Schlagwort-Archive: Högsrum-Porphyr

Geologische Streifzüge auf Rügen

Abb. 1: Steilküste auf Jasmund; Ablagerungen der Oberkreide (weiß) mit eingeschaltetem Geschiebemergel (grau).

Das bevorzugte Ziel für den geologisch interessierten Besucher von Rügen ist die beeindruckende Steilküste auf dem Inselteil Jasmund. Hier sind die als „Rügener Schreibkreide“ bezeichneten Sedimente sowie pleistozäne Ablagerungen aufgeschlossen. Nach einer kurzen Übersicht zu Rügens Geologie werden in dieser Artikelreihe Funde kristalliner Geschiebe von mehreren Stränden der Insel vorgestellt.

1. Zur Geologie von Rügen
2. Geschiebesammeln auf Rügen
2.1. Sassnitz
2.2. Dwasieden
2.3. Kap Arkona
2.4. Lohme
2.5. Sellin
2.6. Mönchgut
3. Links und ausgewählte Literatur

1. Zur Geologie von Rügen

Die Rügener Schreibkreide ist ein krümeliger und wenig verfestigter Kalkstein, der von zahlreichen Feuersteinbändern durchzogen wird. Sie entstand in einem Zeitabschnitt der Oberkreide, im Maastricht, vor etwa 72-66 Millionen Jahren. Zu dieser Zeit bedeckte ein Flachmeer praktisch ganz Mitteleuropa. Nur einige Inseln ragten aus diesem Kreidemeer hervor, die Alpen gab es noch nicht. Ein tropisches Klima, aber eine recht kühle Wassertemperatur begünstigte das Wachstum kleinster, planktonisch lebender Meerestiere, aus denen die Schreibkreide zusammengesetzt ist. Im Wesentlichen sind dies die als Coccolithen bezeichneten Kalkplättchen von Algen der Ordnung Coccolithophorida, neben weiteren Kleinfossilien. Die Sedimentation erfolgte erstaunlich langsam, etwa 35 mm in 1.000 Jahren (REICH 1998). In der Schreibkreide finden sich auch zahlreiche Makrofossilien: Seeigel, Schwämme, Belemniten, Korallen, Muscheln, Bryozoen, Schnecken, Seesterne, Ammoniten und weitere (vgl. SCHULZ 2003: 347-351, REICH et al 2018).

Innerhalb der hellen Schreibkreide treten Lagen von dunkelgrauen Feuersteinen auf. Sie entstanden nach der Ablagerung der Kreideschichten während der Diagenese und bilden Konkretionen – massige Gesteine von rundlicher, knolliger, teils auch bizarrer Gestalt. Die Feuersteine sind der „Prototyp“ des nordischen Geschiebes, weil sie in glazialen Ablagerungen praktisch allgegenwärtig auftreten. Ihre südlichste Verbreitungsgrenze, die sog. „Feuersteinlinie“ kennzeichnet die Maximalausdehnung der nordischen Inlandvereisungen.

Abb. 2: Feuersteinlagen innerhalb der Rügener Schreibkreide, Steilküste nördlich von Sassnitz. Die Lagen sind annähernd gleich mächtig und regelhaft rhythmisch angeordnet.
Abb. 3: Feuersteinlagen, Bildhöhe etwa 3 Meter.
Abb. 4: Frisch ausgebrochene Feuersteine besitzen einen splittrigen Bruch und eine weiße Rinde. Mit der Zeit werden sie abgerollt, auf Grund ihrer Härte und Zähigkeit nur durch gegenseitige Bewegung im Brandungssaum. Bildbreite ca. 50 cm.

Vor den nordischen Inlandvereisungen bildeten die Schichten der Oberkreide ein mehr oder weniger ebenes und bis 400 m mächtiges Sedimentpaket. Diese Schichten sind auch heute im Untergrund noch großflächig verbreitet und durch jüngere Schichten verdeckt. Durch tektonische Vorgänge, wahrscheinlich Störungen des Untergrundes während der alpidischen Gebirgsbildung, kam es im Tertiär zu Hebungen. Durch leichte Verkippung bildeten sich Kreide-Horste. Einst verband ein etwa 100 km breites, in Ost-West-Richtung sich erstreckendes Kreidemassiv die Vorkommen von Rügen und Møn.

Die erosive Kraft des Inlandeises führte zu einer Abtragung der oberen 100 m dieses Massivs und zur Bildung kleiner und größerer Schollen, die in der Folge teils dachziegelartig verkippt oder sogar verfaltet wurden. Dabei konnten auch größere zusammenhängende Pakete der lockeren Kreidesedimente bewegt werden, weil der Untergrund gefroren war. Durch diese glazitektonischen Vorgänge gelangten die Kreidesedimente in ihre heutige Position und bilden ein komplexes Nebeneinander mit Geschiebemergeln und anderen glazialen Ablagerungen. Erst der Geschiebemergel des letzten weichselzeitlichen Eisvorstoßes liegt über den verschuppten kreidezeitlichen und glazialen Sedimenten, was auf eine zeitliche Einordnung der Glazitektonik in die Zeit bis zum Pommerschen Stadium der Weichselvereisung vor etwa 22.000 – 20.000 Jahren deutet.

Die Verkippung und Faltung der aufragenden Schollen lässt sich an den Feuersteinbändern stellenweise gut nachvollziehen (Abb. 5). Größere Kreideschollen sind vor allem im Nordteil der Insel auf Jasmund sowie an der NE-Spitze von Wittow aufgeschlossen. Kleinere Kreideschollen und -schlieren finden sich z. B. auch an der Steilküste von Dwasieden (Abb. 6).

Abb. 5: Gebogene Feuersteinlagen (Glazitektonik). Ursprünglich horizontal abgelagerte Kreide mit den typischen Feuersteinbändern. Durch die Kraft der Gletscher in der letzten Eiszeit kam es zur Aufschiebung, Verkippung und Stauchung der Kreide.
Abb. 6: Geschiebemergel mit Kreideschlieren, Dwasieden.

Im letzten Stadium der Eisvorstöße, im späten Weichselglazial, wirkten die Inselkerne von Jasmund und Arkona als Hindernis. Der Gletscher teilte sich hier in zwei Eisströme. Ein südlich verlaufender sog. Oder-Eisstrom modellierte die hügelige Landschaft Ostrügens. Durch Stillstand und Abschmelzen des Eises entstanden die Endmoränen der sog. Mittelrügenschen Stillstandslage. Ihre heutige Gestalt nahm die Insel lange nach dem Rückzug des Eises an. Rügen war nach dem Abschmelzen des Eises zunächst Festland. Vor etwa 7.800 Jahren, zu Zeiten der Litorina-Transgression, wurde das Gebiet überflutet, nur die Inselkerne Jasmund, Wittow und Mönchgut lagen über dem Meeresspiegel. Durch Brandung entstanden an ihren Außenseiten Steilufer. Abgetragener Sand wurde durch Küstenströmungen in Gestalt von Nehrungen wieder ablagert und verbindet seitdem die Inselkerne miteinander. Im Naturschutzgebiet „Schmale Heide“ (Feuersteinfelder von Mukran) finden sich 14 Strandwälle aus Feuersteinen, die vor etwa 4.000 Jahren während mehrerer Sturmfluten aufgeschüttet wurden (Abb. 7).

Abb. 7: Feuersteinfelder von Mukran. Die wallartigen Akkumulationen von Feuersteinen sind Ablagerungen historischer Sturmfluten vor etwa 4.000 Jahren.

Rügens Steilküsten sind von einem beachtlichen Fortschreiten der Erosion betroffen, die Küstenlinie wird jährlich um durchschnittlich 30 cm zurückverlegt. Vor allem nach der Schneeschmelze und starken Regenfällen ereignen sich größere Abbrüche, Geschiebemergel und Schmelzwassersande zwischen die Kreidefelsen wirken dabei als Sollbruchstellen.

Abb. 8: Frischer Abbruch nördlich von Sassnitz (Mai 2012).
Abb. 9: Bedrohlich hängen metergroße Geschiebe in der Steilwand bei Sassnitz.

Auf Rügen gibt es eine Vielzahl interessanter geologischer Lokalitäten, die im Text genannten sind auf der Karte Abb. 10 markiert.

Abb. 10: Übersichtskarte Rügen mit besuchten Lokalitäten: Nordufer Wittow und Kap Arkona (1), Dwasieden (2), Kreideküste nördlich Sassnitz (3), Klein Zicker (4), Groß Zicker (5), Dargast (6), Kreidemuseum Gummanz (7), Feuersteinfelder Mukran (8). Karte aus wikipedia.org, Urheber: devil m25, CC BY-SA 2.0 de.

Auf Jasmund wurde die Rügener Schreibkreide zur Gewinnung von Schlämmkreide früher in zahlreichen Steinbrüchen abgebaut. Ein aktiver Tagebau liegt bei Promoisel, ein aufgelassener Bruch bei Dargast.

Abb. 11: Aufgelassener Tagebau bei Dargast.

Das Kreidemuseum in Gummanz (www.kreidemuseum.de) informiert mit einer bergbautechnischen Sammlung und einem Freilichtbereich über die Historie des Kreideabbaus und die Verwendung der Rügener Schreibkreide, ein geologisch-paläontologischer Sammlungsteil über die Entstehung der Insel Rügen. Auch eine hervorragende Ausstellung mit Kreidefossilien kann besichtigt werden.

Abb. 12: Kreidemuseum Gummanz
Abb. 13: Ehemaliger Tagebau am Freilichtmuseum Gummanz.

Auf Rügen gibt es auch mehrere große Geschiebe, z. B. der Schwanenstein bei Lohme. Auf den Siebenschneiderstein (Karlshamn-Granit) wird im Abschnitt Kap Arkona eingegangen. Der größte Findling Norddeutschlands ist der Buskam östlich von Göhren.

Abb. 14: Schwanenstein bei Lohme.

2. Geschiebesammeln auf Rügen

Abb. 15: Steilküste nördlich von Sassnitz.

Die Geröllstrände auf Rügen bieten dem Geschiebesammler gute Fundmöglichkeiten. Auf ein übermäßiges „Abräumen“ der Strände sollte man allerdings verzichten und Steine mit Bedacht entnehmen, damit auch zukünftige Besucher noch die ganze Bandbreite an nordischen Geschieben vorfinden können. Vielleicht vermag eine gute fotografische Dokumentation den „Sammeltrieb“ ebenfalls zu befriedigen. Die meisten der hier gezeigten Gesteine liegen noch vor Ort. Das Hauptaugenmerk gilt den kristallinen Geschieben, die in drei Abschnitten vorgestellt werden:

Die kristalline Geschiebegemeinschaft auf Rügen ist stark von den Gesteinen des Transskandinavischen Magmatitgürtels (TIB) geprägt, darunter die variationsreichen und oft bunten Småland-Granitoide und Småland-Porphyre. Allgemein häufig ist auch der Braune Ostsee-Quarzporphyr, der Rote Ostsee-Quarzporphyr tritt nur ganz vereinzelt auf. Rapakiwi-Gesteine von Åland sind in mäßiger Häufigkeit anzutreffen. Aus Dalarna finden sich nur wenige Kristallingesteine. Granite von Bornholm sind seltener, als es die Nähe zum Anstehenden und die Zugrichtung der Gletscher während der letzten Vereisung erwarten lässt.

Oslogesteine (z. B. Rhombenporphyre) oder SW-schwedisches Material fehlen vollständig, Rügen liegt jenseits ihrer Verbreitungsgrenzen. In diesem Zusammenhang sind Funde von dunklen und quarzfreien Porphyren mit rhombenförmigen Feldspat-Einsprenglingen interessant, die dem Rhombenporphyr ähneln, aber kaum aus dem Oslograben stammen dürften (Abb. 2-4). Ein weiterer Fund eines ganz ähnlichen Porphyrs wird im Abschnitt „Dwasieden“ (Abb. 13) gezeigt und diskutiert.

Abb. 16: Rhombenführender Porphyr, Sassnitz.
Abb. 17: Rückseite
Abb. 18: Nahaufnahme der nassen Oberfläche.
Abb. 19: Nahaufnahme einiger rhombenförmiger Feldspäte; rechts der Bildmitte ein Pyritkorn.

2.1. Sassnitz

Nördlich vom Hafen in Sassnitz wurden große Steine als Uferschutz abgelagert, neben zahlreichen Großgeschieben auch Lausitzer Granodiorit aus der Westlausitz als Fremdmaterial. Der Plutonit entstand im Zuge der Cadomischen Gebirgsbildung vor etwa 650-550 Millionen Jahren.

Abb. 20: Dunkler Xenolith in einem grauen Xenolith im Lausitzer Granodiorit. Uferbefestigung nördlich vom Hafen Sassnitz. Bildbreite 35 cm.

Etwas weiter nördlich beginnt die Steilküste von Jasmund. Aufragende Schollen von Schreibkreide wechseln sich mit Geschiebemergel und Schmelzwassersanden ab (Abb. 1). Bänder aus Feuerstein sind geradezu regelhaft in die Kreidesedimente eingeschaltet (Abb. 2). An einigen Stellen kann man auch eine Faltung dieser Bänder durch Tektonik oder Eistektonik beobachten (Abb. 5). Beim Aufenthalt am Fuße der Steilküste sollte stets die Gefahr von Steinschlag berücksichtigt werden. Besonders nach starkem Regen, während der Schneeschmelze und bei Sturm ist äußerste Vorsicht geboten.

Der vorgelagerte Geröllstrand besteht größtenteils aus schwarzen Feuersteinen. Jedes einzelne der wenigen eingestreuten Kristallingeschiebe lässt sich dadurch genauer in Augenschein nehmen. An Strandabschnitten mit aufgearbeiteten glazialen Ablagerungen treten diese auch zahlreicher in Erscheinung.

Abb. 21: Geröllstrand bei Sassnitz, Bildbreite 90 cm.
Abb. 22: Brauner Ostsee-Quarzporphyr mit einem helleren Quarzporphyr als Xenolith. Aufnahme unter Wasser.
Abb. 23: Nahaufnahme der nassen Oberfläche.
Abb. 24: Porphyrischer Rapakiwi (Kökar-Rapakiwi?), Breite 11,5 cm.
Abb. 25: Vollroter Granophyr mit hellem, teils bläulichem Quarz, Breite 12 cm.
Abb. 26: Nahaufnahme.

Solche vollroten Granophyre (granitische Gesteine, die fast vollständig aus graphischen Verwachsungen von Feldspat und Quarz bestehen) sind z. B. aus dem Nordingrå-Pluton in Nordschweden, aber auch aus anderen Rapakiwi-Vorkommen bekannt. Mangels charakteristischer Merkmale lässt sich der Gesteinstyp nicht auf ein bestimmtes Vorkommen zurückführen.

Abb. 27: Roter Rapakiwi (Rödö-Rapakiwi), Breite 17 cm.
Abb. 28: Das Gestein enthält weißen Calcit, sein Erscheinungsbild stimmt mit den Wiborgiten von Rödö überein (große, klare und magmatisch kaum korrodierte Quarze; gelber Plagioklas), wenn auch nur ein einzelnes größeres, von gelbem Plagioklas umsäumtes Kalifeldspat-Ovoid enthalten ist.
Abb. 29: Nahaufnahme
Abb. 30: Mischgestein aus einem Rapakiwi-Vorkommen. Die roten Bereiche bestehen aus graphischen Verwachsungen aus Quarz und Feldspat. Quarz bildet auch einzelne größere und rundliche Aggregate. Breite 13 cm.
Abb. 31: Nahaufnahme des Gefüges.
Abb. 32: Verhältnismäßig großes Geschiebe eines Bottenseeporphyrs, Typ Andeskeri, Breite 11,5 cm.
Abb. 33: Gleicher Stein, Aufnahme unter Wasser. Lagige oder schlierige Wechsel in der Färbung der Grundmasse sind in diesem Porphyrtyp häufig zu beobachten.
Abb. 34: Nahaufnahme der nassen Oberfläche.
Abb. 35: Polierte Schnittfläche.
Abb. 36: Nahaufnahme des Gefüges. Die dunkelgrauen Quarze weisen deutliche Spuren einer magmatischen Korrosion auf (radiale Einbuchtungen durch Anschmelzung; aufgefüllt mit Grundmasse).

Häufigster Geschiebetyp in Sassnitz sind die bunten Granitoide des Transskandinavischen Magmatitgürtels (TIB). Dazu gehören die mittelkörnigen Alkalifeldspatgranite vom Växjö-Typ mit blauem oder farblosem Quarz und braunem oder rotem Alkalifeldspat; weiterhin porphyrische Granite mit der typischen Dreifarbigkeit (blauer Quarz, brauner oder roter Alkalifeldspat sowie weißer, grüner, gelber oder orangefarbener Plagioklas). Die Anzahl der Leitgeschiebe unter den TIB-Graniten ist klein, da an verschiedenen Lokalitäten im Anstehenden Gesteine mit dem gleichen Gefüge auftreten.

Abb. 37: Mittelkörniger TIB-Granit (Flivik-Granit) aus Ost-Småland, Aufnahme unter Wasser.
Abb. 38: In der Nahaufnahme sind größere Mengen an gelblichem Titanit sichtbar.

Aus Nordost-Småland und dem südlichen Östergötland dürften die folgenden Granite mit porphyrischem Gefüge stammen. Gemeinsam ist ihnen ein Anteil von gelbem bis orangerotem Plagioklas und viel Titanit.

Abb. 39: NE-Småland-Granit (ähnlich Kinda-Granit), Breite 14 cm.
Abb. 40: NE-Småland-Granit (ähnlich Kinda-Granit), Breite 14 cm.
Abb. 41: Nahaufnahme
Abb. 42: Porphyrischer Granit mit Gefügewechsel, Breite 16 cm.
Abb. 43: Ein weiterer Gefügewechsel in einem porphyrischen Granit (grüner sowie wahrscheinlich durch Metasomatose umgewandelter gelber Plagioklas). Breite 14 cm.

Die nächsten Bilder (Abb. 44-51) sind eine Zusammenstellung einiger der überaus zahlreichen gleich- und mittelkörnigen Småland-Granite vom Växjö-Typ.

Abb. 44: Gleichkörniger Alkalifeldspat-Granit (Växjö-Typ), Breite 28 cm.
Abb. 45: Gleichkörniger Småland-Granit, Breite 11 cm.
Abb. 46: Gleichkörniger Småland-Granit mit etwas Plagioklas (gelb); Breite 14 cm.
Abb. 47: Gleichkörniger Småland-Monzogranit mit basischen Xenolithen, Breite 42 cm
Abb. 48: Nahaufnahme. Der Xenolith wurde hydrothermal alteriert und zeigt einen Saum aus hellgrünem Epidot.
Abb. 49: Gleichkörniger roter Alkalifeldspat-Granit (Växjö-Typ), Breite 13,5 cm.
Abb. 50: Bunter Växjö-Granit, kommt in N-Småland verbreitet vor und besitzt eine gewisse Ähnlichkeit mit dem Siljan-Granit aus Dalarna. Breite 10,5 cm.
Abb. 51: Quarzreicher mittelkörniger Granit vom Växjö-Typ, Breite 11 cm.
Abb. 52: Porphyrischer roter Småland-Alkalifeldspatgranit, Breite 18 cm.
Abb. 53: Braune und aplitähnliche Partie mit einer mittelkörnigen Übergangszone in einem grobkörnigen Monzogranit bis Quarzmonzonit (rechts und ganz links). Breite 45 cm.
Abb. 54: Nahaufnahme
Abb. 55: Granit mit zuckerkörnigem Quarz (TIB-Granit, Älö-Granit?). Breite 13 cm.
Abb. 56: Quarzreicher Granitoid mit wenig hellbraunem Alkalifeldspat und kleineren, deutlich voneinander abgegrenzten Plagioklas-Aggregaten von weißer bis gelblichgrüner Farbe (Granodiorit). Breite 11 cm.
Abb. 57: Bornholm-Granit (Vang-Granit), Breite 28 cm.
Abb. 58: Nahaufnahme.

Typisch für die Bornholm-Granite ist das „verwaschene“ Gefüge mit unklaren Korngrenzen aus Kalifeldspat, Quarz und Plagioklas, die rötliche, über Korngrenzen hinweg laufende Hämatit-Imprägnierung sowie runde Ansammlungen von dunklen Mineralen (Biotit). Innerhalb des Biotits findet sich reichlich Titanit.

Abb. 59: (Bornholm?-)Streifengneis; Partien des Gesteins sind mit rotem Hämatit imprägniert. Breite 17 cm.

Auch Porphyrgeschiebe aus dem TIB finden sich in großer Zahl, darunter Porphyre vom Påskallavik- und Emarp-Typ. Nicht selten sind auch Gangporphyre mit einem deformierten Gefüge, erkennbar an schlierigen Ansammlungen und einer Vorzugsrichtung der dunklen Glimmerblättchen (Abb. 60).

Abb. 60: Deformierter Gangporphyr („Högsrum-Porphyr“), Breite 13 cm.
Abb. 61: Småland-Gangporphyr vom Påskallavik-Typ, Breite 19 cm.
Abb. 62: Roter Gangporphyr mit Blauquarz und körniger Grundmasse, Breite 10 cm.

Nur vereinzelt lassen sich am Strand von Sassnitz Kristallingesteine aus Dalarna entdecken.

Abb. 63: Älvdalen-Ignimbrit aus Dalarna, Breite 10,5 cm.
Abb. 64: Auffälliger Plutonit mit rosafarbenen Alkalifeldspat-Einsprenglingen und weißer Grundmasse aus feinkörnigem Feldspat. Breite 17 cm.
Abb. 65: Nahaufnahme. Quarzkörner sind nur vereinzelt aufzufinden, wahrscheinlich liegt der Quarzgehalt unter 5%. Wenn der Feldspat der weißen Grundmasse ausschließlich Plagioklas ist, dürfte es sich um einen Monzonit handeln (35-65% Alkalifeldspat am Gesamtfeldspatanteil, Quarz unter 5%).
Abb. 66: Västervik-Fleckenquarzit, Breite 9 cm.
Abb. 67: Kontakt zwischen Pegmatit und einem grauen Gneis, Breite 65 cm.
Abb. 68: Nahaufnahme der nassen Oberfläche. Der Pegmatit besteht fast ausschließlich aus Alkalifeldspat und großen Biotit-Aggregaten (bis 5 cm). Die grauen Partien innerhalb der Feldspäte weisen auf feinste Entmischungen von Albit und Kalifeldspat hin.
Abb. 69: Geschichteter Sandstein. Die wellenförmige Oberseite der rötlichen Lagen deutet auf Strömungsrippel, während die grauen Lagen darüber planar ausgebildet sind (ruhiges Strömungsregime). Breite 25 cm.

Links und ausgewählte Literatur

3D-Modell von Jasmund

GEHRMANN A 2020 The multistage structural development of the Upper Weichselian Jasmund Glacitectonic Complex (Rügen, NE Germany) – E & G Quaternary Science Journal, 69: 59-60, https://doi.org/10.5194/egqsj-69-59-2020.

HAGENOW F VON 1839 Monographie der Rügen’schen Kreide-Versteinerungen, I. Abtheilung: Phytolithen und Polyparien – Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1839: 253-296, Taf. 4-5, Stuttgart.

HAGENOW F VON 1840 Monographie der Rügen’schen Kreide-Versteinerungen, II. Abtheilung: Radiarien und Annulaten. Nebst Nachträgen zur ersten Abtheilung – Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1840: 631-672, Taf. 9, Stuttgart.

HAGENOW F VON 1842 Monographie der Rügen’schen Kreide-Versteinerungen, III. Abtheilung: Mollusken – Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1842: 528-575, Taf. 9, Stuttgart.

KENZLER M, OBST K, HÜNEKE H, SCHÜTZE K 2010 Glazitektonische Deformation der kretazischen und pleistozänen Sedimente an der Steilküste von Jasmund nördlich des Königsstuhls (Rügen). – Brandenburgische Geowissenschaftliche Beiträge, 17: 107-122.

LUDWIG A O 2011 Zwei markante Stauchmoränen: Peski/Belorussland und Jasmund, Ostseeinsel Rügen/Nordostdeutschland – Gemeinsame Merkmale und Unterschiede. – E & G, Quaternary Science Journal, 60(4): 464-487.

MÜLLER U & OBST K 2006 Lithostratigraphie und Lagerungsverhältnisse der pleistozänen Schichten im Gebiet von Lohme (Jasmund/Rügen). – Zeitschrift für geologische Wissenschaften, 34: 39-54.

REICH M 1998 (Hrsg) Die Kreide Mecklenburg-Vorpommerns. – Exkursionsführer zur Geländetagung der Subkommission für Kreidestratigraphie – 41 S., 31 Abb., 1 Tab., Greifswald.

REICH M, HERRIG E, FRENZEL P & KUTSCHER M 2018 Die Rügener Schreibkreide – Lebewelt und Ablagerungsverhältnisse eines pelagischen oberkretazischen Sedimentationsraumes / The Rügen White Chalk – Habitat and deposits of a pelagic Late Cretaceous sedimentation area. Zitteliana. 92.

SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 446+42 meist farb. kapitelweise num. Abb., 1 Kte. als Beil., Schwerin (cw Verlagsgruppe).

WAGENBRETH O & STEINER W 1982 Geologische Streifzüge – Landschaft und Erdgeschichte zwischen Kap Arkona und Fichtelberg – 204 S., 65 Farbfotos, 16 Schwarzweißfotos, 117 Abb., VEB Deutscher Verlag für Grundstoffindustrie, Leipzig.

Geschiebe am Steilufer von Nienhagen

Abb. 1: Nienhagener Kliff.

Die Steilküste bei Nienhagen, etwa 8 km westlich von Warnemünde, ist ein aktives Kliff aus weichselkaltzeitlichem Geschiebemergel, Geschiebelehm und Schmelzwassersanden. Hier finden sich zwei jüngere Geschiebemergel der Weichselvereisung, getrennt durch eine dünne Sand-, Kies- bzw. Gerölllage. Der liegende graue Geschiebemergel ist dem Hauptvorstoß des Pommerschen Stadiums vor 15.000 Jahren zuzuordnen, der braune Geschiebemergel dem vor ca. 13.200 Jahren einsetzenden Mecklenburger Stadium. Eine ähnliche Zusammensetzung findet sich am gesamten Küstenabschnitt von Geinitzort bis Kühlungsborn, während weiter östlich, entlang der Stoltera, Geschiebemergel älterer weichselzeitlicher Eisvorstöße abgelagert wurden (SCHULZ & PETERSS 1989, KLAFACK 1996).

Durch fortschreitende Küstenerosion ist das Nienhagener Kliff ständigen Veränderungen unterworfen, entsprechend ergeben sich immer neue Fundmöglichkeiten. Am westlichen Abstieg fallen zunächst große Blöcke von Larvikit ins Auge, die offenbar als Uferbefestigung dienen. Larvikit ist ein Anorthoklas-Syenit und kommt, wie alle übrigen Gesteine aus dem Oslograben sowie SW-schwedische Leitgeschiebe (Schonengranulit, Flammenpegmatit etc.), in Nienhagen nicht als Geschiebe vor.

Abb. 2: Larvikit als Uferbefestigung, Breite etwa 1 Meter.
Abb. 3: Das Gestein ist sehr grobkörnig, einzelne Anorthoklas-Kristalle erreichen eine Länge von 4 cm. Trocken fotografiert, Bildbreite 22 cm.
Abb. 4: Nahaufnahme, nass fotografiert. Einige der grünlichen Feldspäte besitzen den typisch blauen Schiller. Dieser entsteht durch Lichtbrechung an feinsten Entmischungslamellen innerhalb der Feldspäte.

Kristalline Geschiebe

In Nienhagen überwiegen ganz klar Magmatite und Vulkanite des Transkandinavischen Magmatitgürtels (TIB). Der Anteil an Åland- bzw. Rapakiwi-Gesteinen ist nicht besonders hoch (keine Bilder), der Braune Ostseeporphyr tritt hingegen sehr häufig auf. Dieser unterliegt – wie alle Vulkanite – Variationen hinsichtlich Farbe und Gefüge. Gemeinsame Merkmale dieses Porphyrtyps sind: Reichtum an Einsprenglingen, dichte Grundmasse, kleine Quarze, mafische Enklaven.

Abb. 5: Varianten des Braunen Ostsee-Quarzporphyrs. Bildbreite 25 cm.
Abb. 6: Brauner Ostsee-Quarzporphyr mit orangefarbenen Feldspat-Einsprenglingen. Breite 10 cm.
Abb. 7: Brauner Ostsee-Quarzporphyr mit weißen und roten Feldspat-Einsprenglingen, die deutliche Spuren magmatischer Korrosion zeigen. Leg. Sebastian Mantei.
Abb. 8: Brauner Ostsee-Quarzporphyr, Feldspäte teilweise stark magmatisch korrodiert. Breite 8,5 cm.
Abb. 9: Dem Braunen Ostsee-Quarzporphyr ähnliches Porphyrgeschiebe mit einer Abfolge verschiedener Gefügevarianten, vermutlich eine Folge von magma mingling bzw. einer mafischen Enklave.

Bei gehäuften Funden des Braunen Ostsee-Quarzporphyrs ist auch vermehrt mit Funden des Ostsee-Syenitporphyrs zu rechnen, dem ein ähnliches Herkunftsgebiet zugeschrieben wird. Aus Nienhagen liegen 4 Funde vor. Der gewöhnliche Ostsee-Syenitporphyr ist ein recht unauffälliges Gestein, einige seltene Varianten fallen ins Auge (Abb. 13-14).

Abb. 10: Ostsee-Syenitporphyr; grünlichgraue Grundmasse, schwarze Mandeln und Feldspateinsprenglinge in geringer Menge. Breite 15 cm.
Abb. 11: Ostsee-Syenitporphyr, grünliche Variante. Die Grundmasse wird von einem Netz aus Rissen durchzogen; Aufnahme unter Wasser.
Abb. 12: Ostsee-Syenitporphyr mit Gefügewechsel zwischen rotbrauner und grünlichgrauerGrundmasse; Aufnahme unter Wasser.
Abb. 13: Ostsee-Syenitporphyr, seltene blaugraue Variante; Aufnahme unter Wasser (Sebastian Mantei leg.).
Abb. 14: Nahaufnahme der nassen Oberfläche.

Auch basaltische Mandelsteine sind häufig anzutreffen.

Abb. 15: Violettgrauer basaltischer Mandelstein. Breite 11 cm.
Abb. 16: Basaltischer Mandelstein; zonierter Aufbau der Mandeln mit hellgrünem Epidot am Rand der ehemaligen Blasenhohlräume.
Abb. 17: Sehr blasenreicher basaltischer Mandelstein. Das hornsteinartige und dichte rote Material sind Ausscheidungen von Jaspis.

Vulkanite und Magmatite (Porphyre und Granite) aus Småland bzw. dem Transskandinavischen Magmatitgürtel (TIB) sind die häufigsten Kristallingeschiebe in Nienhagen.

Abb. 18: Järeda-Granit; blassroter Småland-Granit mit viel Blauquarz. Besonderes Kennzeichen sind die feinen, mit dunklen Mineralen gefüllten Risse innerhalb der Feldspäte. Breite 13 cm.
Abb. 19: Kinda-Granit. Porphyrischer Granit aus trübem, leicht bläulichem Quarz, größeren braunen Alkalifeldspäten und kleineren orangefarbenen Plagioklasen. Plagioklas bildet stellenweise unvollständige Säume um Alkalifeldspat. Innerhalb der dunklen Minerale ist gelblicher Titanit erkennbar.
Abb. 20: Ein weiterer Kinda-Granit bzw. NE-Småland-Granit. Breite 11 cm.
Abb. 21: Roter Småland-Granit (Filipstad-Typ) mit etwas gelblichem Plagioklas. Breite 17 cm.
Abb. 22: Leicht deformierter Småland-Granit vom Växjö-Typ (gleichkörnig) mit blassrotem Alkalifeldspat und weißem bis gelblichem Plagioklas. Der Blick geht auf die Foliationsebene, dadurch wirkt das Gestein quarzreicher. Breite 12 cm.
Abb. 23: Vollroter und grobkörniger Alkalifeldspatgranit, Breite 11 cm. Das Gefüge erscheint undeformiert; Plagioklas ist nicht erkennbar, Mafite nur in geringer Menge vorhanden. Es dürfte sich um einen Uthammar-Granit handeln.
Abb. 24: Granit vom Typ Filipstad mit runden Feldspat-Ovoiden, teilweise umgeben von einem gelbem Plagioklassaum; ohne nähere Herkunftsangabe. Breite 13 cm.
Abb. 25: Weißer Filipstad-Granit. Seltene Variante aus der Familie der Filipstad-Granite, evtl. als Leitgeschiebe für das westliche Värmland geeignet. Polierte Schnittfläche, leg. Sebastian Mantei.

Auch Granite aus anderen Gebieten als dem TIB finden sich in Nienhagen, z. B. der Karlshamn-Granit aus Blekinge, seltener auch Bornholm-Granite.

Abb. 26: Gneisgranit mit roten Flecken, evtl. von Bornholm. Breite 12 cm.
Abb. 27: Karlshamn-Granit aus Blekinge, Aufnahme unter Wasser.
Abb. 28: Der Granit enthält reichlich gelben Titanit.
Abb. 29: Ein ähnlicher Granit, wahrscheinlich Karlshamn-Granit. Breite 12 cm.

Die meisten der zahlreichen Porphyr-Geschiebe sind auf das Gebiet des TIB zurückzuführen, vor allem auf Småland, wo ausgedehnte Porphyrgebiete existieren. Eine genauere Herkunftsangabe lässt sich aber meist nicht machen. Als Leitgeschiebe eignen sich der Paskallavik- und Emarp-Typ, mit Abstrichen auch Lönneberga-, Högsrum- und Nymala-Porphyr. Porphyre aus Dalarna treten in Nienhagen nur untergeordnet auf; häufiger sind – neben Bredvad- und Grönklitt-Porphyr – Geschiebe vom Typ „Einsprenglingsreicher Porphyr aus Dalarna“. Auch unter den Småland-Porphyren gibt es einsprenglingsreiche Varianten (Abb. 34). Sie enthalten Enklaven mit dunklen Mineralen und sind in der Regel leicht deformiert.

Abb. 30: Påskallavik-Porphyr, Breite 11 cm.
Abb. 31: Deformierter Gangporphyr, „Högsrum-Porphyr„. Breite 9 cm.
Abb. 32: Nymåla-Porphyr, Breite 9 cm.
Abb. 33: Lönneberga-Porphyr, Breite 75 mm. Dieser Porphyrtyp ist in Nienhagen recht häufig anzutreffen.
Abb. 34: Einsprenglingsreicher Porphyr (Småland-Porphyr), Breite 10 cm.
Abb. 35: Quarzporphyr, Herkunft unbekannt. Breite 15 cm.
Abb. 36: Aus Dalarna stammt dieser Lapillituff aus roten, violetten und braunen, teils gerundeten Porphyr-Klasten (Digerberg-Tuffit). Breite 14 cm.

Unter den kleineren Strandsteinen in Nienhagen kann man sehr viele basische Gesteine beobachten, vor allem Dolerite vom Asby-Ulvö-Typ.

Abb. 37: Schonen-Lamprophyr. Dunkles und basaltähnliches Gestein mit Einsprenglingen von Pyroxen (schwarz), Olivin (gelbbraun) sowie weißen Mandeln. Breite ca. 30 cm. Einziger Fund dieses Gesteinstyps in Nienhagen.
Abb. 38: Dolerit mit grünem Olivin, Aufnahme unter Wasser.
Abb. 39: Nahaufnahme.
Abb. 40: Sehr grobkörniger Dolerit vom Åsby-Ulvö-Typ. Diese Variante ist aus Nordingrå (Ulvö) bekannt. Aufnahme unter Wasser.
Abb. 41: Gabbroides Gestein mit Glimmer. Breite 9 cm.
Abb. 42: Dioritisches Gestein mit länglichen Amphibolen und etwas Glimmer. Breite 16 cm.
Abb. 43: Porphyroblastischer Amphibolit. Die runden Amphibol-Blasten sind ein deutlicher Hinweis auf seine metamorphe Bildung aus einem Gabbro oder Dolerit. Das Gestein kein Hornblendegabbro, da dieser zu einem großen Teil aus magmatisch gebildetem Amphibol bestehen muss. Breite 85 mm.

Unter den Metamorphiten sind Paragneise vom Sörmland-Typ mit violettroten Granat-Porphyroblasten sehr häufig anzutreffen. Auch die Fundmöglichkeiten für Fleckengesteine aus dem Västervik-Gebiet scheinen in Nienhagen günstig zu sein. Allerdings treten die violetten Västervik-Quarzite nur selten auf, obwohl sie mengenmäßig die Fleckengesteine überwiegen müssten.

Abb. 44: Paragneis vom Sörmland-Typ mit violettroten Granat-Porphyroblasten; Breite 10 cm.
Abb. 45: Glimmerführender Quarzit mit weißen Sillimanit-Granoblasten. Solche Fleckenquarzite mit deformiertem Gefüge lassen sich nicht ausschließlich auf das Västervik-Gebiet zurückführen. Breite 14 cm.
Abb. 46: Västervik-Fleckengestein (Cordierit-Granofels), Breite 12 cm.
Abb. 47: Diverse Fleckengesteine aus der ehem. Sammlung Somann. Eine Erläuterung der Funde findet sich auf kristallin.de, Abb. 51.
Abb. 48: Rotfleckiger Quarzit, Breite 8,5 cm.
Abb. 49: Nahaufnahme.
Abb. 50: Rotfleckiger Quarzit. Dieser Typ kommt auch im Västervik-Gebiet vor. Polierte Schnittfläche. Ehem. Sammlung Somann.
Abb. 51: Silikatmarmor („Ophicalcit“), Breite 17 cm. Näheres zu Marmor.
Abb. 52: Nahaufnahme unter Wasser.
Abb. 53: Glimmerquarzit. Früher als „Weißer Glimmerschiefer von Schonen“ in KORN 1927 bezeichnetes Gestein kommt u. a. in Västana, aber auch an anderen Lokalitäten vor. Mitunter ist eine seltene Mineralisation phosphathaltiger Minerale zu beobachten. Kein Leitgeschiebe, Breite 13 cm.
Abb. 54: Epidotisierter Magmatit (Metasomatit) aus rotem Alkalifeldspat, hellgrünem Epidot, epidotisiertem Plagioklas sowie etwas Quarz. Breite 12 cm.
Abb. 55: Weitgehend aus Feldspäten bestehende Brekzie, Risse verfüllt mit feinkristallinem Quarz und Milchquarz. Breite 11 cm.
Abb. 56: Tektonische Brekzie. Das Wirtgestein besteht aus rotem Alkalifeldspat und Quarz und besitzt eine granitische Zusammensetzung. Die Risse wurden mit feinkristallinem Quarz und Milchquarz verfüllt. Breite 12 cm.
Abb. 57: Mylonitischer Augengneis mit hellen Feldspat-Porphyroblasten. Der als „Tännas-Augengneis“ bezeichnete Geschiebetyp dürften in vergleichbarer Ausbildung auch in anderen Mylonit-Vorkommen zu erwarten sein. Breite 9 cm.
Abb. 58: Feinkörniger gebänderter Gneis (Leptit). Aufnahme unter Wasser.
Abb. 59: Nahaufnahme der nassen Oberfläche. Die Grundmasse besteht aus einem gleichkörnigem Gefüge aus Quarz und Feldspat.
Abb. 60: Pegmatoide Quarz-Feldspat-Partie mit großen hellroten Granat-Porphyroblasten, wahrscheinlich Teil eines Leukosoms in einem Migmatit. Leg. Sebastian Mantei.
Abb. 61: Nahaufnahme des Granats, durchsetzt von schwarzer Hornblende.

Sedimentärgeschiebe

In Nienhagen finden sich sehr viele Feuersteine. Günstig scheinen die Fundmöglichkeiten für Lias-Geschiebe (Toneisensteine mit Pflanzenresten) zu sein, weiterhin Kambrische Geschiebe (BUCHHOLZ 2011, HINZ-SCHALLREUTER & KOPPKA 1996), Stinkkalke, Silur-Geschiebe mit Graptolithen (MALETZ 1995, 1996) Gelegentlich kommen Roter Beyrichienkalk sowie Unterkreide-Geschiebe vor.

Abb. 62: „Rhät-Lias“-Geschiebe, Feinsandstein mit kohligen Pflanzenresten, leg. Sebastian Mantei.
Abb. 63: Grünliche Sandstein-Konkretion (wahrscheinlich Unterkreide) mit phosphorischem Zement sowie Holzresten.
Abb. 64: Bruchfläche.
Abb. 65: Trias-Konglomerat („Caliche-Konglomerat“). Bunte Mergelklasten in einem sparitischen Zement. Leg. Georg Engelhardt (Potsdam).
Abb. 66: Bruchfläche.
Abb. 67: Nahaufnahme der Bruchfläche.
Abb. 68: Roter Beyrichienkalk, Aufnahme unter Wasser.
Abb. 69: Knolliger Dolomit mit Dolomit-Drusen.
Abb. 70: Druse mit würfelförmigen Dolomit-Kristallen. Der Nachweis von Dolomit gelingt mit verdünnter Salzsäure: Dolomit zeigt nur eine sehr schwache Reaktion unter Bildung von CO2-Bläschen.
Abb. 71: Sandstein-Konglomerat mit phosphoritisch gebundenen Klasten, Breite 13 cm.

Nach einem Hinweis von S. Mantei handelt es sich bei diesem Konglomerat nicht etwa um den unterkambrischen Rispeberg-Sandstein, vielmehr sprechen enthaltene Trilobitenreste von Agnostus pisiformis für das obere Mittelkambrium. Dies ist ungewöhnlich, da eine sandige Fazies in der A. pisiformis-Zone in der Literatur bisher nicht beschrieben wurde. Von hier bekannt sind entweder (Stink-)kalkige Konglomerate mit oder sandige Konglomerate ohne A. pisiformis.

Abb. 72: Steilufer und Geröllstrand bei Nienhagen.

Literatur

SCHULZ W & PETERSS K 1989 Geologische Verhältnisse im Steiluferbereich des
Fischlandes sowie zwischen Stoltera und Kühlungsborn – In: Mitteilungen der
Forschungsanstalt für Schiffahrt, Wasser- und Grundbau; Schriftenreihe Wasser- und
Grundbau 54. Berlin: Forschungsanstalt für Schiffahrt, Wasser- und Grundbau. S. 132-148.

BUCHHOLZ A 2011 Ein Geschiebe des A[ht]iella jentzschi-Konglomerates von Nienhagen, Mecklenburg (Norddeutschland) – Mitteilungen der Naturforschenden Gesellschaft Mecklenburg 11 (1): 24-30, 14 Abb., Ludwigslust.

BÜLOW K VON 1937 Grundmoränenbilder – Zeitschrift für Geschiebeforschung und Flachlandsgeologie 13 (1): 5-8, 3 Abb., Leipzig.

GEINITZ E 1910 Das Uferprofil des Fischlandes – Mitteilungen aus der Großherzoglichen Mecklenburgischen Geologischen Landesanstalt 21: 11 S., 11 Taf., Rostock (Leopold i. Komm.).

HINZ-SCHALLREUTER I & KOPPKA J 1996 Die Ostrakodenfauna eines mittelkambrischen Geschiebes von Nienhagen (Mecklenburg) [The Ostracod Fauna of a Middle Cambrian Geschiebe from Nienhagen (Mecklenburg)] – Archiv für Geschiebekunde 2 (1): 27-42, 5 Taf., Hamburg.

KLAFAK R 1996 Bericht über die Exkursion zur Steilküste Nienhagen – Geschiebekunde aktuell 12 (2): 61, Hamburg.

MALETZ J 1995 Dicranograptus clingani in einem Geschiebe von Nienhagen (Mecklenburg) – Geschiebekunde aktuell 11 (2): 33-36, 2 Abb., Hamburg.

MALETZ J 1996 Saetograptus cf. leintwardinensis in einem Geschiebe von Nienhagen – Geschiebekunde aktuell 12 (4): 111-116, 2 Abb., Hamburg.

PETERSS K 1990 Strukturtektonische Untersuchungen glazigener Sedimente im Raum Stoltera-Kühlung – Zeitschrift für geologische Wissenschaften 18 (12): 1093-1103, 10 Abb., Berlin (Verlag für Geowissenschaften).