkörnigen Flecken.
Abb. 45: Seltener sind solche Fleckengesteine mit vielen, diffus umrissenen Flecken in einer orangefarbenen und körnigen Grundmasse. Die Flecken berühren sich, teilweise gehen sie ineinander über oder sind ausgelängt.
Abb. 46: Übergang einer grauen und quarzitischen Partie mit Sedimentstrukturen (unten) in ein gelblich-graues Fleckengestein.
Abb. 47: Ein Teil der bei Kolmården anstehenden Gneise zeichnet sich durch dezimeterlange, elliptisch geformte und grob kristallisierte Flecken mit orangeroten Säumen aus. Anstehender Fels in Snörom bei Kolmården (Lokalität 13), Bildbreite 26 cm.
Abb. 48: Wenige Hundert Meter Luftlinie südlich vom Anstehenden findet man den gleichen Gesteinstyp als Strandgeröll wieder (Lokalität 12). Bildbreite etwa 25 cm.

2.3. Kiesgrube südlich Linköping

Aus einer Kiesgrube südlich von Linköping (Lokalität 15) stammt ein Einzelfund mit diffusen Flecken. Auch in diesem Gebiet muss es weiter nördlich ein Vorkommen mit Fleckengesteinen geben, die Ähnlichkeiten mit Varianten aus dem Västervik-Gebiet aufweisen.

Abb. 49: Fleckengestein, Kiesgrube südlich von Linköping (Lokalität 15).

3. Geschiebefunde von Fleckengesteinen

Es folgen Bilder von Kiesgruben- und Strandfunden aus Deutschland und Holland. Als Leitgeschiebe eignen sich nach derzeitigem Kenntnisstand die undeformierten und feinkörnigen Varianten der Abbildungen 50-61. Das Västervik-Fleckengestein ist ein nicht gerade häufiger, in Gesellschaft südostschwedischer Gesteine aber regelmäßiger Geschiebefund.

Abb. 50: Västervik-Fleckengestein; feinkörnige und graue Grundmasse mit dunklen Flecken, umgeben von orangefarbenen Säumen mit diffusen Rändern; keine Deformationserscheinungen. Fundort: Kiesgrube Horstfelde südlich von Berlin; Aufnahme unter Wasser.
Abb. 51: Västervik-Fleckengestein, Kiesgrube Teschendorf bei Oranienburg, Breite 13,5 cm.
Abb. 52: Polierte Schnittfläche
Abb. 53: Nahaufnahme

Abb. 54 zeigt ein großes Geschiebe von etwa 40 cm Breite. Die dunklen Cordierit-Flecken verwittern leichter als die Saumzone und die Grundmasse, daher besitzen Kiesgrubenfunde manchmal eine Oberfläche mit löchrigen Vertiefungen. Fundort: Kiesgrube Fresdorfer Heide bei Potsdam; Sammlung G. Engelhardt.

Abb. 57: Västervik-Fleckengestein mit reichlich weißem Sillimanit; polierte Schnittfläche, Fjordmosen, Insel Als (Dänemark), leg. T. Brückner.
Abb. 58: Nahaufnahme
Abb. 59: Dieser schöne Fund mit rund polierter Oberfläche zeigt Flecken mit schmalen Säumen, die ihrerseits klar von der grauen Grundmasse abgegrenzt sind.
Abb. 60: Detailaufnahme; die Kristallaggregate innerhalb des weißen Sillimanits, links oberhalb der Bildmitte, könnten Andalusit sein.
Abb. 61: Västervik-Fleckengestein mit grünlich-grauer Grundmasse.
Abb. 62: Fleckengesteine mit unterschiedlichen Gefügemerkmalen. Fundort: Nienhagen bei Rostock (ex coll. D. Somann, Rostock), Aufnahme unter Wasser.

Das Exemplar unten in der Mitte ist deutlich körnig und der Stein unten rechts besitzt ein Gneisgefüge. Wirklich feinkörnig und undeformiert, damit ein Västervik-Fleckengestein, ist nur der Fund ganz oben und unten links.

Abb. 63: Gelber Exot aus obiger Zusammenstellung mit grauer, feinkörniger Grundmasse und gröber körnig kristallisierte Flecken. Das Gestein stammt aus einem unbekannten Vorkommen.
Abb. 64: Das Geschiebe in der Mitte der Zusammenstellung (Abb. 62) besitzt als einziges eine dichte Grundmasse sowie orangerote Säume. Aufgrund der diffusen Flecken-Textur bleibt die Herkunft aber ungewiss.
Abb. 65: Rotgraues Fleckengestein, Kiesgrube Hohensaaten, Breite 9 cm.
Abb. 66: Rotgraues Fleckengestein, wahrscheinlich Västervik-Fleckengestein (vgl. Abb. 33). Kiesgrube Althüttendorf, Breite 18 cm.
Abb. 67: Graues Fleckengestein, gekritztes Geschiebe. Der Fund ähnelt den Fleckengesteinen von Östra Skälö (s. Abb. 27). Bislang ist aber unklar, ob ähnliche Gesteine auch außerhalb des Västervik-Gebiets vorkommen. Fundort: Kiesgrube Horstfelde, südlich von Berlin; Aufnahme unter Wasser.
Abb. 68: Graues Fleckengestein mit undeformierten Flecken und deformierter Partie im gleichen Stein. Kiesgrube Niederlehme, Aufnahme unter Wasser.

Ein bemerkenswerter Geschiebefund ist der Kontakt eines grauen Cordierit-Fleckengesteins mit einem kleinkörnigen roten Granit (Abb. 69-72). Es enthält auch mit feinfaserigem Sillimanit gefüllte Risse (Abb. 72).

Gelegentlich finden sich auch Mischgefüge mit größeren dunklen Cordierit- und kleinen weißen Sillimanit-Flecken (Fleckengestein/Fleckenquarzit). Der Gesteinstyp ist bisher nur aus dem Västervik-Gebiet bekannt.

Abb. 73: Cordierit-Sillimanit-Granofels, polierte Schnittfläche, Kiesgrube Horstfelde.
Abb. 74: Hellbrauner Cordierit-Sillimanit-Granofels, Geschiebe von Rerik, Breite 14 cm, leg. T. Brückner.
Abb. 75: Polierte Schnittfläche
Abb. 76: Nahaufnahme

Kein Leitgeschiebe sind Gneisgefüge wie in Abb. 77, mit diffusen Flecken oder Schlieren und roten bzw. farbigen Säumen. Der Fund ähnelt sowohl Fleckengneisen aus dem Gebiet von Kolmården (z. B. Abb. 43) als auch dem Västervik-„Fleckengneis“ in Abb. 24. Die bläulichen Partien innerhalb der dunklen Flecken dürften Cordierit sein.

Abb. 77: Fleckengestein mit blauem Cordierit; Hohenfelde östlich von Kiel, Aufnahme unter Wasser.

Die letzten zwei Funde weisen einige Übereinstimmungen mit den Fleckengesteinen vom Kolmården-Typ auf (vgl. Abb. 40-41). Die bläulichgrauen Flecken sind im Vergleich zur Matrix deutlich gröber kristallisiert und enthalten neben Glimmer wahrscheinlich auch Cordierit.

Abb. 78: Fleckengestein, feinkörniger roter Gneis mit gröber kristallisierten Flecken. Fundort: Klütz-Höved, Slg. E. Figaj (Sprötze).
Abb. 79: Nahaufnahme.
Abb. 80: Rotgraues Metasediment mit körnigen Flecken; Aufnahme unter Wasser, Kiesgrube Hoppegarten.
Abb. 81: Nahaufnahme.

4. Verzeichnis der Lokalitäten mit Koordinaten

Lok. 1: Västervik-Fleckengestein, anstehend Felsen an der Küste bei Casimirsborg (Privatgelände!), (57.874100, 16.435327).
Lok. 2: Västervik-Fleckengestein, anstehend Lokalität „Ekobutik“, ehem. „Tjust Motell“ an der E4 (57.868141, 16.414805).
Lok. 3: Västervik-Fleckengestein: orangefarbene und graue Variante, anstehend Felsen am Hafen von Östra Skälö (57.58986, 16.63201).
Lok. 4: Västervik-Fleckengestein, in der Nähe anstehend Halde aus aktuellen Strassenbaumaßnahmen; Pepparängsvägen S Västervik; Fundstelle erloschen (57.722189, 16.673201).
Lok. 5: Västervik-Fleckengestein, anstehend Straßenaufschluss an der 135 westlich Gamleby (ca. 57.91458, 16.30901).
Lok. 6: Västervik-Fleckengestein (gneisig), anstehend Felsen am Übergang zur Schäre Borgö (57.724874, 16.699695).
Lok. 7: Geschiebe, Fahrradweg in Västervik Jenny, nahe der Autorennbahn (Motorbana), (57.768130, 16.585394).
Lok. 8: Geschiebe Fossiler Strandwall an der Strasse nach Händelöp (57.718765, 16.671451; Parkplatz).
Lok. 9: Geschiebe Geschiebe als Einfassung auf dem Parkplatz des ICA-Stormarknat Västervik (57.767546, 16.595644).
Lok. 10: Geschiebe Kiesgrube 3 km westlich Sävsjö (57.391392, 14.616904).
Lok. 11: Geschiebe Uferbereich des Vallsjön (ca. 57.406615, 14.742535).
Lok. 12: Geschiebe Rollsteinstrand am Campingplatz Kolmården (58.65718, 16.40712).
Lok. 13: Fleckengneis, anstehend Snörum bei Kolmården, temporärer Aufschluss (58.66476, 16.41711).
Lok. 14: Fleckengneis, anstehend 200 m östlich Stavsjö-Station (58.702737, 16.442577).
Lok. 15: Fleckengestein, Geschiebe Kiesgrube südlich Linköping (58.329789, 15.631448).
Lok. 16: Fleckengestein, anstehend Großflächige Aufschlüsse am Wegesrand am Nordufer des Rummen, NW Gamleby (57.937173, 16.285627).
Lok. 17: Västervik-Fleckengestein (gneisig), anstehend Schäre Grönö (57.714025, 16.712411).

5. Literatur

BERGMAN S, STEPHENS MB, ANDERSSON J, KATHOL B & BERGMAN T 2012 Sveriges berggrund, skala 1:1 miljon. Sveriges geologiska undersökning K 423.

GAVELIN S 1984 The Västervik Area in South-eastern Sweden – SGU Ser. Ba No. 32, 172 S, Uppsala.

LOBERG B 1963 The Formation of a Flecky Gneiss and Similar Phenomena in Relation to the Migmatite and Vein Gneiss Problem – Geologiska Föreningen i Stockholm Förhandlingar, 85:1, 3-109, Stockholm.

SMED P & EHLERS 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage 2002.

SULTAN L & PLINK-BJORKLUND P 2006 Depositional environments at a Palaeoproterozoic continental margin, Västervik Basin, SE Sweden – Precambrian Research 145 (2006) S. 243-271, Elsevier. DOI: 10.1016/j.precamres.2005.12.005.

VINX R 2016 Steine an deutschen Küsten; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.).

WIKSTRÖM A 1979 Beskrivning till berggrundskartan 1 : 50000 – Katrineholm SO – Sveriges Geologiska Undersökning (Af) 123: 101 S., 44 Abb., 14 Tab., 3 Ktn. in 1 Mappe, Stockholm.

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).

Marc Torbohm, September 2023.

„Stockholm“-Fleckenquarzit aus dem Västervik-Gebiet?

Abb. 1: Verwitterungsseite eines grauen Fleckenquarzits, Aufnahme unter Wasser. Die gelblich-grüne Färbung ist nur auf der Verwitterungsseite wahrnehmbar. Fundort: Kühlungsborn.

Fleckenquarzite wurden gehäuft im Västervik-Gebiet gefunden, als Nahgeschiebe und mittlerweile auch anstehend. Der in Abb. 1-4 gezeigte Geschiebetyp kommt nicht aus der Umgebung von Stockholm und sollte deshalb nicht als „Stockholm-Fleckenquarzit“ bezeichnet werden. Dies wird weiter unten ausführlich begründet. Fleckenquarzit-Geschiebe mit den in der Beschreibung genannten Merkmalen können „Fleckenquarzit vom Västervik-Typ“ oder „Västervik-Fleckenquarzit“ genannt werden.

  1. Beschreibung
  2. Entstehung
  3. Herkunft der Fleckenquarzite
  4. Funde im Västervik-Gebiet
    4.1. Nahgeschiebe
    4.2. Anstehendproben
  5. Geschiebefunde
  6. Fleckenquarzite im nördlichen Sörmland?
  7. Verzeichnis der Proben
  8. Ausgewählte Literatur
Abb. 2: Gleicher Stein, nass fotografiert. Die Grundmasse verwittert leichter als die weißen Flecken, die dadurch über die Gesteinsoberfläche ragen. Diese Eigenschaft lässt sich auch an anderen Fleckengesteinen beobachten, nicht nur an Fleckenquarziten.
Abb. 3: Gleicher Stein, Nahaufnahme der polierten Schnittfläche.
Abb. 4: Makroaufnahme der polierten Schnittfläche: Die dunkelgraue Grundmasse besteht aus Quarz und Biotit. Undeutlich konturierte Flecken enthalten feinfaserigen Sillimanit. Die großen und farbig reflektierenden Mineralkörner in der Bildmitte sind Magnetit. Foto: T. Langmann.

1. Beschreibung

Die Fleckenquarzite vom Västervik-Typ sind feinkörnige metamorphe Gesteine von meist grauer oder brauner Farbe. Sie enthalten viele weiße und runde bis oval geformte Flecken von wenigen Millimetern Durchmesser (Abb. 1). Die Grundmasse kann lokal rot oder seltener auch grünlich eingefärbt sein und besteht aus Quarz und etwas Dunkelglimmer, Feldspat ist nicht erkennbar. Der Glimmeranteil lässt sich von Hand kaum abschätzen, scheint aber wohl immer recht gering zu sein. Manche Fleckenquarzite enthalten etwas Magnetit, nachweisbar mit einem Handmagneten (Abb. 4).

Die Flecken erreichen Größen von gewöhnlich etwa 2-3 mm, ausnahmsweise auch mal 6 mm (Abb. 21). Sie zeigen keine klare Abgrenzung zur Grundmasse und können einen schwarzen und/oder einen roten Saum besitzen (Abb. 18); die Säume können auch fehlen. Die Verteilung der Flecken im Gestein ist regellos, das Gesteinsgefüge erscheint insgesamt undeformiert. Allenfalls eine Einregelung der runden bis leicht ovalen Flecken lässt sich beobachten (Abb. 19). Mit der Lupe erkennt man manchmal fein verfilzte Aggregate, ein Hinweis auf Sillimanit (Abb. 4). Dieser widersteht der Verwitterung eher als die Grundmasse aus Quarz und Glimmer, weshalb die Flecken auf angewitterten Geschieben pockenartig hervorstehen können (Abb. 2). Bei einer erkennbar feinfaserigen Ausbildung des Sillimanits spricht man von einem fibroblastischem Gefüge.

Unterscheiden sind die Fleckenquarzite von feinkörnigen Fleckengneisen, die man an unseren Stränden gelegentlich findet. Letztere besitzen einen abweichenden Mineralbestand und enthalten neben Quarz und Glimmer meist auch Feldspat und/oder weisen einen sehr hohen Glimmeranteil auf. In der deutlich foliierten Grundmasse sind helle, meist weiße und längliche, linsen- oder augenförmige Flecken erkennbar. Solche „Fleckengneise“ stammen aus weiter nördlich gelegenen Gebieten und werden am Ende dieses Artikels kurz erwähnt (Abb. 44-46).

Die informelle Bezeichnung „Fleckenquarzit“ kombiniert die mineralogische Zusammensetzung eines Metamorphits (Quarzit) mit einem unmittelbar sichtbaren texturellen Merkmal (die hellen Flecken) und ist zweifellos handlicher als eine der möglichen petrographisch korrekten Bezeichnungen, z. B. „sillimanit-fibroblastischer, glimmerführender Quarzit“.

2. Entstehung

Fleckenquarzite sind metamorphe Gesteine, hervorgegangen aus sandigen Sedimenten mit tonigen (= aluminiumreichen) Anteilen. Diese Sedimente wurden im Zuge der svekofennischen Gebirgsbildung auf eine Tiefe von etwa 10 km versenkt. Eine Kontaktmetamorphose bei mäßigem Druck und hohen Temperaturen durch aufsteigende granitische Magmen begünstigte die Bildung von Sillimanit-Granoblasten („Flecken“). Bei dieser chemischen Reaktion handelt es sich um die klassische „Muskovit-Entwässerung“, vereinfacht:

Muskovit + Quarz → Kalifeldspat + Sillimanit + Wasser.

Unter ähnlichen Bedingungen, aber abweichenden chemischen Voraussetzungen entstanden übrigens auch die bunten Västervik-Fleckengesteine, die Cordierit enthalten. Beide Gesteine besitzen Alter von etwa 1,88-1,85 Milliarden Jahren.

3. Herkunft der Fleckenquarzite

In der Geschiebekunde wurden solche Gesteine bislang als „Stockholm-Fleckenquarzit“ bezeichnet, obwohl kein einziges Vorkommen in der Umgebung von Stockholm bekannt ist. Lediglich ein Verweis auf ähnliche Gesteine in einer Fußnote in GEIJER 1912 veranlasste HESEMANN 1975 dazu, ihre Heimat in der Umgebung von Stockholm anzunehmen. Diese Vermutung wurde von nachfolgenden Autoren und Sammlern offenbar ohne Prüfung übernommen. Weder in der übrigen geologischen Literatur gibt es Hinweise auf solche Vorkommen, noch wurden bisher Funde von Fleckenquarziten bei Stockholm bekannt. Die Ortsangabe „Stockholm“ beruht auf einem Missverständnis und ist deshalb zu streichen.

M. Torbohm und T. Langmann konnten eine große Anzahl an Fleckenquarziten als Nahgeschiebe in der Umgebung von Västervik in Südostschweden dokumentieren (TORBOHM & LANGMANN 2017). Diese Funde sind exakt die bisher als „Stockholm-Fleckenquarzit“ bezeichneten Typen. Dass sie aus der Nähe von Västervik stammen müssen, wird auch durch die weitgehende Abwesenheit von Ferngeschieben an den Fundorten belegt. Anhand von Gletscherschrammen bekannte Richtungen des Eistransports legen nahe, dass ihr Liefergebiet nördlich bis nordwestlich von Västervik zu suchen ist. Allein die Menge der Funde von Nahgeschieben in der näheren Umgebung der Stadt Västervik widerlegt eine Herkunft der Fleckenquarzite aus dem Stockholm-Gebiet! GAVELIN 1983 beschreibt anstehende Vorkommen von Fleckenquarziten auf einigen Schären, die nur schwierig zu erreichen sind und bisher nicht besucht wurden. Mittlerweile konnte aber ein Aufschluss mit anstehendem Fleckenquarzit südlich von Gamleby lokalisiert werden (Abb. 22-23). Ein Mischtyp aus Fleckenquarzit und Cordierit-Fleckengestein stammt von der Schäre Östra Skälö (Abb. 24-27).

4. Funde im Västervik-Gebiet

Abb. 5: Übersichtskarte über das Västervik-Gebiet mit den Fundpunkten.

Die hellblaue Signatur sind die Metasedimente der Västervik-Formation, hauptsächlich Quarzite und untergeordnet Fleckenquarzite sowie das Västervik-Fleckengestein. Die Koordinaten der im Text genannten Lokalitäten werden am Ende des Abschnitts aufgeführt. Kartenausschnitt aus BERGMAN et al 2012.

4.1. Nahgeschiebe

Nahgeschiebe von Fleckenquarziten fanden sich an zwei Lokalitäten im nordwestlichen Stadtgebiet von Västervik: ein mit reichlich Geschieben eingefasster Parkplatz eines großen Supermarktes (Lok. 1) und ein Aufschluss mit Nahgeschieben entlang eines Radwegs an der Ausfallstraße zur Autobahn (Lok. 2). Beide Fundorte liegen wenige Hundert Meter auseinander.

Abb. 6: Böschung mit Geröllen am Stadtrand von Västervik, Fundort zahlreicher Fleckenquarzite (Lokalität 2).
Abb. 7: Ergebnis nach kurzer Suche an der Lokalität 2. Bildbreite 40 cm.

Binnen weniger Minuten konnte eine Reihe von Fleckenquarziten (die sog. „Stockholm-Fleckenquarzite“!) zusammengetragen werden. Es überwiegen einfache graue bis braune Typen, rötliche Tönungen sind etwas seltener. Der Anteil der weißen Flecken in den Gesteinen ist variabel; alle Funde zeigen ein undeformiertes Gefüge, gneisartige Varianten waren nicht dabei.

Abb. 8: Geschiebe von der Lokalität 2: Auf der rechten Seite ein grauer, darunter ein rotbrauner Fleckenquarzit. Links oben ein Västervik-Quarzit mit rötlichen Flecken, links unten ein Västervik-Fleckengestein (Västervik-Cordierit-Granofels).

In dem Aufschluss dominierten mengenmäßig die gewöhnlichen grauen Västervik-Quarzite mit mind. 50 % Anteil an allen Geschieben. Weiterhin gab es einige Granite, Västervik-Fleckengesteine und hin und wieder einen Loftahammar-Augengneis. Ferngeschiebe wurden nicht identifiziert, das Material stammt zum größten Teil aus nächster Nähe.

Abb. 9: Fleckenquarzit aus Abb. 8, Aufnahme unter Wasser.
Abb. 10: Nahaufnahme. Die Grundmasse wechselt zwischen grauen und roten Farbtönen. Weiße Flecken liegen eng beieinander und sind von schmalen Biotit-Säumen umgeben.
Abb. 11: An gleicher Stelle fand sich auch ein kleines Geröll eines Mischtyps zwischen Fleckenquarzit und Västervik-Fleckengestein, ähnlich dem Geschiebefund von Fehmarn (Abb. 32) und der Anstehendprobe von Östra Skälö (Abb. 24).
Abb. 12: Die weißen Flecken sind durch tektonische Deformation leicht in die Länge gezogen, die Glimmerminerale in der Grundmasse weisen nur eine schwache Vorzugsrichtung auf (schwache Deformation). Der größere graue Fleck enthält neben Biotit bläulich-grauen Cordierit.
Abb. 13: Ein weiterer Aufschluss mit Nahgeschieben liegt einige Kilometer südöstlich von Västervik an der Straße nach Händelöp (Lokalität 3). Die Ansammlung unzähliger, gut gerundeter, faust- bis kopfgroßer Gerölle wird in der Literatur (LINDÉN 2010) als fossiler Strandwall gedeutet.
Abb. 14: Obwohl viele Steine von Flechten bewachsen sind, gelang es auch hier, binnen kurzer Zeit einer Reihe von Fleckenquarziten aufzusammeln, überwiegend braune oder graue Fleckenquarzite, gelegentlich ein rötliches Exemplar. Bildbreite etwa 35 cm.
Abb. 15: Gewöhnlicher brauner Fleckenquarzit aus dem fossilen Strandwall südöstlich von Västervik (Lokalität 3).
Abb. 16: Perlschnurartige Anordnung von weißen Flecken in einem braunen Fleckenquarzit aus einem Geschiebepflaster. (Ortseingang Västervik, Lokalität 1).
Abb. 17: Bräunlich-grauer Fleckenquarzit, Aufnahme unter Wasser (Lokalität 3).
Abb. 18: Nahaufnahme; Die weißen Flecken sind von einem roten inneren und einem an Dunkelglimmer reichen (dunklen) äußeren Saum umgeben.
Abb. 19: grauer Fleckenquarzit (Lokalität 3).
Abb. 20: Bunter Fleckenquarzit mit unregelmäßiger Texturierung von Grundmasse und Flecken (Lokalität 3). Die grünen Bereiche sind hartnäckig anhaftender Flechtenbewuchs.
Abb. 21: Roter und hell bräunlicher Fleckenquarzit mit vergleichsweise großen Flecken (bis etwa 6 mm Länge), umgeben von grauen Säumen. Solche Varianten mit großen Flecken sind vergleichsweise selten zu finden (Lokalität 3, Sammlung T. Langmann).

4.2. Anstehendproben

Ein dunkelgrauer Fleckenquarzit mit weißen Sillimanit-Flecken konnte an der Lokalität „Tjust Motell“ beprobt werden (Lokalität 7). Der Aufschluss im Wald ist kaum einen Quadratmeter groß und befindet sich in unmittelbarer Nachbarschaft zu einem basischen Intrusivkörper (Amphibolit).

Abb. 22: Västervik-Fleckenquarzit, Anstehendprobe von „Tjust Motell“ (Lokalität 7), Aufnahme unter Wasser.
Abb. 23: Nahaufnahme.

Ein Mischtyp aus Fleckenquarzit und Västervik-Fleckengestein steht im Hafen auf Östra Skälö, ganz im Süden des Västervik-Gebiets an (Lokalität 4). Das Gestein bildet eine etwa 50 cm breite Einschaltung zwischen grauem Västervik-Fleckengestein (Cordierit-Granofels) und Västervik-Quarzit.

Abb. 24: Mischgefüge aus Fleckenquarzit und Fleckengestein; zahlreiche weiße, 1-3 mm große Sillimanit-Flecken und größere dunkle Cordierit-Flecken.
Abb. 25: Nahaufnahme

In der rötlich bis grau gefärbten quarzitischen Grundmasse tritt Biotit in kleiner Menge, in den dunkelgrauen Flecken gehäuft auf. Die weißen Flecken sind Granoblasten aus Sillimanit. Das rote Pigment ist mineralogisch nicht bestimmbar, Feldspat ebenfalls nicht erkennbar.

Abb. 26 und 27 zeigt einen Dünnschliff der Probe von Östra Skälö; links im normalen Durchlicht, rechts mit gekreuzten Polarisatoren (Fotos: B. Rybycki). Eine Dünnschliffuntersuchung bestätigte, dass die weißen Flecken aus Sillimanit bestehen. Das Bild rechts (mit gekreuzten Polarisatoren) zeigt den Sillimanit in einer rötlichen Färbung und in der typisch feinfaserigen Ausbildung. Das Korngefüge des Gesteins insgesamt, die hellen und hellgrauen, ungefähr gleich großen und polygonal ausgebildeten Quarzkörner der Grundmasse, sind typisch für eine Umkristallisation im festen Zustand während der Metamorphose. Aus ursprünglich lose verbundenen Quarzkörnern eines sandsteinähnlichen Ausgangsmaterials entstand dieses kompakte Gefüge, das ebenfalls als granoblastisch bezeichnet wird und nur im Dünnschliff sichtbar wird.

5. Geschiebefunde

Die folgenden Bilder sind Geschiebefunde aus Norddeutschland. Abb. 28-32 zeigt den für das Västervik-Gebiet typischen Geschiebetyp („Västervik-Fleckenquarzit“, nicht „Stockholm-Fleckenquarzit“), Abb. 32-38 sind abweichende Varianten (z. B. deformiert, in dieser Form nicht im Västervik-Gebiet beobachtet oder Fleckengesteine mit einem anderem Mineralbestand).

Abb. 28: Västervik-Fleckenquarzit mit hell- bis dunkelgrauer, teils rötlich verfärbter Grundmasse und weißen Flecken aus fibroblastischem Sillimanit. Fundort: Kiesgrube Penkun (Vorpommern), leg. A. Bräu; Aufnahme unter Wasser.
Abb. 29: Dunkelgrauer und etwas grünlicher Västervik-Fleckenquarzit; die waagerechten Streifen sind Relikte einer sedimentären Schichtung. Strandgeröll von Fehmarn.
Abb. 30: Fleckenquarzit (Västervik-Typ) mit grauer bis rötlichgrauer Grundmasse. Die weißen Sillimanit-Flecken werden von dunkleren und biotitreichen Säumen umgeben. Fundort: Møns Klint (Dänemark), Aufnahme unter Wasser.
Abb. 31: Rötlichgrauer Västervik-Fleckenquarzit, hier mit teilweise gelblich gefärbtem Sillimanit. Rund poliertes Geschiebe, Kiesgrube Niederlehme bei Berlin.
Abb. 32: Mischgefüge: weiße Sillimanit-Flecken sowie größere schwarze Flecken mit rotem Saum (wie im Västervik-Fleckengestein). Geschiebefunde solcher Mischgefüge waren u. a. Ausgangspunkt der Überlegung, das Heimatgebiet der Fleckenquarzite im Västervik-Gebiet zu suchen. Fundort: Westermarkelsdorf auf Fehmarn.
Abb. 33: Heller Quarzit mit sedimentärer Schichtung und Sillimanit-Flecken; polierte Schnittfläche, Kiesgrube Ruhlsdorf bei Luckenwalde (D. Lüttich leg.).
Abb. 34: Nahaufnahme. Das granoblastische Gefüge der Matrix ist hier weniger verzahnt, einzelne und voneinander unterscheidbare polygonale Quarzkörner sind erkennbar.
Abb. 35: Solche stärker deformierten Fleckenquarzite mit länglichen Sillimanit-Flecken lassen sich keiner näheren Herkunft zuordnen. Sie kommen untergeordnet im Västervik-Gebiet vor, könnten aber auch aus anderen Regionen stammen. Fundort: Kühlungsborn, Aufnahme unter Wasser.
Abb. 36: Fleckenquarzit mit undeutlicher Lagentextur (sedimentäre Schichtung) und rötlichen, von hellen Säumen umgebenen Flecken. Polierte Schnittfläche, Fundort Sellin (Rügen).
Abb. 37: Der quarzitische Granofels erscheint undeformiert, lässt sich aber nicht mit Sicherheit auf das Västervik-Gebiet zurückführen, weil das rötliche Mineral in den Flecken nicht näher bestimmbar ist.
Abb. 38: Hellbrauner Quarzit mit hellen Flecken, Kiesgrube Penkun (Vorpommern).
Abb. 39: Nahaufnahme der nassen Oberfläche. In diesem Fall ist das Mineral in den Flecken nicht Sillimanit, sondern silbrig glänzender Hellglimmer.

6. Fleckenquarzite im nördlichen Sörmland?

Im nördlichen Sörmland zwischen Kolmården und Stockholm, etwa 100 km nördlich von Västervik, hat der Autor (M. Torbohm) ein einzelnes Fleckenquarzit-Nahgeschiebe am Strand von Kolmården (Lokalität 5) gefunden (Abb. 41-43). Seine genaue Herkunft ist unbekannt, es muss aber aus einem weiter nördlich gelegenen Vorkommen stammen. Weitere Funde von Fleckenquarzit-Geschieben im Gebiet zwischen Kolmården und Stockholm konnten bisher nicht dokumentiert werden.

Abb. 40: Übersichtskarte von Südschweden mit der Lage der Fundgebiete.
Abb. 41: Fleckenquarzit-Geschiebe von Kolmården (Lokalität 5), Aufnahme unter Wasser.

Der Fleckenquarzit-Fund von Kolmården weist einige von den Västervik-Typen abweichende Merkmale auf: die Flecken sind ungleichmäßig verteilt, manche von ihnen braun (auf der Schnittfläche grün) gefärbt, vermutlich durch gleichzeitig enthaltenen Cordierit, der durch Alteration in Chlorit u. ä. umgewandelt wurde. Solche Flecken wurden im Västervik-Gebiet bisher nicht beobachtet. Weiterhin fallen vereinzelt dunkle, teils exzentrische Mineralkörner (hier: Biotit) innerhalb der Flecken auf, die in dieser Form ebenfalls nicht im Västervik-Gebiet vorkommen.

Abb. 42: Polierte Schnittfläche
Abb. 43: Nahaufnahme

Zu den typischen und regelmäßigen Geschiebefunden im nördlichen Sörmland gehören graue und kleinkörnige Fleckengneise mit einer Matrix aus Quarz, Feldspat und Glimmer. Von diesem Gesteinstyp liegen mehrere Anstehendproben vor. Manchmal erlaubt die Feinkörnigkeit der Gesteine keine näheren Aussagen zum Mineralbestand. Zumindest in den körnigen Varianten ist neben Quarz und Glimmer auch Feldspat in bedeutender Menge erkennbar. Der Anteil an Glimmer oder grünlichen und chloritähnlichen Mineralen kann recht hoch sein.

Deformiertes Gefüge äußert sich neben der Ausrichtung der Glimmerminerale in der Grundmasse an einer elliptischen bis linsenförmigen Gestalt der hellen Flecken. Diese erreichen eine Länge von wenigen Millimetern bis mehrere Zentimeter. Manchmal ist Sillimanit an seiner faserigen Ausbildung erkennbar (Abb. 45).

Abb. 44: Beispiele von Fleckengneisen (nicht Fleckenquarzite!) aus Sörmland, Nahgeschiebe vom Geschiebestrand in Kolmården (Lokalität 5), Aufnahme unter Wasser.
Abb. 45: Detail des Fleckengneises aus Abb. 44 unten links.

Der Blick auf die Foliationsebene zeigt ovale Anschnitte der weißen Flecken, mit einer sternförmigen Ausbreitung des feinfaserigen Sillimanits. In der Seitenansicht erscheinen die Flecken flach und linsenförmig. Neben viel dunklem Glimmer ist Quarz und ein weiteres, unbestimmtes Mineral zu erkennen, wahrscheinlich Feldspat.

Abb. 46: Anstehender Quarz-Feldspat-Biotit-Gneis mit hellen und ovalen Flecken bis 2 cm Länge; Snörom bei Kolmården (Lokalität 6), Bildbreite 22 cm.

7. Verzeichnis der Proben

Lok. 1: Geschiebe (Fleckenquarzite u. m.) als Einfassung auf dem Parkplatz Parkplatz ICA-Stormarknad, Västervik (57.767546, 16.595644).
Lok. 2: Geschiebe (Fleckenquarzite u. m.) Fahrradweg, nahe der Autorennbahn (Motorbana), Västervik (57.768130, 16.585394).
Lok. 3: Geschiebe (Fleckenquarzite u. m.) Fossiler Strandwall an der Straße nach Händelöp, SSE Västervik (57.718765, 16.671451; Parkplatz).
Lok. 4: Anstehender Mischtyp Fleckenquarzit/ Fleckengestein Felsen am Hafen von Östra Skälö (57.58986, 16.63201).
Lok. 5: Geschiebe (v.a. Fleckengneise; ein einzelner Fleckenquarzit); Rollsteinstrand am Campingplatz Kolmården/ Östergötland (58.65718, 16.40712).
Lok. 6: Anstehender Fleckengneis Baugebiet in Snörom bei Kolmården/Östergötland (58.66476, 16.41711).
Lok. 7: Fleckenquarzit, anstehend Aufschluss im Wald nahe der Lokalität “Tjust Motell” (57.86883, 16.41978)

8. Ausgewählte Literatur

BERGMAN S, STEPHENS MB, ANDERSSON J, KATHOL B & BERGMAN T 2012 Sveriges berggrund, skala 1:1 miljon. Sveriges geologiska undersökning K 423.

GAVELIN S 1983 The Västervik Area in South-eastern Sweden – SGU Ser. Ba No. 32, 172 S, Uppsala.

GEIJER P 1912 Zur Petrographie des Stockholm-Granites – GFF 35: 123-150.

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – GLA Nordrhein-Westfalen, S. 191-192.

TORBOHM M & LANGMANN T 2017 Fleckenquarzite im Västervik-Gebiet – Geschiebekunde aktuell 33 (3): 77-82, 3 Abb. – Hamburg/Greifswald, August 2017,
ISSN 0178-1731.

LINDÉN A G 2010 Beskrivning till jordartskartan 6G Vimmerby NO & 6H Kråkelund NV – SGU K 177: 7, Uppsala.

Marc Torbohm, September 2023

Exkursionsbericht Västervik-Gebiet

Abb.1: Schärenlandschaft auf Östra Skälö (Lok. 1).

Die Gegend um Västervik im nordöstlichen Småland bietet neben landschaftlichen Reizen eine interessante geologische Geschichte. Wie im gesamten kristallinen Grundgebirge Schwedens finden sich hier sehr alte, als Besonderheit aber ganz unterschiedliche Gesteine in enger Nachbarschaft. Zum einen sind dies Metamorphite, die aus der svekofennischen Gebirgsbildung vor etwa 1,9 Ga hervorgegangen sind, zum anderen Granite und Vulkanite, die zum Ende der gebirgsbildenen Vorgänge vor etwa 1,7 Ga entstanden.

Die „kleine“ Differenz zwischen den 1,9 und 1,7 Ga alten Gesteinen entspricht in etwa der Zeitspanne, die eine „normale“ Gebirgsbildung in Anspruch nimmt, von der Faltung und Metamorphose von Gesteinen, dem Aufdringen von Granitkörpern sowie der Abtragung, ggf. auch vollständigen Einebnung des Gebirges (Wilson-Zyklus, etwa 250 Millionen Jahre). Im Västervik-Gebiet lassen sich Gesteine aus den unterschiedlichen Phasen dieser Gebirgsbildung an zahlreichen Aufschlüssen studieren.

Das Västervik-Gebiet ist zugleich die Heimat einiger Gesteinstypen, die für die Geschiebekunde als Leitgeschiebe bedeutsam sind (Abb. 2). Auf mehreren Reisen konnten eine Reihe von Anstehendproben gesammelt werden. Ihre Beschreibung findet sich in ausführlichen Einzeldarstellungen an anderer Stelle:

Västervik-Fleckengestein (Västervik-Cordierit-Fleckengranofels),
Västervik-Fleckenquarzit (ehemals „Stockholm-Fleckenquarzit“) und
Västervik-Quarzit.

Dieser Exkursionsbericht vermittelt einen Einblick in die komplexe Geologie des Västervik-Gebietes. Die genannten Leitgeschiebe nehmen nur einen kleinen Teil der Fläche ein. Darüber hinaus finden sich eine Reihe weiterer interessanter und auffälliger Gesteine, die zwar nicht als Leitgeschiebe in Frage kommen, aber aufzeigen, mit welcher Gesteinsvielfalt innerhalb eines einzigen kleinen Gebietes im nordischen Grundgebirge zu rechnen ist. Alle besuchten Lokalitäten sind mit Koordinaten (WGS84DD) referenziert und ermöglichen dem geologisch Interessierten eine individuelle Tourenplanung. Einige der Aufschlüsse wurden dem Exkursionsführer von PRUß 2008 und der Arbeit von GAVELIN 1984 entnommen.

Abb. 2: Leitgeschiebe aus dem Västervik-Gebiet: auf der rechten Seite zwei Fleckenquarzite mit hellen Sillimanit-Granoblasten. Links unten ein Västervik-Fleckengestein (Västervik-Fleckengranofels), links oben ein rotfleckiger Quarzit mit Blauquarz.
  1. Topographie
  2. Geologie des Västervik-Gebiets
  3. Metasedimente der Västervik-Formation
    3.1. Gneise, Migmatite, Fleckengesteine
  4. Granitoide Gesteine
  5. Mylonite
  6. Metavulkanite, Vulkanite des TIB
  7. Metabasite
  8. Verzeichnis der Lokalitäten
  9. Literatur

1. Topographie

Die Landschaft in der Umgebung von Västervik ist weitgehend flach, das Küstengebiet stark geklüftet und in zahlreiche Inseln, Halbinseln und Schären gegliedert. Hier lassen sich gerundete, häufig auch in Richtung der Gletscherbewegung gekritzte Felsen beobachten (Abb. 3). Fossile Strandwälle (Abb. 4) und die heutige Schärenlandschaft (Abb. 1) sind das Ergebnis der Landhebung sowie eines gesunkenen Meeresspiegels seit dem Ende der letzten Vereisung vor etwa 10.000 Jahren.

Abb. 3: Gletscherschrammen an einem Migmatit am Campingplatz Blankaholm (Lok. 2). Bildbreite etwa 3 Meter.
Abb. 4: Fossiler Strandwall südöstlich von Västervik (Lok. 3). Die annähernd kopfgroßen Gerölle sind überwiegend Nahgeschiebe (meist Quarzite).

2. Geologie des Västervik-Gebiets

Abb. 5: Geologische Übersichtskarte des Västervik-Gebiets. Kartenausschnitt aus BERGMAN et al 2012, Quelle: sgu.se.

Einen ersten Überblick über die verschiedenen Gesteinsformationen im Västervik-Gebiet vermittelt die Kartenskizze in Abb. 5. Im Einzelnen sind die geologischen Verhältnisse natürlich deutlich verwickelter. Eine detailierte geologische Karte (1:100.000) findet sich in GAVELIN 1984.

Die ältesten Gesteine im Västervik-Gebiet sind die Metasedimente der Västervik-Formation (hellblaue Signatur in Abb. 5). Sie entstanden während der svekofennischen Gebirgsbildung vor etwa 1,9 – 1,75 Ga und bilden die südlichsten Ausläufer einer geologischen Großprovinz, die sich vom Västervik-Gebiet aus viele hundert Kilometer bis nach Nordschweden erstreckt und große Gebiete einnimmt (sog. svekofennische Domäne).

Magmatische Gesteine, die sog. „älteren Granitoide“ (grün, rosa), grenzen im Norden und Nordosten an die Metasedimente und wurden noch während der Gebirgsbildung deformiert. Im Westen und Süden finden sich ausgedehnte Gebiete mit weitgehend undeformierten Graniten (rot) und Vulkaniten (orange), die zum Transkandinavischen Magmatitgürtel (TIB, Alter ca. 1,7 Ga) gehören und überwiegend nach Beendigung der gebirgsbildenden Vorgänge entstanden. Ein Teil der TIB-Granite sind Alkalifeldspat-Granite mit Blauquarz, wie man sie als Geschiebe aus Norddeutschland kennt („Smaland-Granite“).

Abb. 6: Gesteine des Västervik-Gebiets als Nahgeschiebe auf einem Parkplatz in Västervik (Lok. 4). Mengenmäßig überwiegen hellgraue Quarzite, neben Graniten und Metabasiten sowie einigen Fleckengesteinen. Bildbreite am unteren Bildrand etwa 2 m.

Die geologische Geschichte des Västervik-Gebietes beginnt vor etwa 1,9 Ga mit der Ablagerung von sandigen bis tonig-sandigen Sedimenten, dem Abtragungsmaterial eines oder mehrerer alter Gebirge. Der Transport erfolgte durch Flüsse aus nördlichen Richtungen in ein flaches und von Gezeiten beeinflusstes Meeresbecken oder Deltasystem.

Während der svekofennischen Orogenese wurden die Sedimente an einer Subduktionszone mehrere Kilometer tief versenkt und einer Regionalmetamorphose unterworfen. Die Gesteinsumwandlung vollzog sich unter maximal amphibolitfaziellen Bedingungen und unter weitgehend statischen Bedingungen, d. h. ohne Verfaltung der Gesteine durch gerichteten Druck. So konnten sich primäre Sedimentstrukturen wie Schichtung und sogar Wellenrippel (Abb. 11) erhalten, wie sie heute noch in den Metasedimenten an vielen Stellen zu beobachten sind (s. die hervorragend illustrierte Arbeit von SULTAN L & PLINK-BJÖRKLUND P 2005). Sandige Sedimente wurden in Quarzite, Arkosen in Meta-Arkosen und tonhaltige Sedimente z. B. in glimmerführende Quarzite umgewandelt. Lokal kam es zur Neubildung von Mineralen wie Cordierit, Sillimanit und Andalusit.

In den Metasedimenten konnten mehrere Generationen von Zirkonen nachgewiesen werden. Zirkon ist ein besonders verwitterungsbeständiges Mineral, das geringe Mengen Uran enthält und eine Altersbestimmung über das U/Pb-Isotopenverhältnis ermöglicht. Die ältesten Zirkone (3,64 Ga) repräsentieren Relikte sehr alter Gesteine, die jüngsten weisen ein Alter von 2,12-1,87 Ga auf. Die Sedimentation der Västervik-Formation vollzog sich zwischen dem jüngstem Zirkon-Alter und der ältesten Granit-Intrusion (Loftahammar-Granitoide vor 1,859 Ga). Dieser Zeitraum vor 1,882–1,850 Milliarden Jahren umfasst also „lediglich“ 30 Millionen Jahre (Zahlen aus SULTAN et al 2005).

Annähernd zeitgleich zur Metamorphose der Sedimente begann in tieferen Krustenbereichen die Bildung von Schmelzen, die in der Folge als plutonische Körper in die höheren Stockwerke des Gebirges aufstiegen. Diese „älteren“ Loftahammar-Granitoide wurden in einer zweiten Faltungsphase deformiert. Mit ihrem Aufstieg ist eine Überprägung der Metasedimente durch Kontaktmetamorphose verbunden, bei der es zu einer „Migmatisierung“ sowie zur Fleckenbildung innerhalb der Metasedimente (Fleckengesteine) kam. Der Vorgang wiederholte sich einige Millionen Jahre später beim Aufstieg der „jüngeren“ Granitoide des Transskandinavischen Magmatitgürtels (TIB). Die Fleckengesteine des Västervik-Gebiets (Cordierit- und/oder Sillimanit-Granofelse) gingen also aus mehreren regional- und kontaktmetamorphen Episoden hervor.

Weitere mit der geologischen Geschichte des Västervik-Gebiets assoziierte Gesteinstypen, die in diesem kurzen Abriss unberücksichtigt blieben (verschiedene Generationen von Diabasen und Metabasiten bzw. Amphiboliten, Aplite, Pegmatite, Mylonite, Metavulkanite), werden bei der nachfolgenden Beschreibung von Aufschlüssen anhand von Geländebildern und Proben exemplarisch vorgestellt.

3. Metasedimente der Västervik-Formation

Nach Gavelin 1984 lassen sich die Metasedimente der Västervik-Formation in vier Gruppen einteilen: Quarzite, rote Meta-Arkosen (Quarzite mit erhöhtem Feldspat-Gehalt), graue (glimmerreiche) sowie rotgraue (glimmer- und feldspatreiche) Metasedimente. Weit verbreitet sind hellgraue und glimmerführende Quarzite (Abb. 9). Ein Teil der Quarzite im Västervik-Gebiet zeigt Sedimentstrukturen wie Schrägschichtung (Abb. 7) oder sogar Rippelmarken (Abb. 11). Im südlichen Teil des Västervik-Gebiets kommen vermehrt dunkelgraue Quarzite vor (Abb.10). Lokal finden sich grauviolette, rote, grünliche oder blaue Farbvarietäten. Vererzungen der Quarzite durch Anreicherungen von Schwermineralseifen (Fe-, Cu und Co-Vererzung) wurden bei Gladhammer seit dem 12. Jahrhundert abgebaut. Die Gruben gehören zu den ältesten in ganz Schweden (WILKE 1997: 38f).

Abb. 7: Grauer Quarzit mit reliktischer sedimentärer Schichtung, durchschlagen von einer roten Ader mit granitischer Zusammensetzung. Die dunklen und glimmerreichen Lagen entstanden aus sandigen Sedimenten mit erhöhtem tonigem Anteil. Nahgeschiebe auf dem Parkplatz am ICA-Supermarkt, Västervik (Lok. 4).
Abb. 8: Großflächige Aufschlüsse mit hellgrauen und rötlichen Quarziten der Västervik-Formation am alten Wasserturm in Västervik (Lok. 5).
Abb. 9: Hellgrauer und glimmerarmer Västervik-Quarzit aus einem Straßenaufschluss an der L135, westlich von Gamleby (Lok. 6).
Abb. 10: Dunkelgrauer Quarzit, durchzogen von einer granitisch zusammengesetzten Ader. Aufschluss an der Piste von Blankaholm nach Skjorted (Lok. 7).
Abb. 11: Rund 1,9 Milliarden Jahre alte Wellenrippel in einem grauen Metasediment. Straßenaufschluss an der E4 (Lok. 8), Bildbreite etwa 1 m.
Abb. 12: Das Gestein an dieser Lokalität ist ein graues Metasediment mit feiner Wechsellagerung glimmerarmer (quarzitischer) und glimmerreicher Partien. Bildbreite 30 cm.
Abb. 13: Rotfleckiger Västervik-Quarzit, Straßenaufschluss an der L135 (Lok. 9), Bildbreite 35 cm.
Abb. 14: Grauvioletter bis hellgrauer Västervik-Quarzit, rechts mit gefalteten Sedimentstrukturen, die später durch Bruchtektonik gegeneinander verstellt wurden. Aufschluss an der E4, Abfahrt Segelrum, Lokalität 10. Bildbreite 33 cm.
Abb. 15: Rötlicher und feldspathaltiger Quarzit mit Blauquarz von einer Baustelle bei Piperskärr (Lok. 11).
Abb. 16: Rotfleckiger Västervik-Quarzit mit Blauquarz (nasse Bruchfläche) aus dem Steinbruch Hjortkullen, Lokalität 12.
Abb. 17: Violettblauer Quarzit, Schäre Grönö (Lok. 13). Bildbreite ca. 50 cm.
Abb. 18: Roter Västervik-Quarzit; Straßenaufschluss an der Straße nach Hällingeberg (Lok. 14).
Abb. 19: Grünlicher Quarzit, durchzogen von einem dunkelgrauen Band mit einer breiten roten Saumzone. Loser Stein von 20 cm Breite aus einem Steinbruch westlich von Gamleby (Lok. 15).
Abb. 20: Rotgraue Meta-Arkose (Quarzit mit viel rotem Feldspat); Björnhuvud (Lok. 16), Bildbreite ca. 25 cm.
Abb. 21: Graues gebändertes Metasediment. In der rechten unteren Bildhälfte sind dunkle (Cordierit?)-Flecken erkennbar. Straßenaufschluss an der E4 bei Nytorp (Lok. 17). Bildbreite 90 cm.
Abb. 22: Graues Metasediment mit reliktischer sedimentärer Faziesverzahnung(?); Straßenaufschluss bei Nytorp (Lok. 17), Bildbreite 31 cm.

3.1. Gneise, Migmatite, Fleckengesteine

Nur ein kleiner Teil der Sedimentgesteine wurde während der svekofennischen Orogenese verfaltet und migmatitisiert. Aufschlüsse dieser „echten Migmatite“ finden sich auf dem Campingplatz Blankaholm (Lok. 2). Sie zeigen Fließfalten, primäre sedimentäre Lagenstrukturen sind kaum erkennbar. Wahrscheinlich handelt es sich um vulkanoklastische Sedimente, die durch einen aufsteigenden Granitkörper migmatisiert wurden (PRUß 2008). Das granitische Material der Leukosome (orange) könnte die Sedimente auch ohne Teilaufschmelzung konkordant durchdrungen haben („Adergneis“, s. u.).

Abb. 23: Migmatit am Ufer des Campingplatzes Blankaholm (Lok. 2), Bildbreite 65 cm. Grauer Gneis mit orangerotem Leukosom, umgeben von einem schmalen Saum aus dunklen Mineralen (Melanosom).
Abb. 24: Gleicher Aufschluss; rechts unterhalb der Bildmitte ein Xenolith eines Fleckengesteins, Relikt aus einer früheren metamorphen Episode.
Abb. 25: Gleicher Aufschluss, großer Quarzit-Xenolith im Migmatit; Bildbreite 70 cm.

Während des Aufstiegs von Granitplutonen (ältere Loftahammar- und jüngere Småland-Granitoide) kam es zu einer kontaktmetamorphen Veränderung der Metasedimente und zur Bildung der sog. „Adergneise“ (veined gneiss). Streng genommen sind dies keine Gneise, sondern Granofelse, die von granitischen Leukosom-Adern lagenweise (konkordant) durchdrungen oder diskordant durchschlagen wurden (Abb. 7). Diese granitischen Schmelzen könnten direkt aus dem Granit-Magma stammen (Arterite) oder durch Aufschmelzung aus älteren Gesteinen (z. B. Metasedimenten) mobilisiert worden sein (Venite). GAVELIN 1984 nimmt an, dass es sich vorwiegend um Venite handelt (Abb. 26, 27), da im Gelände keine direkten räumlichen Beziehungen zwischen aufsteigenden Granitkörpern und der Entwicklung von Adergneisen zu beobachten sind. LOBERG 1963 verweist zudem auf die Möglichkeit der Entstehung leukokrater Partien in migmatitähnlichen Metamorphiten durch metamorphe Differentiation im festen Zustand.

Abb. 26: Gesteinsblöcke mit Partien aus blauem und massigem Quarzit, dunklen Gneispartien sowie roten und pegmatitartigen Bereichen. Bildbreite etwa 1 m; Bruchmaterial aus dem Straßenbau, Pepparängsvägen, südöstlich von Västervik, Lokalität 18.
Abb. 27: Gleicher Aufschluss. Blauer und massiger Quarzit, rotgrauer Gneis und rote pegmatitartige Partien („Adergneis“). Breite 42 cm.

Die Fleckengesteine des Västervik-Gebiets sind Metasedimente, in denen eine Neubildung von Mineralen in Gestalt von Granoblasten (Flecken) erfolgte. In älterer Literatur findet sich der Begriff „Fleckengneis“, weil sie eine den Gneisen ähnliche Lagentextur aufweisen. Diese ist in der Regel aber ein Relikt sedimentärer Schichtung und spiegelt unterschiedliche Mineralgehalte der Ausgangsgesteine wider (Abb. 29, 30). In den meisten Fällen handelt es sich bei den Fleckengesteinen ganz eindeutig um Granofelse.

Eine Fleckenbildung kann sowohl unter Bedingungen der Kontakt- als auch der Regionalmetamorphose erfolgt und von metasomatischen Vorgängen begleitet sein (LOBERG 1963). Unter geringem Druck und hohen Temperaturen (max. 650 Grad) kam es in Al- und Mg-reichen Ausgangsgesteinen lokal zur Neubildung von Mineralen wie Sillimanit, Andalusit und Cordierit in Gestalt von Flecken (Granoblasten). Während der retrograden Metamorphose wurden die neu gebildeten Minerale teilweise verändert, so dass heute nur noch Relikte vorliegen (Chloritisierung von Feldspat, Biotit, Andalusit, Cordierit). Cordierit, Andalusit und Sillimanit sind weit verbreitete metamorphe Neubildungen, Kyanit und Granat kommen in den Metasedimenten des Västervik-Gebiets praktisch nicht vor.

Unklar ist meist, ob die Form der Flecken durch vorherige, gleichzeitige oder nachfolgende Tektonik verursacht wurde. Nach GAVELIN 1984 erfolgte die Bildung von Flecken zu unterschiedlichen Zeiten und unterschiedlichen Bedingungen. Abfolgen metamorpher Zonen mit charakteristischen Mineralisationen lassen sich im Anstehenden über größere Areale nicht verfolgen. Weiterhin stehen die Vorkommen von Andalusit und Sillimanit in keiner Beziehung zu Granitkontakten, „Granitisierung“ oder Migmatisierung. Unterschiedliche Metamorphosegrade müssen vereinfacht auf variable Bedingungen wie die Aktivität wässriger Fluide, K-Metasomatose und pH-Wert zurückgeführt werden.

Abb. 28: Dunkle und leicht ausgelängte Flecken in einem hellgrauen Quarzit. Straßenaufschluss bei Segelrum (Lok. 19), Bildbreite etwa 1 m.
Abb. 29: Graues Fleckengestein in der Nähe des Hafens auf Östra Skälö (Lok. 1). Die Bildung der schwarzen Cordierit-Flecken erfolgte bevorzugt innerhalb toniger, Al- und Fe-reicher Lagen. Entsprechend lässt sich die primäre Sedimentstruktur anhand fleckenreicher und fleckenarmer Partien nachvollziehen. Bildbreite etwa 1 m.
Abb. 30: Rotgraues Fleckengestein mit fleckenreichen Lagen und (quarzitischen) Partien ohne Flecken. Aufschluss bei Casimirsborg (Lok. 20), Bildbreite etwa 150 cm.
Abb. 31: Gleicher Aufschluss. Bildbreite: 50 cm.

Die fleckenreichen Partien sind hier weitgehend undeformiert, lediglich im obersten Bildteil erkennt man zerdrückte Flecken. Beim bizarr geformten Bereich handelt es sich vermutlich um eine bereits während der Ablagerung vollzogene Veränderung der Sedimente (tidales Milleu, Verzahnung sandiger und toniger Schichten, s. SULTAN et al 2005). Die Kerne der Fleckengesteine von Casimirsborg enthalten nach RUSSELL 1969 Andalusit und Sillimanit. Im inneren Kern ist manchmal unalterierter (bläulicher) Cordierit erkennbar. Die Kerne könnten ursprünglich vollständig aus Cordierit bestanden haben.

Abb. 32: Aufschluss Casimirsborg, Bildbreite 60 cm. Bereits während der Ablagerung dürfte auch diese konglomeratähnliche Partie entstanden sein, mit grauen und quarzitischen „Klasten“ ohne Flecken (ehemals sandige Sedimente) und weitgehend undeformierten Flecken in der „Matrix“.
Abb. 33: Orangerotes Västervik-Fleckengestein, Aufschluss am See Rummen (Lok. 21). Bildbreite 50 cm.
Abb. 34: Orangerotes Metasediment mit unregelmäßig konturierten schwarzen Flecken und grauen Partien mit reliktischer Schichtung. Schäre Grönö (Lok. 22), Bildbreite 60 cm.
Abb. 35: Rotgraues Fleckengestein mit länglichen Flecken, Aufnahme unter Wasser. Halde am Pepparangsvägen (Lok 18).
Abb. 36: Orangerotes und feldspatreiches Metasediment mit grauen Metasediment-Xenolithen („Krökö-Gneis“); Schäre Braviken (Lok. 23).
Abb. 37: Graue, braune und rote Fleckenquarzite (glimmerhaltige Quarzite mit Sillimanit-Granoblasten). Nahgeschiebe vom Strandwall SE Västervik (Lok. 3), Bildbreite 50 cm. Eine Anstehendprobe dieses Gesteinstyps zeigt Abb. 59.

Im Västervik-Gebiet wurden bisher zwei Geschiebe eines dunklen und biotitreichen Granofels mit orangefarbenen Alkalifeldspat-Porphyroblasten gefunden (Abb. 38). Ein Anstehendes konnte bisher nicht lokalisiert werden. Das Gestein wird an anderer Stelle näher beschrieben, weil sich mittlerweile in Norddeutschland mehrere Geschiebe dieses Typs fanden.

Abb. 38: Glimmereiches Metasediment mit orangefarbenen Alkalifeldspat-Granoblasten. Fossiler Strandwall bei Västervik (Lok. 3). Foto: M. Bräunlich, kristallin.de.

4. Granitoide Gesteine

Eine vereinfachte und auf Feldbeobachtungen gestützte Einteilung unterscheidet “ältere” und “jüngere” Granitoide. Neuere geochemische Untersuchungen (NOLTE et al 2011, KLEINHANNS et al 2014) ergaben ein differenziertes Bild von fünf verschiedenen Gruppen von Plutoniten. Das genetische Modell geht von einer Bildung von Granitplutonen während extensionaler Phasen der Gebirgsbildung aus. Dabei kam es zu einer Teilaufschmelzung von tief versenkten Metasedimenten durch Druckentlastung und mafic underplating. Für die magmatischen Schmelzen wird ein geringer Transportweg angenommen.

Zu den älteren Granitoiden gehören die Granite des Loftahammar-Massivs, die vor 1,86-1,84 Ga entstanden und nachfolgend in einer zweiten Faltungsphase deformiert wurden. Die Gesteine besitzen teilweise ein mylonitisches Gefüge (Abb. 39), können Xenolithe von Metasedimenten enthalten und wurden von zahlreichen jüngeren Diabasgängen durchschlagen (magma mingling mit mafischen Injektionen). Zu den älteren Granitoiden gehört auch ein Gürtel von Granodioriten, der den nördlichen und östlichen Teil der Metasedimente umgibt (s. Abb. 60-62). Eine Beschreibung des Geschiebetyps „Loftahammar-Augengneis“ findet sich hier.

Abb. 39: Loftahammar-Augengneis (Probe: T. Langmann, Lok. 24). Das Gestein erhielt sein mylonitisches Gefüge durch Deformation eines Granitoids an einer duktilen Scherzone. Kennzeichnend sind augenförmige große Feldspat-Porphyroblasten, die von feinkörnigen und welligen Partien mit dunklen Mineralen und granuliertem Quarz umgeben sind.

Die jüngeren Granite des Transskandinavischen Magmatitgürtels („Småland-Granite“) im Süden und Westen des Västervik-Gebiets weisen makroskopisch nur geringe Anzeichen einer Deformation auf und besitzen ein Alter 1,84-1,77 Ga. Lokal finden sich fließende Übergänge von Graniten und Metasedimenten mit „Migmatiten“ oder „Adergneisen“. Manchmal ist der Kontakt auch scharf (Abb. 40). Zum Teil handelt es sich um „typische“ Småland-Granite mit viel rotem Alkalifeldspat und Blauquarz (Abb. 41, 44). Andere Granite sind eher unauffällige Gesteine, wie der Skaftet-Granit, einer heterogenen Mischung mit einem Fließgefüge aus granodioritischem und granitischem Magma (Abb. 45).

Abb. 40: Scharfer Kontakt zwischen Västervik-Quarzit (rechts) und jüngerem Granit („Småland-Granit“, links). Bildbreite ca. 40 cm (Lok. 25).
Abb. 41: Roter Alkalifeldspatgranit mit Blauquarz („jüngerer“ Granit, Småland-Granit), Aufnahme unter Wasser. Straßenaufschluss an der L135 (Lok. 26).
Abb. 42: NE-Småland-Granit mit zerdrücktem („zuckerkörnigem“) Quarz, Aufnahme unter Wasser. Sog. „Edelhammar-Granit“ (vgl. skan- kristallin.de) aus einem aufgelassenen Steinbruch bei Västrum (Lok. 27).
Abb. 43: Gleicher Stein, Nahaufnahme des Gefüges.
Abb. 44. Leicht deformierter „jüngerer“ Granit, Straßenaufschluss am Skälövägen (Lok. 28).
Abb. 45: Skaftet-Granit („jüngerer Granit“); Mischung eines granodioritischen und granitischen Magmas (magma mingling). Aufschluss in der Nähe der Kirche in Västrum (Lok. 29), Bildbreite etwa 1 m.

Zahlreich finden sich in den Aufschlüssen des Västervik-Gebiets Gänge und Adern aus Apliten, Pegmatiten (auch Turmalin-Pegmatite; Lok. 30, kein Foto) oder auch Blauquarz in den Metasedimenten.

Abb. 46: Ader mit Blauquarz in einem grauen Metasediment am Hafen Östra Skälö (Lok. 1).
Abb. 47: Quarz-Feldspat-Ader mit stengeligen Amphibol-Kristallen; Bildbreite 25 cm; Straßenkreuzung Blankaholm/E4 (Lok. 31).

Hierbei könnte es sich um ein Quarz-Plagioklas-Gestein handeln, das GAVELIN 1984 in ähnlicher Form aus einem Aufschluss in der Nähe beschreibt (500 m N der Abzweigung nach Blankaholm). Es durchdringt die Metasedimente in Form heller Adern mit gebleichter und 1-2 cm breiter Reaktionszone und kristallisierte aus Lösungen, die aus Metabasiten innerhalb der älteren Granite mobilisiert wurden (Na-Metasomatose, Anreicherung von Plagioklas). Eine Probenahme und sichere Bestimmung von Plagioklas war nicht möglich.

Am Badplats Gunnebo (Lok. 32) steht ein mittelkörniger und grauer bis rotgrauer Granit an, der Xenolithe von migmatitisierten Metasedimenten führt. Die dunklen Xenolithe weisen eine Lagentextur auf. Teilweise besitzen sie scharfe Konturen, teilweise sind sie weitgehend assimiliert. Die Fragmente könnten beim Magmenaufstieg in der Dachregion des Plutons in den viskosen Granit eingetragen und von der Schmelze nicht mehr vollständig „verdaut“ worden sein.

Abb. 48: Granit vom Badplatz Gunnebo (Lok. 32) mit Xenolithen von Metasedimenten, Aufnahme unter Wasser.

5. Mylonite

Minerale wie Quarz und Feldspat werden in der oberen Erdkruste bei Einwirkung von gerichtetem Druck zerbrochen und granuliert (Sprödbruch). Bei geeigneter Tiefe und entsprechend hohen Temperaturen kommt es innerhalb einer Scherzone jedoch zu einer duktilen Deformation, bei der die Gesteine feinkörnig zermahlen (Mylonit = Mahlstein) und gleichzeitig große und augenförmige Feldspat-Aggregate heranwachsen können (sog. Porphyroblasten). Ein Beispiel für einen mylonitischen Gneis mit großen Feldspat-Porphyroblasten ist der Loftahammar-Augengranit (Abb. 39), der innerhalb einer großen NW-SE streichenden Deformationszone entstand (Loftahammar-Linköping-Deformationszone, LLDZ). Die LLDZ trennt die Gesteine des TIB im Süden von den Gesteinen der svekofennischen Domäne und deformierte in der Zeit ihrer Aktivität vor 1,8-1,78 Ga Gesteine im Umkreis von 10-15 km.

Am Langsjön westlich von Ankarsrum (Lok. 33) befindet sich ein Aufschluss einer kleinen Mylonitzone, die etwas jünger ist und nicht im Zusammenhang mit der LLDZ steht. Hier lässt sich der Einfluss einer duktilen Scherzone auf die umgebenen Gesteine gut studieren. Zwei unterschiedliche Granite sind durch eine nur etwa 1,5 – 2 m breite Scherzone mit Ultramyloniten voneinander getrennt und zu beiden Seiten von einem mehrere Meter breiten Übergangsbereich begleitet.

Abb. 49: Mylonitzone am Langsjön (Lok. 33). Die Scherzone ist der Bereich mit den dunklen Gesteinen. Nach Osten (rechts) geht sie mit scharfer Grenze in ein helles Quarz-Feldspat-Gestein und nach etwa einem Meter in einen hellen Småland-Granit über. Länge des Hammers 60 cm.
Abb. 50: Ultramylonit mit epidot- und chloritreichen Lagen aus dem Zentrum der Scherzone. Das Gestein wurde stark zerschert und ist bedeutend feinkörniger als das Wirtgestein, aus dem es geformt wurde.
Abb. 51: Auf der linken Seite (westlich) der Scherzone steht ein dunkler und mylonitisierter Småland-Granitoid mit großen Feldspat-Porphyroblasten an. Das Gestein ist von einer grünen Epidot-Ader durchzogen.
Abb. 52: Einige Meter weiter findet sich ein biotitreicher und augenscheinlich weitgehend undeformierter Småland-Granit mit wenigen großen Blauquarzen.
Abb. 53: Ganz anders sieht dieser rotgraue porphyrische Småland-Granit östlich der Scherzone aus, etwa 15 m entfernt vom Granit im vorigen Bild.

6. Metavulkanite

Zeugen einer vulkanischen Aktivität, die den TIB-Vulkaniten vorausging, finden sich nur untergeordnet und als Relikte im südlichen Teil des Västervik-Gebiets. Durch metamorphe Überprägung ist von den Ausgangsgesteinen kaum noch etwas zu erkennen (z. B. Migmatite auf dem Campingplatz Blankaholm, Abb. 23-25).

In einem kleinen Gebiet nördlich von Ankarsrum stehen Vulkanite an, die zu den ältesten des TIB gerechnet werden (GAVELIN 1984). Neben Andesiten, Basalten und Rhyolithen finden sich hier auch leicht deformierte Pyroklastite mit Epiklasten von Västervik-Quarzit. Letztere weisen darauf hin, dass die Vulkanite in diesem Gebiet direkt auf den Gesteinen der Västervik-Formation abgelagert wurden und somit zur Basis des TIB gehören dürften.

Abb. 54: Roter und deformierter Pyroklastit, loser Stein auf einer gerodeten Waldfläche nördlich von Ankarsrum (Lok. 34).
Abb. 55: Bruchfläche des gleichen Gesteins, Vulkanit mit grauen und ausgelängten Quarzitklasten. Aufnahme unter Wasser.

7. Metabasite

Verschiedene Generationen von basischen Gesteinen durchziehen als Gänge oder Sills die Metasedimente und die älteren Granitoide. Auch eigenständige kleinere Massive kommen vor. Die ursprünglich basaltischen Gesteine wurden während der Metamorphose in Amphibolite umgewandelt (Metabasite).

Abb. 56: Kontakt eines Amphibolit-Körpers (links) mit hellem Västervik-Quarzit. Temporärer Aufschluss auf einer Baustelle auf Piperskärr (Lok. 11).
Abb. 57: Die Grenze zwischen Quarzit und Amphibolit ist scharf. Mineralneubildungen durch kontaktmetamorphe Überprägung (z. B. Sillimanitflecken) sind nicht erkennbar. Lediglich einige Blauquarz-Partien finden sich im Kontaktbereich. Bildbreite 90 cm.
Abb. 58: Grobkörniger Amphibolit, durchzogen von einer weißen Quarz-Feldspat-Ader. In unmittelbarer Nähe (Kontaktbereich) und vermutlich anstehend fand sich ein dunkelgrauer Fleckenquarzit. Fahrweg vom Parkplatz Tjust Motell Richtung Falkhagen (Lok. 35). Bildbreite 35 cm.
Abb. 59: Dunkelgrauer und glimmerreicher Quarzit mit weißen Sillimanitflecken (Fleckenquarzit), Aufnahme des Gefüges unter Wasser; Lok. 35.

Injektionen mafischer Gesteine kommen besonders zahlreich in den älteren Granitoiden vor. Scharfe Kontakte lassen auf ein Eindringen nach der Erstarrung schließen (Abb. 60).

Abb. 60: Anatektischer Granodiorit (älterer Granitoid). Ein basaltischer Gang drang entlang der Foliation ein und wurde nachfolgend dextral zerschert. Andere Gänge an diesem Aufschluss weisen eine duktile Deformation auf. Händelöp (Lok. 36).

Ein längerer Küstenabschnitt mit diversen Aufschlüssen bei Grimsvik (Lok. 37, Abb. 61-62) zeigt verschiedene Stadien von magma mingling zwischen älteren Granodioriten des zentralen Granodiorit-Gürtels und basischen Intrusionen (Metagabbro). Hier lässt sich beobachten, wie mafische Gesteine durch das mobile Magma zerrissen wurden, teilweise sind auch Auflösungsvorgänge erkennbar.

Abb. 61: Kantige, durch das aufsteigende helle Magma fragmentierte, aber nur wenig assimilierte Metabasite. Küstenaufschluss bei Grimsvik (Lok. 37), Bildbreite 180 cm.
Abb. 62: Duktile Deformation von Metabasiten, erkennbar an der Einregelung länglicher und gerundeter Fragmente („Fließtextur“). Auf eine zeitgleiche Entstehung beider Magmen weisen gelegentlich in den Metabasiten enthaltene Fragmente von Granodiorit hin. Bildbreite 120 cm.
Abb. 63: Aufschluss mit basischen Metatuffiten am Hafen von Östra Skälö. Die vulkanischen Lockergesteine (Tuffe) wurden durch Metamorphose in Amphibolite bzw. Amphibol-Feldspat-Gesteine umgewandelt. Eine sedimentäre Schichtung ist in Gestalt dunkler und heller Partien nachvollziehbar (Lok. 1).
Abb. 64. Gleicher Aufschluss, Nahaufnahme.

8. Verzeichnis der Lokalitäten

Abb. 65: Übersichtskarte der beprobten Lokalitäten. Kartenausschnitt aus BERGMAN et al 2012, Quelle: sgu.se.

1 – Hafen von Östra Skälö – zahlreiche Aufschlüsse im Hafengebiet und an der Fahrstrecke; Västervik-Fleckengestein: orangefarbene und graue Variante; Quarzader im Metasediment; Metabasite. 57.58986, 16.63201

2 – Campingplatz Blankaholm – Migmatite aus Metavulkaniten der Västervik-Formation; gekritzte Felsen. 57.588476, 16.516876.

3 – Fossiler Strandwall an der Straße nach Händelöp, SSE Västervik – Nahgeschiebe (Quarzite, Fleckenquarzite, Feldspat-porphyroblastischer Glimmerquarzit). 57.718765, 16.671451 (Parkplatz).

4 – Nahgeschiebe als Einfassung auf dem Parkplatz des ICA-Stormarknat Västervik.
57.767546, 16.595644

5 – Alter Wasserturm Västervik, Repslagaregatan 5 – Großflächiger Aufschluss mit Quarzit in div. Farbvarianten: hell, rötlich bis dunkelgrau; keine Fleckenbildung. Größter Teil der Quarzite ist mit Flechten bewachsen. 57.753211, 16.647462.

6 – Frischer Straßenaufschluß an der 135, kurz hinter Gamleby- hellgrauer und glimmerarmer Västervik-Quarzit; Västervik-Fleckengestein; graue Quarzite. 57.91547, 16.36795.

7 – Aufschluss an der Piste von Blankaholm nach Skjorted; Dunkelgrauer Västervik-Quarzit m. granitischen Adern; Felsen an einem Bootsanleger, kurz vor Skjorted.
57.623770, 16.511087.

8 – Wellenrippel in dunkelgrauem Quarzit, Straßenaufschluss an der E4; 57.86080, 16.42724 (Parkplatz); vom Parkplatz 300 m nach N gehen.

9 – Straßenaufschluss an der 135 – rotfleckiger Quarzit, div. Västervik-Quarzite. 57.91458, 16.30901 (Parkplatz); vom Parkplatz Richtung Westen gehen.

10 – Straßenaufschluss an der E22, Abfahrt Segelrum – helle Quarzite mit sedimentärer Reliktschichtung; Fleckenbildung. 57.850582, 16.432278.

11 – Großflächige Baustelle auf Piperskärr, temporärer Aufschluss – heller und roter Quarzit; in den Quarzit eingeschalteter Amphibolitkörper (ca. 20x20m). 57.76751, 16.66553.

12 – Aktiver Steinbruch Hjortkullen – rötlich-blauer Västervik-Quarzit. 57.795577, 16.530566.

13 – Schäre Grönö – violettblauer Quarzit. Etwa 57.715430, 16.713416.

14 – Straßenaufschluss an der Straße nach Hällingeberg – roter bis violetter Västervik-Quarzit. 57.88854, 16.33501.

15 – Steinbruch westlich Gamleby – helle, rotfleckige und grüne Quarzite. 57.885434, 16.355187.

16 – Björnhuvud, SW Västrum – migmatitischer Gneis; wenige Aufschlüsse in diesem Gebiet. 57.626283, 16.528614.

17 – Straßenaufschluss an der E4, Abfahrt Nytorp – graue Quarzite, sedimentäre Reliktstrukturen. 57.86056, 16.42667.

18 – Pepparängsvägen S Västervik, Halde aus temporären Strassenbaumaßnahmen – Västervik-Fleckengestein, blaue Quarzite. 57.722189, 16.673201 (Fundstelle erloschen).

19 – Straßenaufschluss an der E4, Abfahrt Segelrum – Västervik-Quarzit. 57.850582, 16.432278.

20 – Felsen an der Küste bei Casimirsborg (Privatgelände!) – Västervik-Fleckengestein. 57.874100, 16.435327.

21 – Großflächige Aufschlüsse am Wegesrand und im Gebiet des Nordufer des Rummen, NW Gamleby – rotes Västervik-Fleckengestein. Etwa 57.937173, 16.285627.

22 – Schäre Grönö bei Västervik – rotes Västervik-Fleckengestein. Etwa 57.715250, 16.720567.

23 – Schäre Braviken; Bratviken – rote Metasedimente. Etwa 57.721625, 16.706725, Gebiet größtenteils Privatbesitz.

24 – Straßenaufschluss an der 213, ca. 1,5 km westlich von Loftahammar – Loftahammar-Augengneis. 57.90857, 16.65788.

25 – Straßenaufschluss am Skälövägen – Kontakt zwischen Västervik-Quarzit und jüngerem Småland-Granit“. 57.60534, 16.60882; Parken: Rävrompan.

26 – Straßenaufschluss an der 135 – roter TIB-Augengranit mit Blauquarz. 57.91006, 16.18458.

27 – Stillgelegter Steinbruch Edelhammar – leicht deformierter NE-Småland-Granit. 57.698194, 16.460917.

28 – Straßenaufschluss am Skälövägen – roter TIB-Granit, leicht deformiert. 57.61278, 16.59978.

29 – Aufschluss in der Nähe der Kirche in Västrum – Skaftet-Granit, jüngerer Granit („Småland-Granit“). Mingling von zwei Granit-Sorten. Parken an der Kirche in Västrum, ca. 57.658305, 16.574750.

30 – Strassenanschnitt an der Hauptstrasse ca. 1 km S von Gunnebo – Pegmatit mit intensivem Blauquarz, Kleiner Aufschluss (30x30cm). Etwa 57.709298, 16.541656.

31 – Frische Straßenaufschlüsse auf dem Parkplatz an der Abfahrt Blankaholm von der E 22 – hellgraue Quarzite; Quarzite mit schwarzen Flecken (deformiert); Quarz-Feldspat-Adern im Quarzit (Plagioklas?). 57.588424, 16.486632.

32 – Badplats Gunnebo – metasedimentäre Xenolithe im Granit; Aufschluss stark verwachsen. 57.716333, 16.563139.

33 – Mylonitzone am Langsjön – duktile Scherzone mit Myloniten und Småland-Graniten am Langsjön, westlich von Ankarsrum. 57.696139, 16.286194. Parken am kleinen Campingplatz auf der anderen Strassenseite.

34 – Waldfläche nördlich Ankarsrum, 1 km E von Stormandebo (Wegweiser: Stormbo) – Vulkanite des TIB mit Quarzit-Epiklasten. 57.738264, 16.351129.

35 – Fahrweg vom Parkplatz Tjust Motell Richtung Falkhagen, Felsen im Wald – Amphibolit; Fleckenquarzit. 57.86883, 16.41978.

36 – Aufschlüsse hinter dem Hafen von Händelöp – mafische Adern im Granodiorit. Etwa 57.674075, 16.748323; Parkplatz: 57.675382,16.744969.

37 – Grimsvik; einzelne Aufschlüsse an der Küste auf 2,5- 3 km Länge – magma mixing von Granodiorit und Gabbro. Parkmöglichkeit: 57.690645, 16.700778; durch den Wald zur Küste (57.692793, 16.703750).

38 – Piperskärr, nordwestlich von Västervik, Ufer des Gamlebyviken – Geschiebefund eines Feldspat-porphyroblastischen Glimmerquarzits. 57.83064, 16.54737.

9. Literatur

BERGMAN, STEPHENS, ANDERSSON, KATHOL & BERGMAN 2012 Sveriges berggrund, skala 1:1 miljon. Sveriges geologiska undersökning K 423. https://apps.sgu.se/geolagret/

GAVELIN S 1983 The Västervik Area in South-eastern Sweden – SGU Ser. Ba No. 32, 172 S, Uppsala.

KLEINHANNS I C, WHITEHOUSE M J , NOLTE N, BAEROC W, WILSKYC F, HANSENC B T, SCHOENBERG R 2014 Mode and timing of granitoid magmatism in the Västervik area
(SE Sweden, Baltic Shield): Sr–Nd isotope and SIMS U–Pb age constraints – Lithos 212–215 (2015) 321–337; Elsevier.

LOBERG B 1963 The Formation of a Flecky Gneiss and Similar Phenomena in Relation to the Migmatite and Vein Gneiss Problem, Geologiska Föreningen i Stockholm Förhandlingar, 85:1, 3-109, DOI: 10.1080/11035896309448874.

NOLTE N 2012 Paläoproterozoisches Krustenwachstum (2.0 – 1.8 Ga) am Beispiel der Västervik-Region in SE-Schweden und dem Kamanjab Inlier in NW-Namibia – Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universität Göttingen; 403 S., Göttingen 2012.

NOLTE N, KLEINHANNS IC, BAERO W & HANSEN BT 2011 Petrography and whole-rock geochemical characteristics of Västervik granitoids to syenitoids, southeast Sweden: constraints on petrogenesis and tectonic setting at the southern margin of the Svecofennian domain, GFF, 133:3-4, 173-196.

PRUß V 2008 The Geology of the Västervik Area in SE-Sweden – A Geological Field Guide – 93 S., Verlag Dr. Müller, Saarbrücken.

RUSSELL V 1969 Porphyroblastic differentiation in fleck gneiss from Västervik, Sweden. GFF Vol. 91/2, Nr. 637, S. 217 – 282.

SULTAN L & PLINK-BJÖRKLUND P 2005 Depositional environments at a Palaeoproterozoic continental margin, Västervik Basin, SE Sweden – Precambrian Research 145 (2006) 243–271, Elsevier.

SULTAN L, CLAESSON S & PLINK-BJÖRKLUND P 2005 Proterozoic and Archaean ages of detrital zircon from the Palaeoproterozoic Västervik Basin, SE Sweden: Implications for provenance and timing of deposition, GFF, 127:1, 17-24, DOI:10.1080/11035890501271017.

TROPPENZ U-M, VINX R & SCHMÄLZLE D 2016 Bemerkenswerte Sedimentstrukturen in der 1,88-1,85 Milliarden Jahre alten Västervik-Formation, Schweden – Mitteilungen der Naturforschenden Gesellschaft Mecklenburg, 16. Jg. (2016), H. 1: 3-9, 9 Abb., Ludwigslust.

Västervik Berggrundskarta 1:250 000, Sveriges geologiska undersökning (SGU), 2009.

WILKE R 1997 Die Mineralien und Fundstellen von Schweden – 200 S., 16 Farb-Taf., München (Christian Weise).