Schlagwort-Archive: Virbo-Granit

4. Nordost- Småland-Granite – Geschiebefunde aus Norddeutschland

Die Granite aus Ost- und Nordost-Småland sowie dem südlichen Östergötland wurden auf dieser Seite in mehreren Artikeln beschrieben- jene des Transskandinavischen Magmatitgürtels und die etwas jüngeren anorogenen Granite. Bei der Bestimmung von Geschieben stellt sich oft das Problem einer genauen Zuordnung zu einem der als Leitgeschiebe beschriebenen Varianten. Leichter ist es, die Gesteine einem größeren Herkunftsgebiet zuzuweisen („Ostsmåland-Granit“, „NE-Småland-Granit“). Die folgenden Geschiebefunde wurden unter Wasser aufgenommen, soweit nicht anders angegeben.

Abb. 1: Nordost-Småland-Granit, porphyrischer Monzogranit aus braunem Alkalifeldspat, orangefarbenem (und grünem) Plagioklas, bläulichem und trübem Quarz sowie reichlich gelbem Titanit. Geschiebe von der Insel Poel.
Abb. 2: Nahaufnahme.
Abb. 3: NE-Småland-Granit, Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 4: Nahaufnahme der Bruchfläche.

Besitzt der Monzogranit-Typ aus Abb. 1-4 Säume von orangefarbenem Plagioklas (meist unvollständig) um einzelne Alkalifeldspäte, kann er als Kinda-Granit bezeichnet werden (Beschreibung hier).

Abb. 5: Kinda-Granit; Nienhagen bei Rostock.
Abb. 6: Dem Kinda-Granit ähnlicher Fund aus der Kiesgrube Horstfelde, südlich von Berlin; allerdings sollten die Plagioklassäume um die Alkalifeldspäte wenigstens einige mm Dicke aufweisen.
Abb. 7: Kinda-Granit, Großgeschiebe am Strand von Jastrzębia Góra (Danziger Bucht, Polen).
Abb. 8: Granit vom Kinda-Typ mit sehr viel orangefarbenem Plagioklas; unvollständige Säume. Hohenfelde östlich von Kiel.
Abb. 9: Leicht deformierte Variante vom Kinda-Granit?, polierte Schnittfläche; Steinbeck/Klütz, leg. T. Brückner.
Abb. 10: Nahaufnahme

Der mittelkörnige bis schwach porphyrische Flivik-Granit ist ein seltener Geschiebefund (Beschreibung hier).

Abb. 11: Flivik-Granit, Geschiebe von Sassnitz (Rügen)
Abb. 12: Nahaufnahme.

Bisher liegen nur Geschiebefunde vor, die lediglich gewisse Übereinstimmung mit den Anstehendproben vom Vånevik-Granit (Beschreibung hier) aufweisen.

Abb. 13: Vånevik-Granit? Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 14: Ähnlich Vånevik-Granit, aber mittelkörnig; Westermarkelsdorf (Fehmarn). Solche roten und mittelkörnigen Alkalifeldspatgranite mit Blauquarz und Titanit kommen in Ost-Småland bis ins Västervik-Gebiet vor.
Abb. 15: Roter Ostsmåland-Granit mit viel Titanit; polierte Schnittfläche, Steinbeck/Klütz, leg. T. Brückner.
Abb. 16: Nahaufnahme.

Mittelkörnige Blauquarzgranite mit blassrotem bis bräunlichen Alkalifeldspat, wenig Plagioklas und etwas Titanit innerhalb der spärlich vorhandenen Biotit-Aggregate sind in Nordost-Småland weit verbreitet („Tuna-Granit“).

Abb. 17: Tuna-Granit?; Ruhlsdorf bei Bernau.
Abb. 18: Tuna-Granit? – gleichzeitg besteht eine Ähnlichkeit mit dem Vånevik-Granit; Niederlehme, SE von Berlin.

Bei der Bestimmung der anorogenen Ostsmåland-Granite (Beschreibung hier) ist zu berücksichtigen, dass Granite mit einem undeformierten Gefüge auch aus anderen Vorkommen stammen können, z. B. den Rapakiwi-Vorkommen, aber auch der Suite anorogener Granite in Dalarna (Siljan- und Garberg-Granit). Ein eindeutig als Uthammar-Granit bestimmter Geschiebefund liegt bislang nicht vor.

Abb. 19: Mafitarmer Alkalifeldspatgranit, Uthammar-Granit? Kiesgrube Arendsee (Brandenburg), trocken fotografiert. Breite 50 cm.
Abb. 20: Gleicher Stein, Nahaufnahme. Idiomorphe (sechseckige) Glimmerplättchen sind auf der Außenseite dieses Geschiebes nicht erkennbar.
Abb. 21: Anorogener Granit, polierte Schnittfläche. Das Mineralgefüge ist augenscheinlich undeformiert, für einen Uthammar-Granit enthält das Gestein aber zu wenig Quarz. Kiesgrube Hoppegarten bei Müncheberg.
Abb. 22: Nahaufnahme. Einige Alkalifeldspäte besitzen einen gelben Kern.
Abb. 23: Grobkörniger roter Småland-Granit mit etwas Titanit, Steinbeck/Klütz. Dunkle Minerale bilden zusammenhängende, etwas gestreckte Aggregate (Merkmal einer leichten Deformation, kein Uthammar-Granit!).
Abb. 24: Dieser undeformierte Granit zeigt weitgehend mit dem Götemar-Granit übereinstimmende Merkmale (Beschreibung hier), ist aber nur mittelkörnig ausgebildet. Bruchfläche trocken aufgenommen, Kiesgrube Hohensaaten (Brandenburg).
Abb. 25: In der Nahaufnahme sind einige kleinere idiomorphe sowie größere Quarze mit einer Zonierung wie im Götemar-Granit erkennbar.
Abb. 26: Götemar-Granit (?) mit rotem bis gelbem Feldspat, grauem Quarz (einige davon idiomorph) und Hellglimmer als Nebengemengteil. Das Geschiebe stimmt gut mit einem Nahgeschiebe aus dem Götemar-Pluton überein (vgl. Abb. x in diesem Artikel). Geschiebe von Altenteil auf Fehmarn.
Abb. 27: Porphyrischer Granit mit idiomorphen Quarzen, polierte Schnittfläche, Steinbeck/Klütz. Alkalifeldspäte bis 3 cm, Götemar– oder Jungfrun-Granit?
Abb. 28: Nahaufnahme. Einzelne rotgrüne Plagioklas-Säume um die Alkalifeldspäte; schwache Zonierung der größeren Quarze.
Abb. 29: Porphyrischer Granit mit dunkelgrauen Quarzen. Das Gestein enthält recht viel grünen Plagioklas; Götemar-Granit oder porphyrischer Rapakiwi? Westermarkelsdorf/Fehmarn.
Abb. 30: Nahaufnahme, Alkalifeldspäte mit grünen Plagioklaskernen.
Abb. 31: Augenscheinlich undeformierter (anorogener) Granit mit idiomorphen Quarzen; ein einzelner Alkalifeldspat ist vollständig von idiomorphen Quarzen umsäumt. Kiesgrube Niederlehme (Brandenburg).
Abb. 32: Nahaufnahme.
Abb. 33: Polierte Schnittfläche. Das Gestein ist recht ungleichkörnig bzw. am rechten Rand ist ein Übergang in eine mittelkörnige Partie erkennbar. Die rote Farbe des Alkalifeldspats irritiert, im Götemar-Pluton überwiegen braunrote Farben.
Abb. 34: Nahaufnahme. Die Herkunft dieses Granits bleibt zunächst offen.

3. Fundberichte aus Kiesgruben in Ost-Småland

Der Besuch von Kiesgruben in Schweden ermöglicht einen Einblick in die Gesteine des Grundgebirges. Man findet hier hauptsächlich Nahgeschiebe, denn die vorrückenden Gletscher der letzten Inlandvereisung transportierten aufgenommenes Gesteinsmaterial auf dem Festland in der Regel nur wenige Zehnerkilometer weit (EHLERS 2011:86). Das Material in den Kiesgruben stammt also ganz überwiegend aus dem Untergrund der näheren Umgebung entgegen der Eiszugrichtung, im Falle Ost-Smålands aus Richtung NW bis NNW. Ähnliche Beobachtungen sind auch auf Öland möglich, auch hier finden sich überwiegend Nahgeschiebe aus Ost- und Nordost-Småland. Gehäufte Funde gleicher Gesteinstypen deuten auf ein größeres Vorkommen in geringer Entfernung.

Abb. 1: Übersichtskarte mit Vorkommen einiger Leitgeschiebe und weiterer Gesteine in Ost- und Nordost-Småland. Nummeriert sind die besuchten Kiesgruben: 1 – Farbo, 2 – Forshult, 3 – Skoretorp, 4 – N Värlebo. Karte verändert nach: WIK et al 2005: Berggrundskartan Kalmar län – 1:250 000.

3.1. Fårbo
3.2. Kiesgrube Forshult
3.3. Kiesgrube Skoretorp
3.4. Kiesgrube nördlich von Värlebo
3.5. Literatur

3.1. Fårbo

Abb. 2: Blick in die Kiesgrube bei Fårbo (57.401891, 16.476663).

Eine nördlich von Fårbo, direkt neben der Fernstraße E22 gelegene große Kiesgrube, war zum Zeitpunkt des Besuches im Juli 2016 bereits aufgelassen. Vor Ort fanden sich aber noch große Halden mit faust- bis kopfgroßen sowie kantengerundeten bis gut gerundeten Steinen. Der Anteil an Nahgeschieben, überwiegend NE-Småland-Granitoide, beträgt grob geschätzt etwa 90%. Sie dürften aus dem nordwestlichen Teil des Kalmar län stammen, etwa einer gedachten Linie Richtung Vimmerby folgend.

Abb. 3: Zusammenstellung von Granitgeschieben.

Der häufigste Geschiebetyp sind mittelkörnige Alkalifeldspatgranite vom Växjö-Typ (Sammelname für mittel- und weitgehend gleichkörnige Alkalifeldspatgranite mit wenig dunklen Mineralen, ohne präzise Herkunftsangabe) . Sie enthalten kaum dunkle Minerale (Biotit), Plagioklas ist meist nicht sichtbar. Vollrote Varianten überwiegen, die blassroten Granite dieses Typs sind etwas seltener (vgl. Tuna-Granit).

Abb. 4: Mittelkörnige Alkalifeldspatgranite vom Växjö-Typ.
Abb. 5: Mittelkörnige Växjö-Granite, roter Typ und blassroter Typ
Abb. 6: Blassroter mittelkörniger Växjö-Typ („Tuna-Granit“), Aufnahme unter Wasser.

In großer Menge und zahlreichen Varianten finden sich porphyrische Småland-Monzogranite, die meisten von ihnen enthalten reichlich Titanit. Auffällig ist der relativ geringe Anteil an Granitoiden mit braunem Alkalifeldspat, häufiger sind Monzogranite mit rotem bis blassrotem Alkalifeldspat, auch mit Augentextur. Einige dieser Granite enthalten roten Plagioklas, ein Merkmal einiger TIB-Granitoide aus Östergötland (Abb. 13-14).

Abb. 7: Zusammenstellung überwiegend porphyrischer Småland-Monzogranite.
Abb. 8: Einige Granite im Detail.
Abb. 9: Gewöhnlicher Småland-Monzogranitoid mit braunem Alkalifeldspat und weißem Plagioklas. Es ist recht wenig Quarz enthalten, die Zusammensetzung entspricht einem Quarzmonzonit.

Von diesem Typ gibt es Übergänge zu Granitoiden mit braunem und blassrotem Alkalifeldspat sowie mehr Quarz.

Abb. 10: Småland-Monzogranit mit braunem und blassrotem Alkalifeldspat.

Die typischen dunklen Nordost-Småland-Monzogranite mit braunem Alkalifeldspat, Blauquarz und orangefarbenem Plagioklas (teilweise Typ Kinda-Granit) kommen in der Kiesgrube nur untergeordnet vor.

Abb. 11: Brauner NE-Småland-Monzogranit, Aufnahme unter Wasser.
Abb. 12: NE-Småland-Monzogranitoid mit bräunlich-grauem Alkalifeldspat und orangebraunem Plagioklas; wenig Quarz (Quarzmonzonit).
Abb. 13: Unterer Bildteil: Monzogranite mit blassrotem oder graubraunem Alkalifeldspat (teilweise gerundet) und rotem Plagioklas. Der Gesteinstyp ist aus Ost- und Nordost-Småland nicht bekannt und dürfte aus dem Gebiet um Vimmerby oder dem südlichen Östergötland stammen.
Abb. 14: Quarzarmer Monzogranitoid (=Quarzmonzonit) mit blassrotem Alkalifeldspat und rotem Plagioklas.
Abb. 15: Porphyrischer Monzogranit mit grünem und rotem Plagioklas (teils auch braune Mischfarben); Aufnahme unter Wasser.

Gelegentlich finden sich intensiv rote und grobkörnige Granite, häufig ungleichkörnig oder schwach porphyrisch, mit unklaren Korngrenzen. In den weiter südlich gelegenen Kiesgruben treten diese häufiger auf.

Abb. 16: Intensiv roter und ungleichkörniger Granit mit reichlich gelbem Titanit; Aufnahme unter Wasser.
Abb. 17: Stark alterierter Småland-Granit; dunkler Glimmer (Biotit) wurde in schwarzgrüne Folgeprodukte (Chlorit o. ä.) umgewandelt, das Gestein ist von hellgrünem Epidot durchsetzt.

In der Kiesgrube konnten weitere Geschiebetypen dokumentiert werden. NICHT gefunden wurden anorogene Ost-Småland-Granite (Uthammar- oder Götemar-Granit). Der Götemar-Pluton ist zwar nur etwa 10 km, der Ort Uthammar keine 8 km Luftlinie entfernt, liegt allerdings in nordöstlicher bzw. ostsüdöstlicher Richtung und damit nicht in Zugrichtung der letzten eiszeitlichen Vergletscherung. Auch Vulkanite des TIB fehlen vollständig, sie kommen erst weiter südlich vor.

Eine Reihe von nicht näher spezifizierten Diabasen stellt vielleicht einen Anteil von 5-10% an den Geschieben. Tatsächlich steht unmittelbar westlich der Kiesgrube ein etwa 3 x 15 km großes Massiv sowie weitere kleinere Vorkommen mit basischen Gesteinen an.

Ferngeschiebe wie Gneise und Migmatite aus den weiter nördlich gelegenen svekofennischen Gebieten fehlen. Lediglich aus dem nahen Västervik-Gebiet, das aber auch außerhalb des Geschiebefächers liegt, scheint etwas Material nach Farbo gelangt zu sein. Dies belegen Quarzite und Metasedimente, die einen Anteil von etwa 1% ausmachen. Västervik-Fleckengestein und Fleckenquarzite wurden nicht gefunden.

Bemerkenswert sind drei Funde von Rapakiwi-Graniten (Abb. 18, 20). Vereinzelt treten sie auch in den anderen Kiesgruben Ost-Smålands auf. Manche Funde sind eindeutig dem Åland-Pluton zuzuordnen, der etwa 350 km nördlich und nicht in Zugrichtung der Gletscher der letzten Inlandvereisung liegt. Über ihren Transportweg kann man nur Vermutungen anstellen. Zum einen könnte ihr Transport nicht linear, sondern in mehreren Phasen erfolgt sein. Auch eine Verdriftung Richtung Süden in Eisbergen oder Eisschollen nach dem Abschmelzen des Eispanzers (dropstones) ist nicht ausgeschlossen. Diese letzte Annahme ließe sich durch entsprechende Funde von dropstones in-situ belegen. Entsprechende Berichte in der schwedischen Literatur sind bisher nicht bekannt.

Abb. 18: Åland-Rapakiwi mit Wiborgit-Gefüge.

Hin und wieder finden sich gelbrote und geschichtete Kalksteine, ähnlich dem ordovizischen Planilimbata-Kalk (Roter Orthocerenkalk). Vom östlich gelegenen Öland dürften sie kaum stammen, wahrscheinlicher ist eine Herkunft aus der untermeerischen Fortsetzung der ordovizischen Vorkommen nördlich von Öland. Sie dürften damit einen ähnlichen Transportweg wie die Rapakiwi-Granite genommen haben.

Abb. 19: Gelbroter Kalkstein, Planilimbata-Kalk?

An Ferngeschieben fanden sich weiterhin zwei Porphyre aus Dalarna, darunter ein Grönklitt-Porphyrit.

Abb. 20: Zwei Dala-Porphyre, in der Mitte ein weiterer Åland-Rapakiwi. Bildbreite 17 cm, Foto: Tobias Langmann.
Abb. 21: Auch mehrere Geschiebe tektonischer Brekzien wurden in der Kiesgrube beobachtet.

3.2. Kiesgrube Forshult

Die Kiesgrube Forshult liegt westlich von Oskarshamn, etwa 1,5 km SE der gleichnamigen Ortschaft (Parkplatz: 57.24536, 16.34568). Entsprechend ihrer Position südlich eines Vulkanitgürtels finden sich gestreifte und hälleflintartige Vulkanite ohne Einsprenglinge in großer Zahl. In vergleichbarer Menge treten diese auch in Skoretorp (Fundpunkt 3) auf, siehe Abb. 35-37.

In der Grube boten sich zunächst interessante Anschnitte glazialer Ablagerungen:

Abb. 22: Glazitektonisch Faltung von sandigen bis schluffigen Lagen mit Wellenrippeln. In den Sanden liegen einzelne kantige Bruchstücke eines roten Granits, der nicht dem anstehenden Typ entspricht, aber aus der näheren Umgebung stammen dürfte. Bildhöhe etwa 2 m.
Abb. 23: Abfolge verschiedener glazialer oder postglazialer Sedimente, Bildhöhe etwa 2 Meter.

 Abb. 23 zeigt vom Liegenden zum Hangenden: 1. schluffige bis feinsandige Lagen, Übergang in 2. Wellenrippel mit zunehmendem sandigen Anteil (3); 4. Sande in Schrägschichtung, 5. grünlicher Schluff mit Belastungsmarken, darüber eine sandig-schluffige Lage (6) mit einzelnen Geröllen (dropstones?).

Abb. 24: Unterer Teil der gleichen Sequenz (Schluffe und Wellenrippel), Höhe etwa 1 m.
Abb. 25: Die glazialen Ablagerungen liegen direkt auf dem Grundgebirge, hier anstehend ein roter Alkalifeldspatgranit innerhalb des Vånevik-Granitgebiets.
Abb. 26: Roter Alkalifeldspatgranit vom Typ Vånevik.

In der Grube gab es nicht viele Geschiebe. Neben Vulkaniten und gewöhnlichen roten Alkalifeldspatgraniten fanden sich überwiegend grobkörnige, leicht deformierte und stark alterierte rote Granite.

Abb. 27: Roter Alkalifeldspatgranit.
Abb. 28: Rote und stark alterierte Granite, Bildbreite 25 cm.
Abb. 29: Hellroter bis orangeroter Alkalifeldspat. Milchiger Quarz bildet unregelmäßige Ansammlungen. Dunkle Minerale wie Biotit wurden teilweise in grünschwarze Folgeprodukte umgewandelt (Chlorit o. ä.).
Abb. 30: Roter und alterierter NE-Småland-Granit mit orangefarbenem Plagioklas und viel gelblichem Titanit. Aufnahme unter Wasser.

In Ost-Småland bis ins Västervik-Gebiet finden sich gelegentlich porphyrische Småland-Granite mit blass violettgrauem bis hellrotem Alkalifeldspat (eckige bis abgerundete Einsprenglinge), gelbem Plagioklas, Blauquarz und reichlich Titanit. Ihr Herkunftsgebiet dürfte im Gebiet östlich von Vimmerby oder im angrenzenden Östergötland zu suchen sein (Abb. 31).

Abb. 31: Porphyrischer Småland-Granit mit blass violettgrauem bis hellrotem Alkalifeldspat.
Abb. 32: Blassroter Småland-Granit mit Blauquarz und reichlich gelbem Titanit.

An Ferngeschieben fanden sich mehrfach hellgraue, teilweise auch rötliche Quarzite (wahrscheinlich aus dem Västervik-Gebiet) sowie ein Rapakiwi-Granit und ein Dala-Porphyr.

Abb. 33: Rapakiwi-Geschiebe (Åland-Wiborgit), Breite ca. 10 cm.

3.3. Kiesgrube Skoretorp

Die Kiesgrube Skoretorp, ca. 2 km NNW der gleichnamigen Ortschaft (57.20846, 16.38353) war zum Zeitpunkt des Besuchs bereits stillgelegt. Vor Ort konnte aber noch reichlich Geschiebematerial studiert werden. Grob geschätzt ein Drittel davon sind dichte und hälleflintartige Småland-Vulkanite aus dem wenig weiter nördlich gelegenen Vulkanitgürtel, ein weiteres Drittel vollrote, alterierte Granite.

Abb. 34: Stillgelegte Kiesgrube (Grustäkt) bei Skoretorp.

Die rotbraunen bis braunen sowie grauen Vulkanite des TIB bilden meist eckige bis kantengerundete Geschiebe aus und sind arm an Einsprenglingen. Nur in den grauen Vulkaniten können mehr kleine Feldspäte enthalten sein.

Abb. 35: Rotbraune bis braune und graue Vulkanite des TIB. Rechts oben ein Quarzit. Bildbreite 35 cm.

Die Streifung einiger Vulkanite kann eine primäre magmatische Textur, eine Folge einer leichten metamorphen Überprägung oder beides sein. Teilweise könnte es sich um Ignimbrite handeln (eutaxitisches Gefüge), aber der makroskopische Befund ist nicht eindeutig: die kurzen, welligen Streifen „umfließen“ zwar einige Feldspat-Einsprenglinge, allerdings sind diese meist zerbrochen, was für eine metamorphe Überprägung spricht (Abb. 37).

Abb. 36: Gestreifter hälleflintartiger Vulkanit.
Abb. 37: Gleicher Stein, Nahaufnahme unter Wasser.

Unter den Granitgeschieben dominieren grob-, seltener mittelkörnige und stark alterierte rote Småland-Granite mit weißem oder bläulichem Quarz. Die braunen porphyrischen NE-Småland-Monzogranite, wie sie in Fårbo noch einigermaßen regelmäßig auftraten, fehlen hier.

Abb. 38: Stark alterierte rote Småland-Granite, Bildbreite ca. 35 cm.
Abb. 39: Grobkörnige rote Småland-Granite.
Abb. 40: Roter Granitoid mit weißem Quarz.
Abb. 41: Stark alterierter Granit, durchzogen von hellen Quarzadern.

Etwa 5% der Geschiebe in der Grube sind basische Gesteine, meist Dolerite, einige Diabase sowie dioritähnliche Gesteine mit größeren eckigen Hornblende-Aggregaten. Sie dürften aus einem Vorkommen stammen, das wenig nördlich der Kiesgrube liegt.

Abb. 42: Dolerite und ein Diabas (Bildmitte), Bildbreite 20 cm.

Vereinzelt fanden sich auch hier wieder Quarzite, einige Granitporphyre, aber kein einziger Ostsmåland-Gangporphyr.

3.4. Kiesgrube nördlich von Värlebo

Der letzte Fundpunkt, etwa 2,5 km nördlich von Värlebo (57.06805, 16.19732), bot ein ganz anderes Geschiebespektrum. Hier überwiegen klein- bis mittelkörnige und teilweise deformierte Granite, die kaum mit jenen aus den weiter nördlich gelegenen Kiesgruben vergleichbar sind. Wie in Skoretorp, fehlen die porphyrischen NE-Småland-Monzogranite. Der Järeda-Granit fand sich mehrfach (Abb. 45).

Abb. 43: Kiesgrube bei Värlebo.
Abb. 44: Geschiebespektrum, Bildbreite 90 cm.
Abb. 45: Järeda-Granit, Aufnahme unter Wasser.

Hinzu kommen reichlich hälleflintartige Vulkanite, wahrscheinlich aus dem weiter nördlich gelegenen Vulkanitgürtel, sowie Emarp-Porphyre und Ostsmåland-Gangporphyre (vergleichbar mit dem Typ aus dem Straßenaufschluss bei Påskallavik); weiterhin deformierte, teilweise in Gneise umgewandelte Gangporphyre. Geachtet wurde auf Geschiebe vom Typ „Högsrum-Porphyr“ (Abb. 48), allerdings liegt sein Heimatgebiet etwas weiter westlich, gerade außerhalb des Geschiebefächers.

Abb. 46: Hälleflintartige Vulkanite sowie einige undeformierte neben reichlich deformierten Gangporphyren.
Abb. 47: Auswahl an Gangporphyren (teilweise in Gneise umgewandelt), Aufnahme unter Wasser. Rechts unten ein Porphyr vom Emarp-Typ.
Abb. 48: Deformierter Porphyr, ähnlich dem Högsrum-Typ.

Auch in dieser Grube waren zahlreiche Dolerite zu beobachten (mit und ohne größere Plagioklas-Einsprenglinge).

Abb. 49: Dolerite und Diabase.
Abb. 50: Diabas mit roten Feldspäten (Xenokristalle?) und grünem Epidot, Aufnahme unter Wasser.

Ein Einzelfund weist Ähnlichkeiten zum Siljan-Granit auf. Einzelne idiomorphe Quarze sowie sechseckige Biotitplättchen sprechen für ein undeformiertes Mineralgefüge. Die Frage nach der Herkunft ließ sich bislang nicht abschließend klären.

Abb. 51: Granit, ähnlich Siljan-Granit, Aufnahme unter Wasser.
Abb. 52: Nahaufnahme des Gefüges.

3.5. Literatur

EHLERS J 2011 Das Eiszeitalter – 363 S., Spektrum Akademischer Verlag Heidelberg.

WIK NG, BERGSTRÖM U, BRUUN A et al 2005 Berggrundskartan Kalmar län – 1:250 000, Sveriges geologiska undersökning serie Ba nr 66.

2. Anorogene Granite in Ost-Småland und Virbo-Granit

Abb. 1: Jungfrun-Granit, Geschiebe von Eskilslund auf Öland, Breite 15 cm.

In Ost-Småland durchschlagen drei kleinere Stöcke mit jüngeren Graniten das ältere Grundgebirge, das im Wesentlichen aus ca. 1,85-1,75 Ga alten Granitoiden des Transskandinavischen Magmatitgürtels (TIB) besteht. Diese Massive des Uthammar-, Götemar und Jungfrun-Granits entstanden nach Beendigung der dano- oder svekopolonischen Gebirgsbildung vor etwa 1,45 Ga (Datierung der Gesteine in ÅHÄLL 2001). Entsprechend ihrer Genese handelt es sich um anorogene Granite. Ihr Mineralgefüge weist keine Spuren einer tektonischen Deformation auf, ein maßgeblicher Unterschied zu den TIB-Graniten, die in der Regel leicht deformiert sind. Dieser Beitrag zeigt Proben der Granite aus dem Anstehenden, Nahgeschiebe aus Ost-Småland und gibt präzisierte Beschreibungen für die Bestimmung als Geschiebe. Auf Grund der geographischen Nähe und missverständlicher Beschreibungen in der Geschiebeliteratur wird der Virbo-Granit (TIB-Granit) im Zusammenhang mit dem Uthammar-Granit behandelt.

2.1. Götemar-Granit
2.2. Jungfrun-Granit
2.3. Uthammar-Granit
2.4. Virbo-Granit
2.5. Literatur
2.6. Verzeichnis der Probenlokalitäten

Abb. 2: Lage der anorogenen 1,45 Ga-Granitmassive in Ost-Småland. Rechter Kartenausschnitt vom Kartenservice der SGU (www.sgu.se).

Uthammar-, Götemar und Jungfrun- sowie der ältere Virbo-Granit werden als Leitgeschiebe angesehen. Ihre Eignung soll hier nicht abschließend beantwortet werden. Bei der Bestimmung sind einige Schwierigkeiten zu berücksichtigen:

  • Götemar- und Jungfrun-Granit dürften ganz ähnliche Gefügevarianten ausbilden und als Geschiebe nicht immer ihrem jeweiligen Vorkommen zuzuordnen sein. Vom Jungfrun-Granit liegen zudem nur sehr wenige Vergleichsproben aus dem Anstehenden vor. Zur Beschreibung werden daher ausschließlich die grobkörnigen Varianten herangezogen.
  • Das rapakiwiartige Gefüge dieser beiden Granite, mehr noch des Jungfrun-Granits, birgt eine Verwechslungsgefahr mit Gesteinen aus Rapakiwi-Vorkommen. Porphyrische Rapakiwis können ähnliche Farben und Ausbildungen von Alkalifeldspat, Quarz und Plagioklas aufweisen. Dies gilt insbesondere für das Gefüge aus idiomorphen bis körnigen Quarzen sowie einer ersten Quarz-Generation mit größeren zonierten und runden Quarzen.
  • Der Uthammar-Granit ist mit den gewöhnlichen roten Alkalifeldspat-Graniten des TIB verwechselbar. Bei der Bestimmung gilt es, auf spezifische Merkmale zu achten, die für eine anorogene Entstehung sprechen, aber nicht immer klar zu Tage treten.
  • Der anorogene „undeformierte Virbo-Granit“ (HESEMANN 1975:36) ist eine Spielart des Uthammar-Granits aus dem südwestlichen Teil des Massivs und als Geschiebe wahrscheinlich nicht erkennbar.

Gemeinsames Merkmal ist das Fehlen von tektonischer Deformation und das Vorhandensein (wenigstens einzelner) idiomorpher Quarze und Glimmerminerale. Tektonische Deformation ist in den älteren TIB-Graniten regelmäßig zu beobachten und äußert sich in einer bevorzugten Ausrichtung des gesamten oder eines Teils des Mineralbestandes. Vor allem die plattigen Glimmerminerale neigen zur Einregelung und bilden gestreckte, parallel verlaufende Aggregate oder unregelmäßig im Gestein verteilte Ansammlungen. Ein Teil des Quarzes kann zuckerkörnig granuliert sein (meist nur auf einer Bruchfläche eindeutig sichtbar). Idiomorphe Quarze fehlen weitgehend. Alle diese genannten Gefügemerkmale einer Deformation sind ein Ausschlusskriterium für die Herkunft aus einem der drei Vorkommen!

Die Beschreibung in der Geschiebeliteratur hinsichtlich einzigartiger Gefügemerkmale ist stellenweise unbefriedigend. Zu wenig wird auf die typischen Merkmale eines undeformierten Gefüges eingegangen (idiomorpher Quarz und Biotit). Bilder aus dem Anstehenden und präzisierte Gesteinsbeschreibungen sollen eine Lücke schließen. Hinsichtlich der geringen Ausdehnung der Vorkommen dürften alle anorogenen Ost-Småland-Granite zu den seltenen Geschiebefunden zählen. In diesem Zusammenhang sei auf den Bericht über Geschiebefunde von Öland verwiesen. Dort finden sich die Granite als Nahgeschiebe, ihre Vorkommen liegen nur wenige Kilometer entfernt im Streukegel der Gletscher der letzten Inlandvereisung.

2.1. Götemar-Granit

Das annähernd kreisrunde Massiv des Götemar-Granits liegt östlich von Misterhult am See Götemaren und besitzt einen Durchmesser von etwa 5 km (Abb. 5). Die grobkörnige Variante des Götemar-Granit wurde in mehreren Steinbrüchen abgebaut und unter dem Handelsnamen „Gotenrot“ vermarktet.

Abb. 3: Blick in den Steinbruch Kråkemåla 1 (Probenr. S31) .
Abb. 4: Götemar-Granit, leicht gerundeter Block als Nahgeschiebe, kurz vor dem Steinbruch Kråkemåla. Bildbreite ca. 30 cm.
Abb. 5: Skizze des Götemar-Massivs, Grafik aus kristallin.de, leicht verändert. Das Götemar-Massiv wird durch eine große N-S streichende Störung getrennt, mit einem horizontalen Versatz von 200 m und einem vertikalem Versatz von etwa 500 m im westlichen Teil. Im westlichen Teil tritt ein tieferer Teil des Massivs an die Oberfläche.

Vom Götemar-Granit sind fein-, mittel- und grobkörnige sowie porphyrische Gefügevarianten und Aplite bekannt. Auch Pegmatite – innerhalb des TIB nur sehr spärlich zu finden – treten auf (Abb. 19-20). Die Kontakte zum umgebenen TIB-Granit sind scharf, Xenolithe kommen im Götemar-Granit nicht vor.

Eine Datierung anhand von Zirkonen ergab ein Gesteinsalter von 1.452 ± 9 Ma (ÅHÄLL 2001). Die Entstehungsgeschichte des Massivs ist durch wiederholte Abkühlungs- und Aufheizphasen und mehreren Magmaschüben geprägt. Ihre Platznahme in etwa 4-8 km Tiefe fand während einer Zeit regionaler Deformation statt, umfasste aber nur einen Zeitraum von etwa 20-30 ka, was die Abwesenheit von Deformationsstrukturen innerhalb des Götemar-Granits erklären könnte (FRIESE 2015).

Das Granitmagma enthielt große Mengen an leichtflüchtigen Bestandteilen (sog. Volatile), vor allem Fluor, das zu durchschnittlich 0,43% im Granit enthalten ist und als Fluorit (CaF2) Spalten und Klüfte ausfüllt. Auch das häufige Auftreten von Pegmatiten (teilweise mit Beryll und Topas) wird auf den hohen Gehalt an Volatilen zurückgeführt (KRESTEN & CHYSSLER 1976). Erwähnenswert ist weiterhin ein hoher Gehalt an radioaktiven inkompatiblen Elementen: Radium über 100 Bq/kg (BERGMANN et al. 1998) sowie die höchsten gemessenen Thorium- und Urangehalte in schwedischen Graniten (WILSON & AKERBLOM 1980).

Beschreibung

Der Götemar-Granit ist ein grobkörniger und undeformierter Alkalifeldspatgranit aus rotbraunem Alkalifeldspat und dunkelgrauem Quarz. Die Feldspäte erreichen eine Größe von 2 cm und bilden häufig Karlsbader Zwillinge. Quarz füllt die Räume zwischen den größeren Alkalifeldspäten und kommt in mehreren Generationen vor. Rundliche (xenomorphe) bis kantige (hypidiomorphe) Körner überwiegen mengenmäßig, vereinzelt sind größere Quarze mit einer bläulichen Zonierung zu beobachten (1. Quarz-Generation). In geringer Menge treten auch kleine idiomorphe Quarze auf, u. a. als Einschluss innerhalb der Alkalifeldspäte.

Grüner oder gelblicher Plagioklas ist in der Regel nur spärlich vorhanden. Die Plagioklase können eine starke Zonierung aufweisen und treten auch als Einschluss innerhalb der Alkalifeldspäte auf; Plagioklas-Säume um die Alkalifeldspäte sind selten. Dunkle Minerale kommen in geringer Menge vor. Neben Biotit und Magnetit entdeckt man regelmäßig Aggregate von Hellglimmer (Muskovit) sowie violetten Fluorit und braunen bis gelblichen Titanit. Weitere Akzessorien sind Zirkon, Monazit, Apatit und Topas.

Abb. 6: Grobkörniger Götemar-Granit aus dem Steinbruch Kråkemåla 1 (S31).
Abb. 7: Aufnahme unter Wasser.
Abb. 8: Nahaufnahme: runde bis kantige Quarzkörner, teilweise auch kleine idiomorphe Quarze.
Abb. 9: Größere runde Quarze mit bläulicher Zonierung. Rechts der Bildmitte ein Alkalifeldspat mit einem gelblichen Plagioklas-Kern. Links unterhalb der Bildmitte violetter Fluorit, am rechten Bildrand etwas gelblicher Titanit.
Abb. 10: Halde mit Bruchmaterial im Steinbruch Kråkemåla 1.

Aus dem Steinbruch Kråkemåla 1 sind schmale Sandstein-Gänge innerhalb des Granits bekannt. Bei einem Besuch vor Ort waren diese nicht auffindbar. Dabei soll es sich um kambrischen Sandstein handeln, der auch heute noch südlich von Oskarshamn Teile des präkambischen Grundgebirges bedeckt. Im Götemar-Granit treten weiterhin Klüfte auf, die mit Fluorit und/oder Quarz, Glimmer, Chlorit, Calcit oder Erz gefüllt sind und auch den kambrischen Sandstein durchschneiden (KRESTEN & CHYSSLER 1976). Eine Datierung einer Fluorit-Calcit-Galenit-haltigen Kluft wurde auf 405 ± 27 Ma datiert (SUNDBLAD et al. 2004).

Abb. 11: Götemar-Granit mit violettem kambrischen Sandstein, nass fotografiert. Probe aus dem Steinbruch Kråkemåla 1, leg. E. Figaj.
Abb. 12: Nahaufnahme unter Wasser.
Abb. 13: Mit violettem Fluorit gefüllte Kluft im Götemar-Granit, Bildbreite 22 cm.
Abb. 14: Nahaufnahme einer Probe mit würfelförmigen Fluoritkristallen.
Abb. 15: Kluftfüllung mit großen Hellglimmer-Blättchen und Quarz.
Abb. 16: Götemar-Granit vom Westufer des Sees bei Götebo (Steinbruch Nr. 156). Handstück in der Slg. der BGR in Berlin-Spandau, leg. A.P. Meyer.

Gässhult liegt am südlichen Rand des Götemar-Plutons. Im Wald, etwa 600 m nordwestlich der Ortschaft kann man Nahgeschiebe des Götemar-Granits sammeln. Schließlich erreicht man einen kleinen Kiesschurf sowie eine Halde mit Bruchmaterial des Götemar-Granits, der hier etwas anders aussieht als in Kråkemåla. Weitere Anstehendproben auf skan-kristallin.de.

Abb. 17: Porphyrischer Götemar-Granit von einer Halde mit Bruchmaterial bei Gässhult (S255); Aufnahme unter Wasser.
Abb. 18: Nahaufnahme. Der Granit enthält neben grauen auch einige helle Quarze sowie etwas mehr dunkle Minerale.

Der Kiesschurf dürfte unmittelbar an der Grenze zum Götemar-Pluton liegen. Stellenweise sind hier anstehende Pegmatit- und schriftgranitische Partien zu sehen. Pegmatite sind eine Besonderheit in Småland, denn sie kommen innerhalb der älteren Granite des TIB nur sehr spärlich vor.

Abb. 19: Anstehender Pegmatit des Götemar-Granits, Bildbreite 32 cm.
Abb. 20: Schriftgranitische Partie im Pegmatit. Bildbreite 42 cm.
Abb. 21: Götemar-Granit, Nahgeschiebe aus Gässhult (S255), Aufnahme unter Wasser. Durch Verwitterung nimmt der Alkalifeldspat eine hellrote Färbung an. Oberflächlich angeschlagene Quarze wirken hell, nur die etwas tiefer liegenden Quarze sehen dunkelgrau aus.
Abb. 22: Nahaufnahme mit einzelnen idiomorphen Quarzen.
Abb. 23: Links unten ein Plagioklas-Einschluss innerhalb eines Alkalifeldspats.

In unmittelbarer Nähe zum Götemar-Pluton konnte ein Aplitgang beprobt werden. In einem Straßenaufschluss fanden sich etwa 20-30 cm breite Gänge eines Aplits und eines Pegmatits, die zunächst parallel und scharf voneinander getrennt verliefen. In der Nähe eines Diabasganges fand offenbar eine Vermengung von Aplit und Pegmatit statt. Abb. 24 zeigt eine Probe dieses Mischgesteins mit feinkörniger aplitischer Grundmasse und großen Feldspat- und Quarz-Kristallen (Xenokristallen) aus dem benachbarten Pegmatit.

Abb. 24: Götemar-Aplit mit großen Xenokristallen von Feldspat und Quarz; Straßenaufschluss unmittelbar südlich des Götemar-Plutons (S256).
Abb. 25: Nahaufnahme des gleichen Steins. Die großen Alkalifeldspat-Einsprenglinge mit perthitischer Entmischung und die abgerundeten, dunklen und zonierten Quarze stammen aus dem Pegmatit. Rechts unten im Bild etwas Pyrit mit bunten Anlauffarben, am rechten oberen Bildrand der Kontakt dieses Mischgesteins zum Diabas-Gang.

2.2. Jungfrun-Granit

Zwischen Oskarshamn und dem nördlichen Teil von Öland liegt die kleine Insel Blå Jungfrun (Abb. 2). Einst wurde hier der Jungfrun-Granit (Handelsname „Virgo-Granit“) als Werkstein abgebaut, der sich durch die günstige Insellage leicht mit dem Schiff abtransportieren ließ. Blå Jungfrun ist seit 1926 Naturschutzgebiet und heute ein beliebtes Ausflugsziel. Im Sommer sind Tagesausflüge von Oskarshamn oder Byxelkrog auf Öland möglich. Eine Mitnahme von Gesteinsproben oder auch nur losen Steinen ist nicht gestattet, daher liegen bislang auch nur wenige Vergleichsproben vom Jungfrun-Granit vor.

Die beste Gelegenheit, einen Jungfrun-Granit als Nahgeschiebe zu finden, bieten die Strände im Nordwesten von Öland (Abb. 1). Allerdings kommt er auch hier in seiner typischen und grobkörnigen Ausbildung nur vereinzelt vor, obwohl das Granitmassiv keine 10 km entfernt liegt. In Norddeutschland dürfte das Gestein nur sehr selten als Geschiebe auftreten.

Man kann annehmen, dass Jungfrun- und Götemar-Granit in weiten Teilen ähnliche Gefügevarianten ausbilden. Während vom Götemar-Massiv grob-, mittel- und feinkörnige sowie porphyrische Gefügevarianten bekannt sind, fehlen vom Jungfrun-Massiv entsprechende Vergleichsproben. Markante Unterschiede sind allenfalls bei den grobkörnigen Varianten zu erwarten.

Beschreibung

Der Jungfrun-Granit ist grobkörniger als der Götemar-Granit und enthält mehr idiomorphe Quarze, die zudem zur Kranzbildung um die Alkalifeldspäte neigen. Rotbrauner, im angewitterten Zustand blassroter Alkalifeldspat erreicht eine Größe von 3-5 cm und ist klarer ausgeformt als im Götemar-Granit (mehr rechteckige Umrisse). Die teils runden, teils idiomorphen Quarzkörner sind sehr dunkel. Auch einige größere runde Quarze (bis 8 mm) treten auf, eine Zonierung wie im Götemar-Granit ist aber nicht erkennbar oder nur gering ausgeprägt. Plagioklas findet sich in etwas größerer Menge und ist rot bis rotbraun, manchmal auch grün gefärbt. Vereinzelt bildet er einen dicken grünen Saum um einzelne Alkalifeldspäte. Dunkle Minerale (Biotit) sind nur in geringer Menge enthalten. Akzessorisch kann Titanit auftreten.

Einen Jungfrun-Granit als Nahgeschiebe zeigt Abb. 1, weitere Bilder der Exkursionsbericht Öland; Abbildungen von Anstehendproben auf kristallin.de und skan-kristallin.de.

Auf dem Friedhof St. Thomas Kirchhof in Berlin-Neukölln (52.472419, 13.429770) befindet sich eine historische Grabstelle aus Jungfrun-Granit, eine außergewöhnliche Entdeckung hinsichtlich der kurzen Betriebszeit der Steinbrüche auf Blå Jungfrun von der Jahrhundertwende bis zum Jahr 1926! Der Granit zeigt alle charakteristischen Merkmale des Jungfrun-Granits: Alkalifeldspat bis 5 cm, rotbrauner Plagioklas und eine Kranzbildung der idiomorphen Quarze um die Alkalifeldspäte.

Götemar- und mehr noch der Jungfrun-Granit, weisen eine Ähnlichkeit mit porphyrischen Rapakiwis auf. Dies betrifft die Färbung von Alkalifeldspat, Quarz und Plagioklas sowie das Vorhandensein mehrerer Quarzgenerationen, einer Tendenz zur Ausbildung idiomorpher Quarze und einer Kranzbildung um größere Alkalifeldspat-Einsprenglinge. Säume von Plagioklas um runde oder eckige Alkalifeldspäte treten im Götemar- und Jungfrun-Granit nur sehr vereinzelt auf.

2.3. Uthammar-Granit

Abb. 30: Uthammar-Granit, loser Gesteinsblock in Uthammars Udde, Breite 30 cm.

Das Küstengebiet in Ost-Småland war lange Zeit ein bedeutendes Zentrum der Werksteinverarbeitung. Lokalnamen der ostsmaländischen Granite, wie sie auch Einzug in die Geschiebeliteratur fanden, gehen bisweilen auf ihre geographische Lage als auf spezielle Gefügemerkmale zurück. So wurden die Granite nordöstlich vom Küstenort Uthammar als Uthammar-Granit, jene südöstlich davon als Virbo-Granit bezeichnet. HOLMQVIST 1906 (später auch HESEMANN 1975:36-37) hebt die rapakiwiähnlichen Eigenschaften einiger dieser Granite hervor (und meint die anorogenen Ost-Småland-Granite), stellt aber gleichzeitig Ähnlichkeiten zu den TIB-Graniten heraus. Das unterschiedliche Alter dieser Granite war damals noch nicht bekannt.

Nach HESEMANN 1975:37 und ZANDSTRA 1988 erstreckt sich das Verbeitungsgebiet des Uthammar-Granites über das Küstengebiet zwischen Västervik und Oskarshamn (Luftlinie ca. 55 km!). Diese Auffassung kann heute als veraltet angesehen werden. In der schwedischen Literatur wird nur das kleine Massiv des jüngeren anorogenen Granits als Uthammar-Granit bezeichnet, vom Virbo-Granit ist gar keine Rede (vgl. BRUUN et al 1991, CRUDEN 2008). Die längliche, etwa 8 x 3,5 km große Intrusion liegt ca. 14 km nordöstlich von Oskarshamn. Sie umfasst die Gebiete entlang der Bucht von Figeholm (Figeholmsfjärden) und setzt sich unter Wasser fort. Die Ausdehnung des Massivs an der Erdoberfläche wurde durch aeromagnetische Messungen ermittelt (CRUDEN 2008) und weicht von der Darstellung in älteren Karten ab.

Abb. 31: Uthammar-Granit, Steinbruch am Uthammarvägen, Aufnahme unter Wasser (S32).
Abb. 32: Auf der Nahaufnahme erkennt man einen größeren Quarz mit bläulicher Zonierung und mit Quarz verheilte Risse in einem Alkalifeldspat (linker Bildrand).

Beschreibung

Der Uthammar-Granit ist ein grobkörniger Alkalifeldspatgranit aus hellrotem Alkalifeldspat und hellem Quarz. Die Feldspäte weisen kräftige perthitische Entmischungen auf und erreichen eine Größe von 2 cm. Sie sind unregelmäßig eckig geformt, nur einige von ihnen weisen einen klar rechteckigen Umriss auf. Bei Verwitterung kann der Feldspat einen orangeroten Farbton annehmen. Klarer bis leicht trüber, manchmal auch bläulicher und xenomorpher Quarz füllt die Räume zwischen den Alkalifeldspäten. Kleine idiomorphe Quarze treten vereinzelt innerhalb der roten Feldspäte auf. Eigenständiger Plagioklas (grünlich oder rötlich) sowie dunkle Minerale (Biotit) sind nur in geringer Menge enthalten. Biotit bildet regelmäßig sechseckige idiomorphe Plättchen, ein wichtiger Hinweis auf das undeformierte Mineralgefüge. Gelber Titanit kann in größerer Menge innerhalb der Biotitaggregate auftreten. Hinzu kommen weitere Merkmale, die aber nicht in jedem Handstück zu beobachten sind:

  • Einzelne Alkalifeldspäte sind vollständig von xenomorphem Quarz umgeben (Abb. 30).
  • Innerhalb der Alkalifeldspäte finden sich parallele, mit farblosem Quarz gefüllte Risse (Abb. 32). Sie sind wahrscheinlich auf eine Deformation der Feldspäte während der Platznahme des Magmas zurückzuführen (sog. magmatische Deformation).
  • Vereinzelt treten größere Quarze mit einer bläulichen Zonierung auf, ähnlich denen im Götemar-Granit (bisher nur auf Bruchflächen, nicht auf angewitterten Außenseiten beobachtet; Abb. 32, 34).
Abb. 33: Uthammar-Granit, polierte Schnittfläche; loser Stein von Uthammar, coll. F. Wilcke (Wittstock).
Abb. 34: Nahaufnahme; auch hier ist ein bläulich zonierter Quarz zu sehen.

Der Uthammar-Granits kann leicht mit grobkörnigen roten Småland-Graniten (TIB-Graniten) verwechselt werden. Hier tritt Biotit allerdings nicht idiomorph, sondern in Form von Ansammlungen oder streifigen Aggregaten auf. Die eindeutige Bestimmung des Uthammar-Granit als Geschiebe ist anspruchsvoll, man muss gezielt die Merkmale eines undeformierten Gefüges auffinden. Weitere Anstehendproben auf skan-kristallin.de.

Abb. 35: Uthammar-Granit, Geschiebe von Äleklinta auf Öland. Breite 18 cm.

Auf einem gerodeten Waldstück im südöstlichen Teil des Uthammar-Plutons fanden sich zahlreiche Großgeschiebe, bei denen es sich überwiegend um Nahgeschiebe handeln dürfte (s. Abb. 42).

Abb. 36: Gerodete Waldfläche im Uthammar-Pluton (etwa 57.352546, 16.548156).
Abb. 37: Uthammar-Granit, Bildbreite 40 cm.
Abb. 38: Orangefarbener Granit, sehr wahrscheinlich aus dem westlichen Teil des Uthammar-Plutons („undeformierter Virbo-Granit“). Bildbreite 35 cm.
Abb. 39: Blassroter Småland-Granit mit Blauquarz.

4. Virbo-Granit

Der Virbo-Granit gehört nicht zur Suite der anorogenen Ost-Småland-Granite, sondern zu den älteren TIB-Graniten. Ursprünglich wurden die Granite südöstlich vom Küstenort Uthammar so bezeichnet, benannt nach der Hofstelle Virbo, nördlich des Flusses Virån. Später war Virbo-Granit eine Handelsbezeichnung für Granite aus dem Gebiet bei Saltvik, einem kleinen Ort südwestlich von Uthammar (WIK et al 2005:41; Lage der Steinbrüche in BRUUN et al 1991). Hier stehen grobkörnige TIB-Granite an, sowohl massige als auch stärker deformierte Varianten, die als beliebter Werkstein auch nach Deutschland exportiert wurden (s. Abb. 56-64).

In der Geschiebeliteratur besteht eine verwirrende Sprachregelung zum Virbo-Granit. HESEMANN 1975: 36f beschreibt eine undeformierte, „den finnischen Pyterliten ähnelnde“ Variante, die aus dem südwestlichen Teil des Uthammar-Plutons stammen dürfte und damit ein jüngerer anorogener Granit ist. ZANDSTRA 1988: 282 unterscheidet einen „massigen“ und einen „deformierten“ Typ, bei beiden handelt es sich um Varianten aus der Gruppe grobkörniger TIB-Granite im Raum Saltvik. Offensichtlich wurden also zwei Granite unterschiedlichen Alters mit dem gleichen Namen belegt, weiterhin Ähnlichkeiten zwischen diesen Graniten erörtert (z. B. HESEMANN 1975:37) was aus geschiebekundlicher Sicht wenig befriedigend ist.

Die Bezeichnung Virbo-Granit kann für die grobkörnigen und leicht bis mäßig deformierten TIB-Granite aus dem Gebiet Saltvik beibehalten werden, wenn man die begriffliche Unschärfe in Kauf nimmt, dass der Ort Virbo innerhalb der anorogenen Intrusion liegt. Es handelt sich um charakteristische Ost-Småland-Granite, die als Geschiebe erkennbar und nach bisheriger Kenntnis als Leitgeschiebe geeignet sind. Alternativ könnte man die Bezeichnung „Saltvik-Granit“ wählen, die sich allerdings erst einmal durchsetzen müsste (vgl. die Diskussion zur Namensgebung auf rapakivi.dk). Das Virbo-Granitgebiet ist in etwa so groß wie der Uthammar-Pluton und beheimatet eine Reihe von Gefügevarianten auf engem Raum.

Beschreibung

Zwei Varianten der grobkörnigen Granite aus dem Gebiet um Saltvik sind typische Ost-Småland-Granite, ein homogener, massiger und eine deformierter, augengneisartiger Typ (Beschreibung in ZANDSTRA 1999: 232-234 und SMED & EHLERS 2002:130). Beide führen stets, manchmal auch reichlich gelben Titanit.

Abb. 52-54 und 40 zeigt den massigen und nur wenig deformierten Typ. Der orangerote Alkalifeldspat erreicht eine Größe von mindestens 2-3 cm, vereinzelt finden sich auch größere Kristalle (häufig als Karlsbader Zwilling). Quarz bildet weiße bis bläuliche und massige Aggregate bis 1 cm. Plagioklas fehlt, dunkle Minerale (Biotit) kommen nur in geringer Menge vor. In den Biotit-Aggregaten findet sich etwas gelblicher Titanit.

Abb. 40: Virbo-Granit, massiger Typ. Geschiebe von Äleklinta auf Öland, Breite 10 cm.

Der deformierte Virbo-Granit (Abb. 50-51 und 41) enthält mehr dunkle Minerale (Biotit und chloritähnliche Minerale) sowie reichlich hellgelben Titanit. Zusammen mit zerdrücktem Quarz bilden sie eine charakteristische Ketten-, Flaser- oder Netztextur zwischen den Feldspäten. Die Größe der meisten Feldspäte beträgt 2-3 cm, einzelne werden bis 5 cm groß. Sie weisen eine kräftige perthitische Entmischung auf und bilden oft Karlsbader Zwillinge. Ihre Farbe schwankt zwischen hellrot, orangerot bis dunkelrot. Je nach Grad der Deformation besitzen sie eine eckige, abgerundete oder augenförmige Gestalt. Der Anteil an epidotisiertem grünem, seltener auch weißem Plagioklas ist variabel, ebenso der Quarzanteil, teils in bläulichen und intakten, 4-5 mm großen Aggregaten, teils in zuckerkörnigen Massen. Können die Mineralanteile auch in weiten Grenzen schwanken, sind die Erkennungsmerkmale des Virbo-Granits: Grobkörnigkeit, Ketten-, Flaser- oder Netztextur der Minerale und ein hoher Titanitgehalt.

Abb. 41: Virbo-Granit, deformierter Typ, Geschiebe von Eskilslund auf Öland, Breite 17 cm.
Abb. 42: Uthammar-Intrusion und Virbo-Granitgebiet mit Probepunkten (1 Quadrant = 5 km). Die schwarze Linie zeigt die mittels aeromagnetischer Messungen ermittelten Grenzen der Intrusion (nach CRUDEN 2008).

Der südwestliche Teil der Uthammar-Intrusion und die benachbarten TIB-Granite wurden auf mehreren Exkursionen beprobt, insbesondere der Grenzbereich beider Granit-Generationen. Vom Uthammar-Granit liegen zwar diverse Vergleichsproben aus dem Ostteil vor, wo die als Werkstein geeigneten mafitarmen Varianten anstehen. Die Gefügevarianten im Südwesten sind weitgehend unbekannt, zumal das flache und sumpfige Gelände kaum Aufschlüsse bietet. Abb. 43 zeigt einen Uthammar-Granit (HESEMANNS „undeformierten Virbo-Granit“?) aus dem Steinbruch Råsbäck (vgl. auch skan-kristallin.de). Der mittelkörnige und orangefarbene Granit weist keine hervorstechenden Merkmale auf und dürfte kaum als Leitgeschiebe in Frage kommen. Heller Quarz ist ganz überwiegend xenomorph entwickelt; Plagioklas fehlt, dunkle Minerale sind nur wenig enthalten. Die in HESEMANN 1975:36 genannten, „finnischen Pyterliten ähnelnden“ Merkmale fehlen.

Abb. 43: Anorogener Granit aus dem Steinbruch Råsbäck im Südwesten der Uthammar-Intrusion (S85); Aufnahme unter Wasser.
Abb. 44: Nahaufnahme des Gefüges.

Aus dem unmittelbaren Randbereich der anorogenen Uthammar-Intrusion stammt die Probe in Abb. 45. Die Grenze zu den älteren TIB-Graniten liegt wahrscheinlich im Fluss Virån. Auffällig sind die nahezu parallel, durch die gesamte Probe verlaufenden hellen Linien innerhalb der Feldspäte, ähnlich perthitischen Entmischungen. Es könnte sich dabei aber auch um Risse handeln, die später verfüllt wurden. Das Gestein enthält recht wenig Quarz. Nach CRUDEN 2008:26 weist der Granit 5 Meter vom Rand der Intrusion keine Anzeichen duktiler Deformation, lediglich Spuren einer hydrothermalen Alteration auf.

Abb. 45: Probe vom Rand der anorogenen Uthammar-Intrusion (S86). Aufnahme unter Wasser.
Abb. 46: Nahaufnahme des Gefüges.

Nur wenige Meter entfernt steht ein kleinkörniger porphyrischer und etwa 300 Millionen Jahre älterer TIB-Granit an. Er wurde durch den Aufstieg der Intrusion ebenfalls hydrothermal überprägt (CRUDEN 2008:3).

Abb. 47: kleinkörniger porphyrischer TIB-Granit an der Grenze zur anorogenen Intrusion (S87). Aufnahme unter Wasser.
Abb. 48: Nahaufnahme einer weiteren Probe aus dem gleichen Aufschluss. Augenförmige Feldspäte und zerdrückte Quarzmassen weisen auf eine tektonische Deformation des Gesteins hin.

Etwa 200 m weiter südlich findet sich ein deutlich grobkörniger Gneisgranit mit Augentextur (S87; Virbo-Granit i. e. S.). Streifige Ansammlungen mit dunklen Mineralen zwischen den Feldspäten enthalten reichlich gelblichen Titanit.

Abb. 49: Roter Gneisgranit (Virbo-Granit) mit zerdrücktem, teils bläulichem Quarz. Aufnahme unter Wasser.
Abb. 50: Polierte Schnittfläche eines ähnlichen, etwas weniger deformierten Granit aus einem Straßenaufschluss bei Dragskär (S33).
Abb. 51: Nahaufnahme. Das Gestein enthält etwas grünlichen Plagioklas, rote Hämatitflecken sowie reichlich gelblichen Titanit.

Die nächsten zwei Anstehendproben aus der Umgebung von Saltvik zeigen massige und nur wenig deformierte Varianten des Virbo-Granits. Die grobkörnige rote bis orangefarbene Variante ist ein auffälliges Gestein und als Leitgeschiebe geeignet (vgl. Geschiebefund Öland, Abb. 40).

Abb. 52: Virbo-Granit, massige Variante (S88). Aufnahme unter Wasser.
Abb. 53: Nahaufnahme.
Abb. 54: Bräunlichrote Variante (S88).
Abb. 55: Auch porphyrische Granite mit größeren Alkalifeldspat-Einsprenglingen kommen in diesem Gebiet vor. Anstehender Fels bei Kvarnviken.

Der Virbo-Granit, einst ein beliebter Werkstein, findet sich z. B. in Berlin am Sockel der Siegessäule (Abb. 51-58). Das variantenreiche Gefüge des Virbo-Granits lässt sich hier bequem an polierten Schnittflächen studieren.

2.5. Literatur

Es existiert eine Reihe neuerer Publikationen zu den Graniten in Ost-Smaland, in diesem Gebiet wurden geologische Erkundungen für die Errichtung eines Endlagers für radioaktiven Abfall durchgeführt.

ÅBERG G, LÖFVENDAHL R & LEVI B 1985 The Götemar granite – isotopic and geochemical eveidence for a complex history of an anorogenic granite, GFF, 106, 327-333.

ÅHÄLL K-I 2001 Åldersbestämning av svårdaterade bergarter i sydöstra Sverige –
SKB Rapport R-01-60, Svensk Kärnbränslehantering AB, Karlstad Universitet, ISSN 1402-3091.

BERGMAN S, HOGDAHL K, NIRONEN M, OGENHALL E, SJOSTROM H, LUNDQVIST L & LATHINEN R 1998 Timing of Palaeoproterozoic intra-orogenic sedimentation in the central Fennoscandian Shield: evidence from detrital zircon in metasandstone – Precambrian Res 161, 231-249.

BRUUN A, KORNFÄLT K-A, SUNDBERG A, WIK N-G, WIKMAN H & WIKSTRÖM A 1991 Malmer, industriella mineral och bergarter i Kalmar Län, SGU Rapporter och Meddelanden Nr. 65, Uppsala 1991.

CRUDEN A R 2008 Emplacement mechanisms and structural influences of a younger granite intrusion into older wall rocks – a principal study with application to the Götemar and Uthammar granites – R-08-138, Department of Geology, University of Toronto.

FRIESE N 2009 Tectonically-controlled emplacement mechanisms in the upper crust
under specific stress regimes: case studies – Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen, Göttingen 2009.

FRIESE N, VOLLBRECHT A, TANNER D C, FALLBUSCH W & WEIDEMANN M 2015 Multi-stage emplacement of the Götemar Pluton, SE Sweden: New evidence inferred from field observations and microfabric analysis, including cathodoluminescence microscopy.

HOLMQVIST P J 1906 Studien über die Granite von Schweden – Bulletin of the Geological Institution of the University of Uppsala VII – S. 77-269.

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 44 Abb., 8 Taf., 1 Kt., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

KRESTEN P & CHYSSLER J 1976 The Götemar massif in south-eastern Sweden: A reconnaissance survey – Geologiska Föreningens i Stockholm Förhandlingar 98, 155–161.

LINDROOS H 2004 The potential for ore, industrial minerals and commercial stones in the Simpevarp area – MIRAB Mineral Resurser AB October 2004.

SMED P & EHLERS 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage 2002.

SUNDBLAD K, ALM E, HUHMA H, VAASJOKI M & SOLLIEN D B 2004 Early Devonian tectonic and hydrothermal activity in the Fennoscandian Shield; evidence from calcite-fluoritegalena mineralization – Mertanen S (ed), Extended abstracts, 5th Nordic Paleomagnetic workshop. Supercontinents, remagnetizations and geomagnetic modelling., Geological Survey of Finland, p. 67–71.

WIK N-G, STEPHENS M B & SUNDBERG A 2005 Beskrivning till regional berggrundskarta över Kalmar län, Sveriges Geologiska Undersökning (SGU) Ba 66, Uppsala, 50 S.
WILSON M R & ACKERBLOM G 1980 Uranium enriched granites in Sweden 1980.

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).

ZANDSTRA JG 1999 Platenatlas van noordelijke kristallijne gidsgesteenten, Foto’s in
kleur met toelichting van gesteentetypen van Fennoscandinavië – XII+412 S.,
272+12 unnum. Farb-Taf., 31 S/W-Abb., 5 Tab., Leiden (Backhuys).

2.6. Verzeichnis der Probenlokalitäten

S31: Götemar-Granit im Steinbruch Kråkemåla 1 (57.47796, 16.63519).
S32: Uthammar-Granit; Steinbruch am Uthammarsvägen zwischen Uthammar und Uthammars Udde (57.38170, 16.60730).
S33: Virbo-Granit; 300 m S Brücke über den Virån bei Virbo an der Straße nach Dragskär (57.32838, 16.53400).
S85: Uthammar-Granit („undeformierter Virbo-Granit“), Steinbruch a.d. linken Seite vor Erreichen des verlassenen Hofes Råsbäck (57,343209, 16,554246).
S86: Uthammar-Granit („undeformierter Virbo-Granit“) vom unmittelbaren Rand der Intrusion; T-Kreuzung a.d. Zufahrt zum Gut Virbo (57.331628, 16.533572).
S87: Virbo-Granit (TIB) am Kontakt zur Uthammar-Intrusion; wie S 86, Straßenaufschluss einige Meter weiter Richtung Dragskär (57.32953, 16.53396).
S88: Virbo-Granit, massiger Typ; Straßenaufschluss an der Straße nach Saltvik (57.301868, 16.471804).
S255: Götemar-Granit, Pegmatit, Schriftgranit; Nahgeschiebe Götemar-Granit; Halde und Kiesschurf sowie anstehendes Gestein nördlich von Gässhult (57.45415, 16.60078).
S256: Mischgestein aus Aplit und Pegmatit am Rande des Götemar-Massivs; Straßenaufschluss (57.45053, 16.63260).

Granite in Ost- und Nordost-Småland

Abb. 1: Nordost-Småland-Granit, Geschiebe von Öland. Breite 12 cm.

Småland ist eines der Hauptliefergebiete von Geschieben, die mit den nordischen Inlandvereisungen nach Norddeutschland gelangten. Vor allem in weichselzeitlichen Ablagerungen können Småland-Granite und -Vulkanite einen hohen Anteil ausmachen. Insbesondere die granitoiden Gesteine aus Ost- und Nordost-Småland sind von geschiebekundlichem Interesse, von dort wurden viele Leitgeschiebe beschrieben. Dieser Artikel vermittelt einen Eindruck von der Vielfalt granitoider Gesteine in diesem Gebiet und ist das Ergebnis mehrerer Exkursionen. Die Eignung einiger Leitgeschiebe wird diskutiert, präzisierte Gesteinsbeschreibungen helfen bei der Bestimmung von Geschieben.

Der erste Teil behandelt die Granitoide des ca. 1,7-1,8 Ga alten Transskandinavischen Magmatitgürtels (TIB). Drei kleine Vorkommen von jüngeren, anorogenen Graniten (Uthammar-, Götemar- und Jungfrun-Granit) sowie der Virbo-Granit (TIB-Granit) werden im zweiten Teil besprochen. Darüber hinaus lohnt sich ein Blick in die Kiesgruben Ost-Smålands (Teil 3), wo sich die Gesteine des Grundgebirges als Nahgeschiebe wieder finden. Gleiches gilt für den Exkursionsbericht Öland. Im vierten Teil werden einige Geschiebefunde aus Norddeutschland vorgestellt.

  1. Granite aus Ost- und Nordost-Småland
  2. Anorogene Granite in Ost-Småland und Virbo-Granit
  3. Fundberichte aus Kiesgruben in Ost-Småland
  4. Geschiebefunde aus Norddeutschland

Exkursionsbericht Öland (Kristallingeschiebe)

Vorab einige allgemeine Vorbemerkungen zu den Småland-Graniten: im Anstehenden finden sich alle möglichen Farb- und Gefügekombinationen. Als Geschiebe werden häufig die bunten Granite mit rotem, braunem oder orangefarbenem Alkalifeldspat und blauem oder grauem Quarz als „Småland-Granit“ bezeichnet. Plagioklas fehlt oder tritt untergeordnet in verschiedenen Farbtönen auf. Der Anteil an dunklen Mineralen, meist Biotit, ist variabel, im Allgemeinen aber gering. Granite mit den genannten Merkmalen kommen auch außerhalb von Småland vor, innerhalb des Transskandinavischen Magmatitgürtels („TIB-Granit“).

Nach ihrem Gefüge (nicht nach dem Herkunftsgebiet!) lassen sich gleichkörnige (Växjö-Typen) von porphyrischen Graniten (Filipstad-Typen) unterscheiden. In der Geschiebekunde werden die Typen weiter differenziert: roter, grauer, rosa oder bunter Växjö-Typ sowie „Vislanda-Granit“ (Växjö-Granite mit zuckerkörnigem Quarz). Abweichend zur schwedischen Nomenklatur bezeichnet man in der Geschiebekunde nur porphyrische TIB-Granite mit Plagioklasringen als Filipstad-Typ.

Bereits HOLMQVIST 1906 stellt zu den Småland-/TIB-Graniten fest: „In einzelnen Gebieten kehren petrographisch gleiche Typen immer wieder“. Damit wird die grundsätzliche Schwierigkeit der Herkunftsbestimmung von Geschieben benannt. In Geländestudien in Ost-Småland konnten zahllose Gefügevarianten dokumentiert, aber auch ähnliche Typen an verschiedenen Lokalitäten aufgefunden werden. Aus dem Spannungsfeld zwischen naturgemäßer Variabilität im Erscheinungsbild und einer möglichst exakten Beschreibung ergibt sich eine überschaubare Anzahl an Leitgeschieben.

Ihre Beschreibung in der Geschiebeliteratur ist teils wenig einheitlich, teils sogar unbefriedigend. Hinzu kommt eine verwirrende Vielfalt an Lokalnamen. In der schwedischen Literatur werden nicht selten mehrere Gefügevarianten eines Gebietes unter einem Namen zusammengefasst, in der Geschiebekunde lediglich eine Variante davon unter der gleichen Bezeichnung geführt. Auch lässt sich nicht immer die Einzigartigkeit der empfohlenen Leitgeschiebe überprüfen. Empfehlenswert zur Geschiebebestimmung sind die Beschreibungen in SMED & EHLERS 2002, darin: Vånevik-Granit, Kinda-Granit, Virbo-Granit sowie die jüngeren anorogenen OstSmåland-Granite Uthammar-, Götemar- und Jungfrun-Granit. Ergänzend ist der Flivik-Granit hinzuzufügen. Weitere Anstehendproben bietet die Seite skan-kristallin.de.

Abb. 2: Granite und weitere Leitgeschiebe in Ost- und Nordost-Småland. Nummerierung: Kiesgruben in Smaland: 1-Fårbo, 2-Forshult, 3-Skoretorp, 4-Värlebo. Karte verändert nach: WIK et al 2005: Berggrundskartan Kalmar län – 1:250 000.

1. Granite aus Ost- und Nordost-Småland

1.1. Porphyrische Monzogranite
1.2. Porphyrische NE-Småland-Monzogranite
1.3. Kinda-Granit
1.4. Flivik-Granit
1.5. Granite aus der Umgebung von Flivik
1.6. Vånevik-Granit
1.7. Tuna-Granit
1.8. Weitere Granitoide aus Ost-Småland
1.8.1. Rote grobkörnige Granite
1.8.2. Emsfors-Granit
1.8.3. Augengranit am Campingplatz Gunnersö
1.8.4. Granite mit rotem und grünem Plagioklas
1.8.5. Granodiorit
1.8.6. TIB-Granite im Västervik-Gebiet
1.8.7. Älö-Granit
1.9. Literatur
1.10. Verzeichnis der Probenorte

Grob vereinfacht überwiegen in Ost-Småland grob- bis mittel- und weitgehend gleichkörnige rote Granite vom Växjö-Typ (z. B. Abb. 46), in Nordost-Småland bis ins südliche Östergötland braune und porphyrische Monzogranite (Abb. 1). Ein Blick auf die geologische Übersichtskarte (Abb. 2) zeigt, dass die Verhältnisse im Einzelnen natürlich ungleich komplexer sind.

1.1. Porphyrische Monzogranite

Vom nördlichen Småland bis ins südliche Östergötland sind grobkörnige porphyrische Granitoide wie in Abb. 3-5 weit verbreitet. Ihre Zusammensetzung variiert, manche von ihnen besitzen eine granitische Zusammensetzung, andere enthalten deutlich weniger Quarz (Quarzmonzonite). Der Gesteinstyp, in Norddeutschland häufig als Geschiebe anzutreffen, lässt sich keinem näheren Herkunftsgebiet zuordnen und besitzt die folgenden allgemeinen Merkmale:

  • Brauner Alkalifeldspat in 1-3 cm großen Einsprenglingen, alle anderen Mineralkörner sind deutlich kleiner. Die Alkalifeldspäte weisen mehr oder weniger rechteckige Formen auf, auch mit abgerundeten Ecken, bilden häufig Karlsbader Zwillinge und besitzen einen zonaren Aufbau. Diese Zonierungen sind perthitische Entmischungen, die frühere Wachstumslinien des Kristalls nachzeichnen (s. kristallin.de).
  • Intensiv blauer bis weißer Quarz bildet massige und rundliche Ansammlungen und ist häufig zerdrückt und zuckerkörnig ausgebildet.
  • Plagioklas findet sich in großer Menge in weißen bis grünen oder gelblichen, häufig tafeligen Aggregaten.
  • Der Anteil dunkler Minerale, meist Biotit, ist deutlich höher als in den roten Småland-Graniten vom Växjö-Typ (z. B. Abb. 50) und lässt die Granite insgesamt recht dunkel erscheinen.
Abb. 3: Porphyrischer Monzogranit, Anstehendprobe westlich von Kisa (S142a), Aufnahme unter Wasser.
Abb. 4: Geschiebefund aus dem Tagebau Welzow Süd (Niederlausitz).
Abb. 5: Gleicher Stein; Alkalifeldspäte mit zonierten Wachstumslinien.

1.2. Porphyrische NE-Småland-Monzogranite

Der eben beschriebene porphyrische Monzogranit-Typ ist auch im nordöstlichen Småland und südlichen Östergötland weit verbreitet. Hier treten Merkmale hinzu, die eine Verortung von Geschieben in das genannte Gebiet erlauben. Diese „NE-Småland-Granite“ sind zwar kein Leitgeschiebe, aber regelmäßig in glazialen Ablagerungen mit ostschwedischem Gesteinsmaterial zu finden und Bestandteil der sog. „ostschwedischen Geschiebegemeinschaft“.

  1. Plagioklas besitzt eine gelbe bis orange Färbung, neben grünen oder bräunlichen (Mischfarbe aus grün und orange) Tönungen. Die Färbung des Plagioklas ist eine Folge hydrothermaler Alteration, wobei Ca-reicher Plagioklas in grüne und Na-reicher Plagioklas in gelbe bis orangefarbene Folgeprodukte umgewandelt wird (Smed & Ehlers 2003: 148).
  2. Regelmäßig ist Titanit enthalten, mitunter recht viel davon. Titanit ist braun gefärbt oder gelblich alteriert und an seiner keilförmigen Gestalt leicht erkennbar.

Abb. 1 zeigt einen typischen Nordost-Småland-Granit mit porphyrischem Gefüge aus braunem Alkalifeldspat, Blauquarz und orangefarbenem Plagioklas. Innerhalb der Partien aus dunklen Mineralen (meist Biotit) findet sich keilförmiger, meist gelblicher Titanit in größerer Menge.

Abb. 6: Porphyrischer Monzogranit mit orangegelbem Plagioklas. Geschiebe von Byxelkrog auf Öland, Bildbreite 19 cm.

Die Alkalifeldspäte können auch hellrot bis rötlichgrau gefärbt sowie abgerundet erscheinen. Kiesgrubenfunde aus Ost-Småland belegen, dass ihr Heimatgebiet etwa östlich von Vimmerby und nördlich davon liegen dürfte.

Abb. 7: Porphyrischer Monzogranit (NE-Småland-Granit) mit blassrotem Alkalifeldspat und gelbem Titanit; Geschiebe von Eskilslund auf Öland, Breite 9 cm.
Abb. 8: Porphyrischer Monzogranit mit blassrotem Alkalifeldspat; Geschiebe von Byxelkrog auf Öland.

Im Vergleich zu anderen porphyrischen TIB-Monzograniten ist der Alkalifeldspat der NE-Småland-Granite immer einfarbig (braun oder rötlich), während in Värmland (z. B. Hagfors-Granit) roter, brauner und grauvioletter Alkalifeldspat nebeneinander vorkommen (s. Braunvioletter Filipstad-Granit in SMED & EHLERS 2003:148). Porphyrische Monzogranite mit braunem oder rotem Alkalifeldspat, buntem Plagioklas und Blauquarz werden in SMED & EHLERS 2003 auch als Trikolore-Granite bezeichnet.

1.3. Kinda-Granit

Kennzeichnend für den Kinda-Granit sind neben einer auffälligen Dreifarbigkeit (brauner Alkalifeldspat, klar orangefarbener Plagioklas und blauer Quarz) partielle, seltener auch vollständige Säume aus Plagioklas um einzelne Alkalifeldspäte. Titanit ist immer zu finden, mitunter sehr viel davon. Im Übrigen besteht weitgehende Übereinstimmung mit den porphyrischen NE-Småland-Monzograniten: Grobkörnigkeit, porphyrisches Gefüge aus grob rechteckigen und braunen oder blass rötlichen Alkalifeldspäten; intensiv blauer und milchiger Quarz in größeren, meist zuckerkörnig zerdrückten Massen. Der Quarzgehalt schwankt, auch Quarzmonzonite kommen vor. Plagioklas ist mit 1-3 mm wesentlich kleiner als Alkalifeldspat und bildet häufig tafelige Kristalle. Seine Farbe variiert von gelb über orangegelb bis orangerot; untergeordnet auch grün sowie Mischfarben (z. B. braun aus gelb und grün).

Abb. 9: Kinda-Granit, Geschiebe Geschiebe von Byxelkrog auf Öland, Aufnahme unter Wasser.
Abb. 10: Kinda-Granit, Geschiebe von Nienhagen bei Rostock, Aufnahme unter Wasser.
Abb. 11: Kinda-Granit mit weißem Quarz; Geschiebe von Ramsnäs auf Öland.
Abb. 12: In der Nahaufnahme der nassen Oberfläche ist reichlich gelblicher Titanit erkennbar.

Der Kinda-Granit ist als Geschiebe seltener als die porphyrischen Monzogranite. Eine Verwandtschaft besteht mit dem Braunviolettem Filipstad-Granit (SMED & EHLERS 2003 Nr. 99, 100). Im Kinda-Granit ist der Quarz jedoch immer blau und nur brauner bzw. einfarbiger Alkalifeldspat enthalten. Viele Plagioklasringe sind nur unvollständig ausgebildet und besitzen einen klaren Orangeton (Karte SMED & EHLERS 2003: 79).

Der Kinda-Granit gilt als Leitgeschiebe, besitzt aber ein recht großes Heimatgebiet, das eine Fläche von über 2000 km² in Nord-Småland und im südlichen Östergötland einnimmt (in etwa deckungsgleich mit der historischen Provinz Kinda). Die genauen Verbreitungsgrenzen sind unklar und dürften in etwa denen der porphyrischen Monzogranite entsprechen, wobei der Kinda-Granit womöglich nur eine lokale, aber an mehreren Stellen auftretende Variante ist. Innerhalb des in Abb. 2 als Kinda-Granit markierten Gebiets findet sich eine Vielzahl von Gefügevarianten, darunter auch deformierte und gneisgranitische Varianten, Granite mit weißem oder grünem Plagioklas und dunkle Monzogranite ohne Plagioklassäume. Die Zahl vorliegender Anstehendproben ist klein (vgl. auch skan-kristallin.de). Abb. 13-19 zeigen einige Varianten aus einer Streckenbeprobung im Gebiet des Kinda-Granits (s. Abb. 75; alle Proben als Aufnahmen unter Wasser). Ein dem Kinda-Typ ähnlicher Granit-Typ konnte auch in NE-Småland, in Nachbarschaft zum Flivik-Granit, außerhalb seines Hauptverbreitungsgebietes beprobt werden (Abb. 34-35).

Abb. 13: Kinda-Granit, Björkfors (S145).
Abb. 14: Nahaufnahme.
Abb. 15: Porphyrischer Monzogranit aus dem Kinda-Granitgebiet, Åsunden (S144).
Abb. 16: Porphyrischer Monzogranit, Nahgeschiebe NW Skärpingen (S146).
Abb. 17: Anstehendprobe, Straßenaufschluss bei Skärpingen (S147).

Die nächsten zwei Granite stammen aus einem Straßenaufschluss etwa 20 km westlich von Gamleby (Västervik-Gebiet).

Abb. 18: Porphyrischer Monzogranit, Straßenaufschluss bei Västantorp (S148).
Abb. 19: Kleinkörniger porphyrischer Monzogranit (S148).

1.4. Flivik-Granit

Das Flivik-Granitgebiet liegt auf halber Strecke zwischen Oskarshamn und Västervik in NE-Småland und erstreckt sich über eine Fläche von etwa 100 km². Um Flivik zeugen zahlreiche Steinbrüche von einem regen Abbau der Granite. Sie werden auch heute noch als Werkstein gewonnen, so im Steinbruch Quimbra (Handelsbezeichnungen Quimbra Red bzw. Quimbra Röd und Quimbra Grey).

Abb. 20: Flivik-Granit, Geschiebe von Ramsnäs auf Öland; Breite 21 cm.
Abb. 21: In der Nahaufnahme sind zahlreiche gelbe und keilförmige Titanit-Kristalle erkennbar. Plagioklas ist unauffällig und grau bis bräunlich, stellenweise orange gefärbt.

Der Flivik-Granit ist ein dunkler Monzogranit und auf den ersten Blick ein typischer NE-Småland-Granit (brauner Alkalifeldspat, farbiger Plagioklas, blauer Quarz und viel Titanit). Er weist aber nur ein schwach porphyrisches, eher mittel- bis grobkörniges sowie ein weitgehend gleichkörniges Gefüge auf. Die braunen Alkalifeldspäte sind wenig größer als die nahezu gleichkörnig erscheinende Grundmasse. Vor allem die blauen Quarzkörner fallen durch ihre gleichmäßige Verteilung ins Auge. Die weitgehende Gleichkörnigkeit von Quarz und anderen Mineralkörnern ist ein wichtiges Erkennungsmerkmal und lässt auf eine geringere Deformation des Gesteins schließen, im Unterschied zu den Graniten in der Umgebung (Abb. 32-35) oder anderen Ost-Småland-Graniten, in denen sich Quarz und dunkle Minerale in größeren Aggregaten sammeln. Als Geschiebe ist der Flivik-Granit eher selten. (Beschreibung in KORN 1927:5, ZANDSTRA 1999, Nr. 173; nicht in SMED & EHLERS 2003).

Im Steinbruch Quimbra finden sich mittelkörnige und schwach porphyrische Varianten (Abb. 23-29). Die Korngrößen der mittelkörnigen Variante liegen zwischen 2-5 mm. Die braunen bis rotbraunen Alkalifeldspäte können etwas größer (bis 6 mm) sein und gehen lokal in porphyrische Varianten über. Die Größe dieser Einsprenglinge übersteigt aber selten 1 cm. Alkalifeldspat bildet dicke Tafeln mit undeutlich zonarem Aufbau, die kräftige perthitische Entmischungen aufweisen und von orangefarbenen Flecken begleitet sind.

Alkalifeldspat, Plagioklas und Quarz machen in den Handelsvarianten Quimbra Red und Quimbra Grey jeweils in etwa ein Drittel des Gesteins aus (Quelle: natursteindatenbank.de). Nach KORN 1918 soll der Quarzanteil sogar bis 50% betragen, ein Wert, der etwas zu hoch gegriffen scheint. Quarz ist milchig-blau bis fast weiß, teilweise auch zuckerkörnig ausgebildet. Plagioklas ist unauffällig und grau bis bräunlich, stellenweise auch durch hydrothermale Alteration orange gefärbt. Ein mäßiger Biotit-Anteil bewirkt die dunkle Gesamtfärbung des Gesteins. Der Flivik-Granit enthält zahlreiche keilförmige Aggregate von gelblichem Titanit.

Verwechslungsmöglichkeiten: Der grobkörnige Kinda-Granit weist ein ausgeprochen porphyrisches Gefüge auf und besitzt gelbe bis orangefarbene Plagioklas-Säume um einzelne Alkalifeldspäte. Andere braune NE-Småland-Granite zeigen in der Regel deutliche Spuren einer Deformation, Quarz und dunkle Minerale bilden dann Ansammlungen. Der Vånevik-Granit besitzt größere Aggregate von Quarz und Alkalifeldspat. Im Västervik-Gebiet fand sich ein dem Flivik-Granit ähnliches, aber deutlich deformiertes Gestein mit einer grauen und mittelkörnigen Matrix sowie einzelnen braunen Alkalifeldspat-Einsprenglingen (Abb. 34-35).

Die nächsten Proben stammen aus dem Steinbruch Quimbra bei Flivik (Übersicht der Probenorte in Abb. 75). Neben einer grauen und einer rotgrauen mittelkörnigen Variante kommen auch schwach porphyrische bis porphyrische Granite vor, sowohl in hellen (blassrot), als auch dunklen Tönungen. Charakteristisch und als Referenz zur Bestimmung des Flivik-Granits geeignet sind Abb. 24-27, 30 und der Geschiebefund von Öland (Abb. 20-21).

Abb. 22: Blick in den Steinbruch Quimbra.
Abb. 23: Drei Granit-Varianten aus dem Steinbruch: rechts oben ein gleichkörniger grauer, unten ein brauner porphyrischer Flivik-Granit. Der gleichkörnige blassrote Granit links im Bild unterscheidet sich kaum von anderen Graniten aus NE-Småland (ähnlich Vånevik-Granit).
Abb. 24: Schwach porphyrischer grauer Flivik-Granit, Aufnahme unter Wasser (S65).
Abb. 25: Nahaufnahme.
Abb. 26: Flivik-Granit, rotbraune Variante (S65), vgl. mit Geschiebefund in Abb. 20-21.
Abb. 27: Plagioklas ist gelblichgrau gefärbt. Die orangefarbenen Bereiche sind nicht auf Plagioklas beschränkt, sondern finden sich auch als Flecken oder Saum in den Alkalifeldpäten.
Abb. 28: Weitgehend gleichkörniger grauer Flivik-Granit mit Aplitgang.
Abb. 29: Handstück vom gleichen Stein, Aufnahme unter Wasser (S65).

Eine weitere Probe aus dem Flivik-Granitgebiet enthält reichlich gelben Titanit.

Abb. 30: Flivik-Granit (S64), Aufnahme unter Wasser.
Abb. 31: Flivik-Granit, Geschiebe von Byxelkrog auf Öland, Bildbreite 17 cm.

1.5. Granite aus der Umgebung von Flivik

In der Umgebung von Flivik finden sich typische porphyrische NE-Småland-Granite mit braunem Alkalifeldspat und viel Titanit. Sie sind stärker deformiert und gehören nicht mehr zum Flivik-Granitmassiv.

Abb. 32: Brauner Monzogranit mit grünem Plagioklas, viel Biotit und gelblichem Titanit (S66).

Die nächste Probe ähnelt deutlich dem Kinda-Granit, dessen Verbreitungsgebiet eigentlich weiter nordwestlich liegt. Das Gestein ist ein schöner Beleg für Überschneidungen im Gefüge einzelner Granite eines Gebietes und die Schwierigkeit einer Abgrenzung lokaler Typen. Ähnlichkeiten sind auch zwischen Abb. 41 (Vånevik-Granit) und Abb. 26 (Flivik-Granit) sowie Abb. 19 (Granit aus dem Västervik-Gebiet) und Abb. 24 (Flivik-Granit) erkennbar.

Abb. 34: NE-Småland-Monzogranit, Typ Kinda-Granit, aus der Umgebung des Flivik-Granitgebiets (S67).
Abb. 35: Nahaufnahme.

Der gezeigte Monzogranit-Typ mit reichlich orangefarbenem Plagioklas ist als Geschiebe auffällig, aber relativ selten zu finden.

Abb. 36: Geschiebe von Ramsnäs (Öland), Breite 17 cm.
Abb. 37: Gleicher Stein, Nahaufnahme.
Abb. 38: Vergleichbarer Typ, mit etwas helleren Alkalifeldspäten. Geschiebe von Gässhult am Südrand des Götemar-Plutons (S255d).
Abb. 39: Nahaufnahme.

1.6. Vånevik-Granit

Der Vånevik-Granit nimmt ein größeres Gebiet zwischen Oskarshamn und Mönsteras an der smaländischen Ostküste ein (Abb. 2). Lange Zeit befand sich hier ein wichtiges Zentrum der Werksteinherstellung. Im Stenhuggarmuseet Vånevik kann sich der Besucher über die Geschichte der Steinverarbeitung informieren.

Abb. 40: Im Stenhugermuset Vånevik.

Die Granite des Vånevik-Gebiets sind ziemlich variabel. Allgemein handelt es sich um mittel- bis grobkörnige Granite vom Växjö-Typ (gleichkörnige Småland-Granite) mit mäßigen bis deutlichen Spuren einer Deformation. Die Alkalifeldspäte erreichen eine Größe von 3 cm und sind rot, manchmal auch rotbraun oder hell fleischfarben gefärbt. Milchiger Quarz kann intensiv blau, durch Hämatitimprägnierung auch violett, aber auch hellgrau oder weiß erscheinen und bildet 1-3 cm große, durch Deformation länglich gestreckte Aggregate. Dunkle Minerale kommen nur in sehr geringer Menge vor (Biotit, meist chloritisiert). Regelmäßig findet sich brauner oder gelblich alterierter Titanit. Weißer bis grüner Plagioklas ist nur untergeordnet enthalten und auf der Bruchfläche schwer erkennbar, auf der Verwitterungsrinde hebt er sich besser vom Alkalifeldspat ab.

Im Stenhuggarmuseet steht eine braune Variante an (Referenzprobe in ZANDSTRA 1999:168). Der grobkörnige und porphyrische Granit besteht aus braunem Alkalifeldspat, begleitet von orangefarbenen Flecken, großen blauen Quarz-Aggregaten und enthält braunen bis gelblichen Titanit.

Abb. 41: Orangebrauner Vånevik-Granit, Probe aus dem Stenhuggarmuseet, Aufnahme unter Wasser (S257).
Abb. 42: Nahaufnahme des Gefüges.
Abb. 43: Gewöhnlicher roter Vånevik-Granit; Probe mit polierter Schliffläche im Stenhuggarmuseet; Bildbreite 7 cm.
Abb. 44: Roter Vånevik-Granit im Kontakt zu einem feinkörnigen Rhyolith. Ortseingang Påskallavik, Bildbreite 35 cm.
Abb. 45: Probe vom Kontakt (S34), Aufnahme unter Wasser.
Abb. 46: Roter Vånevik-Granit, 4 km NW Påskallavik (S93); Risse mit Hämatit gefüllt.

Nach SMED & EHLERS 2003:130 eignet sich eine grobkörnige Variante aus blassrotem Alkalifeldspat als Leitgeschiebe. Sie enthält viel intensiv blauen bis violettblauen und leicht milchigen Quarz in 1-3 cm großen Aggregaten, vereinzelt Biotit (nicht in Streifen) und einige braune Titanitkristalle (vgl. Abb. 47).

Abb. 47: Vånevik-Granit, Probe vom Verladehafen (S103), F. Wilcke leg., polierte Schnittfläche.

Ist der Vånevik-Granit ein Leitgeschiebe? Die Beschreibungen in den Bestimmungsbüchern unterscheiden sich deutlich voneinander. Wichtige Kriterien bei der Bestimmung sind Grobkörnigkeit, die großen und intensiv blauen Quarzaggregate und die Anwesenheit von Titanit. Eindeutig als Vånevik-Granit bestimmbare Geschiebe sind nicht häufig. Insbesondere scheiden die mittelkörnigen roten Granite mit unklaren Korngrenzen und reichlich himmelblauem, intensiv leuchtendem, teilweise durch Hämatit violett gefärbtem Quarz als Leitgeschiebe aus. Ihr Herkunftsgebiet ist zu groß, sie finden sich in Ost-Småland mindestens bis ins Västervik-Gebiet. Auf Öland treten sie als Geschiebe besonders zahlreich auf, auch an Orten, an denen ein Transport aus dem Vånevik-Granitgebiet unwahrscheinlich ist (Abb. 48). Ist Titanit enthalten, lässt sich der mittelkörnige Granittyp allenfalls der ostschwedischen Geschiebegesellschaft zuordnen.

Abb. 48: Vånevik-Granit?. Geschiebe von Äleklinta auf Öland; Breite 12,5 cm.
Abb. 49: Mittelkörniger Småland-Granit mit intensivem Blauquarz. Geschiebe von Ramsnäs auf Öland, Breite 10 cm.

1.7. Tuna-Granit

Tuna-Granit ist eine Lokalbezeichnung für gleich- und mittelkörnige, quarzreiche Alkalifeldspatgranite, die größere Flächen in Ost- und Nordost-Småland „landeinwärts zwischen Västervik und Oskarshamn“ (ZANDSTRA 1988:281, HOLMQVIST 1906:158, HESEMANN 1975:37-38) einnehmen. Es handelt sich weitgehend um Småland-Granite vom Växjö-Typ, wie sie allenthalben innerhalb des TIB auftreten. Neben den gewöhnlichen roten Graniten (s. Fundbericht Fårbo) verdienen zwei Varianten eine Erwähnung: klein- bis mittelkörnige Alkalifeldspatgranite mit viel blauem oder violettblauem Quarz, sehr wenig dunklen Mineralen und 1. orangefarbenem bis braunem („Gersebo-Granit“, Abb. 55-56) und 2. blassrotem bis blassbraunem Alkalifeldspat (Abb. 50-53). Eigenständiger Plagioklas ist schwer erkennbar und nimmt bei Verwitterung eine helle Farbe an. Hie und da findet sich ein gelbliches Titanitkorn. Dieser Granittyp dürfte zumindest als Anzeiger einer NE-smaländischen Geschiebegemeinschaft („ostschwedische Geschiebegemeinschaft“) geeignet und an Lokalitäten mit viel Gesteinsmaterial aus NE-Småland entsprechend häufig anzutreffen sein. In anderen Gebieten kommen diese beiden Granittypen nach bisherigem Kenntnisstand nicht oder nur sehr untergeordnet vor.

Abb. 50: Nahgeschiebe aus der Kiesgrube Fårbo, N von Oskarshamn (S84). Links ein gewöhnlicher roter Småland-Granit vom Växjö-Typ, rechts eine blassrote Variante.
Abb. 51: Blassroter Småland-Granit vom Växjö-Typ („Tuna-Granit„) aus der Kiesgrube Fårbo; Aufnahme unter Wasser.
Abb. 52: Ähnlicher Typ („Tuna-Granit„), Geschiebefund von Byxelkrog auf Öland.
Abb. 53: Nahaufnahme.
Abb. 54: NE-Småland-Granit („Tuna-Granit“), Geschiebefund aus Niederlehme bei Berlin.

Eine hübsche Variante (Lokalname: Gersebo-Granit) besteht aus orangerotem, teils auch braunem Alkalifeldspat und blauem Quarz. Einzelne Plagioklas-Aggregate sind rot und grün verfärbt.

Abb. 55: Gersebo-Granit (S69), Aufnahme unter Wasser.
Abb. 56: Nahaufnahme.
Abb. 57: Mit dem Gersebo-Granit vergleichbarer Geschiebefund von Fehmarn.

1.8. Weitere Granitoide aus Ost-Småland

Die folgende Auswahl an Anstehendproben belegt die Vielfalt an Gefügevarianten der Granitoide aus Ost- und Nordost-Småland, neben den bisher behandelten Leitgeschieben. In diesem Zusammenhang sind auch die Fundberichte aus Kiesgruben in diesem Gebiet bedeutsam. Ein weiterer TIB-Granit (Virbo-Granit) wird im Zusammenhang mit dem Uthammar-Granit besprochen.

1.8.1. Rote grobkörnige Granite sind in Småland weit verbreitet, so auch in Ost-Småland. Weniger gewöhnlich, aber ein typischer NE-Småland-Granit stammt aus der Kiesgrube Forshult, ein grobkörniger roter Granit mit orangefarbenem Plagioklas und viel Titanit. Der Granit scheint stark alteriert zu sein, die dunklen Minerale wurden in grünliche Folgeprodukte (Chlorit o. ä.) umgewandelt.

Abb. 58: Roter NE-Småland-Granit mit orangefarbenem Plagioklas; Geschiebe aus der Kiesgrube Forshult (S91), Aufnahme unter Wasser.

1.8.2. Emsfors-Granit: Südlich von Påskallavik liegt der Emsfors-Granitstock, eine annähernd kreisrunde Intrusion mit einem Durchmesser von etwa 8 km. Das Gefüge des Emsfors-Granit weicht von den anderen Ost-Småland-Graniten ab: blassroter Alkalifeldspat, hellgrauer und transparenter Quarz (einzelne größere Quarze sind zoniert) sowie weißer Plagioklas; wenig dunkle Minerale, Titanit ist nicht erkennbar. Trotz seiner Verschiedenheit und möglichen Einzigartigkeit unter den Ost-Småland-Graniten dürfte der Granit als Geschiebe schwer zu identifizieren sein. Auch ein Doppelgänger in einem anderen Granitgebiet ist nicht auszuschließen. Die auf Öland besuchten Geschiebestrände liegen zu weit nördlich, als dass Geschiebe dieses Granittyps zu erwarten wären. Lediglich ein Fund aus Äleklinta besitzt eine gewisse Übereinstimmung (vgl. Abb. 67 in Exkursionsbericht Öland).

Abb. 59: Emsfors-Granit (S104), Aufnahme unter Wasser.
Abb. 60: Nahaufnahme des Gefüges.
Abb. 61: Eine weitere Probe von der gleichen Lokalität mit zonierten bläulichen Quarzen.

1.8.3. Augengranit am Campingplatz Gunnersö: An der Badestelle auf dem Campingplatz Gunnersö in Oskarshamn ist ein Augengranit großflächig aufgeschlossen.

Abb. 62: Badestelle am Campingplatz Gunnersö, am Horizont die Insel Blå Jungfrun.
Abb. 63: Augengranit, Bildbreite 70 cm. Ein etwa 10 cm breiter Gang-Granit weist links und rechts einen tektonischen Versatz auf.
Abb. 64: An einer Stelle wurde das Gestein vor nicht allzu langer Zeit aufgebrochen, die Bruchfläche ist einigermaßen frisch. Das Gestein besteht aus hellrotem Alkalifeldspat, grünem Plagioklas und relativ wenig grauem Quarz.
Abb. 65: Runder mafischer Einschluss, am oberen Bildrand ein Aplitgang. Bildbreite 90 cm.
Abb. 66: Ähnlicher, sehr titanitreicher Granit, Geschiebe von Eskilslund (Öland), Breite 17 cm.

1.8.4. Granite mit rotem und grünem Plagioklas: In Ost-Småland treten lokal biotit- und titanitreiche Granitoide mit hellrotem Alkalifeldspat und grünem sowie teilweise rot pigmentiertem Plagioklas auf. Roter Plagioklas ist auch in einigen TIB-Graniten aus Östergötland verbreitet.

Abb. 67: Anstehendprobe aus der Umgebung des Götemarplutons (S256c), Aufnahme unter Wasser.
Abb. 68: Nahaufnahme des Gefüges.

1.8.5. Granodiorit: Nicht alle Plutonite im nordöstlichen Småland sind Granite. Untergeordnet finden sich Quarzmonzonite (Quarzanteil unter 20 %) oder plagioklasreiche Glieder. Die nächste Probe ist ein Granodiorit aus der Umgebung des Uthammar-Plutons.

Abb. 69: Granodiorit (S89), Aufnahme unter Wasser.

1.8.6. TIB-Granite im Västervik-Gebiet: Im nordöstlichsten Småland, im Västervik-Gebiet, setzen sich die Granitmassive des TIB fort, bevor sie weiter nördlich von den älteren Granitoiden des Loftahammar-Massiv abgelöst werden. Die TIB-Granite sind hier stärker deformiert als ihre südlichen Verwandten. Einige Beispiele zeigt der Exkursionsbericht Västervik-Gebiet (Abb. 41-44, 52 und 53).

Exemplarisch sei der „Edelhammar-Granit“ angeführt. Er wurde in einem Steinbruch bei Västrum als Werkstein gewonnen und ist ein mittel- bis grobkörniger Granit mit braunem, stellenweise orangerot pigmentiertem Alkalifeldspat sowie teilweise zuckerkörnig granuliertem Blauquarz. Titanit ist reichlich enthalten.

Abb. 70: Stillgelegter Steinbruch im „Edelhammar-Granit“ bei Västrum (S77).
Abb. 71: Gefüge einer Probe aus dem Steinbruch, Aufnahme unter Wasser.
Abb. 72: Weitere, stärker deformierte Probe (S77) mit orangefarbenem Alkalifeldspat und reichlich zuckerkörnigem Quarz.

Auch im Västervik-Gebiet treten rote Alkalifeldspatgranite vom Växjö-Typ auf. Teilweise sind sie deutlich deformiert. Die lebhaften Blauquarze erscheinen durch Hämatitimprägnierung stellenweise violett.

Abb. 73: Alkalifeldspatgranit vom Växjö-Typ mit lebhaftem Blauquarz (S72c), Abschlag von einem Geschiebe, Aufnahme unter Wasser.

1.8.7. Älö-Granit: Ebenfalls in der nordöstlichsten Ecke von Småland ist der Älö-Granit beheimatet, nach HOLMQVIST 1906:153 ein sehr saurer, also besonders quarzreicher, und blassroter Alkalifeldspat-Granit mit wenig Plagioklas. Vom Gefüge her, insbesondere durch die hellen Aggregate von zuckerkörnigem Quarz, soll eine gewisse Übereinstimmung mit dem Vänge-Granit bestehen (Beschreibung auch in ZANDSTRA 1988:280, Anstehendproben auf skan-kristallin.de). Die Eignung des Älö-Granits als Leitgeschiebe ist nicht hinreichend belegt. Ein vergleichbarer Granit wurde auf Öland als Geschiebe gefunden.

Abb. 74: Älö-Granit (?), Geschiebe von Ramsnäs auf Öland, Breite 11,5 cm.

1.9. Literatur

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 44 Abb., 8 Taf., 1 Kt., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).
HOLMQVIST P J 1906 Studien über die Granite von Schweden – Bulletin of the Geological Institution of the University of Uppsala VII – S. 77-269.

KORN J 1927 Die wichtigsten Leitgeschiebe der nordischen kristallinen Gesteine im norddeutschen Flachlande – Ein Führer für den Sammler kristalliner Geschiebe – VI + 64 S., 48 Farb-Abb. auf Taf. 1-6, 8 Farb-Karten auf Taf. 7-14, 1 Tab., Berlin (Preußische geologische Landesanstalt).

SMED P & EHLERS 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage 2002.

WIK NG, BERGSTRÖM U, BRUUN A et al 2005 Beskrivning till regional berggrundskarta
över Kalmar län – Sveriges geologiska undersökning serie Ba nr 66, 54 S., ISBN 91-7158-699-7.

WIK NG, BERGSTRÖM U, BRUUN A et al 2005 Berggrundskartan Kalmar län – 1:250 000, Sveriges geologiska undersökning serie Ba nr 66.

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).

ZANDSTRA JG 1999 Platenatlas van noordelijke kristallijne gidsgesteenten, Foto’s in
kleur met toelichting van gesteentetypen van Fennoscandinavië – XII+412 S.,
272+12 unnum. Farb-Taf., 31 S/W-Abb., 5 Tab., Leiden (Backhuys).

1.10. Verzeichnis der Probenorte

Abb. 75: Lage der Probenpunkte Kinda-Granit (S142-148) sowie Flivik-Granit und Umgebung (S64-69). Karte (leicht verändert) aus: https://apps.sgu.se/kartvisare/

S34 Vånevik-Granit – Ortseingang Påskallavik (57.17829, 16.44640)
S64 Flivik-Granit – Str.Aufschl., Abfahrt Flivik von der E 22 (57.49335, 16.52182)
S65 Flivik-Granit – Steinbruch Quimbra (Zufahrt: 57.536078, 16.582352)
S66 Grobkörniger NE-Småland-Granit – Straßenaufschluss (57.52618, 16.57398)
S67 Grobkörniger NE-Småland-Granit, Kinda-Typ – Straßenaufschluss (57.514028, 16.588778)
S69 Tuna-Granit/“Gersebo-Granit“ – Straßenaufschluss 57.498331, 16.657453
S72c Granit vom Växjö-Typ – Geschiebe am Bootsanleger Östra Skälö, Västervik-Gebiet (57,589911, 16,632639)
S77 Edelhammar-Granit; alter Steinbruch bei Västrum (57.698194, 16.460917)
S84 Nahgeschiebe NE-Småland-Granitoide – Kiesgrube Fårbo (57.401891, 16.476663)
S89 Granodiorit – Str. Aufschl. NE Uthammar (57.40145, 16.61318)
S91 Nahgeschiebe Ost-Småland-Granitoide – Kiesgrube 1,5 km SE Forshult (57.24536, 16.34568)
S93 grobkörniger Blauquarzgranit – Str. Aufschl. 4 km NW Påskallavik (57.18682, 16.40905)
S103 Vånevik-Granit – Badplats Vånevik (etwa 57.179302, 16.460733)
S104 Emsfors-Granit – alter Steinbruch an der Str. 216 (57.130338, 16.439972)
S142a Småland-Monzogranit mit Blauquarz – Str. Aufschluß W von Kisa (57.98211, 15.58921)
S144 Kinda-Granit – Str. Aufschl. an der 134, NE von Kisa (58.01092, 15.76710)
S145 Kinda-Granit – Str. Aufschl. (58.00959, 15.90598)
S146 Rötlicher porphyrischer NE-Småland-Granit (Geschiebe) – Weganschnitt (57.94849, 15.91445)
S147 Monzogranit, deformiert – Felsen im Wald (Parken: 57.94748, 15.91537)
S148 Monzogranit – Str. Aufschl. ca. 20 km vor Gamleby (57.90205, 16.08556)
S246b Geschiebe NE-Småland-Kristallin – Strand nahe des Leuchtturms in Byxelkrog/Öland (57.32262, 17.00285)
S255d NE-Småland-Granit (Geschiebe) – Kiesgrube südlich vom Götemar-Pluton (57.45415, 16.60078)
S256c – Roter Småland-Granit mit rotem und grünem Plagioklas – Str. Aufschl. nahe des Götemaren (57.45053, 16.63260)
S257 Vånevik-Granit – Stenhuggermuset Norra Vånevik (57.185717, 16.452244)

Geschiebesammeln in Polen: Jastrzębia Góra und Gdynia

Abb. 1: Anorthosit, Geschiebe vom Geröllstrand in Jastrzębia Góra, Breite 15 cm.

Geschiebestrände sind an der polnischen Ostseeküste selten, weil es sich ganz überwiegend um eine Ausgleichsküste handelt. Durch Einwirkung von Wind und Wasser wird Sand abgetragen und der Küste vorgelagert. Auf diese Weise wird die Küstenlinie begradigt, ausgedehnte Sandstrände und Dünen entstehen. An solchen Küstenabschnitten findet man dann kilometerweit keinen Stein. In Polen gibt es nur wenige Lokalitäten, wo ein aktives Kliff mit Geschiebemergel oder ein Sandkliff angeschnitten ist, z. B. bei Misdroy (Westpolen). Eine Reise im Sommer 2021 führte an zwei der wenigen Geschiebestrände im Gebiet der Danziger Bucht, nach Jastrzębia Góra und in die Hafenstadt Gdynia.

Abb. 2: Lage der beiden Fundlokalitäten. Quelle: wikipedia, Karte verändert.

1. Jastrzębia Góra

Jastrzębia Góra (alter deutscher Name: Habichtsberg) liegt in der Woiwodschaft Pommern, etwa 55 km NNW von Danzig. Hier befindet sich der nördlichste Punkt Polens, ansonsten gibt es nicht viel zu sehen, denn der Ort lebt ausschließlich vom sommerlichen Badetourismus. Wo sich die in nordöstlicher Richtung verlaufende Ausgleichsküste nach Südosten wendet, ist ein Kliff angeschnitten. Auf knapp 1,5 km Länge gibt es einen Geschiebestrand. Zu Zwecken des Küstenschutzes wurden am Strand große Geschiebe abgelagert, die aus der unmittelbaren Umgebung stammen dürften.

Abb. 3: Geschiebestrand von Jastrzębia Góra.
Abb. 4: Größere Geschiebe im Brandungssaum.
Abb. 5: Aufgrund des starken Küstenrückgangs der vergangenen Jahre wurde zum Zwecke des Uferschutzes eine Betonmauer errichtet, der zahlreiche Großgeschiebe vorgelagert sind.

Das Geschiebespektrum am Strand von Jastrzębia Góra ist nicht außergewöhnlich und im Grunde genommen mit einigen Lokalitäten im östlichen Brandenburg vergleichbar: reichlich Åland-Kristallin und Rapakiwi-Gesteine, viel Brauner Ostseequarzporphyr und Gesteine aus Dalarna. Auffällig ist das weitgehende Fehlen von Feuerstein. Ostbaltisches, also aus östlichen Richtungen angeliefertes Material wie Kugelsandstein und Dolomit, ist aber ebenfalls kaum zu finden. Unterkambrische Sandsteine mit Spurenfossilien (Skolithos-Sandstein) treten nur vereinzelt auf, häufiger sind paläozoische Kalksteine, vor allem Paläoporellenkalk.

Rapakiwi-Gesteine von Åland gehören zu den häufigsten Funden. Es findet sich die ganze Bandbreite an Åland-Rapakiwis, v.a. Wiborgite, weiterhin Åland-Ringquarzporphyre, Quarzporphyre, darunter auch die Gangporphyre von Hammarudda.

Abb. 6: Åland-Quarzporphyr.
Abb. 7: Åland-Quarzporphyr, Skeppsvik-Typ mit trüben und leicht bläulichen Quarzen. Breite 18 cm.
Abb. 8: Åland-Ringquarzporphyr, Breite 16 cm.
Abb. 9: Großer Block eines Åland-Ringquarzporphyrs, Breite 37 cm.
Abb. 10: Nahaufnahme einer angenässten Partie.
Abb. 11: Hammarudda-Quarzporphyr, Breite 21 cm.
Abb. 12: Blassroter Åland-Wiborgit, Breite 30 cm.
Abb. 13: Nahaufnahme des Gefüges.
Abb. 14: Åland-Rapakiwi, Mischtyp Wiborgit/Pyterlit. Breite 25 cm.
Abb. 15: Blassroter Porphyraplit, Breite 75 cm.
Abb. 16: Nahaufnahme.
Abb. 17: Grauer Pyterlit. Breite 50 cm. Herkunft ungewiss. Wahrscheinlich stammt zumindest ein Teil solcher hellen Pyterlite von Åland.
Abb. 18: Nahaufnahme.

In Jastrzębia Góra treten – wenn auch nicht besonders zahlreich – Rapakiwi-Granite auf, die dem Rapakiwi-Vorkommen von Kökar zugeordnet werden können.

Abb. 19: Kökar-Rapakiwi. Sehr grobkörniger porphyrischer Rapakiwigranit mit rotem und grünem Plagioklas. Zahlreiche Feldspäte weisen einen dicken Saum aus rotbraunem Plagioklas auf. Breite 60 cm.
Abb. 20: Nahaufnahme, nass fotografiert.
Abb. 21: Wiborgit mit reichlich rotbraunem Plagioklas (Åland oder Kökar?). Breite 26 cm.
Abb. 22: Nahaufnahme.
Abb. 23: Åland?-Wiborgit mit bläulichen Quarzen und grün umsäumten Feldspat-Ovoiden bis 33 mm Durchmesser.

Darüber hinaus finden sich zahlreiche weitere und interessante Rapakiwi-Geschiebe, die sich nicht ohne weiteres einer genaueren Herkunft zuordnen lassen.

Abb. 24: Porphyrischer Rapakiwi, Breite 48 cm.
Abb. 25: Nahaufnahme des Gefüges; kreuzförmiger Zwilling zweier Feldspat-Kristalle.
Abb. 26: Dunkler Pyterlit mit sehr großen Ovoiden. Breite 50 cm. Gefüge und dunkle Farbe erinnern an Rapakiwis vom Wiborg-Pluton. Allerdings sind hier keine Feldspat-Ovoide erkennbar (kein Wiborgitgefüge). Eine Herkunft vom SW-finnischen Festland ist denkbar (Laitila- oder Vehmaa-Pluton), allerdings kann auch nicht ausgeschlossen werden, dass weitere und bisher unentdeckte (Unterwasser)-Vorkommen solch grobkörniger Pyterlite existieren.
Abb. 27: Nahaufnahme.
Abb. 28: Roter porphyrischer Rapakiwi-Granit mit hellen Quarzen und dicken Säumen aus gelbem Plagioklas um einzelne Alkalifeldspat-Ovoide. Breite 37 cm.
Abb. 29: Nahaufnahme. Das Gefüge ähnelt den Wiborgiten vom Rödö-Pluton, die Ovoide sind jedoch recht klein für eine eindeutige Zuordnung (unter 2 cm).
Abb. 30: Dieses Geschiebe hingegen ist ganz eindeutig ein Rödö-Wiborgit. Breite 50 cm.
Abb. 31: Nahaufnahme, Bildbreite 14 cm. Die großen und hellen Quarze der 1. Generation zeigen kaum Spuren einer magmatischen Korrosion. Viele der Feldspat-Ovoide sind größer als 2 cm und weisen vereinzelt dicke Plagioklasringe auf.
Abb. 32: Nahaufnahme. Um die blassgelben Alkalifeldspäte findet sich häufig ein Ring aus radial verlaufenden und roten graphischen Verwachsungen aus Feldspat und Quarz. Auch reichlich intensiv gelbgrüner Plagioklas ist enthalten.
Abb. 33: Dieser Wiborgit zeigt ebenfalls Merkmale eines Rödö-Rapakiwis. Rapakiwis mit orangebrauner Gesamtfarbe kommen auf Rödö vor, wenn auch untergeordnet. Breite 18 cm.
Abb. 34: Nahaufnahme.
Abb. 35: Rödö-Rapakiwi. Die gelblichen, bis 2 cm großen Feldspat-Ovoide sind heller als die vollrote Grundmasse, die großen und leicht bläulichen Quarze zeigen kaum Spuren einer magmatischen Korrosion. Breite 13 cm.
Abb. 36: Vollroter Rapakiwi mit etwas helleren Alkalifeldspat-Ovoiden und dunklen größeren Quarzen. Breite 13 cm.
Abb. 37: Nahaufnahme. Ob auch dieser Rapakiwi von Rödö stammt, ist unklar. Entscheidend für die Bestimmung ist die Größe der Ovoide (2 cm und mehr), hier bleiben sie deutlich darunter. Ähnliche Rapakiwigranite könnten z. B. auch von Nordingrå stammen.
Abb. 38: Porphyrischer Rapakiwi (Nordingrå-Rapakiwi?). Helle und rechteckige Feldspäte sind von einer roten Grundmasse aus graphischen Quarz-Feldspat-Verwachsungen umgeben, größere hellgraue Quarze sind locker im Gestein verteilt.
Abb. 39: Nahaufnahme. Solche porphyrischen Rapakiwi-Granite sind aus Nordingrå bekannt. Allerdings besteht bei vielen Varianten eine Verwechslungsmöglichkeit mit Rapakiwis vom Åland-Pluton.

Porphyre

Abb. 40: Der Braune Ostsee-Quarzporphyr tritt sehr häufig auf, auch in großen Blöcken. Breite 45 cm.
Abb. 41: Brauner Ostsee-Quarzporphyr, Breite 56 cm.
Abb. 42: Der Rote Ostsee-Quarzporphyr ist bedeutend seltener. Ein besonderer Fund ist dieses große und stark angewitterte Ignimbrit-Geschiebe. Breite 47 cm.
Abb. 43: Nahaufnahme. Durch Verwitterung tritt das eutaxitische Gefüge besonders deutlich hervor. Neben basischen Xenolithen ist ein rundes Fragment eines braunen Quarzporphyrs erkennbar.
Abb. 44: Quarzporphyr, ein Gangporphyr mit graphischen Verwachsungen in der Grundmasse. Herkunft unbekannt.
Abb. 45: Grüner Quarzporphyr mit hellen, teilweise stark magmatisch korrodierten Feldspat-Einsprenglingen, Breite 95 mm. Herkunft unbekannt.
Abb. 46: Auch der Lemland-Granit stammt von Åland, gehört aber nicht in die Suite der Rapakiwi-Gesteine. Er ist etwa 1,8 Ga alt und entstand nach Beendigung der Svekofennischen Gebirgsbildung. Breite 16 cm.

Der nächste Fund zeigt ein ähnliches Gefüge wie der Lemland-Granit, ist aber nicht so grobkörnig; ein Granit mit porphyrischem Gefüge aus blassroten Alkalifeldspat-Zwillingen in einer Grundmasse aus grauem Quarz und rotem Plagioklas.

Abb. 47: Lemland-Granit oder postsvekofennischer Granit? Breite 55 cm.
Abb. 48: Nahaufnahme des Gefüges.

Geschiebe aus Dalarna

Kristallingesteine aus Dalarna finden sich reichlich am Strand von Jastrzębia Góra, neben Bredvad- und Grönklitt-Porphyr auch auffällig viele Geschiebe des Garberg-Granits, während der Siljan-Granit kein einziges Mal angetroffen wurde.

Abb. 49: Älvdalen-Ignimbrit, Breite 21 cm.
Abb. 50: Einsprenglingsreicher Dala-Porphyr, Breite 14 cm.
Abb. 51: Digerberg-Konglomerat, Breite 18 cm.
Abb. 52: Gleicher Stein, Nahaufnahme eines roten Porphyrs mit fluidaler Textur.
Abb. 53: Heden-Porphyr, Breite 20 cm.
Abb. 54: Garberg-Granit, Breite 17 cm.
Abb. 55: Garberg-Granit, Breite 17 cm.
Abb. 56: Garberg-Granit, recht quarzreich, möglicherweise ein Übergang zum Siljan-Granit.

Marmor und Gneise vom Sörmland-Typ

Unter den mittelschwedischen Geschiebetypen treten Marmor bzw. Silikatmarmor („Ophicalcit“) und graue migmatitische Paragneise vom Sörmland-Typ sehr häufig in Erscheinung. Marmorgeschiebe sind besonders häufig, insgesamt 7 Funde wurden dokumentiert, die meisten davon sind Großgeschiebe. Näheres zu Marmor/Silikatmarmor und Sörmland-Gneis.

Abb. 57: Großes Geschiebe eines Silikatmarmors (Ophicalcit), Breite 47 cm.
Abb. 58: Nahaufnahme der nassen Oberfläche. Die grünen Mineralkörner sind forsteritischer (Mg-reicher) und meist serpentinisierter Olivin oder Klinopyroxen (Diopsid). Eine Unterscheidung dieser Minerale von Hand ist nicht möglich.
Abb. 59: Silikatmarmor, Breite 12 cm.
Abb. 60: Silikatmarmor, Breite 21 cm.
Abb. 61: Gleicher Stein, Nahaufnahme.
Abb. 62: Einschlussführender Marmor, Breite 65 cm.
Abb. 63: Detailansicht, Breite 27 cm. Das Gestein enthält gerundete Klasten von Quarz-Feldspat-Gneisen.
Abb. 64: Gebänderter Marmor, Breite 50 cm.
Abb. 65: Grauer migmatitischer Paragneis, Breite 95 cm.
Abb. 66: Grauer migmatitischer Paragneis mit Granat (Sörmland-Gneis). Breite 110 cm.
Abb. 67: Sörmland-Gneis, Breite 14 cm.
Abb. 68: Granatreicher migmatitischer Paragneis („Kinzigit“), Breite 38 cm. Der Fund eines ähnlichen Gesteins wird von BAUSCH & LÜTTIG 2005 diskutiert. Als mögliches Herkunftsgebiet nennen die Autoren SW-Finnland. Allerdings könnte mit ähnlichen Vorkommen in der Ostsee und in Sörmland zu rechnen sein (s. a. Sörmland-Gneis).
Abb. 69: Gleicher Stein, Bildbreite 17 cm. Neben reichlich Granat enthält das Gestein graublauen Cordierit und Sillimanit (silbrig-graue Schlieren zwischen den Granat-Porphyroblasten).

Granite

Granite aus dem Transskandinavischen Magmatitgürtel (TIB) sind regelmäßig, von der Menge her den Rapakiwigesteinen deutlich untergeordnet zu finden. Rote Småland-Granite oder die gleichkörnigen Växjö-Typen kommen nur vereinzelt vor, häufiger sind dunkle porphyrische Varianten, wie aus NE-Småland bekannt sind (u. a. Kinda-Granit). Die aus dem südlichen Småland stammenden Vulkanite wie Paskallvik- und Emarp-Porphyr fehlen, ebenso die hälleflintartigen Småland-Vulkanite.

Abb. 70: Kinda-Granit, Breite 14 cm.
Abb. 71: Kinda-Granit bzw. NE-Småland-Granit.
Abb. 72: „Virbo-Granit“ (Ost-Småland), Breite 28 cm.
Abb. 73: Filipstad-Granit, Breite 37 cm.
Abb. 74: Filipstad-Granit.

Besonders grobkörnige bis riesenkörnige porphyrische Granite lassen sich häufiger beobachten. Sie können zwar keiner näheren Herkunft zugeordnet werden, dürften zum Teil aber aus den nördlichen Gebieten des TIB stammen, z. B. Östergötland. Andere porphyrische Granite besitzen große helle und rechteckige Alkalifeldspat-Einsprenglinge, ihre Herkunft ist gänzlich ungewiß (Abb. 78, 79).

Abb. 75: Grob porphyrischer TIB-Granit mit etwas Blauquarz, Breite 45 cm. Ein einzelnes Ovoid besitzt einen Durchmesser von 56 mm.
Abb. 76: Grob porphyrischer Granit, Breite 55 cm.
Abb. 77: Grob porphyrischer Granit, Breite 30 cm.
Abb. 78: Grob porphyrischer Granit, Breite 30 cm.
Abb. 79: Grob porphyrischer Granit, Grenze zu einem basaltischen Gestein. Breite 43 cm.
Abb. 80: Revsund-Granit. Breite 52 cm.
Abb. 81: Nahaufnahme. Die weißen Alkalifeldspäte bilden teilweise perfekte Karlsbader Zwillinge und weisen eine deutliche perthitische Entmischung auf. Gelblicher Plagioklas und hellgrauer Quarz bilden bedeutend kleinere Körner.
Abb. 82: Weißer porphyrischer Granit, Bildbreite 46 cm.
Abb. 83: Porphyrischer Granit mit einem runden Alkalifeldspat mit zoniertem Aufbau. Breite 17 cm. Der orbicul-ähnliche Feldspat dürfte durch Bewegung in der Schmelze eine runde Gestalt erhalten haben. An seinem Außenrand schieden sich dunkle Minerale ab, anschließend setzte das Kristallwachstum offenbar erneut ein.

An mittelschwedischen Graniten aus Bergslagen und Uppland konnten mehrfach Geschiebe des Vänge- und Stockholm-Granits beobachtet werden, vereinzelt Sala- und Uppsala-Granit. Darüber hinaus gibt es zahlreiche unspezifische graue Granite („Uppland-Granite“) mit vermutlich ähnlichem Herkunftsgebiet (Abb. 93). Die übrigen Bergslagen-Granite dürften als Geschiebe meist nicht eindeutig bestimmbar sein, zu sehr ähneln sich Varianten aus verschiedenen Gebieten, zu unspezifisch sind die allgemeinen Merkmale. Entsprechende Zuordnungen wurden daher mit einem Fragezeichen versehen (Abb. 87 und 94).

Abb. 84: Sala-Granit, Breite 70 cm.
Abb. 85: Nahaufnahme.
Abb. 86: Vänge-Granit, Bildbreite 30 cm.
Abb. 87: Mittelkörniger Granit, Farbe und Zusammensetzung ähnlich dem Vänge-Granit, aber abweichendes Gefüge (Malingsbo-/Enkullen-Granit?). Vgl. auch Ähnlichkeiten zwischen Hedesunda-Granit und Vänge-Granit.
Abb. 88: „Grauer Uppland-Granit“. Solche Granite mit einem ähnlichen Gefüge wie der Sala-Granit, aber ohne Blauquarz, kommen häufig vor. Herkunft dürfte in der Region Uppland/Bergslagen liegen.
Abb. 89: Porphyrischer Granit; Herkunft unbekannt, möglicherweise ebenfalls ein Uppland-Granit (Fellingsbro-Granit?). Breite 25 cm.

Basische Gesteine und Metabasite

Abb. 90: Diabas, Breite 23 cm.
Abb. 91: Grobkörniger Åsby-Ulvö-Dolerit, Breite 48 cm.
Abb. 92: Nahaufnahme der nassen Oberfläche.
Abb. 93: Basaltisches Gestein mit glasglänzender Oberfläche („Basaltähnlicher Ostsee-Diabas“?), nur mikroskopisch bestimmbar, vgl. HESEMANN 1975: 168). Breite 38 cm.
Abb. 94: Gabbroides Gestein mit Xenolith eines porphyrischen Magmatits (Gabbro oder Diorit). Breite 45 cm.
Abb. 95: Porphyroblastischer Amphibolit („Uralitgabbro“), Breite 40 cm.
Abb. 96: Coronitischer Leukogabbro (Olivingabbro). Breite 27 cm.
Abb. 97: Gefüge des Gesteins.
Abb. 98: Nahaufnahme. Kerne und Coronen dieses Gesteinstyps bestehen zumeist aus Mineralgemischen. Der Kern enthält Olivin-Relikte, die Coronen – hier gut erkennbar – faserigen Amphibol („Aktinolith-Sonnen“).
Abb. 99: Ein weiterer coronitischer Olivingabbro, Breite 60 cm.
Abb. 100: Nahaufnahme.

Weitere Metamorphite

Abb. 101: „Gedrit-Leptit“; feinkörniger heller Granofels mit büschelartigen Aggregaten aus feinfaserigem Amphibol, wahrscheinlich Gedrit. Breite 24 cm. (s. a. Ampbibol-porphyroblastische Gneise, Abb. 31-34).
Abb. 102: Gleicher Stein, andere Ansicht.
Abb. 103: Dunkler und doleritischer Metabasit, durchsetzt von einem Netz eines helleren und quarzreichen Magmas (net veins). Breite 50 cm.
Abb. 104: Migmatitischer Gneis; graue Gneispartie (Restit?) mit Staffelbruch. Bildbreite 40 cm.
Abb. 105: Grünstein (Metabasit), durchzogen von pegmatitischen Gängen. Breite 40 cm.
Abb. 106: Fleckenquarzit mit weißen Sillimanit-Granoblasten. Herkunft: wahrscheinlich svekofennisch, nicht unbedingt aus dem Västervik-Gebiet. Breite 20 cm.

Sedimentite

Abb. 107: Einziger Fund eines Kugelsandsteins in Jastrzębia Góra. Breite 12 cm.
Abb. 108: Jotnischer Sandstein mit Entfärbungsflecken, Breite 45 cm.
Abb. 109: Jotnischer Sandstein mit Schrägschichtung, Breite 40 cm.
Abb. 110: Jotnischer Sandstein mit Tongallen, Bildbreite 32 cm.
Abb. 111: Konglomerat-Lage in einem Sandstein (Schichtrichtung um 90 Grad gedreht); Porphyr-, Granit- und Milchquarz-Klasten in einer konglomeratischen Sandstein-Matrix. Breite 15 cm.

Tilluntersuchungen an ausgewählten Lokalitäten in der Umgebung der Danziger Bucht bestätigen als Hauptliefergebiete Åland, Dalarna und Mittelschweden (WOŹNIAK et al 2009). Neben der vorherrschenden Zugrichtung des Eises aus NNW, lokal auch von Osten, wird anhand von Leitgeschiebezählungen für einzelne Tillablagerungen (Unterteilung in roof/base part of the upper till und lower till) ein weiterer Vorstoß von Nordwesten genannt, belegt durch Funde südschwedischer Leitgeschiebe sowie der Orientierung der Längsachsen von Geschieben in den Moränenablagerungen. Für die Zählungen herangezogen wurden im Einzelnen rote und graue Växjö-Granite, rote Småland-Granite und Småland-Porphyre; Vånevik-Granit sowie Beyrichienkalk. Die kursiv gedruckten Geschiebetypen gelten allerdings nicht als Leitgeschiebe, die übrigen konnte ich weder in Jastrzebia Gora, noch in Gdynia finden. „Südlichste“ Vertreter sind Kinda-Granit und Virbo-Granit; sie könnten auch mit einem Eisstrom aus nördlicher Richtung transportiert worden sein.

Abb. 112: Skizze der Transportrichtungen von Gesteinsmaterial in die Danziger Bucht. Schwarzer Pfeil: Hauptrichtung; roter Pfeil: untergeordneter Transport von Westen und Nordwesten; weißer Pfeil: lokal ist auch ein Transport aus östlichen Richtungen belegt. Kartenskizze nach WOŹNIAK et al 2009.

Weiter zu: Geschiebesammeln in Polen, Teil 2: Gdynia

Literatur

BAUSCH WM & LÜTTIG GW 2005 Ein Kinzigit-Geschiebe aus Salzhausen (Lüneburger Heide) – Geschiebekunde aktuell 21 (1): 5-12, 2 Abb., Hamburg / Greifswald.

SOKOŁOWSKI, RJ (Ed.) 2014 Ewolucja środowisk sedymentacyjnych regionu Pobrzeża Kaszubskiego – 126 S, Wydział Oceanografii i Geografii Uniwersytetu Gdańskiego.

WOŹNIAK P, CZUBLA P, WYSIECKA G & DRAPELLA M 2009 Petrographic composition and directional properties of tills on the NW surroundings of the Gdansk Bay, Northern Poland – Geologija 51, S. 59-67. 10.2478/v10056-009-0007-z.