Schlagwort-Archive: Falkenberg

Geologische Streifzüge in SW-Schweden

Abb. 1: Felsküste im äußersten Nordwesten der Kullaberg-Halbinsel. Das Grundgebirge besteht hier aus migmatitischen Gneisen mit eingeschalteten Amphibolit-Körpern und besitzt ein Alter von rund 1 Milliarde Jahren.

Ein mehrteiliger Exkursionsbericht führt an ausgewählte Lokalitäten in Südwest-Schweden. Zahlreiche Küstenaufschlüsse und aufgelassene Steinbrüche zwischen Kullaberg-Halbinsel und Varberg bieten hervorragende Einblicke in die Geologie eines metamorphen Grundgebirges, das vor rund 1 Milliarde Jahren im Zuge der Svekonorwegischen Gebirgsbildung entstand. Hier treten großflächig Gesteine zutage, die in keiner anderen Region des nordischen Grundgebirges vorkommen, z. B. saure und mafische Granulite. Auf mehreren Reisen konnte eine Reihe von typisch SW-schwedischen Gesteinstypen, darunter auch kristalline Leitgeschiebe, beprobt und in ihrem geologischen Kontextes studiert werden.

Abb. 2: Karte der vorgestellten Lokalitäten.

Die Zahlen verweisen auf die entsprechenden Abschnitte des Exkursionsberichts. Die meisten Lokalitäten liegen an der Küste, weil dort die Gesteine besonders gut aufgeschlossen sind.

  1. Zur Geologie SW-Schwedens
    1.1. Leitgeschiebe und Geschiebetypen aus SW-Schweden
  2. Kullaberg-Halbinsel
    2.1. Kullaberg und Kullaite
    2.2. Kullaite als Geschiebe
    2.3. Kullaberg: Ransvik
    2.4. Nordwest-Dolerit von Arild
  3. SW-schwedische Küstenaufschlüsse
    3.1. Söndrum
    3.2. Steninge
    3.3. Glassvik
    3.4. Stensjöhamn
    3.5. Träslövsläge
  4. Varberg-Charnockit und Torpa-Granit
    4.1. Charnockite als Geschiebe
    4.2. Torpa- und Tjärnesjön-Granit
  5. Retroeklogit von Ullared

Im Zusammenhang mit den SW-schwedischen Gesteinen neu hinzugekommen sind Einzelbeschreibungen der folgenden Gesteinstypen:

Geologische Streifzüge in SW-Schweden

3.2. Steninge

Entlang der Küste zwischen Falkenberg und Halmstad befinden sich zahlreiche gut zugängliche Küstenaufschlüsse mit Gesteinen der SGR (Steninge, Glassvik; nächster Teil: Stensjöstrand). Etwa auf halber Strecke liegt der Ort Steninge (Lok. 3.2 auf der Karte). Ausgehend vom ersten Parkplatz im Ort (56.76421, 12.63274) erreicht man in südlicher Richtung bald einen alten Steinbruch, in dem migmatitische Gneise vom Halmstad-Typ abgebaut wurden.

Abb. 1: Stürmisches Wetter an der Küste bei Steninge; rotgraue Gneise, anstehend und als Haldenmaterial aus dem ehemaligen Steinbruch.
Abb. 2: Migmatitischer Gneis vom Halmstad-Typ aus rotem Alkalifeldspat, grauem Quarz, gelbem bis grünlichem Plagioklas und etwas Biotit. Magnetit wurde an dieser Lokalität nicht nachgewiesen. Bildbreite etwa 30 cm.
Abb. 3: Gefalteter migmatitischer Gneis. Die roten und mafitarmen Quarz-Feldspat-Leukosome weisen ein richtungslos-körniges Gefüge auf und entstanden durch partielle Aufschmelzung der grauen und feinkörnigen Gneise (Paläosom).
Abb. 4: Häufig ist keine klare Grenze zwischen Leukosom (rot) und Paläosom (grau) erkennbar.
Abb. 5: Gebänderter migmatitischer Gneis aus dem Steinbruch Steninge.

Innerhalb der rotgrauen migmatitischen Gneise finden sich mafitarme und deformierte Quarz-Feldspat-Leukosome mit plattigen Quarzen („Schonengranulit“, Abb. 6) sowie linsenförmige Einschaltungen von grobkörnigen und pegmatitartigen Gesteinen („Flammenpegmatit“; Abb. 7, 8). Diese zentimeter- bis dezimetergroßen Partien gehen ohne scharfe Grenze in die migmatitischen Gneise über. Plattenquarze und das Fehlen dunkler Minerale weisen auf granulitfazielle Metamorphosebedingungen während der svekofennischen Orogenese hin.

Schonengranulit und Flammenpegmatit sind charakteristische Gesteine des westlichen Teils der SGR und als Leitgeschiebe verwendbar. Sie treten an mehreren Lokalitäten entlang der schwedischen Westküste auf, in einem begrenzten Gebiet zwischen Falkenberg, Halmstad und Kullaberg. Neben Einschaltungen als Leukosom in migmatitischen Gneisen bildet der Flammenpegmatit auch meterbreite Gänge (s. Söndrum). Das Alter der Ausgangsgesteine liegt bei etwa 1,4 Ga, die Metamorphose erfolgte während der svekonorwegischen Orogenese vor etwa 970 Ma (VINX 1998).

Neben dem Flammenpegmatit treten in SW-Schweden auch bunte Pegmatite mit einer ähnlichen Farbgebung auf, die jedoch undeformiert sind und keine Plattenquarze enthalten. Sie wurden postkinematisch (= nach Beendigung der Orogenese) gebildet und sind nicht als Leitgeschiebe geeignet (Abb. 9).

Abb. 6: Migmatitische, von dunklen Mineralen freie Partie mit grauen Plattenquarzen („Schonengranulit“).
Abb. 7: „Flammenpegmatit“ (granulitfazieller bunter Pegmatit) aus rotem Alkalifeldspat, blassgelbem Plagioklas und grauen Plattenquarzen. Angefeuchtete Schnittfläche eines Haldenfundes von Steninge.
Abb. 8: Grobkörnige Partie eines deformierten bunten Pegmatits mit Plattenquarzen („Flammenpegmatit“), rechts unten begrenzt von Ansammlungen dunkler Minerale (Biotit). Breite des Steins etwa 20 cm.
Abb. 9: Grobkörniger (postkinematisch gebildeter) Pegmatit aus rotem Feldspat, grauem Quarz und gelbem Plagioklas. Das Gestein ähnelt dem Flammenpegmatit, ist aber nur mäßig deformiert, weist keine plattige Ausbildung der Quarze auf und enthält Ansammlungen von dunklen Mineralen (blättriger Biotit).

3.3. Glassvik

Einige Kilometer nördlich von Steninge liegt die Ortschaft Glassvik (Lok. 3.3 auf der Karte). Vom Parkplatz (56.77629, 12.62089) aus geht man zur Küste und orientiert sich in nördlicher Richtung. Aufschlüsse von migmatitischen Quarz-Feldspat-Gneisen wechseln sich mit Amphibol-Gneisen ab. Auffällig ist das nahezu senkrechte Einfallen der Gneise (Abb. 10) und eine annähernd parallel zur Klüftung verlaufende Foliation. Verschiedene Generationen von pegmatitischen bis aplitischen Gängen innerhalb der Quarz-Feldspat-Gneise (Abb. 11; 14-16) zeigen Deformationsstrukturen wie Verdünnung, Boudinage und interne Foliation. Die Gesteine entstanden während des „Halland-Events“ vor etwa 1.440 Ma und wurden im Zuge der svekonorwegischen Gebirgsbildung erneut deformiert (MÖLLER et al 1996: 18-19).

Abb. 10: Steil einfallende, NE-SW streichende Gneise an der Küste von Glassvik (etwa 56.78026, 12.61332).
Abb. 11: Roter und undeformierter Pegmatit-Gang (Breite etwa 1,5 m) in einem grauen migmatitischen Amphibolgneis.
Abb. 12: Granatführender Amphibolit, Bildbreite 1 m. Konkordant zur Foliationsrichtung verläuft ein Pegmatitgang; im Kontaktbereich ist der Amphibolit grobkörniger ausgebildet.
Abb. 13: Weiter nordwärts eröffnet sich dem Besucher eine auenartige Küstenlandschaft, die stellenweise von anstehenden Felsen oder kleinen Geröllstränden durchbrochen wird.
Abb. 14: Feinkörnige Graugneise, massiv durchsetzt von grobkörnigen roten Partien. Faltenstrukturen weisen auf eine starke Deformation hin. Die roten Partien besitzen eine granitische Zusammensetzung und verlaufen annähernd parallel zur Foliation. Bildbreite etwa 3 m.
Abb. 15: Innerhalb der roten Partien sind größere Ansammlungen dunkler Minerale (Biotit) erkennbar. Die anatektischen Körper sind teilweise stark verfaltet, zeigen boudinierte Strukturen oder wirken regelrecht verdreht. Bildbreite etwa 1 m.
Abb. 16: Die roten Partien scheinen intern nur wenig deformiert zu sein und weisen ein weitgehend regelloses Mineralgefüge auf (roter Alkalifeldspat, heller Plagioklas, grauer Quarz, Ansammlungen dunkler Minerale). Bildbreite 30 cm.

Ein weiterer interessanter Aufschluss an der Küste von Glassvik zeigt Erosionsrelikte eines gangförmigen und mehrere Zehnermeter mächtigen Granatamphibolits, der aus einer Abfolge unterschiedlicher Gefügevarianten besteht: ein grobkörniger Granat-Amphibolit mit regellosem Gefüge im Zentrum des Ganges wird zu beiden Seiten von migmatitischen Granatamphiboliten flankiert.

Abb. 17: Links ein dunkler und massiger Amphibolit als Gangmitte, rechts davon migmatitische Granatamphibolite. Breite des Aufschlusses etwa 5 m.
Abb. 18: Grobkörniger und massiger Granatamphibolit im Zentrum des Ganges (Breite etwa 1,5 m). Das Gestein enthält sehr viel schwarzen Amphibol, der hohe Granatanteil bewirkt eine violettschwarze Gesamtfarbe.
Abb. 19: Nahaufnahme; weitgehend richtungslos-körniges Gefüge aus schwarzem Amphibol, rotem Granat und etwas Plagioklas. Die Granat-Porphyroblasten erreichen eine Größe von 3 cm.
Abb. 20: Zur linken Seite wird der massige Granatamphibolit von einem migmatitischen („plagioklasschlierigen“) Granatamphibolit begleitet. Breite des Steins etwa 75 cm.
Abb. 21: Auf der rechten Seite steht ein migmatitischer Granat-Amphibolgneis mit ausgesprochen großen Granat-Porphyroblasten an. Häufigkeit und Größe der Granate nehmen zum Zentrum und zum Rand des Ganges ab.
Abb. 22: Sechseckiger Anschnitt eines großen Granats, umgeben von einem weißen Plagioklas-Leukosom; Durchmesser des Granats 7,5 cm.
Abb. 23: Runder Granat-Porphyroblast mit einem Saum aus schwarzem Amphibol; Durchmesser 8 cm.
Abb. 24: Flammenpegmatit (deformierter bunter Pegmatit), polierte Schnittfläche, loser Strandstein von Glassvik.

Literatur

MÖLLER C, JOHANSSON L, ANDERSSON J & SÖDERLUND U 1996 Southwest-Swedish Granulite Region – Berichte der Deutschen Mineralogischen Gesellschaft, Beih. z. Eur. J. Mineral. Vol. 8, 1996, No.2.

VINX R 1998 Neue kristalline SW-schwedische Leitgeschiebe: Granoblastischer Mafischer Granulit, Halland-Retro-Eklogit und deformierter, bunter Pegmatit – Archiv für Geschiebekunde, Hamburg 1998, Band 2, Heft 6, S. 363-378.

Geologische Streifzüge in SW-Schweden

3.4. Stensjöhamn

Der Küstenabschnitt bei Stensjöhamn (Lok. 3.4 auf der Karte), unmittelbar nördlich von Glassvik, bietet eine ganze Reihe interessanter Aufschlüsse, u. a. migmatitische Granatamphibolite, granulitfaziell gebildete Orthopyroxen-Megakristalle und Sillimanitgneise (JOHANSSON 2011, HANSEN et al. 2015). Ausgehend vom Parkplatz (56.78949, 12.61967) hält man sich an der Küste in nördlicher Richtung und erreicht zunächst Aufschlüsse von migmatitischen Quarz-Feldspat-Gneisen und Amphibolgneisen. Auch hier ist von einer komplexen metamorphen Geschichte der Gesteine und mindestens zwei Phasen der Deformation auszugehen, dem Halland-Event vor 1.420-1.440 Ma und der svekonorwegischen Orogenese vor 980-950 Ma.

Abb. 1: Küste bei Stensjöhamn.
Abb. 2: Migmatitische Quarz-Feldspat-Gneise mit hellen, annähernd parallel zur Foliation verlaufenden Quarz-Feldspat-Leukosomen. Bildbreite ca. 3 m.
Abb. 3: Rotgrauer Quarz-Feldspat-Adergneis (schwach magnetisch), Anstehendprobe von Stensjöstrand.
Abb. 4: Verfalteter Amphibolitgang in einem grauen Quarz-Feldspat-Gneis. Breite des Gangs etwa 150 cm.
Abb. 5: Migmatitischer Amphibolit. Diskordant zur Foliation verlaufende weiße Leukosome aus Plagioklas verweisen auf eine erneute metamorphe Überprägung des Gesteins während der svekonorwegischen Gebirgsbildung. Die gebänderte und mafitreiche Partie in der Bildmitte enthält keine Leukosome.
Abb. 6: Boudinageartige Einschaltungen von grünlichen Kalksilikatgesteinen in einem migmatitischen Amphibolit, Bildbreite 1 m.

Als Boudinage bezeichnet man ellipsoide Gefügeeinheiten in migmatitischen Gneisen. Boudinage entsteht, wenn dünne Gesteinslagen während der Deformation unterbrochen werden und in einzelne linsenförmige Einheiten zerfallen. Das grünliche (epidothaltige) Kalksilikatgestein dürfte sedimentären Ursprungs sein.

Abb. 7: Helles Feldspat-Leukosom mit Boudinage-Struktur in einem Amphibolit. Bildbreite etwa 1 m.

Eine Besonderheit der Lokalität Stensjöstrand sind Megakristalle von Orthopyroxen (Enstatit). Ihre Position innerhalb der Leukosome der Amphibolgneise lässt darauf schließen, dass sie während der partiellen Aufschmelzung des Wirtgesteins entstanden (HANSEN et al 2015).

Abb. 8: Relikte von grünen Orthopyroxen-Megakristallen innerhalb heller Leukosome eines Granatamphibolits. Bildbreite 70 cm.
Abb. 9: Nahaufnahme eines großen Orthopyroxens, umgeben von einem Saum aus dunklem Amphibol (bzw. Amphibol-Quarz-Symplektiten) sowie rotem Granat.

Unter granulitfaziellen Bedingungen (1 GPa, 800 Grad) und der Abwesenheit von Fluiden (sog. Dehydrationsschmelzen) kommt es zu einem Zerfall von Biotit und Amphibol unter Bildung von Orthopyroxen:

Bt + Hbl + Pl +/- Qtz ↔ Opx+ Schmelze + Cpx + Gt

Einige Orthopyroxen-Megakristalle sind von einem Saum aus retrograd gebildeten Hornblende-Quarz-Symplektiten umgeben, die als Barriere eine weitere Umwandlung der Megakristalle verhinderten, während andere Orthopyroxe retrograd in Chlorit umgewandelt wurden.

Migmatite mit Orthopyroxen-Megakristallen treten an verschiedenen Lokalitäten in SW-Schweden auf (s. a. Söndrum). Vorkommen dieser aus Dehydrationsschmelzen unter granulitfaziellen Bedingungen gebildeten Orthopyroxene dürften sich auf die südwestschwedische Granulitregion beschränken. Der Gesteinstyp könnte als Leitgeschiebe geeignet sein, allerdings ist eine sichere Bestimmung von Orthopyroxen mit einfachen Mitteln kaum möglich.

Abb. 10: Aufschluss eines migmatitischen Granatamphibolits mit Plagioklas-Leukosomen („plagioklasschlieriger Granatamphibolit“) an der Küste von Stensjöhamn.
Abb. 11: Granatamphibolit mit hellen Plagioklas-Leukosomen, Bildbreite 125 cm.
Abb. 12: Migmatitischer Granatamphibolit; große Granat-Porphyroblasten sind von hellen Plagioklas-Leukosomen umgeben.
Abb. 13: Probe eines migmatitischen Granatamphibolits, Nahaufnahme der frischen Bruchfläche. Das Gestein von der Lokalität Stensjöstrand besteht im Wesentlichen aus Amphibol, Plagioklas und Granat; nach HANSEN et al 2015 enthält es auch geringe Mengen von Pyroxen, Biotit und Apatit.
Abb. 14: Amphibol-Gneise bis Amphibolite mit hellen und diskordant zur Foliationsrichtung verlaufenden Leukosomen. Bildbreite etwa 2 m.

Die Löcher im Fels stammen von einem Bohrgerät, mit dem Proben zum Zwecke einer Datierung entnommen wurden. Die Datierung isolierter Zirkone ergab ein Kristallisationsalter von 1.415-1.390 Ma. Anwachssäume um die gleichen Zirkone verweisen auf eine Metamorphose während der svekonorwegischen Orogenese vor 975-965 Ma (HANSEN et al. 2015).

Abb. 15: Küstenlandschaft bei Stensjöhamn.

Nördlich des kleinen Hafens (Stensjöhamn) ändert sich die Zusammensetzung der Gesteine. Hier stehen plattige, teilweise stark gefaltete Sillimanit-Gneise an, die durch Verwitterung bizarre Formen annehmen können.

Abb. 16: Sillimanitgneise bei Stensjöhamn.
Abb. 17: Die komplexe Faltenstruktur der Sillimanitgneise tritt durch Verwitterung in bizarren Formen hervor.
Abb. 18: Verfaltete Sillimanitgneise. Bildbreite etwa 2 m.
Abb. 19: Anstehender Sillimanitgneis, Nahaufnahme; Bänder aus weißem bis gelblichem und plattig ausgebildetem Sillimanit entlang der Foliationsrichtung.
Abb. 20: Sillimanit-Gneise, Brandungsgerölle am Ufersaum.
Abb. 21: Sillimanitgneis mit rotem Granat, Brandungsgeröll vom Anstehenden, Aufnahme unter Wasser. Sillimanit ist durch Verwitterung gelblich gefärbt und durchzieht das Gestein in breiten Streifen.
Abb. 22: Gleicher Stein, trockene Oberfläche. Die Grundmasse besitzt ein nahezu gleichkörniges Gefüge aus deutlich voneinander abgesetzten Körnern aus Quarz, Feldspat und Amphibol.
Abb. 23: Nahaufnahme unter Wasser. Schwarzer Amphibol in stengeliger Ausbildung durchsetzt ein größeres Granat-Aggregat.

In Stensjöstrand finden sich neben Brandungsgeröllen anstehender Gesteine auch Geschiebe, u. a. zwei „alte Bekannte“: ein Kinne-Diabas aus Westschweden sowie ein NW-Dolerit, dessen Anstehendes eigentlich viel weiter südlich liegt. Auch zwei Rapakiwi-Granite mit vermuteter Herkunft vom Åland-Archipel wurden aufgelesen. Im Weichsel-Glazial änderte der Baltische Eisstrom im Gebiet der südlichen Ostsee seine ursprünglich südliche Zugrichtung und nahm einen ost-westlichen und schließlich sogar nördlichen Verlauf. Dies dürfte auch der Grund für Funde von NW-Dolerit und Åland-Gesteinen nördlich bzw. weit abseits von ihrem Herkunftsgebiet sein.

Abb. 24: Kinne-Diabas und NW-Dolerit, Geschiebe von Stensjöstrand. Breite der Steine jeweils etwa 9 cm.
Abb. 25: Plagioklasschlieriger Granatamphibolit, Geröll von Stensjöstrand. Max. 4 cm große Granat-Porphyroblasten sind von einem hellen Plagioklas-Saum umgeben. Breite des Steins 16 cm.
Abb. 26: Grobkörniger, wahrscheinlich postkinematisch entstandener Pegmatit aus rotem Alkalifeldspat, grauem Quarz und gelbem Plagioklas (keine Plattenquarze; kein Flammenpegmatit); Breite des Steins 80 cm.

3.5. Träslövsläge

In Träslövsläge (Lok. 3.5 auf der Karte), einem kleinen Fischerort südlich von Varberg, sollten sich etwa 200 m westlich der Kirche mehrere Aufschlüsse befinden (MÖLLER et al 1996: 32-33). Mittlerweile ist der Strandbereich allerdings stark verwachsen, nur eine Lokalität konnte ausfindig gemacht werden. Ein mafischer Granulit zeigt Relikte einer magmatischen Schichtung. Individuelle Lagen unterschiedlicher Dicke stehen diskordant zur Foliationsrichtung.

Abb. 27: Reliktische magmatische Schichtung in einem mafischen Granulit. Bildbreite ca. 60 cm.
Abb. 28: Schonengranulit, einzelnes Strandgeröll von Södra Näs, 2 km NW von Träslövsläge.

Literatur

HANSEN E, JOHANSSON L, ANDERSSON J, LABARGE L, HARLOV D, MÖLLER C & VINCENT S 2015 Partial melting in amphibolites in a deep section of the Sveconorwegian Orogen, SW Sweden – LITHOS (2015), Vol. 236-237, S. 27-45.

JOHANSSON L 2011 Bergrundsgeologi in Stensjöstrands Naturreservat – 7 S., Geologiska Institutionen Lunds Universitet.

MÖLLER C, JOHANSSON L, ANDERSSON J & SÖDERLUND U 1996 Southwest-Swedish Granulite Region – Berichte der Deutschen Mineralogischen Gesellschaft, Beih. z. Eur. J. Mineral. Vol. 8, 1996, No.2.


3. SW-schwedische Küstenaufschlüsse

3.1. Söndrum

In Halland, im Gebiet zwischen Halmstad und Falkenberg (Karte), entwickelte sich ab dem Ende des 19. Jahrhunderts eine steinverarbeitende Industrie. Zahlreiche Steinbrüche zeugen vom regen Abbau der migmatitischen Gneise, die unter Handelsbezeichnungen wie „Halmstad“ oder „Hallandia“ überregionale Bekanntheit erlangten und auch heute noch ein beliebter Dekorstein sind. An der Küste bei Söndrum, im Ortsteil Stenhuggeriet bieten mehrere aufgelassene Steinbrüche einen Einblick in das Grundgebirge mit Gesteinen der Südwestschwedischen Granulitregion (Lok. 3.1 auf der Karte).

Abb. 1: Küstennah angelegte Steinbrüche erleichterten den Abtransport der Werksteine. Grötvik stenbrott, Aussichtsplattform Spritkullen, südlich von Söndrum.
Abb. 2: Rotgrauer und magnetitführender migmatitischer Granulitgneis („Järngneis“). Bildbreite 30 cm.
Abb. 3: Rot- bis orangegraue migmatische Gneise; Haldenmaterial der Steinbrüche als Brandungsgeröll. Bildbreite ca. 35 cm.
Abb. 4: Brandungsgerölle; migmatitische Adergneise sowie orangerote und pegmatitähnliche Quarz-Feldspat-Gesteine (teilweise wohl Leukosome aus der Aufschmelzung der Adergneise).
Abb. 5: Blick in den stillgelegten Steinbruch „Bolagsbrottet“.
Abb. 6: Migmatitischer Gneis mit grobkörnigen Partien aus rotem Alkalifeldspat und blassgelbem Plagioklas sowie Ansammlungen von dunklen Mineralen (Biotit); Steinbruch Bolagsbrottet.
Abb. 7: Deformierter bunter Pegmatit („Flammenpegmatit“) aus rotem Alkalifeldspat, grauem Quarz und grünlichem Plagioklas. Steinbruch Bolagsbrottet, Aufnahme unter Wasser.
Abb. 8: Orangeroter Flammenpegmatit, Steinbruch Bolagsbrottet.
Abb. 9: Fast vollständig aus dunklen Glimmermineralen bestehendes Gestein („Biotitit“), wahrscheinlich ein nicht aufgeschmolzenes Relikt (sog. Restit) migmatitischer Gneise.

Eine Besonderheit im Steinbruch Bolagsbrottet sind grüne und „charnockitisierte“ Partien innerhalb der rötlichen Grundgebirgsgneise. Die lokale Umwandlung der Gneise in Charnockite vollzog sich unter granulitfaziellen Bedingungen und dem Einfluss CO2-reicher, aber wasserarmer Fluide. Dabei kam es zur Bildung von Ortho- und Klinopyroxen, dem kennzeichnenden Mineralbestand von Charnockiten. Ansonsten bestehen die charnockitisierten Partien wie die benachbarten Gneise im Wesentlichen aus Quarz und Feldspat.

Abb. 10: Etwa 5 m breite grüne und charnockitisierte Partie, durchzogen von einem roten Pegmatit („Flammenpegmatit“).

Der charnockitisierte Bereich geht ohne klare Begrenzung in die roten Gneise über und wird von einem 1 m mächtigen roten Pegmatitgang durchzogen („Flammenpegmatit“). Klinopyroxen und Orthopyroxen treten, neben retrograd gebildetem Amphibol, ausschließlich innerhalb der grünen Partien sowie im Pegmatit auf. Der Pegmatit dürfte durch Aufschmelzung unter granulitfaziellen Bedingungen entstanden sein. Die Charnockitisierung wurde auf 1397 +/- 4 Ma datiert (HARLOV et al 2006; ANDERSSON et al 2008: 38-41).

Solche durch hochgradige Metamorphose charnockitisierte Gneise finden sich an mehreren Lokalitäten in SW-Schweden. Daneben gibt es auch Charnockit-Massive, die eindeutig magmatischen Ursprungs sind (s. Varberg-Charnockit). Der Gesteinstyp kann also auf verschiedene Weise entstehen. Kennzeichnend und für die Bestimmung dieser Quarz-Feldspat-Gesteine maßgeblich ist enthaltener Orthopyroxen, der jedoch, wie die anderen dunklen Minerale, meist feinkörnig ausgebildet und mit einfachen Mitteln nicht erkennbar ist. Im Gelände können jedoch eine Grünfärbung der Gesteine, das Vorhandensein von Granat und gegebenenfalls die Vergesellschaftung mit granulitfaziellen Pegmatiten („Flammenpegmatit“) als deutliche Indizien für charnockitisierte Partien angesehen werden.

Abb. 11: Deformierter bunter Pegmatit („Flammenpegmatit“) im Zentrum der charnockitisierten Gneispartie. Die plattig ausgebildeten Quarze verweisen auf granulitfazielle Bildungsbedingungen. Bildbreite etwa 35 cm.
Abb. 12: Charnockitprobe aus dem Steinbruch Bolagsbrottet, Aufnahme unter Wasser.

Das Gestein besteht aus xenomorphen Körnern von grünem Feldspat und transparentem Quarz. Dunkle Minerale sind von Hand nicht bestimmbar und bilden unregelmäßige Ansammlungen und Schlieren ohne vorherrschende Foliationsrichtung.

Abb. 13: Nahaufnahme. Innerhalb der dunklen Minerale findet sich reichlich roter Granat.

Ein weiterer Aufschluss im Steinbruch Bolagsbrottet zeigt ein blassgrünes und rotes, teilweise pegmatitartiges Quarz-Feldspat-Gestein mit Megakristallen von Orthopyroxen als faziestypisches Mineral der Granulitfazies (MÖLLER et al 1996: 20). Orthopyroxen-Megakristalle treten auch an anderen Lokalitäten in SW-Schweden auf (s. Abschnitt Stensjöstrand).

Abb. 14: Pegmatit mit Orthopyroxen-Megakristallen. Bildbreite etwa 90 cm.
Abb. 15: Nahaufnahme; schwarze Orthopyroxene bis 4 cm Länge.
Abb. 16: Bruchfläche einer Probe aus dem gleichen Aufschluss.

Auch hier erweist sich die makroskopische Bestimmung von Orthopyroxen als problematisch. Ein lebhafter Glasglanz deutet eher auf Amphibol, während die eher schlechte Spaltbarkeit sowie rechtwinklige Spaltwinkel auf Pyroxen hinweisen. Möglicherweise liegt hier auch eine partielle retrograde Umwandlung von Orthopyroxen in Amphibol vor.

Abb. 17: Der Gesteinstyp findet sich wenige Meter entfernt am Geröllstrand wieder.
Abb. 18: Nahaufnahme der trockenen Oberfläche mit länglichen Anschnitten der schwarzen Kristalle.

Literatur

ANDERSSON J, BINGEN B, CORNELL D, JOHANSSON L, SÖDERLUND U & MÖLLER C 2008 The Sveconorwegian orogen of southern Scandinavia: setting, petrology and geochronology of polymetamorphic high-grade terranes – 33 IGC excursion No 51, August 2 – 5, 2008.

HARLOV D E, JOHANSSON L, VAN DEN KERKHOF A & FÖRSTER H-J 2006 The role of advective fluid flow and diffusion during localized, solidstate dehydration: Söndrum Stenhuggeriet, Halmstad, SW Sweden – Journal of Petrology 47, 3–33.

MÖLLER C, JOHANSSON L, ANDERSSON J & SÖDERLUND U 1996 Southwest-Swedish Granulite Region – Exkursionsführer in: Berichte der Deutschen Mineralogischen Gesellschaft, Beih. z. Eur. J. Mineral. Vol. 8, 1996, No.2, S.1-42.

2.1. Kullaberg und Kullaite

Das proterozoische Grundgebirge der SGR wird von einem jüngeren Gangschwarm aus basischen Gesteinen durchzogen. Hauptsächlich handelt es sich dabei um Dolerite (sog. Nordwest-Dolerite), vereinzelt treten auch exotische Ganggesteine auf, die Kullaite. Diese besitzen eine trachytische Zusammensetzung und entstehen in tieferen Krustenbereichen durch Magmenvermischung von basischen und sauren Schmelzen. Beim Aufstieg der Kullaitschmelze kann zusätzlich Nebengestein aufgenommen und assimiliert worden sein. Am Kullaberg, dem locus typicus, streichen mehrere Kullaitgänge aus, u. a. ein roter Kullait an der Lokalität Lahibiagrottan und eine braune Variante am Strand von Josephinelust (Lok. 2 auf der Karte).

Kullait von Lahibiagrottan

Etwa 200 m südlich vom Leuchtturm Kullens Fyr führt ein steiler Abstieg zur Lahibiagrottan. Diese Grotte entstand einst durch Brandung und Frosteinwirkung und liegt heute aufgrund der seit dem Ende der letzten Vereisung anhaltenden Landhebung mehrere Meter über dem Meeresspiegel. In der Nähe steht ein Kullait-Gang an.

Abb. 1: Lahibiagrottan. Anstehende Gesteine sind rotgraue Gneise (rechts) mit Einschaltungen eines roten Pegmatits (links).
Abb. 2: Grobkörniger und undeformierter Pegmatit aus weißem Quarz und rotem Alkalifeldspat. Bildbreite an der Basis etwa 1 m.
Abb. 3: Ein etwa 2 m breiter Kullait-Gang (rot) durchschlägt einen migmatitischen („plagioklasschlierigen“) Granatamphibolit. Der Altersunterschied beider Gesteine beträgt etwa 650 Millionen Jahre: der Granatamphibolit entstand während der svekonorwegischen Gebirgsbildung vor etwa 1 Ga, der Kullait besitzt ein Alter von rund 350 Millionen Jahren.
Abb. 4: Eine schlierige, etwa 20 cm breite Übergangszone belegt eine Interaktion von aufsteigender heißer Kullaitschmelze mit dem Amphibolit.
Abb. 5: Der Kullaitgang setzt sich weiter hinten in der Felswand fort, dazwischen wurde er durch Erosion ausgeräumt. In der Umgebung finden sich zahlreiche Kullaite als Brandungsgeröll.
Abb. 6 Kullaitgeröll vom Anstehenden, trocken fotografiert.
Abb. 7: Nahaufnahme der angefeuchteten Oberfläche.

Das Gestein ist feinkörnig und auf den ersten Blick recht unscheinbar. Es besitzt ein doleritähnliches Gefüge aus roten, miteinander verfilzten Feldspat-Leisten in regelloser Anordnung (Andesin, ein Na-Ca-Feldspat der Plagioklas-Gruppe, OBST 1999, 2001, vgl. a. TRÖGER 1935). Dunkle Minerale sind weitgehend chloritisiert und füllen die Zwischenräume, vereinzelt sind auch größere schwarze Körner erkennbar. Die Rotfärbung des Gesteins ist auf fein verteilten Hämatitstaub zurückzuführen. Einige größere und etwas hellere Feldspat-Einsprenglinge weisen an den Rändern Spuren von Resorption (magmatische Korrosion) auf.

Abb. 8: Ein weiteres Kullait-Geröll von Lahibiagrottan, Aufnahme unter Wasser.

Neben einem migmatitischen („plagioklasschlierigen“) Granatamphibolit als Wirtgestein für den roten Kullait (Abb. 3), steht am östlichen Abstieg zur Lokalität Lahibiagrottan ein weiterer Granatamphibolit an.

Abb. 9: Grobkörniger Granatamphibolit, Bildbreite etwa 80 cm.
Abb. 10: Loser Stein vom Anstehenden. Das Gestein enthält viel Granat; einige der runden Granat-Porphyroblasten besitzen einen hellen Saum aus retrograd gebildetem Plagioklas.
Abb. 11: Migmatischer Granatamphibolit, Strandgeröll von Lahibiagrottan.
Abb. 12: Granatamphibolit mit großen Granat-Porphyroblasten ohne Plagioklas-Säume. Loser Stein an der Lokalität Lahibiagrottan. Bildbreite etwa 20 cm.

Kullait von Josefinelust

Abb. 13: Die Lokalität Josefinelust liegt etwa 2 km östlich von Kullens Fyr. Ein steiler Abstieg führt zum Strand.
Abb. 14: Dort steht ein etwa 80 cm breiter Kullait-Gang an, scharf begrenzt von rotgrauen Gneisen des Grundgebirges.
Abb. 15: Der Kullait-Gang verläuft parallel zur Küste, weist eine nordwestliche Streichrichtung auf und lässt sich auf einer Länge von etwa 300 m im Gelände verfolgen.
Abb. 16: Bräunlichroter Kullait von Josefinelust, Anstehendprobe mit polierter Schnittfläche.
Abb. 17: Gleicher Stein, Nahaufnahme.

Das feinkörnige Gestein besitzt ein doleritähnliches Gefüge aus leistenförmigem Feldspat und dunklen Mineralen. Wenige größere Feldspat-Einsprenglinge sind heller gefärbt als die Grundmasse und weisen Spuren magmatischer Korrosion auf.

Abb. 18: Kullait von Josefinelust als Strandgeröll, Aufnahme unter Wasser.
Abb. 19: Nahaufnahme; am linken Bildrand ein mit weißem Calcit gefüllter Hohlraum innerhalb eines länglichen roten Xenoliths.

Mit Calcit gefüllte Hohlräume sind an rote und tropfenförmige Xenolithe gebunden, die einen ähnlichen Mineralbestand wie die Grundmasse aufweisen, aber gröber kristallisiert sind. Xenolithe und Calcit treten gelegentlich auch im roten Kullait von Lahibiagrottan auf.

Ebenfalls von Josefinelust stammt ein grünlich-brauner Kullait mit hellen Feldspat-Einsprenglingen. Es handelt sich um einen einzelnen Fund als Strandgeröll, anstehend konnte das Gestein nicht beobachtet werden.

Abb. 20: Grünlich-brauner Kullait, Strandgeröll von Josefinelust.
Abb. 21: Die Gesteine am Geröllstrand von Josefinelust stammen ganz überwiegend aus der unmittelbaren Umgebung: rotgraue und magnetische Gneise (Järngneise), mafische Granulite und Amphibolite.

2.2. Kullaite als Geschiebe

Abb. 22: Drei Kullait-Varianten vom Kullaberg im Vergleich, Aufnahme unter Wasser.

Die Motivation, einen Kullait in Norddeutschland als Geschiebe zu finden, lässt sich wohl mit der Seltenheit und dem exotischen Charakter des Gesteinstyps erklären. Dabei ist zu berücksichtigen, dass es sich um feinkörnige und auf den ersten Blick eher unauffällige Gesteine handelt, die aufgrund der geringen Ausdehnung der Vorkommen nur sehr selten in Erscheinung treten. Allgemeine Kennzeichen sind das doleritähnliche (ophitische) Gefüge aus verfilzten Feldspat-Leisten und dunklen, meist stark alterierten Mineralen. Die Gesteine können rot, rotbraun bis braun, grau oder grünlichbraun gefärbt sein. Zusätzlich können wenige korrodierte Feldspat-Einsprenglinge, Enklaven mit Fremdgestein, helle runde oder tropfenförmige Bereiche mit etwas gröber kristallisierten Feldspat-Leisten sowie mit Calcit gefüllte Blasenhohlräume auftreten.

Die Analyse eines Kullaits von Kullagarden (Tröger 1935: Nr. 288) ergab folgende Zusammensetzung (Gew.%): 55 Plagioklas, 18 Chlorit +/- Epidot, 13 Orthoklas („Einsprenglinge“), 10 Erz, 4 Quarz, Apatit und Calcit.

Neben den Kullaiten vom Kullaberg (weitere Abbildungen auf skan-kristallin.de) und anderen Lokalitäten in SW-Schweden (Dalby, Torpa Klint) sind Kullait-Vorkommen auch aus der Fortsetzung des NE-streichenden Gangschwarms von Bornholm (Bjergebakke) sowie aus dem Oslograben (Grefenskollen) bekannt. Die Gesteine besitzen also eine weite Verbreitung und sind weder als Leitgeschiebe geeignet, noch lassen sich Kullait-Gerölle allein anhand äußerlicher Merkmale auf eine bestimmte Lokalität zurückführen (OBST 2001, Abbildungen auch auf kristallin.de).

2.3. Kullaberg: Ransvik

Am Strand von Ransvik (Lok. 2 auf der Karte) bildet ein ausgesprochen grobkörniger Granatamphibolit eine gangförmige Einschaltung in grauen migmatitischen Gneisen. Der Name der Lokalität („Diamantklipporna“) ist auf die Kristallflächen der Amphibole zurückzuführen, die bei Sonnenschein „wie Diamanten“ schillern (Naturschutzgebiet, kein Hammer!).

Abb. 23: Granatamphibolit am Strand von Ransvik.
Abb. 24: Nahaufnahme des grobkörnigen Amphibolits.
Abb. 25: Granatreiche Partie mit großen Granat-Porphyroblasten, teilweise umgeben von einem hellen Plagioklas-Saum. Bildbreite 26 cm.
Abb. 26: Die intensive Bruchtektonik der Sorgenfrei-Tornqvist-Zone zeigt sich an den Gneisen von Ransvik als rhombisches Kluftmuster.
Abb. 27: Tektonische Brekzie, Strandgeröll von Ransvik. Das aplitähnliche Gestein wird von Rissen durchzogen, die mit einer Masse aus Feldspat, Quarz und grünen Mineralen (Chlorit o. ä.) verfüllt sind.

Literatur

MÖLLER C, JOHANSSON L, ANDERSSON J & SÖDERLUND U 1996 Southwest-Swedish Granulite Region – Berichte der Deutschen Mineralogischen Gesellschaft, Beih. z. Eur. J. Mineral. Vol. 8, 1996, No.2.

OBST K 1999 Die permosilesischen Eruptivgänge innerhalb der Fennoskandischen Randzone (Schonen und Bornholm) – Untersuchungen zum Stoffbestand, zur Struktur und zur Genese. Greifswalder Geowissenschaftliche Beiträge 7/1999 S. 1-121

OBST K 2001 Kullaite und ihre Bedeutung als Leitgeschiebe – Geschiebekunde aktuell, Nr. 17, 75-84, Hamburg, Juli 2001.

TRÖGER WE 1935 Spezielle Petrographie der Eruptivgesteine – Ein Nomenklatur-Kompendium mit 1. Nachtrag Eruptivgesteinsnamen – Verlag der Deutschen Mineralogischen Gesellschaft, unveränderter Nachdruck 1969.

Geologische Streifzüge in SW-Schweden

Dieser mehrteilige Exkursionsbericht führt an ausgewählte Lokalitäten in Südwest-Schweden. Zahlreiche Küstenaufschlüsse und aufgelassene Steinbrüche zwischen Kullaberg-Halbinsel und Varberg bieten hervorragende Einblicke in die Geologie eines metamorphen Grundgebirges, das vor rund 1 Milliarde Jahren im Zuge der Svekonorwegischen Gebirgsbildung entstand. Hier treten großflächig Gesteine zutage, die in keiner anderen Region des nordischen Grundgebirges vorkommen, z. B. saure und mafische Granulite. Auf mehreren Reisen konnte eine Reihe von typisch SW-schwedischen Gesteinstypen, darunter auch kristalline Leitgeschiebe, beprobt und in ihrem geologischen Kontextes studiert werden. Als Grundlage für die Planung diente der Exkursionsführer von MÖLLER et al 1996.

Abb. 1: Felsküste im äußersten Nordwesten der Kullaberg-Halbinsel. Das Grundgebirge besteht hier aus migmatitischen Gneisen mit eingeschalteten Amphibolit-Körpern und besitzt ein Alter von rund 1 Milliarde Jahren.
Abb. 2: Karte der vorgestellten Lokalitäten.

Die Zahlen verweisen auf die entsprechenden Abschnitte des Exkursionsberichts. Die meisten Lokalitäten liegen an der Küste, weil dort die Gesteine besonders gut aufgeschlossen sind.

  1. Zur Geologie SW-Schwedens
    1.1. Leitgeschiebe und Geschiebetypen aus SW-Schweden
  2. Kullaberg-Halbinsel
    2.1. Kullaberg und Kullaite
    2.2. Kullaite als Geschiebe
    2.3. Kullaberg: Ransvik
    2.4. Nordwest-Dolerit von Arild
  3. SW-schwedische Küstenaufschlüsse
    3.1. Söndrum
    3.2. Steninge
    3.3. Glassvik
    3.4. Stensjöhamn
    3.5. Träslövsläge
  4. Varberg-Charnockit und Torpa-Granit
    4.1. Charnockite als Geschiebe
    4.2. Torpa- und Tjärnesjön-Granit
  5. Retroeklogit von Ullared

Im Zusammenhang mit den SW-schwedischen Gesteinen stehen Einzelbeschreibungen der folgenden Gesteinstypen:

1. Zur Geologie SW-Schwedens

Abb. 3: Übersichtskarte der geologischen Gebietseinheiten in Norwegen, Schweden und Finnland (Grafik aus kristallin.de). Die Svekonorwegischen Gesteine sind durch eine rosa Signatur gekennzeichnet.

Die svekonorwegische Gesteinsprovinz entstand vor 1,14 – 0,9 Ga und nimmt ausgedehnte Gebiete in Norwegen und in West- und Südwest-Schweden ein (rosa Signatur in Abb. 3). Sie wird in fünf lithotektonische Einheiten unterteilt, die durch fortgesetzte Akkretionsprozesse entstanden und jeweils eine eigene geologische Geschichte besitzen. In Schweden unterscheidet man ein westliches Segment (wT) mit niedriger metamorphen Gesteinen von einem östlichen Segment (öT). Beide Einheiten sind durch eine breite Mylonitzone voneinander getrennt und erstrecken sich nach Osten bis an die Protoginzone. Diese lang gestreckte Störungszone bildet die Grenze zu den weniger deformierten Gesteinen des Transskandinavischen Magmatitgürtels (TIB).

Das Exkursionsgebiet beschränkt sich auf den südwestlichen Teil des östlichen Segment der Svekonorwegiden, einem Gebiet, das als Südwestschwedisches Granulitgebiet (SGR southwest-swedish granulite region) bezeichnet wird (Abb. 4). Innerhalb der SGR finden sich vorwiegend die hochmetamorphen, während der svekonorwegischen Orogenese unter Bedingungen der höheren Amphibolit- bis Granulitfazies gebildeten Gesteine.

Abb. 4: Geologische Übersichtskarte des Südwestschwedischen Granulitgebiets (SGR). Grafik aus kristallin.de.

Die geologische Geschichte der SGR beginnt weit vor der svekonorwegischen Orogenese. Ein Grundgebirge aus Granitoiden und mafischen Intrusionen, das mit 1.730-1.660 Ma ein ähnliches Alter besitzt wie der Transskandinavische Magmatitgürtel, wurde durch eine ältere, als „Halland-Event“ oder „Halland-Orogenese“ bezeichnete Phase der Gebirgsbildung vor 1.460 und 1.420 Ma einer ersten Migmatisierung unterworfen (SÖDERLUND et al 2008; MÖLLER et al 2007). Mit dieser Orogenese verbunden sind der lokale Aufstieg postorogener Granite (Torpa-/Tjärnesjö-Granit, 1.400-1.380 Ma) und die Bildung von Charnockiten (s. Varberg-Charnockit). Diese Gesteine wurden während der svekonorwegischen Orogenese teilweise deformiert.

Die Gesteine der SGR entstanden vor 1.035 Ma bis 930 Ma während (mindestens) einer Kontinent-Kontinent-Kollision, vermutlich der Vereinigung von Amazonia und Baltica im Zuge der Grenville-Orogenese und der Bildung des Großkontinents Columbia. Heute treten jene Krustenteile des Gebirges zu Tage, die im Falle der granulitfaziellen Gesteine in etwa 35 km, im Extremfall des Eklogits in bis zu 50 km Tiefe gebildet wurden. In ihre gegenwärtige Position gelangten sie durch gravitationalen Kollaps des Orogens und isostatischen Ausgleich der verdickten kontinentalen Kruste nach dem Ende der Gebirgsbildung sowie der Abtragung im Laufe von Jahrmillionen (BINGEN et al 2008).

Das Grundgebirge der SGR besteht überwiegend aus rötlichen und grauen Adergneisen bzw. Migmatiten von granitischer bis intermediärer Zusammensetzung. Teilweise enthalten diese Gesteine als granulitfazielle Neubildung Magnetit in bedeutender Menge und werden dann als „Järngneis“ (Eisengneis) bezeichnet. Eingeschaltete Gänge, Lagen und Linsen von Granatamphiboliten und mafischen Granuliten innerhalb der Gneise entstanden durch Metamorphose (wahrscheinlich mehrerer Generationen) von Intrusionen (und Extrusionen?) basischer Gesteine. Die Vorkommen mafischer Gesteine erreichen eine Ausdehnung von einigen km Länge und maximal 1 km Breite. Die Gesteine mit den höchsten Metamorphosegraden innerhalb der SGR sind kleine Vorkommen von Retro-Eklogiten im Gebiet von Ullared.

Das svekofennische Gebirge war bereits zu Beginn des Paläozoikums vollkommen eingeebnet. Durch einen weltweiten Anstieg des Meeresspiegels (Transgression) kam es auf diesem als Peneplain bezeichneten Gebirgsrumpf im Zeitraum zwischen Kambrium und Silur zur Ablagerung von Sedimenten. Durch Kollision von Baltica und Nordamerika entstand im späten Silur das Kaledonische Gebirge. Kaledonische Gesteine bedecken heute vor allem in Norwegen Teile des älteren Grundgebirges.

Im Permokarbon (vor etwa 300 Millionen Jahren) bildete sich an der Nahtstelle (Sutur) zwischen Baltischem Schild und Mitteleuropa eine etwa 100 km breite Deformationszone bzw. Schwächezone. Der SW-schwedische Teil ist die NW-SE verlaufende Sorgenfrei-Tornquist-Zone. Zur Zeit ihrer Hauptaktivität wurde das proterozoische Grundgebirge von tief reichenden Rissen und Klüften durchzogen. In der Folge stiegen Magmen auf. Ein Gangschwarm aus Tausenden NW-streichender Gänge (NW-Dolerite, untergeordnet auch Kullaite und Lamprophyre) durchschlägt teilweise auch jüngere Sedimentgesteine, die seit dem Unterkambrium auf dem Baltischen Schild abgelagert wurden.

Zusammenfassung der wichtigsten Daten zur geologischen Geschichte der SGR:

  • 1,73-1,66 Ga: Entstehung der Ausgangsgesteine der SGR; ähnliches Gesteinsalter wie TIB.
  • 1,46-1,42 Ga: „Halland-Event“, Gebirgsbildung und erste metamorphe Phase;
  • 1,40-1,38 Ga: postorogene Torpa-Granite, Charnockite.
  • 1,03-0,93 Ga: Svekonorwegische Orogenese; Bildung granulitfazieller Gesteine (Granulitgneise, mafische Granulite) und Eklogite.
  • Ablagerung von Sedimentgesteinen auf dem Grundgebirgsrumpf seit dem Unterkambrium.
  • Permokarbon: Bruchtektonik der Sorgenfrei-Tornqvist-Zone; Aufstieg der NW-Dolerite (Kullaite, Lamprophyre).

1.1. SW-schwedische Leitgeschiebe

Einige Gesteinstypen der SGR eignen sich als Leitgeschiebe. Zu den häufigeren Geschieben gehören die granulitfaziellen Gesteine. Aus sauren Edukten gingen Schonen-Granulit („Granulitgneis von Schonen“ in SMED & EHLERS 2002) und „Flammenpegmatit“ (deformierter bunter Pegmatit in VINX 1998) hervor. Ihre Vorkommen beschränken sich auf Westschonen und Halland. Im gleichen Gebiet und einzelnen Arealen weiter östlich, in Richtung der Protoginzone, kommen auch die Granulite aus basischen Edukten vor: granoblastischer mafischer Granulit und Granatcoronit.

Mit Einschränkung sind migmatitische Granatamphibolite („plagioklasschlieriger Granatamphibolit“, VINX 1996, 1998, 2016) als SW-schwedisches Leitgeschiebe geeignet. Als mögliches Leitgeschiebe werden hier erstmalig Gesteine vorgestellt, die große Orthopyroxen-Kristalle (oder Relikte davon) führen und ebenfalls typische Gesteine der SGR sein dürften, weil die Bildung von Orthopyroxen an granulitfazielle Metamorphosebedingungen geknüpft ist (Granatamphibolite mit Orthopyroxen-Megakristallen sowie charnockitisierte Pegmatite mit Opx-Megakristallen).

Weniger häufig sind Varberg-Charnockit (Varberg-Granit in ZANDSTRA 1999 und HESEMANN 1975) und grobporphyrische Varianten des Torpa-Granits, ein rarer Fund ist der Halland-Retro-Eklogit. Eine grobkörnige und porphyrische Variante des NW-Dolerits eignet sich nach bisherigem Kenntnisstand als Leitgeschiebe und ist nur in NW-Schonen beheimatet.

Neben Gesteinstypen mit eng begrenztem Herkunftsgebiet lassen sich weitere Gesteine mit einiger Wahrscheinlichkeit einer SW-schwedischen Herkunft zuordnen. Aufgrund ihrer weiten Verbreitung sind sie nicht als Leitgeschiebe geeignet. In SW-schwedischen Geschiebegemeinschaften finden sich häufig magnetitführende Järngneise sowie Granatamphibolite (mit Plagioklassäumen um die Granate). Mit einem hohen Anteil an SW-schwedischen Gesteinen ist insbesondere westlich und nördlich der Lübecker Bucht zu rechnen.

Die seltenen und exotischen Kullaite bilden mehrere kleine, aber weit gestreute Vorkommen, nicht nur in SW-Schweden. In SW-schwedischen Geschiebegemeinschaften dürfte eine höhere Wahrscheinlichkeit für Funde bestehen, aufgrund der vergleichsweise großen Anzahl SW-schwedischer Kullait-Gänge.

Darüber hinaus existiert eine Reihe von lokalen, teilweise auch synonymen Bezeichnungen für SW-schwedische Gneise, die geschiebekundlich nur wenig aussagekräftig sind, z. B. Halland-Gneis, Halmstadgneis oder Halmstad-Migmatit. Es handelt sich um rötliche, teils migmatitische Adergneise, wie sie an der Küste von Halland seit langer Zeit als Werkstein gewonnen werden. Granulitgneis ist eine allgemeine Bezeichnung für Gneise, die einer granulitfaziellen Metamorphose unterlagen. Bei einem Teil von ihnen handelt es sich um Schonengranulit. Für gewöhnlich sieht man einem Gneis-Geschiebe die metamorphe Fazies nicht an. Stark magnetithaltige Gneise sind ein Hinweis auf eine SW-schwedische Herkunft und werden als Järngneis bezeichnet.

Innerhalb der Südwestschwedischen Granulitregion (SGR) sind mehrere Vorkommen von Charnockitgneisen bekannt. Diese grünen Gesteine bilden Einschaltungen innerhalb der Grundgebirgsgneise und sind metamorph entstanden, im Unterschied zum Varberg-Charnockit (magmatischer Ursprung).

Abb. 5: Vereinfachte Übersichtskarte der SW-schwedischen Leitgeschiebe.

Das schwarz schraffierte Gebiet in Abb. 5 markiert einen kleinen Teil der svekonorwegischen Gesteine in SW-Schweden, das Südwestschwedische Granulitgebiet (SGR, southwest-swedish granulite region). Es wird von großen Störungszonen begrenzt, im Norden von der Mylonitzone (gelb), im Osten von der Protoginzone (rot).

Auf das gesamte Gebiet der SGR verteilt finden sich Vorkommen von Järngneisen.
Die Gesteine mit den höchsten Metamorphosegraden (Granulite) beschränken sich auf den westlichen Teil der SGR, einem Gebiet nördlich von Helsingborg bis Varberg. Von hier stammen die sauren und basischen Granulite: Schonengranulit, Flammenpegmatit, mafischer Granulit. Gebiete mit den schwarzen Punkten kennzeichnen die Gebiete, in denen Granatcoronite verbreitet sind.

Hervorgehoben sind die Städte Varberg (Massiv des Varberg-Charnockits mit Torpa-Granit) und Ullared (Vorkommen des Halland-Retroeklogits). Blau markiert ist jener Teil des permosilesischen Gangschwarms, in denen NW-Dolerite mit grobkörniger Grundmasse auftreten. Innerhalb dieses bis Ost-Schonen reichenden Gangschwarms liegen auch mehrere Vorkommen von Kullaiten.

2. Kullaberg-Halbinsel

Der geologische Streifzug durch die SGR beginnt auf der Kullaberg-Halbinsel, etwa 35 km NW von Helsingborg. Im südwestlichen Schweden kam es im späten Silur durch Dehnungstektonik zur Bildung sog. Horste und Gräben. Dabei wurden Teile des Grundgebirges als Horste herausgehoben und Gräben mit jüngeren Sedimenten verfüllt. Der Kullaberg als südwestlichste Einheit einer Reihe von Grundgebirgshorsten, zu denen auch der Hallandsåsen und Söderåsen gehören, besitzt ein mittelgebirgsartiges Relief, seine Höhenlagen erheben sich rund 100 m über den Meeresspiegel. An zahlreichen küstennahen Aufschlüssen lassen sich die Gesteine der SGR und ihre Kontaktbeziehungen studieren.

Abb. 6: Luftbild der Kullaberg-Halbinsel (Foto: Bertil Hagberg, fotografiert am naturum Kullaberg).
Abb. 7: Geologisches Schema der Kullaberg-Halbinsel aus SÖDERLUND et al 2008.

Das Grundgebirge der Kullaberg-Halbinsel besteht im Wesentlichen aus grauen bis rötlichgrauen und meist migmatitisierten Orthogneisen. Gänge und Körper (grün) von Metabasiten (Amphibolite, Granat-Amphibolite und mafische Granulite) durchziehen die Gneise annähernd in N-S-Richtung. Die jüngeren NW-Dolerite (violett; diabase) weisen eine nordwestliche Streichrichtung auf.

Abb. 8: Rotgraue Gneise der SGR am Leuchtturm Kullens Fyr. Die Klüftung folgt der nordwestlich streichenden Bruchtektonik der Sorgenfrei-Tornqvist-Zone, die Foliation und migmatitische Bänderung verläuft in nordsüdlicher Richtung.
Abb. 9: Gesteinsschutt aus grauen bis rotgrauen migmatitischen Adergneisen sowie roten Pegmatiten. Bildbreite ca. 60 cm.
Abb. 10: Strandgeröll eines migmatitischen Gneises (Breite 12 cm).

Das Gestein ist magnetisch und ein sog. „Järngneis“ (Eisengneis). Järngneise sind in SW-Schweden weit verbreitet und können Magnetit in bedeutender Menge (1-3%) enthalten. Magnetit entsteht als Neubildung unter granulitfaziellen Metamorphosebedingungen.

Abb. 11: Rotgrauer Järngneis mit anhaftendem Handmagneten. Strandgeröll vom Kullaberg.
Abb. 12: Ein etwa 1 m breiter Amphibolitgang, diskordant von einem jüngeren roten Pegmatit durchschlagen.

In die Gneise vom Kullaberg sind stellenweise Gänge und Körper von aplitischen Gesteinen und grobkörnigen Pegmatiten eingeschaltet. Sie dürften postkinematisch, also nach der (svekofennischen) Gebirgsbildung entstanden sein, weil sie ein richtungslos-körniges Mineralgefüge und keine Anzeichen einer tektonischen Deformation aufweisen. Die Gesteine ähneln manchmal dem Schonengranulit oder „Flammenpegmatit“ (Abb. 14). Letztere entstanden jedoch unter granulitfaziellen Bedingungen und weisen eine deutliche Foliation auf. Ihr Hauptverbreitungsgebiet liegt etwas weiter nördlich im Gebiet zwischen Halmstad und Falkenberg.

Abb. 13: Verfalteter Gang eines aplitähnlichen Gesteins aus Quarz und rotem Alkalifeldspat in einem grauen Gneis. Höhe des Gangs etwa 20 cm.
Abb. 14: Mäßig deformiertes und pegmatitähnliches Gestein mit hellen Quarzen; ähnlich dem Flammenpegmatit, aber ohne plattig ausgewaltzem Quarz.
Abb. 15: Pegmatitgang an der Lokalität Silvergrottan. Der etwa 60 cm breite Gang ist auf eine Länge von 15 m begehbar und wurde im Jahre 1561 von dänischen Bergleuten auf der (vergeblichen) nach Silber ausgeräumt.

An der Westspitze der Kullaberg-Halbinsel finden sich innerhalb der rotgrauen Gneise mehrere große Gesteinskörper mit Metabasiten, von fein-, mittel- bis grobkörnigen und meist granatführenden Amphiboliten (<5% Granat) über Granatamphiboliten (>5% Granat) bis mafischen Granuliten. Die Gesteine können weitgehend undeformiert, gneisig, verfaltet oder migmatisiert sein. Abb. 16 zeigt eine größere Intrusion mit einem zentralen Teil aus mafischem Granulit, der zum Rand in einen Amphibolit übergeht.

Abb. 16: Mafischer Gesteinskörper in der Nähe vom Leuchtturm Kullens Fyr.
Abb. 17: Übergang eines mafischen Granulits (oben, Gangmitte, braun) in einen schwarzen Amphibolit am Rand der Intrusion; Grenze zu einem rotgrauen Gneis.
Abb. 18: Granatführender Amphibolit, Strandgeröll vom Anstehenden. Hauptbestandteile des Gesteins sind Amphibol (schwarz), Plagioklas (weiß) und etwas Granat (rot).
Abb. 19: Der Amphibolit (grau) ist im Kontaktbereich zu einem migmatitischem Gneis/Pegmatit (rot) von weißen Schlieren durchsetzt. Bildbreite etwa 3,50 m.
Abb. 20: Gleicher Aufschluss; große schwarze Glimmer-Blättchen an der Grenze von Pegmatit und Amphibolit. Bildbreite etwa 40 cm.
Abb. 21: Mafischer Granulit in der Mitte des Ganges (s. Abb. 20), Bildbreite etwa 25 cm.
Abb. 22: Gleiches Gestein, bei Sonnenschein fotografiert.
Abb. 23: Leicht foliierter mafischer Granulit, Strandgeröll vom Anstehenden.
Abb. 24: Nahaufnahme der angefeuchteten Oberfläche. Das Gestein besteht aus Granat (rot), Pyroxen (grünlichschwarz), Amphibol (schwarz) und Plagioklas (weiß).

Mafische Granulite sind typische Gesteine der SGR und durch trockene Hochdruck-Metamorphose aus basischen Ausgangsgesteinen hervorgegangen (Basalte oder Gabbros). Plagioklas wird unter granulitfaziellen Bedingungen instabil und wandelt sich an den Korngrenzen zum Pyroxen in Granat um. Dieser bildet Granoblasten in Gestalt kleiner Körner, ebenso wie Klino- und Orthopyroxen, die durch komplexe Mineralreaktionen aus dunklen Mineralen wie Biotit und Amphibol gebildet werden. Mafische Granulite weisen im kleinen Maßstab also ein weitgehend gleichkörniges und richtungsloses Mineralgefüge auf und sind als Granofelse anzusehen, können auf den ersten Blick aber eine gneisartige Textur besitzen, möglicherweise ein Reliktgefüge der Ausgangsgesteine. Wesentlicher Mineralbestand sind Klinopyroxen (grünlich-schwarz), granoblastischer Granat (rot) in winzigen Körnern, Plagioklas (weiß) sowie schwankende Mengen an schwarzem und glänzenden Amphibol, der durch retrograde Metamorphose entstand.

Mafische Granulite entstehen bei 700-800°C und einem Druck von 8-12 Kbar, was einer krustalen Tiefe von 30-45 km entspricht. Die Kruste muss also zum Zeitpunkt der Metamorphose sehr dick und die Ausgangsgesteine entsprechend tief versenkt gewesen sein. Die Exhumierung bzw. der Aufstieg der mafischen Granulite erfolgte offenbar recht schnell, da sie im Allgemeinen nur in geringem Maße retrograd überprägt wurden (Bildung von Amphibol; MÖLLER et al 1996).

Abb. 25: Mafischer Granulit mit weitgehend regellos-körnigem Gefüge; Strandgeröll vom Anstehenden.
Abb. 26: Mafischer Granulit, durchschlagen von einem 10 cm breiten Pegmatitgang.

Neben den NS-streichenden Metabasiten, die während der Svekonorwegischen Gebirgsbildung teilweise in mafische Granulite umgewandelt wurden, sind am Kullaberg auch Gänge von jüngeren (permokarbonischen), gänzlich undeformierten und gemäß ihrer vorherrschenden nordwestlichen Streichrichtung als NW-Dolerit bezeichneten Gesteinen aufgeschlossen (s. a. Nordwest-Dolerit von Arild).

Abb. 27: Der Pfeil markiert den Beginn eines NW-streichenden Doleritgangs (NW-Dolerit), der sich bis zum Standort fortsetzt.
Abb. 28: Gleicher Doleritgang, von der Küste aus betrachtet; Breite etwa 15 m.
Abb. 29: Der kleinkörnige NW-Dolerit vom Kullaberg ist ein recht unscheinbares Gestein. Brandungsgeröll vom Anstehenden.
Abb. 30: Der NW-Dolerit wird von migmatitischen Amphiboliten der SGR flankiert.

In flachen Uferbereichen der Felsküste finden sich die anstehenden Gesteine der unmittelbaren Umgebung als Brandungsgeröll (Gneise, Pegmatite, Amphibolite und mafische Granulite).

Abb. 31: Brandungsgerölle am Kullaberg, Bildbreite etwa 90 cm.
Abb. 32: Grenze einer pegmatitartigen Partie zu einem grauen Gneis. Strandgeröll, Breite 18 cm.
Abb. 33: Ortsfremde Gesteine treten nur vereinzelt auf und fallen schnell ins Auge, wie dieser braune Porphyr mit bläulichen Quarzen (Småland-Vulkanit?). Breite des Steins 12 cm.

Literatur

BINGEN B, NORDGULEN O & VIOLA G 2008 A fourphase model for the Sveconorwegian orogeny, SW Scandinavia – Norwegian Journal of Geology 88, S. 43-72.

MÖLLER C, JOHANSSON L, ANDERSSON J & SÖDERLUND U 1996 Southwest-Swedish Granulite Region – Berichte der Deutschen Mineralogischen Gesellschaft, Beih. z. Eur. J. Mineral. Vol. 8, 1996, No.2.

MÖLLER C, ANDERSSON J, LUNDQVIST I & HELLSTRÖM FA 2007 Linking deformation, migmatite formation and zircon U-Pb geochronology in polymetamorphic gneisses, Sveconorwegian province, Sweden – Journal of Metamorphic Geology 25, S. 727-750.

SÖDERLUND U, HELLSTRÖM FA & KAMO SL 2008 Geochronology of high-pressure mafic granulite dykes in SW Sweden: tracking the P- T-t path of metamorphism using Hf isotopes in zircon and baddeleyite – Journal of Metamorphic Geology 26, 539-560.

SÖDERLUND U, KARLSSON C, JOHANSSON L & LARSSON K 2008 The Kullaberg peninsula – a glimpse of the Proterozoic evolution of SW Fennoscandia – GFF 130, Teil 1, S. 1-10.

VINX R 1996 Granatcoronit (mafischer Granulit): ein neues Leitgeschiebe SW-schwedischer Herkunft – Archiv für Geschiebekunde, Hamburg 1996, Band 2, S. 3-20.

VINX R 1998 Neue kristalline SW-schwedische Leitgeschiebe: Granoblastischer Mafischer Granulit, Halland-Retro-Eklogit und deformierter, bunter Pegmatit – Archiv für Geschiebekunde, Hamburg 1998, Band 2, Heft 6, S. 363-378.

VINX R 2016 Steine an deutschen Küsten; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.).