Schlagwort-Archive: Ullared

Geologische Streifzüge in SW-Schweden

Abb. 1: Felsküste im äußersten Nordwesten der Kullaberg-Halbinsel. Das Grundgebirge besteht hier aus migmatitischen Gneisen mit eingeschalteten Amphibolit-Körpern und besitzt ein Alter von rund 1 Milliarde Jahren.

Ein mehrteiliger Exkursionsbericht führt an ausgewählte Lokalitäten in Südwest-Schweden. Zahlreiche Küstenaufschlüsse und aufgelassene Steinbrüche zwischen Kullaberg-Halbinsel und Varberg bieten hervorragende Einblicke in die Geologie eines metamorphen Grundgebirges, das vor rund 1 Milliarde Jahren im Zuge der Svekonorwegischen Gebirgsbildung entstand. Hier treten großflächig Gesteine zutage, die in keiner anderen Region des nordischen Grundgebirges vorkommen, z. B. saure und mafische Granulite. Auf mehreren Reisen konnte eine Reihe von typisch SW-schwedischen Gesteinstypen, darunter auch kristalline Leitgeschiebe, beprobt und in ihrem geologischen Kontextes studiert werden.

Abb. 2: Karte der vorgestellten Lokalitäten.

Die Zahlen verweisen auf die entsprechenden Abschnitte des Exkursionsberichts. Die meisten Lokalitäten liegen an der Küste, weil dort die Gesteine besonders gut aufgeschlossen sind.

  1. Zur Geologie SW-Schwedens
    1.1. Leitgeschiebe und Geschiebetypen aus SW-Schweden
  2. Kullaberg-Halbinsel
    2.1. Kullaberg und Kullaite
    2.2. Kullaite als Geschiebe
    2.3. Kullaberg: Ransvik
    2.4. Nordwest-Dolerit von Arild
  3. SW-schwedische Küstenaufschlüsse
    3.1. Söndrum
    3.2. Steninge
    3.3. Glassvik
    3.4. Stensjöhamn
    3.5. Träslövsläge
  4. Varberg-Charnockit und Torpa-Granit
    4.1. Charnockite als Geschiebe
    4.2. Torpa- und Tjärnesjön-Granit
  5. Retroeklogit von Ullared

Im Zusammenhang mit den SW-schwedischen Gesteinen neu hinzugekommen sind Einzelbeschreibungen der folgenden Gesteinstypen:

5. Retroeklogit von Ullared

In der Umgebung von Ullared (Lok. 5 auf der Karte) finden sich die Gesteine mit den höchsten Metamorphosegraden innerhalb der SGR. Es handelt sich um mehrere, max. 1 km² große und linsenförmige Eklogit-Massive, die in stark verfaltete bis mylonitische Gneise eingebettet sind. Die Eklogite entstanden einst in großer Tiefe und wurden bei ihrem Aufstieg am Ende der svekonorwegischen Orogenese in ihrem Mineralbestand verändert. Solche durch sog. retrograde Metamorphose veränderte Eklogite bezeichnet man als Retroeklogite.

Abb. 1: Retro-Eklogit von Ullared, loser Stein mit hellgrüner Verwitterungsrinde und großen hellroten Granaten. Loser Stein in der Nähe vom Anstehenden.

Eklogite entstehen bevorzugt bei tiefer Versenkung und hochgradiger Metamorphose von basischen Gesteinen in Subduktionszonen. Seltener, wie im Falle des Eklogits von Ullared, erfolgt ihre Bildung im Zuge von Kontinent-Kontinent-Kollisionen in Bereichen mit einer verdickten Kruste. Eine solche Kollision fand vor etwa 950 Ma während der Svekonorwegischen Orogenese statt. Als maximale Bildungsbedingungen wurden 17 kbar und 700°C ermittelt, was einer Versenkungstiefe von >50 km entspricht (DYCK 2011). Der nachfolgende schnelle Aufstieg des Eklogits ist wahrscheinlich auf spätorogenen gravitationalen Kollaps des Orogens und ein tektonisches Dehnungsregime zurückzuführen. Dabei wurde der primäre Mineralbestand aus Omphacit und Granat (in Al-reichen Phasen auch Kyanit) durch retrograde Metamorphose verändert. Typisch retrograde Mineralreaktionen in Eklogiten sind die Umwandlung von Omphacit in Plagioklas und Pyroxen sowie von Granat und (in geringer Menge enthaltenem) Quarz zu Klinopyroxen (Diopsid) und Plagioklas. Im Retroeklogit von Ullared ist daher reichlich Plagioklas enthalten, während reine Eklogite plagioklasfrei sind. Pyroxen kann bei fortschreitender retrograder Metamorphose weiter in Amphibol umgewandelt werden.

Abb. 2: Kleiner Eklogit-Steinbruch im Wald, nördlich von Ullared.
Abb. 3: Anstehender Retroeklogit mit großen, runden Granat-Aggregaten, Bildbreite 35 cm.

Innerhalb des Eklogitkörpers sind Lagenstrukturen erkennbar (Partien mit größeren und kleinen Granaten), die wahrscheinlich als Relikte eine magmatische Schichtung (magmatic layering) der basischen Ausgangsgesteine abbilden. Die runden Granatkörner sind von schwarzgrünen und feinkörnigen Coronen umgeben (retrograd gebildete Amphibol-Klinopyroxen-Plagioklas-Symplektite).

Abb. 4: Angewitterte Probe eines Retroekogits; roter Granat tritt reliefartig hervor; gelblich verwitternder Plagioklas und farbloser Quarz sind hier leicht unterscheidbar.
Abb. 5: Frische Bruchfläche einer weiteren Probe; hellroter Granat (Pyrop), farbloser Quarz und Plagioklas sowie blaue Minerale (Kyanit und/oder retrograd gebildete Symplektite, z. B. mit Sapphirin).
Abb. 6: Polierte Schnittfläche eines grobkörnigen Retroeklogits von Ullared. Hauptbestandteile des Gesteins sind roter Granat, ein grünes Mineral – teils Klinopyroxen, teils pyroxenhaltige Symplektite – und blaue Mineralkörner.
Abb. 7: Gleicher Stein, Nahaufnahme. In der Bildmitte ist ein größeres bläuliches Mineralaggregat erkennbar.

Bedingt durch die komplexen Mineralreaktionen während der retrograden Metamorphose zeichnen sich Retroeklogite durch vielfältige Mineralparagenesen aus. Im Retroeklogit von Ullared fällt zunächst der hohe Gehalt an hellrotem und Fe-armen Granat (Pyrop) auf. Die großen Granate sind von grünschwarzen Coronen umgeben. Hierbei handelt es sich um fein verfilzte Verwachsungen von retrograd gebildeten Mineralen, die als Symplektite bezeichnet werden. Häufig handelt es sich dabei um Verwachsungen von Plagioklas und Pyroxen, optional auch Amphibol. Bei den weißen und milchig getrübten Bereichen dürfte es sich ebenfalls um Symplektite handeln. Auf der Bruchfläche (Abb. 5) sind auch einzelne grüne Körner von Klinopyroxen (Diopsid) erkennbar, weiterhin farbloser bis weißer Quarz (auch einzelne, 5-10 mm große Aggregate) und Plagioklas (polsynthetische Verzwilligung nur schwer erkennbar). Bei den blauen Mineralkörnern dürfte es sich um Kyanit handeln. Trübungen innerhalb der Körner sprechen für eine teilweise retrograde Umwandlung (in Sapphirin?) und dürften ebenfalls symplektitische Verwachsungen sein.

Der Mineralbestand der retrograd entstandenen Symplektite ist nur mikroskopisch wahrnehmbar. Nach DYCK 2011 finden sich symplektische und coronitische Strukturen häufig um Granat. Diese grünen bis schwarzgrünen und massigen Bereiche bestehen aus Verwachsungen von Klinopyroxen, Amphibol und Plagioklas oder auch Biotit und Plagioklas. Blauer Kyanit entsteht in Eklogiten mit Al-reichen Mineralphasen. Im Zuge der retrograden Druckentlastung kann es an der Grenzfläche von Kyanit und Omphacit zur Bildung von hellblauen und trüben Symplektiten aus Sapphirin und Plagioklas kommen (s. a. MÖLLER 1999). Eine weitere retrograde Bildung im Retroeklogit von Ullared ist Skapolith (hellgrüne Lichter, durchscheinend bis opak), einem typischen Mineral der retrograden Amphibolitfazies in Eklogiten. Weitere und eigenständig auftretende Minerale im Retroeklogit von Ullared sind einzelne größere Aggregate von Amphibol und Biotit sowie Akzessorien von Rutil und opaken Mineralen (Ilmenit?).

Die nächste Probe ist ein mittelkörniger und relativ dunkler Retroeklogit mit einer Lagentextur, die vermutlich ein magmatic layering des Ausgangsgesteins abbildet (Ansicht um 90 Grad gedreht). Eine dunkle Partie (links) geht in eine hellere über (Mitte), unter Vergröberung des Mineralkorns (rechte Seite). Blaue Mineralkörner sind in dieser Probe reichlicher enthalten.

Abb. 8: Polierte Schnittfläche eines mittelkörnigen Eklogits.
Abb. 9: Nahaufnahme der dunklen Partie: rote Granatkörner und blauer Kyanit (teils trüb und symplektitisch) sowie feinkörnige Bereiche mit grünen Mineralen. Die dunkle Farbe dürfte auf einen höheren Gehalt an Amphibol zurückzuführen sein.
Abb. 10: Nahaufnahme der hellen Partie.
Abb. 11: Makroaufnahme einiger blauer Mineralkörner mit einem milchig-trüben Kern aus Symplektiten. Bild: T. Langmann.
Abb. 12: Erstaunlich ist, dass die milchig-trüben und mutmaßlich symplektitischen Bereiche im Kern der transparenten Mineralkörner liegen und nicht an ihren Rändern, wo man eine retrograde Umwandlung im Kontakt mit anderen Mineralen erwarten würde. Bild: T. Langmann.
Abb. 13: Weitere Makroaufnahme eines Blauen Mineralkorns mit milchig-trübem Kern und transparentem Rand. Bild: T. Langmann.

In der näheren Umgebung vom kleinen Steinbruch mit dem Retroeklogit stehen neben Graugneisen helle und granatreiche Gneise mit wenig dunklen Mineralen an, in Nachbarschaft zu dunklen Metabasiten, die augenscheinlich deutlich niedrigeren Metamorphosegraden unterlagen (Amphibolitfazies).

Abb. 14: Granatreicher Gneis bei Ullared.
Abb. 15: Metabasit aus weißem Plagioklas (teilweise epidotisiert) und schwarzem Amphibol; kein Granat.
Abb. 16: Im Wald befindet sich auch eine Halde aus derbem Quarzgestein (wahrscheinlich Gangquarz). Es dürfte sich um Relikte eines bergmännischen Schurfes handeln. Was hier einst abgebaut wurde, ist unklar.

Literatur

Hegardt E A et al 2005 Eclogites in the central part of the Sveconorwegian Eastern Segment of the Baltic Shield: Support for an extensive eclogite terrane – GFF 127, 3 S. 221-232.

Dyck B 2011 A key fold structure within a Sveconorwegian eclogite-bearing deformation zone in Halland, south-western Sweden: geometry and tectonic implications – M.Sc. Thesis in geology at Lund University, Nr. 279, 42 pp. 45 hskp/ECTS.

Langendoen J & van Roermund HLM 2007 An investigation into the genesis of an erratic (retro) eclogite block from Haren, Groningen, the Netherlands – Netherlands Journal of Geoscience 86-2, S. 145-157.

Möller C, Andersson J, Dyck B & Lundin I A 2015 Exhumation of an eclogite terrane as a hot migmatitic nappe, Sveconorwegian orogen – Lithos Volume 226, 1 June 2015, Pages 147–168.

Möller C et al, 1997 A Sveconorwegian deformation zone (system?) within the Eastern Segment,Sveconorwegian orogen of SW Sweden – a first report – GFF, Vol. 119, S. 73-78.

Möller C 1998 Decompressed eclogites in the Sveconorwegian (Grenvillian) orogen of SW Sweden: petrology and tectonic implications – Journal of metamorphic Geology, 16: S. 641-656.

Möller C 1999 Sapphirine in SW Sweden: a record of Sveconorwegian (Grenvillian) late-orogenic tectonic exhumation – Journal of metamorphic Geology, 17, S.127-141.

Vinx R 1998 Neue kristalline SW-schwedische Leitgeschiebe: Granoblastischer mafischer Granulit, Halland-Retro-Eklogit und deformierter, bunter Pegmatit – Archiv für Geschiebekunde (2) 6, S. 363-378. Hamburg Mai 1998. Vinx R 2016 Steine an deutschen Küsten; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.).

2.1. Kullaberg und Kullaite

Das proterozoische Grundgebirge der SGR wird von einem jüngeren Gangschwarm aus basischen Gesteinen durchzogen. Hauptsächlich handelt es sich dabei um Dolerite (sog. Nordwest-Dolerite), vereinzelt treten auch exotische Ganggesteine auf, die Kullaite. Diese besitzen eine trachytische Zusammensetzung und entstehen in tieferen Krustenbereichen durch Magmenvermischung von basischen und sauren Schmelzen. Beim Aufstieg der Kullaitschmelze kann zusätzlich Nebengestein aufgenommen und assimiliert worden sein. Am Kullaberg, dem locus typicus, streichen mehrere Kullaitgänge aus, u. a. ein roter Kullait an der Lokalität Lahibiagrottan und eine braune Variante am Strand von Josephinelust (Lok. 2 auf der Karte).

Kullait von Lahibiagrottan

Etwa 200 m südlich vom Leuchtturm Kullens Fyr führt ein steiler Abstieg zur Lahibiagrottan. Diese Grotte entstand einst durch Brandung und Frosteinwirkung und liegt heute aufgrund der seit dem Ende der letzten Vereisung anhaltenden Landhebung mehrere Meter über dem Meeresspiegel. In der Nähe steht ein Kullait-Gang an.

Abb. 1: Lahibiagrottan. Anstehende Gesteine sind rotgraue Gneise (rechts) mit Einschaltungen eines roten Pegmatits (links).
Abb. 2: Grobkörniger und undeformierter Pegmatit aus weißem Quarz und rotem Alkalifeldspat. Bildbreite an der Basis etwa 1 m.
Abb. 3: Ein etwa 2 m breiter Kullait-Gang (rot) durchschlägt einen migmatitischen („plagioklasschlierigen“) Granatamphibolit. Der Altersunterschied beider Gesteine beträgt etwa 650 Millionen Jahre: der Granatamphibolit entstand während der svekonorwegischen Gebirgsbildung vor etwa 1 Ga, der Kullait besitzt ein Alter von rund 350 Millionen Jahren.
Abb. 4: Eine schlierige, etwa 20 cm breite Übergangszone belegt eine Interaktion von aufsteigender heißer Kullaitschmelze mit dem Amphibolit.
Abb. 5: Der Kullaitgang setzt sich weiter hinten in der Felswand fort, dazwischen wurde er durch Erosion ausgeräumt. In der Umgebung finden sich zahlreiche Kullaite als Brandungsgeröll.
Abb. 6 Kullaitgeröll vom Anstehenden, trocken fotografiert.
Abb. 7: Nahaufnahme der angefeuchteten Oberfläche.

Das Gestein ist feinkörnig und auf den ersten Blick recht unscheinbar. Es besitzt ein doleritähnliches Gefüge aus roten, miteinander verfilzten Feldspat-Leisten in regelloser Anordnung (Andesin, ein Na-Ca-Feldspat der Plagioklas-Gruppe, OBST 1999, 2001, vgl. a. TRÖGER 1935). Dunkle Minerale sind weitgehend chloritisiert und füllen die Zwischenräume, vereinzelt sind auch größere schwarze Körner erkennbar. Die Rotfärbung des Gesteins ist auf fein verteilten Hämatitstaub zurückzuführen. Einige größere und etwas hellere Feldspat-Einsprenglinge weisen an den Rändern Spuren von Resorption (magmatische Korrosion) auf.

Abb. 8: Ein weiteres Kullait-Geröll von Lahibiagrottan, Aufnahme unter Wasser.

Neben einem migmatitischen („plagioklasschlierigen“) Granatamphibolit als Wirtgestein für den roten Kullait (Abb. 3), steht am östlichen Abstieg zur Lokalität Lahibiagrottan ein weiterer Granatamphibolit an.

Abb. 9: Grobkörniger Granatamphibolit, Bildbreite etwa 80 cm.
Abb. 10: Loser Stein vom Anstehenden. Das Gestein enthält viel Granat; einige der runden Granat-Porphyroblasten besitzen einen hellen Saum aus retrograd gebildetem Plagioklas.
Abb. 11: Migmatischer Granatamphibolit, Strandgeröll von Lahibiagrottan.
Abb. 12: Granatamphibolit mit großen Granat-Porphyroblasten ohne Plagioklas-Säume. Loser Stein an der Lokalität Lahibiagrottan. Bildbreite etwa 20 cm.

Kullait von Josefinelust

Abb. 13: Die Lokalität Josefinelust liegt etwa 2 km östlich von Kullens Fyr. Ein steiler Abstieg führt zum Strand.
Abb. 14: Dort steht ein etwa 80 cm breiter Kullait-Gang an, scharf begrenzt von rotgrauen Gneisen des Grundgebirges.
Abb. 15: Der Kullait-Gang verläuft parallel zur Küste, weist eine nordwestliche Streichrichtung auf und lässt sich auf einer Länge von etwa 300 m im Gelände verfolgen.
Abb. 16: Bräunlichroter Kullait von Josefinelust, Anstehendprobe mit polierter Schnittfläche.
Abb. 17: Gleicher Stein, Nahaufnahme.

Das feinkörnige Gestein besitzt ein doleritähnliches Gefüge aus leistenförmigem Feldspat und dunklen Mineralen. Wenige größere Feldspat-Einsprenglinge sind heller gefärbt als die Grundmasse und weisen Spuren magmatischer Korrosion auf.

Abb. 18: Kullait von Josefinelust als Strandgeröll, Aufnahme unter Wasser.
Abb. 19: Nahaufnahme; am linken Bildrand ein mit weißem Calcit gefüllter Hohlraum innerhalb eines länglichen roten Xenoliths.

Mit Calcit gefüllte Hohlräume sind an rote und tropfenförmige Xenolithe gebunden, die einen ähnlichen Mineralbestand wie die Grundmasse aufweisen, aber gröber kristallisiert sind. Xenolithe und Calcit treten gelegentlich auch im roten Kullait von Lahibiagrottan auf.

Ebenfalls von Josefinelust stammt ein grünlich-brauner Kullait mit hellen Feldspat-Einsprenglingen. Es handelt sich um einen einzelnen Fund als Strandgeröll, anstehend konnte das Gestein nicht beobachtet werden.

Abb. 20: Grünlich-brauner Kullait, Strandgeröll von Josefinelust.
Abb. 21: Die Gesteine am Geröllstrand von Josefinelust stammen ganz überwiegend aus der unmittelbaren Umgebung: rotgraue und magnetische Gneise (Järngneise), mafische Granulite und Amphibolite.

2.2. Kullaite als Geschiebe

Abb. 22: Drei Kullait-Varianten vom Kullaberg im Vergleich, Aufnahme unter Wasser.

Die Motivation, einen Kullait in Norddeutschland als Geschiebe zu finden, lässt sich wohl mit der Seltenheit und dem exotischen Charakter des Gesteinstyps erklären. Dabei ist zu berücksichtigen, dass es sich um feinkörnige und auf den ersten Blick eher unauffällige Gesteine handelt, die aufgrund der geringen Ausdehnung der Vorkommen nur sehr selten in Erscheinung treten. Allgemeine Kennzeichen sind das doleritähnliche (ophitische) Gefüge aus verfilzten Feldspat-Leisten und dunklen, meist stark alterierten Mineralen. Die Gesteine können rot, rotbraun bis braun, grau oder grünlichbraun gefärbt sein. Zusätzlich können wenige korrodierte Feldspat-Einsprenglinge, Enklaven mit Fremdgestein, helle runde oder tropfenförmige Bereiche mit etwas gröber kristallisierten Feldspat-Leisten sowie mit Calcit gefüllte Blasenhohlräume auftreten.

Die Analyse eines Kullaits von Kullagarden (Tröger 1935: Nr. 288) ergab folgende Zusammensetzung (Gew.%): 55 Plagioklas, 18 Chlorit +/- Epidot, 13 Orthoklas („Einsprenglinge“), 10 Erz, 4 Quarz, Apatit und Calcit.

Neben den Kullaiten vom Kullaberg (weitere Abbildungen auf skan-kristallin.de) und anderen Lokalitäten in SW-Schweden (Dalby, Torpa Klint) sind Kullait-Vorkommen auch aus der Fortsetzung des NE-streichenden Gangschwarms von Bornholm (Bjergebakke) sowie aus dem Oslograben (Grefenskollen) bekannt. Die Gesteine besitzen also eine weite Verbreitung und sind weder als Leitgeschiebe geeignet, noch lassen sich Kullait-Gerölle allein anhand äußerlicher Merkmale auf eine bestimmte Lokalität zurückführen (OBST 2001, Abbildungen auch auf kristallin.de).

2.3. Kullaberg: Ransvik

Am Strand von Ransvik (Lok. 2 auf der Karte) bildet ein ausgesprochen grobkörniger Granatamphibolit eine gangförmige Einschaltung in grauen migmatitischen Gneisen. Der Name der Lokalität („Diamantklipporna“) ist auf die Kristallflächen der Amphibole zurückzuführen, die bei Sonnenschein „wie Diamanten“ schillern (Naturschutzgebiet, kein Hammer!).

Abb. 23: Granatamphibolit am Strand von Ransvik.
Abb. 24: Nahaufnahme des grobkörnigen Amphibolits.
Abb. 25: Granatreiche Partie mit großen Granat-Porphyroblasten, teilweise umgeben von einem hellen Plagioklas-Saum. Bildbreite 26 cm.
Abb. 26: Die intensive Bruchtektonik der Sorgenfrei-Tornqvist-Zone zeigt sich an den Gneisen von Ransvik als rhombisches Kluftmuster.
Abb. 27: Tektonische Brekzie, Strandgeröll von Ransvik. Das aplitähnliche Gestein wird von Rissen durchzogen, die mit einer Masse aus Feldspat, Quarz und grünen Mineralen (Chlorit o. ä.) verfüllt sind.

Literatur

MÖLLER C, JOHANSSON L, ANDERSSON J & SÖDERLUND U 1996 Southwest-Swedish Granulite Region – Berichte der Deutschen Mineralogischen Gesellschaft, Beih. z. Eur. J. Mineral. Vol. 8, 1996, No.2.

OBST K 1999 Die permosilesischen Eruptivgänge innerhalb der Fennoskandischen Randzone (Schonen und Bornholm) – Untersuchungen zum Stoffbestand, zur Struktur und zur Genese. Greifswalder Geowissenschaftliche Beiträge 7/1999 S. 1-121

OBST K 2001 Kullaite und ihre Bedeutung als Leitgeschiebe – Geschiebekunde aktuell, Nr. 17, 75-84, Hamburg, Juli 2001.

TRÖGER WE 1935 Spezielle Petrographie der Eruptivgesteine – Ein Nomenklatur-Kompendium mit 1. Nachtrag Eruptivgesteinsnamen – Verlag der Deutschen Mineralogischen Gesellschaft, unveränderter Nachdruck 1969.

Geologische Streifzüge in SW-Schweden

Dieser mehrteilige Exkursionsbericht führt an ausgewählte Lokalitäten in Südwest-Schweden. Zahlreiche Küstenaufschlüsse und aufgelassene Steinbrüche zwischen Kullaberg-Halbinsel und Varberg bieten hervorragende Einblicke in die Geologie eines metamorphen Grundgebirges, das vor rund 1 Milliarde Jahren im Zuge der Svekonorwegischen Gebirgsbildung entstand. Hier treten großflächig Gesteine zutage, die in keiner anderen Region des nordischen Grundgebirges vorkommen, z. B. saure und mafische Granulite. Auf mehreren Reisen konnte eine Reihe von typisch SW-schwedischen Gesteinstypen, darunter auch kristalline Leitgeschiebe, beprobt und in ihrem geologischen Kontextes studiert werden. Als Grundlage für die Planung diente der Exkursionsführer von MÖLLER et al 1996.

Abb. 1: Felsküste im äußersten Nordwesten der Kullaberg-Halbinsel. Das Grundgebirge besteht hier aus migmatitischen Gneisen mit eingeschalteten Amphibolit-Körpern und besitzt ein Alter von rund 1 Milliarde Jahren.
Abb. 2: Karte der vorgestellten Lokalitäten.

Die Zahlen verweisen auf die entsprechenden Abschnitte des Exkursionsberichts. Die meisten Lokalitäten liegen an der Küste, weil dort die Gesteine besonders gut aufgeschlossen sind.

  1. Zur Geologie SW-Schwedens
    1.1. Leitgeschiebe und Geschiebetypen aus SW-Schweden
  2. Kullaberg-Halbinsel
    2.1. Kullaberg und Kullaite
    2.2. Kullaite als Geschiebe
    2.3. Kullaberg: Ransvik
    2.4. Nordwest-Dolerit von Arild
  3. SW-schwedische Küstenaufschlüsse
    3.1. Söndrum
    3.2. Steninge
    3.3. Glassvik
    3.4. Stensjöhamn
    3.5. Träslövsläge
  4. Varberg-Charnockit und Torpa-Granit
    4.1. Charnockite als Geschiebe
    4.2. Torpa- und Tjärnesjön-Granit
  5. Retroeklogit von Ullared

Im Zusammenhang mit den SW-schwedischen Gesteinen stehen Einzelbeschreibungen der folgenden Gesteinstypen:

1. Zur Geologie SW-Schwedens

Abb. 3: Übersichtskarte der geologischen Gebietseinheiten in Norwegen, Schweden und Finnland (Grafik aus kristallin.de). Die Svekonorwegischen Gesteine sind durch eine rosa Signatur gekennzeichnet.

Die svekonorwegische Gesteinsprovinz entstand vor 1,14 – 0,9 Ga und nimmt ausgedehnte Gebiete in Norwegen und in West- und Südwest-Schweden ein (rosa Signatur in Abb. 3). Sie wird in fünf lithotektonische Einheiten unterteilt, die durch fortgesetzte Akkretionsprozesse entstanden und jeweils eine eigene geologische Geschichte besitzen. In Schweden unterscheidet man ein westliches Segment (wT) mit niedriger metamorphen Gesteinen von einem östlichen Segment (öT). Beide Einheiten sind durch eine breite Mylonitzone voneinander getrennt und erstrecken sich nach Osten bis an die Protoginzone. Diese lang gestreckte Störungszone bildet die Grenze zu den weniger deformierten Gesteinen des Transskandinavischen Magmatitgürtels (TIB).

Das Exkursionsgebiet beschränkt sich auf den südwestlichen Teil des östlichen Segment der Svekonorwegiden, einem Gebiet, das als Südwestschwedisches Granulitgebiet (SGR southwest-swedish granulite region) bezeichnet wird (Abb. 4). Innerhalb der SGR finden sich vorwiegend die hochmetamorphen, während der svekonorwegischen Orogenese unter Bedingungen der höheren Amphibolit- bis Granulitfazies gebildeten Gesteine.

Abb. 4: Geologische Übersichtskarte des Südwestschwedischen Granulitgebiets (SGR). Grafik aus kristallin.de.

Die geologische Geschichte der SGR beginnt weit vor der svekonorwegischen Orogenese. Ein Grundgebirge aus Granitoiden und mafischen Intrusionen, das mit 1.730-1.660 Ma ein ähnliches Alter besitzt wie der Transskandinavische Magmatitgürtel, wurde durch eine ältere, als „Halland-Event“ oder „Halland-Orogenese“ bezeichnete Phase der Gebirgsbildung vor 1.460 und 1.420 Ma einer ersten Migmatisierung unterworfen (SÖDERLUND et al 2008; MÖLLER et al 2007). Mit dieser Orogenese verbunden sind der lokale Aufstieg postorogener Granite (Torpa-/Tjärnesjö-Granit, 1.400-1.380 Ma) und die Bildung von Charnockiten (s. Varberg-Charnockit). Diese Gesteine wurden während der svekonorwegischen Orogenese teilweise deformiert.

Die Gesteine der SGR entstanden vor 1.035 Ma bis 930 Ma während (mindestens) einer Kontinent-Kontinent-Kollision, vermutlich der Vereinigung von Amazonia und Baltica im Zuge der Grenville-Orogenese und der Bildung des Großkontinents Columbia. Heute treten jene Krustenteile des Gebirges zu Tage, die im Falle der granulitfaziellen Gesteine in etwa 35 km, im Extremfall des Eklogits in bis zu 50 km Tiefe gebildet wurden. In ihre gegenwärtige Position gelangten sie durch gravitationalen Kollaps des Orogens und isostatischen Ausgleich der verdickten kontinentalen Kruste nach dem Ende der Gebirgsbildung sowie der Abtragung im Laufe von Jahrmillionen (BINGEN et al 2008).

Das Grundgebirge der SGR besteht überwiegend aus rötlichen und grauen Adergneisen bzw. Migmatiten von granitischer bis intermediärer Zusammensetzung. Teilweise enthalten diese Gesteine als granulitfazielle Neubildung Magnetit in bedeutender Menge und werden dann als „Järngneis“ (Eisengneis) bezeichnet. Eingeschaltete Gänge, Lagen und Linsen von Granatamphiboliten und mafischen Granuliten innerhalb der Gneise entstanden durch Metamorphose (wahrscheinlich mehrerer Generationen) von Intrusionen (und Extrusionen?) basischer Gesteine. Die Vorkommen mafischer Gesteine erreichen eine Ausdehnung von einigen km Länge und maximal 1 km Breite. Die Gesteine mit den höchsten Metamorphosegraden innerhalb der SGR sind kleine Vorkommen von Retro-Eklogiten im Gebiet von Ullared.

Das svekofennische Gebirge war bereits zu Beginn des Paläozoikums vollkommen eingeebnet. Durch einen weltweiten Anstieg des Meeresspiegels (Transgression) kam es auf diesem als Peneplain bezeichneten Gebirgsrumpf im Zeitraum zwischen Kambrium und Silur zur Ablagerung von Sedimenten. Durch Kollision von Baltica und Nordamerika entstand im späten Silur das Kaledonische Gebirge. Kaledonische Gesteine bedecken heute vor allem in Norwegen Teile des älteren Grundgebirges.

Im Permokarbon (vor etwa 300 Millionen Jahren) bildete sich an der Nahtstelle (Sutur) zwischen Baltischem Schild und Mitteleuropa eine etwa 100 km breite Deformationszone bzw. Schwächezone. Der SW-schwedische Teil ist die NW-SE verlaufende Sorgenfrei-Tornquist-Zone. Zur Zeit ihrer Hauptaktivität wurde das proterozoische Grundgebirge von tief reichenden Rissen und Klüften durchzogen. In der Folge stiegen Magmen auf. Ein Gangschwarm aus Tausenden NW-streichender Gänge (NW-Dolerite, untergeordnet auch Kullaite und Lamprophyre) durchschlägt teilweise auch jüngere Sedimentgesteine, die seit dem Unterkambrium auf dem Baltischen Schild abgelagert wurden.

Zusammenfassung der wichtigsten Daten zur geologischen Geschichte der SGR:

  • 1,73-1,66 Ga: Entstehung der Ausgangsgesteine der SGR; ähnliches Gesteinsalter wie TIB.
  • 1,46-1,42 Ga: „Halland-Event“, Gebirgsbildung und erste metamorphe Phase;
  • 1,40-1,38 Ga: postorogene Torpa-Granite, Charnockite.
  • 1,03-0,93 Ga: Svekonorwegische Orogenese; Bildung granulitfazieller Gesteine (Granulitgneise, mafische Granulite) und Eklogite.
  • Ablagerung von Sedimentgesteinen auf dem Grundgebirgsrumpf seit dem Unterkambrium.
  • Permokarbon: Bruchtektonik der Sorgenfrei-Tornqvist-Zone; Aufstieg der NW-Dolerite (Kullaite, Lamprophyre).

1.1. SW-schwedische Leitgeschiebe

Einige Gesteinstypen der SGR eignen sich als Leitgeschiebe. Zu den häufigeren Geschieben gehören die granulitfaziellen Gesteine. Aus sauren Edukten gingen Schonen-Granulit („Granulitgneis von Schonen“ in SMED & EHLERS 2002) und „Flammenpegmatit“ (deformierter bunter Pegmatit in VINX 1998) hervor. Ihre Vorkommen beschränken sich auf Westschonen und Halland. Im gleichen Gebiet und einzelnen Arealen weiter östlich, in Richtung der Protoginzone, kommen auch die Granulite aus basischen Edukten vor: granoblastischer mafischer Granulit und Granatcoronit.

Mit Einschränkung sind migmatitische Granatamphibolite („plagioklasschlieriger Granatamphibolit“, VINX 1996, 1998, 2016) als SW-schwedisches Leitgeschiebe geeignet. Als mögliches Leitgeschiebe werden hier erstmalig Gesteine vorgestellt, die große Orthopyroxen-Kristalle (oder Relikte davon) führen und ebenfalls typische Gesteine der SGR sein dürften, weil die Bildung von Orthopyroxen an granulitfazielle Metamorphosebedingungen geknüpft ist (Granatamphibolite mit Orthopyroxen-Megakristallen sowie charnockitisierte Pegmatite mit Opx-Megakristallen).

Weniger häufig sind Varberg-Charnockit (Varberg-Granit in ZANDSTRA 1999 und HESEMANN 1975) und grobporphyrische Varianten des Torpa-Granits, ein rarer Fund ist der Halland-Retro-Eklogit. Eine grobkörnige und porphyrische Variante des NW-Dolerits eignet sich nach bisherigem Kenntnisstand als Leitgeschiebe und ist nur in NW-Schonen beheimatet.

Neben Gesteinstypen mit eng begrenztem Herkunftsgebiet lassen sich weitere Gesteine mit einiger Wahrscheinlichkeit einer SW-schwedischen Herkunft zuordnen. Aufgrund ihrer weiten Verbreitung sind sie nicht als Leitgeschiebe geeignet. In SW-schwedischen Geschiebegemeinschaften finden sich häufig magnetitführende Järngneise sowie Granatamphibolite (mit Plagioklassäumen um die Granate). Mit einem hohen Anteil an SW-schwedischen Gesteinen ist insbesondere westlich und nördlich der Lübecker Bucht zu rechnen.

Die seltenen und exotischen Kullaite bilden mehrere kleine, aber weit gestreute Vorkommen, nicht nur in SW-Schweden. In SW-schwedischen Geschiebegemeinschaften dürfte eine höhere Wahrscheinlichkeit für Funde bestehen, aufgrund der vergleichsweise großen Anzahl SW-schwedischer Kullait-Gänge.

Darüber hinaus existiert eine Reihe von lokalen, teilweise auch synonymen Bezeichnungen für SW-schwedische Gneise, die geschiebekundlich nur wenig aussagekräftig sind, z. B. Halland-Gneis, Halmstadgneis oder Halmstad-Migmatit. Es handelt sich um rötliche, teils migmatitische Adergneise, wie sie an der Küste von Halland seit langer Zeit als Werkstein gewonnen werden. Granulitgneis ist eine allgemeine Bezeichnung für Gneise, die einer granulitfaziellen Metamorphose unterlagen. Bei einem Teil von ihnen handelt es sich um Schonengranulit. Für gewöhnlich sieht man einem Gneis-Geschiebe die metamorphe Fazies nicht an. Stark magnetithaltige Gneise sind ein Hinweis auf eine SW-schwedische Herkunft und werden als Järngneis bezeichnet.

Innerhalb der Südwestschwedischen Granulitregion (SGR) sind mehrere Vorkommen von Charnockitgneisen bekannt. Diese grünen Gesteine bilden Einschaltungen innerhalb der Grundgebirgsgneise und sind metamorph entstanden, im Unterschied zum Varberg-Charnockit (magmatischer Ursprung).

Abb. 5: Vereinfachte Übersichtskarte der SW-schwedischen Leitgeschiebe.

Das schwarz schraffierte Gebiet in Abb. 5 markiert einen kleinen Teil der svekonorwegischen Gesteine in SW-Schweden, das Südwestschwedische Granulitgebiet (SGR, southwest-swedish granulite region). Es wird von großen Störungszonen begrenzt, im Norden von der Mylonitzone (gelb), im Osten von der Protoginzone (rot).

Auf das gesamte Gebiet der SGR verteilt finden sich Vorkommen von Järngneisen.
Die Gesteine mit den höchsten Metamorphosegraden (Granulite) beschränken sich auf den westlichen Teil der SGR, einem Gebiet nördlich von Helsingborg bis Varberg. Von hier stammen die sauren und basischen Granulite: Schonengranulit, Flammenpegmatit, mafischer Granulit. Gebiete mit den schwarzen Punkten kennzeichnen die Gebiete, in denen Granatcoronite verbreitet sind.

Hervorgehoben sind die Städte Varberg (Massiv des Varberg-Charnockits mit Torpa-Granit) und Ullared (Vorkommen des Halland-Retroeklogits). Blau markiert ist jener Teil des permosilesischen Gangschwarms, in denen NW-Dolerite mit grobkörniger Grundmasse auftreten. Innerhalb dieses bis Ost-Schonen reichenden Gangschwarms liegen auch mehrere Vorkommen von Kullaiten.

2. Kullaberg-Halbinsel

Der geologische Streifzug durch die SGR beginnt auf der Kullaberg-Halbinsel, etwa 35 km NW von Helsingborg. Im südwestlichen Schweden kam es im späten Silur durch Dehnungstektonik zur Bildung sog. Horste und Gräben. Dabei wurden Teile des Grundgebirges als Horste herausgehoben und Gräben mit jüngeren Sedimenten verfüllt. Der Kullaberg als südwestlichste Einheit einer Reihe von Grundgebirgshorsten, zu denen auch der Hallandsåsen und Söderåsen gehören, besitzt ein mittelgebirgsartiges Relief, seine Höhenlagen erheben sich rund 100 m über den Meeresspiegel. An zahlreichen küstennahen Aufschlüssen lassen sich die Gesteine der SGR und ihre Kontaktbeziehungen studieren.

Abb. 6: Luftbild der Kullaberg-Halbinsel (Foto: Bertil Hagberg, fotografiert am naturum Kullaberg).
Abb. 7: Geologisches Schema der Kullaberg-Halbinsel aus SÖDERLUND et al 2008.

Das Grundgebirge der Kullaberg-Halbinsel besteht im Wesentlichen aus grauen bis rötlichgrauen und meist migmatitisierten Orthogneisen. Gänge und Körper (grün) von Metabasiten (Amphibolite, Granat-Amphibolite und mafische Granulite) durchziehen die Gneise annähernd in N-S-Richtung. Die jüngeren NW-Dolerite (violett; diabase) weisen eine nordwestliche Streichrichtung auf.

Abb. 8: Rotgraue Gneise der SGR am Leuchtturm Kullens Fyr. Die Klüftung folgt der nordwestlich streichenden Bruchtektonik der Sorgenfrei-Tornqvist-Zone, die Foliation und migmatitische Bänderung verläuft in nordsüdlicher Richtung.
Abb. 9: Gesteinsschutt aus grauen bis rotgrauen migmatitischen Adergneisen sowie roten Pegmatiten. Bildbreite ca. 60 cm.
Abb. 10: Strandgeröll eines migmatitischen Gneises (Breite 12 cm).

Das Gestein ist magnetisch und ein sog. „Järngneis“ (Eisengneis). Järngneise sind in SW-Schweden weit verbreitet und können Magnetit in bedeutender Menge (1-3%) enthalten. Magnetit entsteht als Neubildung unter granulitfaziellen Metamorphosebedingungen.

Abb. 11: Rotgrauer Järngneis mit anhaftendem Handmagneten. Strandgeröll vom Kullaberg.
Abb. 12: Ein etwa 1 m breiter Amphibolitgang, diskordant von einem jüngeren roten Pegmatit durchschlagen.

In die Gneise vom Kullaberg sind stellenweise Gänge und Körper von aplitischen Gesteinen und grobkörnigen Pegmatiten eingeschaltet. Sie dürften postkinematisch, also nach der (svekofennischen) Gebirgsbildung entstanden sein, weil sie ein richtungslos-körniges Mineralgefüge und keine Anzeichen einer tektonischen Deformation aufweisen. Die Gesteine ähneln manchmal dem Schonengranulit oder „Flammenpegmatit“ (Abb. 14). Letztere entstanden jedoch unter granulitfaziellen Bedingungen und weisen eine deutliche Foliation auf. Ihr Hauptverbreitungsgebiet liegt etwas weiter nördlich im Gebiet zwischen Halmstad und Falkenberg.

Abb. 13: Verfalteter Gang eines aplitähnlichen Gesteins aus Quarz und rotem Alkalifeldspat in einem grauen Gneis. Höhe des Gangs etwa 20 cm.
Abb. 14: Mäßig deformiertes und pegmatitähnliches Gestein mit hellen Quarzen; ähnlich dem Flammenpegmatit, aber ohne plattig ausgewaltzem Quarz.
Abb. 15: Pegmatitgang an der Lokalität Silvergrottan. Der etwa 60 cm breite Gang ist auf eine Länge von 15 m begehbar und wurde im Jahre 1561 von dänischen Bergleuten auf der (vergeblichen) nach Silber ausgeräumt.

An der Westspitze der Kullaberg-Halbinsel finden sich innerhalb der rotgrauen Gneise mehrere große Gesteinskörper mit Metabasiten, von fein-, mittel- bis grobkörnigen und meist granatführenden Amphiboliten (<5% Granat) über Granatamphiboliten (>5% Granat) bis mafischen Granuliten. Die Gesteine können weitgehend undeformiert, gneisig, verfaltet oder migmatisiert sein. Abb. 16 zeigt eine größere Intrusion mit einem zentralen Teil aus mafischem Granulit, der zum Rand in einen Amphibolit übergeht.

Abb. 16: Mafischer Gesteinskörper in der Nähe vom Leuchtturm Kullens Fyr.
Abb. 17: Übergang eines mafischen Granulits (oben, Gangmitte, braun) in einen schwarzen Amphibolit am Rand der Intrusion; Grenze zu einem rotgrauen Gneis.
Abb. 18: Granatführender Amphibolit, Strandgeröll vom Anstehenden. Hauptbestandteile des Gesteins sind Amphibol (schwarz), Plagioklas (weiß) und etwas Granat (rot).
Abb. 19: Der Amphibolit (grau) ist im Kontaktbereich zu einem migmatitischem Gneis/Pegmatit (rot) von weißen Schlieren durchsetzt. Bildbreite etwa 3,50 m.
Abb. 20: Gleicher Aufschluss; große schwarze Glimmer-Blättchen an der Grenze von Pegmatit und Amphibolit. Bildbreite etwa 40 cm.
Abb. 21: Mafischer Granulit in der Mitte des Ganges (s. Abb. 20), Bildbreite etwa 25 cm.
Abb. 22: Gleiches Gestein, bei Sonnenschein fotografiert.
Abb. 23: Leicht foliierter mafischer Granulit, Strandgeröll vom Anstehenden.
Abb. 24: Nahaufnahme der angefeuchteten Oberfläche. Das Gestein besteht aus Granat (rot), Pyroxen (grünlichschwarz), Amphibol (schwarz) und Plagioklas (weiß).

Mafische Granulite sind typische Gesteine der SGR und durch trockene Hochdruck-Metamorphose aus basischen Ausgangsgesteinen hervorgegangen (Basalte oder Gabbros). Plagioklas wird unter granulitfaziellen Bedingungen instabil und wandelt sich an den Korngrenzen zum Pyroxen in Granat um. Dieser bildet Granoblasten in Gestalt kleiner Körner, ebenso wie Klino- und Orthopyroxen, die durch komplexe Mineralreaktionen aus dunklen Mineralen wie Biotit und Amphibol gebildet werden. Mafische Granulite weisen im kleinen Maßstab also ein weitgehend gleichkörniges und richtungsloses Mineralgefüge auf und sind als Granofelse anzusehen, können auf den ersten Blick aber eine gneisartige Textur besitzen, möglicherweise ein Reliktgefüge der Ausgangsgesteine. Wesentlicher Mineralbestand sind Klinopyroxen (grünlich-schwarz), granoblastischer Granat (rot) in winzigen Körnern, Plagioklas (weiß) sowie schwankende Mengen an schwarzem und glänzenden Amphibol, der durch retrograde Metamorphose entstand.

Mafische Granulite entstehen bei 700-800°C und einem Druck von 8-12 Kbar, was einer krustalen Tiefe von 30-45 km entspricht. Die Kruste muss also zum Zeitpunkt der Metamorphose sehr dick und die Ausgangsgesteine entsprechend tief versenkt gewesen sein. Die Exhumierung bzw. der Aufstieg der mafischen Granulite erfolgte offenbar recht schnell, da sie im Allgemeinen nur in geringem Maße retrograd überprägt wurden (Bildung von Amphibol; MÖLLER et al 1996).

Abb. 25: Mafischer Granulit mit weitgehend regellos-körnigem Gefüge; Strandgeröll vom Anstehenden.
Abb. 26: Mafischer Granulit, durchschlagen von einem 10 cm breiten Pegmatitgang.

Neben den NS-streichenden Metabasiten, die während der Svekonorwegischen Gebirgsbildung teilweise in mafische Granulite umgewandelt wurden, sind am Kullaberg auch Gänge von jüngeren (permokarbonischen), gänzlich undeformierten und gemäß ihrer vorherrschenden nordwestlichen Streichrichtung als NW-Dolerit bezeichneten Gesteinen aufgeschlossen (s. a. Nordwest-Dolerit von Arild).

Abb. 27: Der Pfeil markiert den Beginn eines NW-streichenden Doleritgangs (NW-Dolerit), der sich bis zum Standort fortsetzt.
Abb. 28: Gleicher Doleritgang, von der Küste aus betrachtet; Breite etwa 15 m.
Abb. 29: Der kleinkörnige NW-Dolerit vom Kullaberg ist ein recht unscheinbares Gestein. Brandungsgeröll vom Anstehenden.
Abb. 30: Der NW-Dolerit wird von migmatitischen Amphiboliten der SGR flankiert.

In flachen Uferbereichen der Felsküste finden sich die anstehenden Gesteine der unmittelbaren Umgebung als Brandungsgeröll (Gneise, Pegmatite, Amphibolite und mafische Granulite).

Abb. 31: Brandungsgerölle am Kullaberg, Bildbreite etwa 90 cm.
Abb. 32: Grenze einer pegmatitartigen Partie zu einem grauen Gneis. Strandgeröll, Breite 18 cm.
Abb. 33: Ortsfremde Gesteine treten nur vereinzelt auf und fallen schnell ins Auge, wie dieser braune Porphyr mit bläulichen Quarzen (Småland-Vulkanit?). Breite des Steins 12 cm.

Literatur

BINGEN B, NORDGULEN O & VIOLA G 2008 A fourphase model for the Sveconorwegian orogeny, SW Scandinavia – Norwegian Journal of Geology 88, S. 43-72.

MÖLLER C, JOHANSSON L, ANDERSSON J & SÖDERLUND U 1996 Southwest-Swedish Granulite Region – Berichte der Deutschen Mineralogischen Gesellschaft, Beih. z. Eur. J. Mineral. Vol. 8, 1996, No.2.

MÖLLER C, ANDERSSON J, LUNDQVIST I & HELLSTRÖM FA 2007 Linking deformation, migmatite formation and zircon U-Pb geochronology in polymetamorphic gneisses, Sveconorwegian province, Sweden – Journal of Metamorphic Geology 25, S. 727-750.

SÖDERLUND U, HELLSTRÖM FA & KAMO SL 2008 Geochronology of high-pressure mafic granulite dykes in SW Sweden: tracking the P- T-t path of metamorphism using Hf isotopes in zircon and baddeleyite – Journal of Metamorphic Geology 26, 539-560.

SÖDERLUND U, KARLSSON C, JOHANSSON L & LARSSON K 2008 The Kullaberg peninsula – a glimpse of the Proterozoic evolution of SW Fennoscandia – GFF 130, Teil 1, S. 1-10.

VINX R 1996 Granatcoronit (mafischer Granulit): ein neues Leitgeschiebe SW-schwedischer Herkunft – Archiv für Geschiebekunde, Hamburg 1996, Band 2, S. 3-20.

VINX R 1998 Neue kristalline SW-schwedische Leitgeschiebe: Granoblastischer Mafischer Granulit, Halland-Retro-Eklogit und deformierter, bunter Pegmatit – Archiv für Geschiebekunde, Hamburg 1998, Band 2, Heft 6, S. 363-378.

VINX R 2016 Steine an deutschen Küsten; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.).