Västervik-Fleckenquarzit

Polierte Oberfläche eines Fleckenquarzits aus der Kiesgrube Niederlehme.

Die bisher als „Stockholm-Fleckenquarzite“ bezeichneten Gesteine kommen aus dem Gebiet um Västervik in Südschweden. Das steht fest, nachdem bei mehreren Exkursionen größere Mengen dieser metamorphen Gesteine in der Umgebung von Västervik gefunden wurden. Gleichzeitig sind nach wie vor keine Vorkommen solcher Gesteine im Raum Stockholm bekannt.
Die Quarzite zeichnen sich durch helle Flecken von wenigen Millimetern Größe aus, die regellos in den feinkörnigen, meist grauen, braunen oder auch rötlichen Gesteinen verteilt sind. Diese Flecken bestehen aus Sillimanit, das während der Metamorphose von Sedimenten neu gebildet wurde. Gelegentlich sind noch Reste der ursprünglichen Sedimentschichtung erkennbar. Textauszug aus und ausführliche Beschreibung auf kristallin.de.

Amphibol-porphyroblastischer Gneis

Amphibol-porphyroblastischer Gneis aus der Kiesgrube Niederlehme. Dieses auffällig helle Gestein ist v.a. aus Geschiebegemeinschaften mit reichlich Oslo-Gesteinen bekannt. Weitere Funde dieses Typs aus Brandenburg sind bisher nicht bekannt. Auf skan-kristallin findet sich eine Zusammen-stellung norwegischer Amphibol-porphyroblastischer Felse und -Gneise.
Die weiße Grundmasse besteht aus Quarz und Feldspat; mit der Lupe erkennt man auch einzelne größere Quarze.
Feinkörniger Gneis mit Amphibol- und Granat-Porphyroblasten aus Niederlehme
Amphibol-Granofels, Verwitterungsseite (oben) und polierte Schnittfläche (unten). Große Amphibolleisten liegen richtungslos verteilt in einer kleinkörnigen Feldspatmasse. Quarz ist nicht erkennbar. Fundort: Kiesgrube Fresdorfer Heide bei Potsdam; Slg. G. Engelhardt.
Ausschnitt aus einem ca. 60 cm breiten Block eines Gneises, der eine Partie aus Amphibol-Granofels enthält. Der Fund ist interessant, weil er etwas über mögliche Muttergesteine dieses Gesteinstyp verrät. Fundort: Südrand des ehem. Braunkohle-Tagebaus Cottbus-Nord.
Detail des Gefüges, Bildbreite ca. 10 cm.
Bruchfläche eines Spaltstücks aus der gneisigen Partie des obigen Blocks. Der Amphibol-Granofels ist diesem Gestein „angehängt“. Es besteht aus Plagioklas, dunklem Glimmer und schwarzem bis grünlich-schwarzem Amphibol (Amphibol-Glimmerschiefer). Quarz ist nicht erkennbar, das Gestein reagiert nicht auf einen Handmagneten. Auf der Rückseite des Handstücks (nicht auf dem Foto) sind größere Flächen mit Erz (Pyrit) imprägniert. Eine rote Ader durchzieht das Gestein. Dies könnten lediglich (Hämatit-)Imprägnierungen sein, da sich das Mineralgefüge nicht ändert. Denkbar ist auch eine Injektion von Alkalifeldspat entlang von Rissen, der aber makroskopisch nicht identifizierbar ist. Die reflektierende, im Anschnitt lanzettförmige Kristallfläche in der linken roten Ader ist Calcit (HCl-Probe positiv)
Amphibol-porphyroblastischer Gneis mit teilweise eingeregelten Amphibolen in einer feinkörnigen Grundmasse. Fundort: Geröllstrand bei Hohenfelde/SH.
Grauer Amphibol-porphyroblastischer Fels aus der Kiesgrube Ruhlsdorf bei Bernau/BB.
Detail der frischen Bruchfläche, Aufnahme unter Wasser. Die Minerale der Grundmasse sind nicht sicher identifizierbar, vermutlich handelt es sich um Feldspat und Quarz. Das Gestein ist schwach magnetisch und wird von roten Adern durchzogen.
Amphibol-porphyroblastischer Gneis mit etwas Biotit. Fundort: Steinbeck/Klütz.
Heller Amphibol-porphyroblastischer Gneis, Fundort: Hoppegarten bei Müncheberg/BB.
Die Detailaufnahme unter Wasser zeigt eine kleinkörnige Grundmasse, wahrscheinlich aus weißem Feldspat und Quarz sowie schwarze, teilweise braune oder grüne und vermutlich alterierte Porphyroblasten von Amphibol. Weiterhin sind einige Adern aus Quarz zu erkennen, die das Gestein durchziehen sowie etwas brauner Biotit.

Achatführender Sandstein

Dieses Bild hat ein leeres Alt-Attribut. Der Dateiname ist 1172_JotnSandsteinAchat_1b_Niederlehme-1024x768.jpg
Konglomeratischer Rotsandstein mit einem Klast aus rotem Bandachat aus der Kiesgrube Niederlehme. Aufnahme unter Wasser.
Detail des Bandachats, fotografiert auf nasser Oberfläche.

Einschlussführende Diabase

Einschlussführender Diabas (Nr. 430) aus der Kiesgrube Niederlehme SE von Berlin, polierte Schnittfläche. Das Gestein enthält neben den runden und alterierten Alkalifeldspäten Klasten granitischer Zusammensetzung. Die Grundmasse besteht aus Diabas (unterer Teil), aber auch aus braunem, einsprenglingslosen Porphyr (links).
Detailbild der Nr. 430

Polierte Schnittfläche eines sandsteinführenden Diabas (Nr.70). Es handelt sich um eine mechanische Vermengung von Sandstein mit einem basaltoidem Gestein. Braune, leicht gerundete Bruchstücke eines gut sortierten Sandsteins liegen in einer grauen, basaltartigen Matrix, die wesentlich feinkörniger ist. Auffällig sind die schwarzen Reaktionsränder um die Sandsteinfragmente, die auf thermische Beeinflussung schließen lassen. Die graue Zwischenmasse ist leicht magnetisch, der Sandstein nicht. FO: Fresdorfer Heide, Slg. G. Engelhardt
Verwitterungsseite: die groben, länglichen und nur leicht abgerundeten Sandsteinklasten sind verwitterungs-beständiger als die basaltische Zwischenmasse und treten auf der Oberfläche reliefartig hervor.
Im Detailbild sind die Sandsteinkörner gut erkennbar. – Gerölldiabase kommen an verschiedenen Orten in Skandinavien vor, als Leitgeschiebe sind sie weniger geeignet. Dieses Exemplar könnte dem Typus des Brevik-Diabas entsprechen, der Sedimentgesteine der Almesåkra-Formation führt. Er weist aber wenig Übereinstimmung mit der unten abgebildeten Anstehendprobe auf. Lokal dürften diese Gesteine im Anstehenden wechselhaft im Erscheinungsbild sein. Zum Thema Gerölldiabase siehe auch Bartolomäus & Herrendorf 2003.
Feinkörniger, einschlussführender Diabas (Nr. 232) aus der Kiesgrube Penkun bei Stettin, Aufnahme unter Wasser.
Das Detailbild zeigt einen runden Einschluss mit granitischer Zusammensetzung aus orangerotem Alkalifeldspat, blaugrauem Quarz und einigen dunklen Mineralen.
Einschlussführender Diabas vom Geröllstrand in Mukran/Rügen (Slg. D. Lüttich). Neben eckigen bis gerundeten Einschlüssen von rotem Feldspat sind runde Quarzkörner enthalten, die einen dunklen Saum an der Reaktionsfläche zum Diabas zeigen (ähnlich dem Åland-Ringquarzporphyr).
Einschlussführender Diabas aus der Kiesgrube Hoppegarten bei Müncheberg/Brandenburg.


Proben aus dem Anstehenden

Einschlußführender Diabas mit Almesakra-Quarzit (Probe S120b). Anstehendprobe aus einem Diabasgang 850 m OSO Södregården, Kartenblatt Växjö NO, WGS84 57.20566, 14.73403.
Detail der Quarzitklasten. Jedenfalls augenscheinlich sehen die Einschlüsse wie Quarzit aus, möglicherweise handelt es sich nur um angeschmolzenen Sandstein, der definitionsgemäß kein Quarzit ist.
Die Besonderheit am Aufschluss Södregården sind sind große Anorthosit-Xenolithe im dm-Maßstab neben den quarzitartigen Einschlüssen. Der Bildausschnitt beträgt 30 cm.
Probe eines anorthositischen Xenoliths (Probe S120c) aus dem gleichen Gang. Das Gestein besteht fast vollständig aus Plagioklas.
Plagioklas bildet mehrere Zentimeter lange Kristalle, die sehr gut an der polysynthetischen Zwillingsstreifung erkannt werden können.

Oberlausitz: Königshainer Berge

Bild5767

Die variszischen Königshainer Monzogranite intrudierten vor etwa 315 Ma in den Lausitzer Zweiglimmergranit, der Bestandteil der durch die cadomische Tektogenese stabilisierten Lausitzer Scholle ist. Es gibt drei Arten von Graniten: einen gleichkörnigen, einen porphyrischen und einen feinkörnigen Granit. Trotz geringer Fraktionierungsgrade wurden reichhaltige hydrothermale, miarolitische Mineralparagenesen der pegmatitischen Abfolge in Drusen gefunden: Rauchquarz, Mikrolin, Euxenit, Fluorit, Zinnstein, Molybdänglanz, Beryll, Zirkon etc., siehe auch mineralienatlas.de). Die Fundmöglichkeiten für diese Pegmatite sind heute allerdings erschöpft. 

Bild5772

Auf dem Gelände des Granit-Museums in Königshain gibt es einen ausgewiesenen Lehrpfad, der verschiedene Steinbrüche erschließt. Der größte ist der Thadenbruch mit rund 40 m hohen Abbruchwänden und etwa 40 m Wassertiefe.

Kämpferberge

Der nördlichste Teil des Ostlausitzer Hügellandes wirkt wie ein eigenständiges, kleines Gebirge („Königshainer Gebirge“). Die zwei Hauptgebiete sind durch die Strasse Königshain-Arnsdorf-Hilbersdorf getrennt: im Bild die Kämpferberge (415 m) aus Granodiorit im Süden, im Tal verläuft die Strasse, der kleinere Teil mit Hochstein (406 m), Totenstein, Teufelsstein und den Steinbrüchen befindet sich nördlich.

Bild5797

Im Firstensteinbruch. Der Königshainer Granit weist eine gute Spaltbarkeit durch NW-SE, NE-SW sowie senkrecht verlaufende Klüfte auf. Durch Hebung und Abtragung des Gebietes seit 280 Millionen Jahren kam es zum Aufreißen der horizontalen und senkrechten Bankungs-Trennfugen (Entlastungsfugen).

KönigshainerGranit

Gleichkörniger Königshainer Biotit-Monzogranit aus Kalifeldspat, Plagioklas, grauem Quarz und schwarzem Biotit.

Bild5789

Der Rest vom Firstenstein. Der höchste freistehende Felsen im Königshainer Gebirge fiel dem Steinbruchbetrieb zum Opfer.

Bild5824

Königshainer Granit war ein beliebter, vielseitig verwendbarer Baustein, z.B. für das Reichstagsgebäude in Berlin oder den Leuchtturm von Kap Arkona. Der Abbau wurde 1975 eingestellt.

Bild5814

Von oben zeigt sich, daß hier der halbe Berg fehlt, zumal sich linkerhand ebenfalls Steinbrüche befinden. Blich nach NE auf die flachhügelige Landschaft des Oberlausitzer Heide- und Teichgebiets.

DSC_0761

Die Färbung des Thadenbruchsees ist auf sauberes Wasser, die Tiefe und eine damit verbundene Lichtstreuung und Reflektion der blauen Lichtanteile zurückzuführen.

Bild5837

Im Bruch II auf dem Paradiesfelsen.

DSC_0814

Die auffällige Kantenabrundung ist eine Folge der Wollsackverwitterung im Tertiär, die bis in 40 m Tiefe reichte und zur Kaolinbildung führte. Zu dieser Zeit erfolgte eine weitere Heraushebung der Königshainer Berge, daraufhin Abtragung und Ausräumung, vor allem im Pleistozän, mit Entstehung ausgedehnter Blockhalden.

DSC_0784

Wollsackverwitterung in der Nähe des Totensteins mit breiten Bankungsfugen, leicht verkippter Lagerung und tektonischer Störung durch Hebung. Im Gebiet nördlich der Steinbrüche finden sich zahlreiche weitere Felsformationen mit Wollsackverwitterung, u.a. der „Totenstein“, „Kaffeekrug“, „Kuckuckstein“. Der Totenstein, bereits 1844 unter „Geotopschutz“ gestellt, stellt eine prähistorische Kultstätte dar, die sich bis zur Lausitzer Eisenzeit (1400-750 v. Chr.) zurück verfolgen läßt.

Bild5861

Wollsackverwitterung an der Hochsteinbaude

Bild5872

Blick vom Aussichtsturm am Hochstein nach SE, rechts die Kämpferberge, am Horizont der Basaltkegel der Landeskrone (420 m) bei Görlitz. Sie markiert den nördlichsten Teil des Oberlausitzer Hügellandes und überragt die Umgebung um etwa 200 m. Die Landeskrone besteht ebenfalls aus basaltischem Gestein (Olivin-Augit-Nephelinit, Tephrit), ihre Form in Nord-Süd-Richtung weist auf die Richtung der Spalte, aus der das etwa 1000 Grad heiße Magma aufstieg. Vulkanische Lockermassen finden sich heute noch in den Liegenden Braunkohlenflözen bei Berzdorf. In der Elstereiszeit ragte die Landeskrone als Nunatak aus dem Inlandseis.

 

Literatur

Lange/Tischendorf/Krause: Minerale der Oberlausitz (2004), Verlag Gunter Oettel

A. Hanle et al.: Meyers Naturführer Oberlausitz, Meyers Lexikonverlag 1992

Wagenbreth/Steiner: Geologische Streifzüge, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1982, S.170-178

regionalgeologie-ost.de – ein Wörterbuch

Bild5830

Weiterlesen

Zittauer Gebirge

Bild0566

Blick von Norden vom Olbersdorfer See im Zittauer Becken auf die etwa 5 km entfernte, stark gegliederte Nordseite des Zittauer Gebirges mit einem Anstieg von 200-300 m.

Das Zittauer Gebirge im äußersten Südosten Sachsens kann mit ca. 48 km² Fläche als kleines, eigenständiges Mittelgebirge gesehen werden. Es ist wie die Sächsische Schweiz (Elbsandsteingebirge) genetisch verbunden mit dem Sächsisch-Böhmischen Kreidesandsteingebirge, und besitzt eine gemeinsame Nahtstelle im Böhmischen Niederland (Schluckenauer Zipfel). Die Sandsteine aus festlandsnah abgelagerten Meeressanden stammen aus der Zeit des Oberkreide (Turonium 93,9–89,7 mya). Gegen Ende der Kreidezeit setzte die Lausitzer Überschiebung ein. Das nördlich vorgelagerte Granitgebirge wurde auf den Sandstein überschoben, dieser herausgehoben, zeitgleich senkte sich das Zittauer Becken ein. 

Zwischen Oybin und Jonsdorf stehen tonige Sandsteine (Unterturon), Quadersandstein mit teilweise hohem Kalkgehalt (Kalksandstein) und Mergel mit konglomeratischen Linsen und Geröllen von Eisensandstein (unteres Mittelturon) an. Mittelturon ist am weitesten verbreitet: fein bis mittelkörniger Sandstein mit vielen Konglomeraten in Oybin und Jonsdorf. Das Gebiet um Waltersdorf an der Lausche und am Hochwald besteht aus Zirkon und Monazit führendem Quadersandstein (Mittel- bis Oberturon), oberturonische Sandsteine führen eher Turmalin, Glimmer, Ilmenit und Rutil.

Das Alter der Sedimente im Zittauer Gebirges liegt zwischen 95 (Bohrung Forsthaus Lückendorf) und 88 Ma. Wie im Elbsandsteingebirge gibt es auch im Zittauer Gebirge eine Vielzahl von imposanten, durch Verwitterung und Erosion entstandenen Felsgruppen (Oybin, Kelchstein, Jonsdorfer Felsenstadt, Töpfer). Der Sandstein des Zittauer Gebirges ist durch die vulkanischen Vorgänge im Oligozän/Miozän begleitet und überprägt.   Weiterlesen

Oberlausitz

0526

Kelchsteinwächter im Zittauer Gebirge. Das Exkursionsgebiet zur Geologie der Lausitz umfaßt Lokalitäten im geographischen Dreieck Bautzen-Görlitz-Zittau. Die geologischen Erscheinungen in diesem Gebiet sind sehr vielfältig, einige werden hier in kommentierten Bildern gezeigt.  

Landschaftlich umfaßt die Oberlausitz die flacheren Bereiche des Oberlausitzer Heide- und Teichgebiets im Norden und den mittleren Teil des Lausitzer Berglandes (500-m-Höhelinie), das im Osten in die Hügellandschaft des Lausitzer Gefildes (Linie Kamenz-Löbau, 200-m-Höhenlinie) und das Ostlausitzer Hügelland mit dem Neißegebiet übergeht. Im Süden ragt das Zittauer Gebirge auf, vorgelagert liegt das Zittauer Becken.

Untitled-2 copy

Geologisch gesehen besteht der Untergrund des südwestlichen Teils der Lausitz aus größtenteils durch tertiäre und quartäre Lockersedimente verhüllten proterozoischen Grauwacken (Niederlausitzer Antiklinalbereich), der östliche Teil aus dem Lausitzer Granodioritkomplex. Am Nordostrand wird die Oberlausitz durch die Tiefenstörung des Lausitzer Abbruchs begrenzt (mit paläozoischem Görlitzer Synklinorium), der südlichste Zipfel Sachsens wird vom kreidezeitlichen, aus Quadersandstein bestehenden Zittauer Gebirge begrenzt. Vulkanismus im Tertiär schuf die markanten Bergkuppen der Basaltoide/Phonolithe.

Die zeitliche Abfolge der geologischen Erscheinungen kann wie folgt skizziert werden:

Die Lausitzer Hauptgruppe im NW der Lausitz mit proterozoischen (Ediacarium bis Kyrogenium?) Grauwacken (Turbidite) mit bis zu mehreren tausend Metern Mächtigkeit ist teils durch die cadomische Tektogenese gefaltet, teils später durch Aufstieg der benachbarten Granodiorite kontaktmetamorph (Anchimetamorphose) beeinflußt. Man fand Fadenalgen, die eine Einordnung ins mittlere Ediacarium rechtfertigen, Zirkone wiesen ein Sedimentationsalter von ca. 555 Ma auf. Aufgeschlossen ist die Grauwacke z.B. im Steinbruch Oßling.

Die Hauptmasse der Gesteine im Oberlausitzer Antiklinalbereich sind Granodiorite und Anatexite, die als Block der Böhmischen Masse zwischen 580-542 Ma (Neoproterozoikum-Kambrium) durch die cadomische Tektogenese stabilisiert wurden. Zuerst entstanden die Zweiglimmer-Granodiorite (z.B. Steinbruch Oberottendorf) durch das Aufschmelzen der Grauwacken. Sie führen reichlich anatektische reliktische Grauwacken (Amphibolite, Hornfelse, Gneise etc.). Die nachfolgenden Westlausitzer Glimmer-Granodiorite weisen weniger Einschlüsse sowie zahlreiche Übergangstypen auf. In einigen Bereichen treten auch Biotitgranite (Monzogranite, z.B. am Czorneboh) auf.

Zahlreiche Gänge durchsetzen den Granodioritkomplex, die einen sauren, intermediären oder basischen Charakter haben, und im Westteil NW-SE und im Ostteil NE-SW streichen. Die Alter der mafischen Gänge mit Spessartiten („Dolerite“), Mikrogabbros und Noriten liegen zwischen 400-260 Ma bzw. bis 126 Ma. Saure Ganggesteine (Dacit, Rhyodacit, Rhyolith) sind variszischen Alters. Sie wurden und werden in Steinbrüchen abgebaut (z.B. Oberottendorf, Friedersdorf, Klunst bei Ebersbach, Hohwald). Bekannt sind auch Lamprophyre mit akzessorischen Vererzungen, z.B. von Sohland an der Spree mit Cu-Ni-Co- Erzen in der Oxidationszone. Die Lausitz ist jedoch, bedingt durch im Vergleich zum Erzgebirge geringere Fraktionierungsraten der Granitoide, arm an Erzlagerstätten. Zu erwähnen sind reichlich Quarzgänge im Granodiorit.

Der Rumburger Granit (Blauquarze, große Orthoklase) intrudierte im Ordovizium (480-490 Ma) in den Lausitzer Granodioritkomplex. Als eigenständige Bildung aus Gneisen des Isergebirgskomplexes wurde er später variszisch deformiert.

Das Görlitzer Synklinorium (Görlitzer Schiefergebirge) als regionalgeologische Einheit enthält variszisch (sudetische Phase) deformierte Einheiten des Kambrium, Ordovizium, Silur, Devon und Dinantium als Abfolge von Olistholithen einer unterkarbonischen Melangebildung. Unterlagert wird es von autochthonem unterkarbonischem Flysch (variszische Frühmolasse, Förstgen-Formation).

Wichtige Bauelemente des Synklinoriums sind die unterkambrische Charlottenhof-Formation (Dolomite, Kalksteine, Tonschiefer, Tuffe), Lederschiefer (Oberordovizium), konglomeratischer Lausitzer Quarzit-Schiefer (Unterordovizium) und die Eichberg-Formation (Ordovizium bis unteres Silur) mit Tonschiefern und Eichberg-Sandstein (aus Bohrungen). Untersilurische Schwarz- und Kieselschiefer mit Graptolithenfaunen treten bei Weißig und Horscha (Kieselschiefer-Hornstein-Konglomerat) in eng begrenzten Vorkommen auf, ebenso Ablagerungen des Devon.

Die Ostlausitzer Hügellandschwelle mit der Hohen Dubrau überlagert das cadomische Fundament südlich der Innerlausitzer Störung. Es treten rötliche Sandsteine, quarzitische Schiefer, konglomeratische Quarzite aus dem Ordovizium (Tremadoc) auf, in denen gelegentlich Wurmbauten zu finden sind (markante Falte am Nordabfall des Groß-Radieschen Berges).

Die postkinematischen variszischen Biotit-Monzogranite der Königshainer Berge bilden sich vor etwa 315±5 Ma (jüngeres Namurium). Mesozoikum steht in der Oberlausitz nur in Resten und kleinen Schollen an. Während der Zeit der Trias und des Jura war die Oberlausitz Festland, also Abtragungsgebiet.

Der Bereich des Zittauer Gebirges zeichnet sich vom Cenoman bis zum Coniac durch flach fallende Meeresgebiete in Strandnähe aus. Die Oybiner Sandstein-Formation (Oberkreide), genetisch analog dem Elbsandsteingebirge, steht im Zittauer Gebirge in 2-3 km Breite als Teil der ausgedehnten Nordböhmischen Kreidesenke an. Die Kreideschichten erreichen bis 750 m Mächtigkeit. An der Lausitzer Überschiebung (hauptsächlich NW-SE streichend) wurde das Granodioritkristallin auf die Oberkreideschichten mit einer Sprunghöhe von mehreren hundert Metern in SW-Richtung aufgeschoben. Sedimente des Coniac sind in die Überschiebung noch mit einbezogen, während Obereozän direkt auf dem Kristallin liegt. Zum Ende der Oberkreide und im Tertiär wird das Granitgebirge durch Abtragung eingeebnet. Als Folge des Vulkanismus senkte sich das Zittauer Becken ein, heute ist das Sandsteingebirge relativ höher zum Granitgebirge. Öffnung und Schollenzerfall des Egergrabens bewirkte diese Bildung eines Einbruchsbeckens ebenso wie den Basalt- und Phonolithvulkanismus.

Die vulkanischen Aktivitäten haben in der Oberlausitz ihre Hauptphase vor 30-20 Ma (Oligozän/Miozän). Das Hauptzentrum des durch ausgedehnte Bruchtektonik bedingten Vulkanismus liegt im Egergraben (Eozän, 79-50 mya bis Pliozän/Pleistozän 3 bzw. 1,8 mya). Im Oberoligozän/ Miozän kommt es nun zur Bildung von Magmatiten: Basaltoide (Nephelinite und Tephrite, z.B. Löbauer Berg, Landeskrone, Hutberg, Bubenik) und Phonolithe (Lausche 26 Ma, Kottmar 27 Ma). Nördlich von Zittau lag eine teilweise geschlossene Basaltdecke vor. Die etwa 1000 Grad heißen Basalte drangen aus 50-80 km Tiefe nach oben, erst wurden vulkanische Schlacken ausgeworfen, dann stieg Basaltlava auf, die allerdings häufig im Schlot stecken blieb. Heute sind die Schlacken abgetragen, übrig blieben die markanten Basaltkuppen als bestimmendes Formelement der Landschaft.

In dieser Zeit (Unteroligozän/Miozän) entsteht die (Seifhennersdorf-Zittau-Berzdorfer) Braunkohlenformation, limnisch-fluviatile Sedimente mit mächtigen Flözen (10-40 m). Subtropische Verhältnisse bewirkten tiefgründige Verwitterung und Kaolinisierung der Granitoide. Kaolin, Sande und Tone sammelten sich in Tertiärsenken, die sich durch eine üppige Vegetation auszeichneten. Aus den Pflanzenresten bildete sich die Braunkohle. Rhythmische Hebungen des Kristallins und Absenkungen an alten Störungszonen sind assoziiert mit der alpidischen Gebirgsbildung, die diese Lagerstätten als tektonischen Typ ausweisen. Ein markanter Unterschied zu im Vergleich flächig angelegten Braunkohlellagerstätten der Niederlausitz, z.B. Nochten und Reichwalde (10 m Flözmächtigkeit), sind die Flözmächtigkeiten von bis zu 40 m.

Bei Seifhennersdorf (33-29 Ma) gibt es tertiäre Sedimente mit Schiefern (Diatomeen) und Smirgel, unter- und überlagert von Basalten. Im Zittauer Becken ist der Olbersdorfer See ein zu rekultivierender großer Tagebau (Braunkohle bis 30 m Flözmächtigkeit, 1910-1991 in Betrieb). Aus der Tongrube Hartau mit Braunkohle-Ton-Wechsellagerung sind Funde von Stubben des Zittauer Mammutbaums ( „Zittauer Sumpfzypresse“), Taxodiaceen, 23 Ma bekannt geworden.

Die Sedimente des Zittauer Beckens bestehen aus Basalten, Tuffen, Tuffiten und kleinen  Kohleflözen, darüber das 6-30 m mächtige Zittauer Unterflöz, zwischengeschaltet Fein- und Grobsande, schließlich das Zittauer Oberflöz mit 20-100 m.

Miozän/Pliozän: Die Formation des Senftenberger Elbelaufs („Urelbe“) ist durch Ablagerungen quarzreicher Kiese und Sande vertreten, in denen sich gelegentlich Achate und böhmische Tektite finden (Ottendorf-Okrilla). Vor der Vereisungsphase des Elster-Komplexes ist ein Bautzener Elbelauf etabliert, der in seinen Ablagerungen die Hebung des Systems dokumentiert und keine Feuersteine führt.

Das Elstereis bedeckt gesamte Oberlausitz bis Böhmen und führt teilweise große Tertiärschollen mit sich, Geschiebemergel und Tone der Saale-Kaltzeit finden sich, Löß lagert sich hauptsächlich im Weichsel-Glazial an. Goldhaltige Seifen von Flußsanden und -kiesen gibt es z.B. am Hohwald mit Granat, Zirkon, Spinell. Sedimenten aufgelagert sind gelegentlich Raseneisenerzbildungen. Im Pleistozän etablieren sich die rezenten Flußsysteme.

 

Czorneboh – Hochstein

Bild5534

Blick vom Bubenik mit morphologisch markanten Bergzug des Czorneboh (561 m). Hier liegt der Übergang vom hügeligen Lausitzer Gefilde zum Lausitzer Bergland. Die vorherrschenden Gesteine sind Zweiglimmergranodiorit (z.T. als Anatexit) und mittelkörniger Granodiorit. Ihre Form erhielten die Berge in der Elsterkaltzeit, als das Inlandeis bis ins Lausitzer Bergland reichte.

Bild5571

Zweiglimmergranodiorit am Hochstein (541 m) mit matrazenförmiger Verwitterung. Biotit, Muskovit, Kalifeldspat, Plagioklas und Quarz sind Hauptbestandteile dieses Gesteins. Die Gipfelklippen des Czorneboh und des Hochstein entstanden in der Elsterzeit in einer Eisrandlage oberhalb 440 m.

Bild5558

Engständige Klüftung im Zweiglimmergranodiorit am Hochstein.

Bild5604

Die Verwitterung durch Frostsprengung in den Eiszeiten schuf ausgedehnte Blockmeere.

Bild5540

Blick vom Aussichtsturm auf dem Czorneboh nach Norden, links die Talsperre Bautzen, in der Ferne das Kraftwerk Schwarze Pumpe, weiter rechts das Kraftwerk Boxberg.

 

Basaltdecken bei Ostritz

DSC_1328

Am Hutberg (290 m), Steinberg (324 m) und Knorrberg (381 m) bei Ostritz finden sich ehem. Steinbrüche, die basaltische Deckenergüße in Tälern über Granodiorit anschneiden, hier im ehem. Steinbruch am Steinberg. Der Steinberg ist ein 500 m langer, 50 m breiter Basalt-Rücken. Am Südende stehen 10-15 m hohe, vertikale Säulen mit zahlreichen ausgewitterten Löchern von Olivin an.

Tephrit_Steinberg

Die basaltischen Gesteine sind petrologisch als Olivin-Augit-Tephrit (mit Plagioklas und Nephelin) anzusprechen, hier ein Exemplar vom Steinberg mit Olivinkristallen.

DSC_1326

Leicht gebogene Basaltsäulen in schräger Lagerung

DSC_1337

Basaltsäulen bilden sich senkrecht zur Abkühlungsfläche aus. Der Deckenerguß liegt hier dem Granodiorit mit etwa 40 % Neigung auf, es kam zur Ausbildung einer schrägen Lagerung. Im Basalt des Steinbergs fand man Holzreste in „Basaltrosen“ mit Opal und Brauneisen. Die basaltischen Deckenergüsse drangen in ein Moorgebiet ein, in dem auch Holzstämme die Abkühlungsfläche bildeten, auf denen sich die Basaltsäulen abkühlten. Die Rosen sind leider nicht mehr vorhanden.

DSC_1346

Umgebogene, unregelmäßige Basaltsäulen in einem kleinen Steinbruch bei Ostritz lassen auf Bewegung des Deckenergusses während der Abkühlung schließen.

DSC_1353

Hier finden sich auch lockere und verfestigte Tuffe mit Basaltbruchstücken und Agglomeraten, die Deckenergüsse mit explosiven Phasen anzeigen.

 

Bubenik

4139

Typische Geomorphologie: steilere Anstiege und steinige, bewaldete Bergkuppen sind auf den sonst sehr fruchtbaren Böden landwirtschaftlich nicht nutzbar und verbleiben häufig bewaldet in der Landschaft. Der Doppelgipfel des Bubenik (376 m), hier die Kleine Landeskrone, erhebt sich als vulkanischer Kegel etwa 50 m über den Granodiorit.

Bild5517

Ein alter Steinbruch (1855-1905) als Naturdenkmal dokumentiert Ergüsse von Basalt, die an Spalten im Granodiorit-Massiv aufstiegen. Die 5-6 säuligen Basalte zeigen zwei zeitlich unterschiedliche Ergüsse: einen deckenförmigen und eine jüngere Quellkuppenbildung.

Bild5512

Jüngere Quellkuppenbildung an der Ostseite des Bruchs: „Löwenköpfchen“. Das Gestein ist ein dunkel-blauschwarzer Nephelinbasanit mit Hornblende und Olivin, der häufig Xenolithe von Granodiorit führt.

 

Löbauer Berg

5508

Blick vom Bubenik auf das Doppelmassiv des Löbauer Bergs (448 m) und Schafberg (450 m), links dahinter das Massiv des Rotstein. Der Löbauer Berg ist die größte Quellkuppe der Oberlausitz. Eine Besonderheit ist das Auftreten eines mittel- bis grobkörnigen Nephelindolerits mit Titanaugit, Nephelin sowie Magnetit und Apatit. Der Dolerit geht über Anamesitbasalt in Basalt über. Auch am Löbauer Berg finden sich pleistozäne Blockhalden.

Nephelindolerit

Nephelin-Dolerit (Breite: 8 cm) vom Schafberg, ein SiO2-armer Foidit. Die langsame Abkühlung des basaltischen Magmas bewirkte eine gröbere Kristallisation des hauptsächlich aus Nephelin und Klinopyroxen bestehenden Gesteins . Nach Pfeiffer 1975 enthält der doleritische Nephelinit 40% Pyroxen, 39% Nephelin, 7% Zeolithe, 6% Titanmagnetit und als Nebenbestandteile Olivin und Glas  (2%) sowie Apatit (4%).

Nephelindolerit2

Detail des Nephelin-Dolerits, Bildbreite 4 cm.

Basit

Bisher nicht näher bestimmter Basit vom Georgenberg am Rotstein. In grauschwarzer Grundmasse liegt eine nicht unbedeutende Menge an zersetztem Olivin und einige Augit-Einsprenglinge.

Bild4163

Im Plattenbruch: plattig abgesonderter Olivin-Augit-Nephelinit.

Bild4179

Blick vom Löbauer Berg nach Westen mit Bieleboh und Czornebohmassiv.

 

Steinbruch Pansberg bei Horscha

DSC_1397

Im stillgelegten Steinbruch Pansberg bei Horscha gab es verfaltete Kieselschiefer des tieferen Silur in Wechsellagerung mit Ton- und Alaunschieferlagen mit geringmächtigen Quarziten, darüber tertiäre Schichtfolgen mit Braunkohleflözen und quartäre Sedimente. Der steigende Wasserstand verschlechtert die Fundmöglichkeiten. Früher gab es zahlreiche Mineralien zu finden, heute beschränken sich die Funde auf Variscit und Wavellit.

DSC_1423

Gefluteter Steinbruch mit Resten anstehender silurischer Schwarzschiefer (?)

DSC_1394

Vermutlich Endmoränenmaterial mit Quarziten und Schwarzschiefern, rechts ein Belag von Variscit.

Variscit copy

Variscit

 

Kottmar

Bild0617

Blick vom Kottmar (583 m) nach Norden mit Löbauer Berg. Der Kottmar besteht aus Granodiorit, überlagert von Basalten und einer 40-50 m mächtigen Phonolithkuppe. Der grobsäulige Phonolith wurde früher in Steinbrüchen gewonnen. Der Kottmar stellt die Wasserscheide zwischen Elbe und Oder dar, nach nach Norden steigt er steil an, nach Süden flacht er allmählich ab. Am Weg zur Kottmarbaude befindet sich die mit Mikrogabbro eingefasste Quelle der Spree.

Bild0622

Abstieg vom Kottmar: Blick Richtung SE, im Hintergrund erhebt sich das Isergebirge.

 

Berzdorfer See

Bild4414

Berzdorfer Becken, hier der geflutete Tagebau als Berzdorfer See. Diese intramontan geprägte, miozäne Braunkohlenlagerstätte, die im Pleistozän durch das Gletschereis nochmals überprägt wurde, wird durch eine Vulkanitschwelle räumlich getrennt vom auf polnischer Seite befindlichen Radomierzyce-Teilbecken.

DSC_0643

Schaufelradbagger 1452. Im Berzdorfer Becken wurde von 1922-1997 ein bis zu 100 m mächtiges Braunkohlenflöz abgebaut.

 

Literatur

Lange/Tischendorf/Krause: Minerale der Oberlausitz (2004), Verlag Gunter Oettel

A. Hanle et al.: Meyers Naturführer Oberlausitz, Meyers Lexikonverlag 1992

Wagenbreth/Steiner: Geologische Streifzüge, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1982, S.170-178

regionalgeologie-ost.de – ein Wörterbuch

Weiterlesen

Großgeschiebe aus der Niederlausitz – Metamorphite

196_IMG_9569_H250cm

Größtes Geschiebe von etwa 2,50 m Höhe auf der Findlingshalde in Steinitz, ein migmatitischer Gneis (Nr. 096) mit grobkörnigen pegmatitischen Partien (Leukosom) und grauen Gneispartien (Paläosom/Melanosom). Das Objekt ist mittlerweile verschwunden.   

Metamorphite, die eine tektonische Deformation durch gerichteten Druck erfahren haben, können in erster Linie nach Texturmerkmalen beschrieben werden. Vor allem in leukokraten (= aus hellen Mineralen bestehenden) Metamorphiten ist der Mineralbestand nicht immer eindeutig bestimmbar, da die Minerale oft granuliert sind. Häufige Texturformen sind foliierte Granitoide („Gneisgranite“), Gneise, Mylonite sowie Gesteine, die in mehr oder minder hohem Grade von partieller Aufschmelzung betroffen waren (Migmatite). Gesteine granitischer bis tonalitischer Zusammensetzung, z. B. Orthogneise, behalten ihren Mineralbestand bei steigenden Druck- und Temperaturbedingungen weitgehend bei, abgesehen von hydrothermalen Alterationserscheinungen niederer metamorpher Faziesbereiche. Dies ist naheliegend, da Quarz und Feldspat die ersten Minerale sind, die bei einer Aufschmelzung mobil werden und bei entsprechend großen Schmelzvolumina als plutonische Körper in die höhere Erdkruste aufsteigen. Eine Neubildung von Mineralen findet bevorzugt in Gesteinen aus sedimentären Edukten oder in basischen Gesteinen statt. In Paragneisen (Gneise mit sedimentärem Ausganggestein) kann es zur Bildung von Glimmer, Granat, Amphibol, Cordierit, Sillimanit und weiteren Mineralen kommen. Basische Edukte wie Basalte und Gabbros werden, abhängig vom Metamorphosegrad, z. B. in Grünstein, Amphibolite oder sogar Eklogite umgewandelt.

Metamorphite, die keinen gerichteten Druck erfahren haben, werden Granofelse genannt. Auch sie können Mineralneubildungen enthalten (z. B. Marmor oder Fleckenquarzite). Manchmal fand nur eine Umkristallisation und Kornvergrößerung des ursprünglichen Mineralbestands statt (z. B. einige Quarzite).

Einige Minerale sind in entsprechend körnigen Metamorphiten auch von Hand bestimmbar (Glimmer, Amphibol, Granat). Für umfassende Aussagen ist man auf mikroskopische Untersuchungen angewiesen, die bei einer Gesteinsbestimmung im Gelände nicht zur Verfügung stehen. Eine genauere Herkunft von Metamorphiten lässt sich im Allgemeinen nicht ermitteln, da die meisten Gesteine im Anstehenden einer hohen Variabilität unterliegen. Als Ausnahmen gelten einige Metamorphite aus dem Västervik-Gebiet, mit Einschränkungen die Gneise vom Sörmland-Typ sowie Gesteine aus dem SW-schwedischen Granulitgebiet.

Gneise

520_IMG_6986_B100cm

Brauner Gneis mit granitischer Zusammensetzung („Gneisgranit„, Nr. 520, Steinitz, Breite ca. 1 m). Bis 3 cm lange, teilweise rechteckige Alkalifeldspatkristalle sind entlang der Foliationsebene eingeregelt. Die Mengenanteile von Alkalifeldspat, grünlichen Plagioklas, zerdrücktem Quarz sowie Biotit lassen nicht genau abschätzen. Es dürfte sich um einen Granit oder Quarz-Monzonit handeln. Das Gestein wird von einer hellen Aplitader durchschlagen, die ebenfalls deformiert wurde.

430_IMG_2707_B65cm

Arnö-Gneisgranit laut Beschriftung auf dem Gelände des kleinen Naturlehrpfades in Grießen (Nr. 430, Breite 65 cm). Die Bestimmung ist zweifelhaft, nur der nicht deformierte Arnö-Granit gilt als Leitgeschiebe (s. kristallin.de und skan-kristallin.de). Es handelt sich lediglich um einen grauen Augengneis mit runden Feldspateinsprenglingen, wie er nicht selten im Umfeld der Tagebaue anzutreffen ist. Solche grauen Augengneise werden auch als svekofennischer Gneisgranit bezeichnet, da sie mit einiger Wahrscheinlichkeit aus den Weiten des svekofennischen Grundgebirges in Mittel- oder Nordschweden stammen.

183_IMG_4031_B50cm

Anisotropes Gefüge in einem mylonitischen Gneis (Nr. 183, Steinitz, BB ca. 50 cm). Die Textur des Gesteins ist je nach Blickrichtung unterschiedlich und entstand bei der Deformation durch seitlich gerichteten Druck. Links erkennt man eine Augentextur mit weißen Feldspat-Porphyroklasten; rechts, um 90 Grad versetzt, eine flaserige Textur und ein Gneisgefüge (protomylonitische Textur).

B29_184_IMG_8639

Kräftig orange gefärbter Augengneis (Nr.184, Steinitz) granitischer Zusammensetzung. Xenomorpher Quarz und dunkle Minerale bilden schlierige und ausgewalzte Aggregate und „umfließen“ die großen Feldspat-Porphyroklasten.

434_img_2740_b90cm

Mylonit (Nr. 434, Tgb. Jänschwalde, B 90 cm). Mylonite stammen aus tektonischen Scherzonen und entstehen durch plastische Verformung von Gesteinen bei hohen Temperaturen im festen Zustand (sog. Dislokationsmetamorphose). Typisch ist ein streng planares Gefüge eines feinkörnigen Gesteins mit einigen größeren Feldspat-Porphyroklasten. Am abgebildeten Gestein lassen sich unterschiedliche Grade der Mylonitisierung erkennen: 1. oben eine ultra- bis orthomylonitische Textur, 2. ein helles und feinkörniges mittleres Band (ultramylonitisch), darunter eine 3. weniger streng planare (protomylonitische) Partie.

198_img_9743_bb90cm

Kleinteilige Fältelung in einem biotitreichen migmatitischen Gneis (Nr. 198, Steinitz, BB 90 cm). Die unregelmässige Wellenform entstand durch Einengung und Stauchung unter duktilen Bedingungen. Im oberen Teil ist eine migmatitische Partie erkennbar. Weißer Feldspat und Quarz wurden Mobilisiert und sammelten sich als helles Leukosom in kleineren und größeren helleren Schlieren. Umgeben sind sie von Bereichen, in denen sich die nicht von der Aufschmelzung betroffenen dunklen Minerale konzentrieren (Restit).

514_IMG_4037_B55cm

Stengeliger Gneis mit grobkörnigem Pegmatit (Nr. 514, Steinitz, BB 55 cm). Der Pegmatitgang ist etwa 15 cm hoch und besteht aus hellem Alkalifeldspat und grauem Quarz. Die roten Färbungen sind ein fein verteiltes Pigment, z. B. Hämatit.

195_img_9381

Grauer Bändergneis (Nr. 195, Steinitz), ein granatführender Biotit-Amphibolgneis. „Orthogneise sind bunt, Paragneise sind grau“. Die pauschale Aussage trifft nicht immer zu. Im vorliegenden Fall dürfte nur eine mikroskopische Untersuchung klären, ob das Gestein ein sedimentäres (Paragneis) oder magmatisches Edukt (z. B. ein basisches Gestein) besaß.

Migmatite

Migmatite sind Gesteine, die von einer partiellen Aufschmelzung betroffen waren. Der Begriff kennzeichnet nur eine Textur, keine Zusammensetzung. Ein überwiegender Teil der Migmatite dürfte aus dem Grundgebirge in Mittel- und Nordschweden stammen, das während der svekofennischen Gebirgsbildung vor etwa 1,8 Ga entstand. Im Transskandinavischen Magmatitgürtel (TIB) kommen diese Gesteine nur sehr untergeordnet vor. Migmatite sind hochmetamorphe Gesteine, die in großer Tiefe im Kern von Gebirgen entstehen. Sie finden sich heute an der Erdoberfläche, weil das über ihnen liegende Gebirge im Laufe von fast 2 Milliarden Jahren abgetragen wurde. Sie bilden bevorzugt Großgeschiebe aus, da sie im Anstehenden eine weite Klüftung besitzen. Gehäuft konnten sie im Umfeld des Tagebaus Welzow-Süd beobachtet werden (Findlingshalde Steinitz).

B29_291_IMG_6428b

Migmatit am Aussichtspunkt Cottbus-Nord (Nr. 291, Breite 120 cm). Die starke Verfaltung der Leukosome, ein sog. ptygmatisches Gefüge, entstand vermutlich durch Stauchung und Einengung.

IMG_6431

Gleicher Stein, BB 18 cm. An diesem Ausschnitt lassen sich hervorragend die einzelnen Texturbestandteile eines Migmatits erkennen. Die hellen und grobkörnig kristallisierten Bereiche mit ungeregeltem Gefüge sind die aufgeschmolzenen Partien, die als Leukosom bezeichnet werden. Sie bestehen aus Quarz und Feldspat (tonalitische bis granitische Zusammensetzung). Die Leukosome sind umgeben von dunklen schmalen Säumen, bei denen es sich um Ansammlungen von dunklen und nicht aufgeschmolzenen Mineralen aus dem Wirtgestein handelt (z. B. Biotit oder Amphibol). Diese Säume werden folgerichtig als Restit oder auch als Melanosom bezeichnet. Leukosom und Melanosom bilden zusammen das Neosom, jener Teil des Ausgangsgesteins, das von partieller Aufschmelzung betroffen ist. Das Paläosom ist das weitgehend unveränderte Ausgangsgestein, in dem die Mineralbestandteile von Leukosom und Restit noch einigermaßen gleichmäßig verteilt vorliegen.

291_IMG_6430b

Gleicher Stein (Nr. 291, BB 30 cm), Detailaufnahme des ptygmatischen Gefüges.

165_IMG_0782_BB40cm

Verfaltete pegmatitische Ader in einem grünlich-grauem Gneis (Nr. 165, Steinitz, BB ca. 40 cm) mit tonalitischer Zusammensetzung.

509_IMG_8555_B35cm

Verfalteter Gneis (Nr. 509, Tagebau Cottbus-Nord, Breite 35 cm). Das Gestein enthält Lagen, in denen mehr Amphibol (dunkelgrau) oder Epidot (grün) enthalten sind und könnte unter den Bedingungen der Epidot-Amphibolit-Fazies (= untere Amphibolitfazies) entstanden sein. Die Bänder könnten Relikte einer sedimentären Schichtung sein. Es sind auch grobkörnige und rekristallisierte Partien (Leukosome) erkennbar, die auf eine Teilaufschmelzung hindeuten. Das Gestein konnte nicht näher untersucht werden. Vergleichbare Gneise („Skarngneise“) finden sich als Begleiter von svekofennischen Marmor-Vorkommen.

IMG_5675

Migmatitischer Gneis (Tgb. Cottbus-Nord, Breite 60 cm) mit großem und linsenförmigem Leukosom.

301_img_5721b

Bändergneis (Nr. 301, Tgb. Cottbus-Nord, BB 45 cm). Das planare Gneisgefüge wird von einer Faltenstruktur durchzogen, eine Aufschiebung durch Einengung im Zuge duktiler Deformation. Senkrecht zur Foliation verlaufen Klüfte, die mit hellem aplitischen Material verfüllt und gegeneinander verstellt sind. Diese Klüfte entstanden durch Sprödbruch bzw. Bruchtektonik in höheren Krustenbereichen, wahrscheinlich vor der Verfaltung, da sie ebenfalls einen seitlichen Versatz aufweisen.

IMG_5493

Feinkörniger Amphibolit (Nr. 293, Merzdorf/ Tgb. Cottbus-Nord, B 45 cm). Vergleichbare Gesteinstypen finden sich nicht selten als Großgeschiebe. Amphibolite entstehen z. B. aus Basalten oder Gabbros im Zuge einer Regionalmetamorphose als typische Begleiter während einer Gebirgsbildung.

IMG_5495

Gleicher Stein, BB ca. 7 cm. Gleichkörniges und scheinbar ungeregeltes Gefüge aus dunklem Amphibol und hellem Plagioklas. Einige mattgraue Körner könnten aus Pyroxen und feinkörnige grünliche Partien aus einem epidotähnlichen Mineral bestehen. Kleinmaßstäblich wirkt das Gefüge weitgehend regellos-körnig und undeformiert, während der Gesteinsblock insgesamt schwach foliiert erscheint oder ein reliktisches layering abbildet.

173_IMG_6245_BB20cm

Amphibol-porphyroblastischer Metabasit oder „Hornblende-Gabbro“ (Nr. 173, Steinitz, BB 20 cm). Der Mineralbestand wird von runden Granoblasten aus schwarzem Amphibol dominiert. Dazwischen finden sich weiße Feldspat-Körner, wahrscheinlich Plagioklas, sowie grünliche und epidotartige Partien. Ausganggestein könnte ein Gabbro oder Dolerit gewesen sein. Durch Regionalmetamorphose wurde Pyroxen in Amphibol umgewandelt, einhergehend mit einem granoblastischem Wachstum und einer Kornvergrößerung des Amphibols. Nach VINX 2011 sind Amphibolite magmatischen oder sedimentären Ursprungs nicht immer unterscheidbar, vor allem, wenn der anstehende geologische Kontext fehlt.

IMG_6970

Feinkörniger homogener Gneis (Nr. 204, BB 50 cm, Steinitz). Der Mineralbestand konnte auch mit der Lupe auf Grund der Feinkörnigkeit nicht eindeutig ermittelt werden. Mehr Alkalifeldspat als Quarz scheinen die Hauptbestandteile zu sein, Einsprenglinge fehlen. Es kann nur vermutet werden, dass es sich um einen Metavulkanit („Leptit“) o. ä. aus den svekofennischen Leptit-Hälleflinta-Serien handelt.

296_IMG_6395b

Leuchtend roter Mylonit? (Nr. 296, Findlingsdepot Cottbus-Nord, BB 28 cm) mit großen Feldspat-Porphyroblasten. Die hellen Partien zeigen Texturmerkmale eines Mylonits, sind aber von dunklen Bereichen (Restit?) getrennt. Vielleicht wurde hier ein Migmatit in einer Mylonit-Zone zerschert. Denkbar ist, das es sich bei den dunklen Bereichen um Reste eines basischen Ganges in einem granitischen Gestein handelt.

171_IMG_8821_H50cm

Dunkelgrauer migmatitischer Amphibolit (Nr. 171, Steinitz, Höhe 50 cm) mit hellen Feldspat-Leukosomen. Auf der linken Seite ist ein kleiner Versatz der hellen Adern durch Bruchtektonik erkennbar. Das dunkle Gestein besteht hauptsächlich aus Amphibol und Plagioklas und besitzt ein doleritisches Gefüge (Meta-Dolerit), während das Leukosom Plagioklas und Quarz enthält (tonalitische Zusammensetzung).

167_IMG_4683_H75cm

Grauer migmatitischer Gneis (Nr. 167, Steinitz, Höhe 75 cm) mit hellen Leukosomen, begrenzt von einem dunkelgrauen Melanosom. Senkrecht zur Foliationsebene sind helle Adern zu erkennen, die später entstanden sind. Dabei könnte es sich um Injektionen aus dem Nebengestein handeln oder um Klüfte, die mit feinkörnigem Material verfüllt wurden.

181_IMG_7296_BB50cm

Migmatit (Nr. 181, Steinitz, BB 50 cm) mit heterogenem Gefüge, das durch den hohen Grad an Aufschmelzung bestimmt ist (Anatexit). Der größere Teil des Gesteins besteht aus grobkörnigem und pegmatitartigem Neosom. Die dunkle Gesteinspartie zeigt Merkmale von Restit und Paläosom. Weitere Bereiche mit dunklen Mineralen sind unregelmäßig im Gestein verteilt.

168_IMG_4793_H35cm

Schwarz-weißer Metabasit (Nr. 168, Höhe 35 cm, Steinitz). Dieses bemerkenswerte Gestein enthält verschiedene grob- bis feinkörnige sowie gneisige Amphibol-Feldspat-Fragmente mit deutlich schwankendem Amphibol-Gehalt. Kleine Partien, vor allem an den Rändern der „Klasten“, enthalten vermehrt hellen Feldspat (Teilaufschmelzung?). Die Genese des Gesteins ist unklar. Es könnte sich um eine unvollständige Magmenmischung verschiedener gabbroider Gesteine handeln, die amphibolitfaziell in Hornblende-Gabbros umgewandelt wurden.

168_IMG_8221

Gleicher Stein, Partie mit gneisigem Reliktgefüge (migmatitische Schlieren-Textur?).

166_IMG_4659_BB40cm

Migmatitischer Gneis? (Nr. 166, BB 40cm, Steinitz) mit grobkörnigen Bändern (Leukosom?), die von einem schmalen Melanosom/Restit (Biotit) umgeben sind. Die grobkörnigen Partien bestehen fast ausschließlich aus Feldspat und größeren Aggregaten von idiomorphem Amphibol. Das Wirtgestein enthält Quarz in nennenswerter Menge. Es erscheint daher unwahrscheinlich, dass die grobkörnigen Bänder aus dem Wirtgestein ausgeschmolzen wurden, da eine partielle Aufschmelzung von Quarz-Feldspat-Gesteinen stets auch eine Quarz-Feldspat-Schmelze liefert. Es könnte sich um eine (dioritische?) Injektion handeln.

Quarzite und andere Granofelse

189_IMG_8927_BB50cm

Großgeschiebe eines Quarzits (Nr. 189, BB 50 cm, Tagebau Cottbus-Nord). Quarzite sind metamorphe Gesteine, die zu mindestens 90% aus Quarz bestehen. Meist besitzen sie, wie das abgebildete Exemplar, ein richtungsloses Gefüge und sind Granofelse.

189_IMG_8930

Gleicher Stein, Detailaufnahme. Typisch für Quarzite ist eine scherbige und unebene Bruchfläche, auf der keine einzelnen Quarzkörner erkennbar sind. Ähnlich harte und zähe, kieselig zementierte Sandsteine zeigen ebene Bruchflächen und runde Einzelkörner von Quarz. Dieser Quarzit enthält weiterhin etwas Glimmer sowie einige millimetergroße Körner von Schwermineralen.

B29_248_IMG_4639_B60cm

Verfalteter Quarzit bis Glimmerquarzit (Nr. 248, BB 60 cm, Zufahrt zum Aussichtsturm in Steinitz). Das Gestein besteht im Wesentlichen aus Quarz. Die dunkle Tönung ist auf einen vergleichsweise niedrigen Anteil an Glimmermineralen zurückzuführen.

B29_248_IMG_4644b

Gleicher Stein, Detailaufnahme. Der glimmerführende Quarzit wird von glasklaren Linsen und Adern durchzogen, die ausschließlich aus Quarz bestehen.

501_img_8413_bb50cm

Feinkörniges hellgraues Metasediment (Nr. 501, Tgb. Cottbus-Nord, BB 50 cm). Es scheint sich um einen niedrig metamorphen Quarzit zu handeln. In dr Matrix sind einzelne Quarzkörner auf der Verwitterungsrinde, nicht aber auf der Bruchfläche unterscheidbar. Das Gestein enthält basaltähnliche Klasten, die von dunklen und gröber körnigen Bändern begleitet werden.

501_IMG_8423b

Gleicher Block, Detailaufnahme.

501_img_8433b

Detail der gröber körnigen Partie. Die dunkelbraunen Körner konnten nicht identifiziert werden. Wahrscheinlich handelt es sich nicht um Schwerminerale, sondern um oberflächlich eingefärbte Quarzkörner (coating, z. B. aus braunen Fe-oxiden).

B29_IMG_1138b

Västervik-Fleckenquarzit (Halde bei Papproth/ Tagebau Welzow-Süd). Dieser Geschiebetyp wurde in der Geschiebeliteratur bisher als „Stockholm“-Fleckenquarzit bezeichnet. Untersuchungen haben ergeben, dass solche sillimanitführenden Glimmerquarzite aus dem Västervik-Gebiet stammen (kristallin.de).

172_IMG_6241b

Graues Metasediment mit ausgelängten Flecken (Nr. 172, Steinitz); links die Verwitterungsrinde, rechts eine Bruchfläche. Die dunklen Flecken könnten granoblastischer Cordierit mit Einschlüssen von Biotit sein, die durch tektonische Einwirkung ausgelängt wurden. Solche grauen Fleckengesteine sind aus dem Västervik-Gebiet bekannt. Mit weiteren Vorkommen innerhalb des svekofennischen Orogens ist zu rechnen.

B29_190_IMG_9375

Metasediment/Fleckengestein (Nr. 190, Steinitz) mit dunklen und länglichen Granoblasten (vermutlich Cordierit + Biotit), die von hellroten Säumen umgeben sind. Vergleichbare Gesteine kommen im Västervik-Gebiet und an anderen Lokalitäten vor (s. kristallin.de). Das genaue Herkunftsgebiet dieses Gesteins ist unbekannt.

Västervik-Fleckengestein oder Västervik-Fleckengranofels (Nr. 532, Steinitz) mit dunklen Cordierit-Granoblasten und weißen Sillimanit-Flecken. Das Fleckengestein bildet eine etwa 10 cm breite Einschaltung in einem Metasediment. An der Unterseite des Gesteins fand sich ein scharfer Kontakt zu einem roten Alkalifeldspatgranit (im Bild nicht erkennbar).

Abschlag vom obigen Block, Aufnahme unter Wasser. Für eine Herkunft aus dem Västervik-Gebiet spricht das undeformierte Gefüge des feinkörnigen Gesteins und seine Ausbildung als Mischgefüge (Cordierit-Sillimanit-Granofels), eine Kombination, wie sie bisher nur aus dem Västervik-Gebiet bekannt ist. Die Probe reagiert auf einen Handmagneten.

298_IMG_6893b

Amphibol-porphyroblastischer Gneis bzw. Amphibol-Granofels (Nr. 298, Südrand vom Tagebau Cottbus-Nord). Die als Granofels ausgebildete Partie ist Teil eines größeren Gesteinsblocks eines deutlich foliierten Amphibol-Glimmerschiefers.

298_IMG_6905b

Detailaufnahme des regellosen Gefüges aus größeren Amphibol-Porphyroblasten in einer feinkörnigen, weitgehend aus Feldspat bestehenden Grundmasse.

298_Metagabbroid_1c_CottbusNord

Bruchfläche eines Spaltstücks aus dem Nebengestein der granofelsischen Partie. Das Gestein weist eine Foliation auf und besteht aus Plagioklas (Alkalifeldspat und Quarz sind nicht enthalten), dunklem Glimmer und schwarzem bis grünlich-schwarzem Amphibol (Amphibol-Glimmerschiefer). Stellenweise finden sich mit Erz (Pyrit) imprägnierte Partien. Eine rote, wahrscheinlich durch Hämatit-Pigmente gefärbte Ader durchzieht das Gestein und enthält ein längliches Calcit-Kristallaggregat (HCl-Probe positiv).

297_IMG_2887b

Leukokrater, dichter Granofels (Nr. 297, Tgb. Cottbus-Nord) mit glimmerartigen Mineralen. An der Flanke des Gesteins (nicht auf dem Foto) ist ist ein Übergang in eine pegmatitartige Quarz-Feldspat-Partie zu beobachten.

Granat und Hornblende in Metamorphiten

359_IMG_0053

An seiner Färbung und Kristallform leicht erkennbar und eine häufige Neubildung in metamorphen Gesteinen ist Granat. Das Bild zeigt idiomorphe Granate in einem Leukosom eines migmatitischen Paragneises (Nr. 359, Findlingspark Nochten).

B29_179_IMG_6742c

Hellrote Granat-Porphyroblasten in einem migmatitischen Gneis (Nr. 179, Steinitz).

B29_164_IMG_8799

Quarzarmer Paragneis (Nr.164, Steinitz) mit großen Granat-Porphyroblasten. Ähnelt den Granat-Cordierit-Paragneisen vom Sörmland-Typ.

187_IMG_7212_B45cm

Die Gneistextur dieses Metamorphits (Nr. 187, Steinitz, B 45 cm) ist fast nicht mehr zu erkennen, kleinmaßstäblich dominiert ein richtungslos-körniges Gefüge eines Leukosoms in einem Migmatit. Das Gestein enthält sehr große Granoblasten von Granat.

187_IMG_9320

Gleicher Stein. Die Granat-Porphyroblasten enthalten mehrere Minerale, u. a. grünschwarzen Amphibol und ein helles Mineral, wahrscheinlich Quarz. Amphibol ist unregelmäßig verteilt und bildet auch teilweise oder vollständige Säume um manche Granate.

302_img_6295b

Leukosom mit Hornblende-Megakristall in einem migmatitischen Gneis (Nr. 302, Findlingsdepot Cottbus-Nord); Höhe des Kristalls etwa 4 cm.

Granat-Cordierit-Gneise vom Sörmland-Typ

Die migmatitischen Gneise vom Sörmland-Typ sind quarzarme Granat-Cordierit-Paragneise mit deformierten Granat-Porphyroklasten und Cordierit, der häufig bläulich-grau getönt ist. Die makroskopische Unterscheidung von Cordierit und Quarz kann Probleme bereiten, allerdings finden sich in xenomorphen Cordierit-Aggregaten häufig fein verteilte Glimmerplättchen. Gneise vom Sörmland-Typ nehmen große Flächen in Sörmland ein. Ähnliche Gesteine gibt es im Bottnischen Becken und in Süd-Finnland (VINX 2011, ALTENBURG 2011). Auf Grund ihrer weiten Verbreitung eignen sie sich zwar nicht als Leitgeschiebe, sind aber ein regelmäßiger und häufiger Bestandteil mittelschwedisch geprägter Geschiebegesellschaften, so auch in den Tagebauen der Niederlausitz.

B29_429_IMG_2655_B100cm

Migmatitischer Paragneis vom Sörmland-Typ (Nr. 429, Aussichtspunkt Grießen, Tagebau Jänschwalde; B 100 cm).

B29_429_IMG_2663b

Detail des Gefüges aus hellrotem Granat, weißem Feldspat, Cordierit und dunklen Mineralen. Quarz ist makroskopisch nicht erkennbar.

B29_429_IMG_1064b

Gleicher Stein, Nahaufnahme (BB 10 cm). Ein richtungsloses Gefüge zeigt an, dass das Gestein an dieser Stelle aufgeschmolzen war (Leukosom). Bläulicher und transparenter Cordierit findet sich zwischen den Granat- und Feldspat-Körnern.

B29_360_IMG_0058

Migmatitischer Granat-Cordierit-Gneis (Nr. 360, Findlingspark Nochten, polierte Schlifffläche). Xenomorpher Cordierit ist an seiner graublauen Farbe erkennbar.

Migmatit m Granat

Migmatitischer Granat-Cordierit-Paragneis (Nr. 428, Aussichtspunkt bei Bärenbrück/Tgb. Jänschwalde, BB 40 cm) mit dunklen, teils ausgelängten und deformierten Flecken. Migmatit mit ungeregelt-gleichkörnigem und zerissenem Leukosom, das einen dunklen Reaktionsrand (Restit) ausweist. Die dunkelgrauen Granoblasten bestehen wahrscheinlich aus Cordierit mit Einschlüssen von Biotit. Im Leukosom sind einige Granat-Porphyroblasten erkennbar. Ähnliche Fleckengesteine sind aus dem Västervik-Gebiet bekannt, allerdings kommt hier Granat nur sehr selten vor.

180_IMG_7121b

Diese nur wenige Zentimeter dünne Partie mit Feldspat-Porphyroblasten in einer feinkörnigen Masse aus Quarz + Feldspat haftet einem Quarz-Feldspat-Biotit-Gneis (Nr. 180, Steinitz) an. Die Ränder der Feldspäte sind von rotem und dunklem Pigment gesäumt. Es dürfte sich um eine metamorphe Neubildung von Feldspat handeln, eine sog. Feldspatsprossung, die im Zuge metasomatischer Prozesse entstanden sein könnte.

Literatur

Altenburg H J 2011 Findling Trissow – Neubrandenburger Geol. Beiträge 11, S. 9-15, 9 Abb., Neubrandenburg.

Möller S & Appel P 2016 Granat-Cordierit-Sillimanit-Gneis (Sörmland-Granatgneis) von der Eckernförder Bucht – ein Leitgeschiebe? – Der Geschiebesammler 49 1, S. 15-37, 10 Abb., 1 Tabelle, Wankendorf Juni 2016.

Nolte N 2012 Paläoproterozoisches Krustenwachstum (2.0 – 1.8 Ga) am Beispiel der Västervik-Region in SE-Schweden und dem Kamanjab Inlier in NW-Namibia – Dissertationsarbeit, Universität Göttingen.

Sawyer E W 2008 Atlas of Migmatites – Canadian mineralogist: Special publication Band 9, ISSN 1717-6387, NRC Research Press, 371 S.

Vinx R 2011 Gesteinsbestimmung im Gelände, 3. Auflage – Spektrum-Verlag, 480 S.