Die Steilküste von Dwasieden liegt zwischen dem Hafen von Mukran und Sassnitz. Im Wald finden sich gesprengte Reste des imposanten Schlosses Dwasieden. Das 1873-1877 erbaute Hotel wurde seit den 1930er Jahren militärisch genutzt und nach dem Krieg gesprengt. Auf dem Gelände gibt es neben weiteren Relikten einer militärischen Nutzung aus DDR-Zeiten auch Parkmöglichkeiten. Steigt man von hier zur Küste hinab, stößt man zunächst auf einen Geröllstrand mit großen Geschieben sowie Werksteinen, die zum Bau des Schlosses verwendet wurden.
Abb. 2: Reste eines Pavillions vom Schloss Dwasieden.Abb. 3: Alte Uferbefestigung.
Unter anderem trifft man auf den einst sehr beliebten Königshainer Granit, einem postvariszischen und anorogenen Granit aus der Oberlausitz. Der gleichkörnige und meist etwas gelblich verfärbte Granit fällt durch seine idiomorphen Quarze auf. Am Strand weiter südlich findet sich das Gestein gelegentlich als Geröll wieder und sollte nicht mit „echten“ Geschieben verwechselt werden.
Abb. 4: Königshainer Granit, Breite 30 cm.Abb. 5: Königshainer Granit, Strandgeröll, Breite 10 cm.Abb. 6: Ein Zugang zum Geröllstrand ist auch von Süden vom Hafen Mukran aus möglich. Hier wurden große Blöcke von Larvikit als Uferschutz abgeladen.Abb. 7: Geröllstrand Dwasieden von Süden.
Die Steilküste besteht aus weichselkaltzeitlichem Geschiebemergel mit Einschaltungen von Rügener Schreibkreide. Die schlierenartigen Kreide-Schollen liegen zwischen zwei Geschiebemergeln (Brandenburger und Pommersches Stadium). Die glazialen Sedimente ruhen auf einer offenbar fast ungestört lagernden großen Kreide-Scholle (LUDWIG et al 2010; erkennbar in Abb. 1).
Abb. 8: Kreide-Schlieren in weichselkaltzeitlichem Geschiebemergel.Abb. 9: Gekippte Kreidescholle unter Geschiebemergel.Abb. 10: Grauer Geschiebemergel, im Hangenden gelblichbrauner Geschiebelehm.
Am nördlichen Strandabschnitt ist ein ungewöhnliches Sedimentprofil zu sehen. Über dem Geschiebemergel liegt eine Bank aus grobem Schotter, gefolgt von geschichteten glazialen Beckensanden bzw. Bändertonen (Warven) in feiner Wechsellagerung. Sie werden als Ablagerungen eines Eissees aufgefasst.
Abb. 11: Fein geschichtete Wechsellagen aus hellen Sanden und Tonen über braunem Geschiebemergel, getrennt durch eine Schotterbank.Abb. 12: Höhe etwa 8 Meter.
Geschiebe aus dem Oslograben kommen auf Rügen nicht vor, die Insel liegt außerhalb des Verbreitungsgebietes der Oslo-Gesteine. Sollte man einen Larvikit finden, dürfte er aus den zu Uferschutzzwecken herbeigeschafften Blöcken am Hafen von Mukran stammen. Auch der folgende Fund, ein dunkler Gangporphyr mit rhombenförmigen Feldspat-Einsprenglingen, dürfte mit einiger Sicherheit nicht aus dem Oslograben stammen.
Abb. 13: Dunkler Porphyr mit teils rhombenförmigen Feldspat-Einsprenglingen. Breite des Steins 17 cm.
Auf skan-kristallin.de wird der gezeigte Porphyrtyp in Verbindung mit einer Rand- oder Gangfazies des Vaggeryd-Syenits gebracht. Gegen eine Herkunft aus diesem Gebiet spricht, dass der gewöhnliche Vaggeryd-Syenit auf Rügen als Geschiebe ebenfalls nicht angetroffen wurde. Hingegen konnte ein zweiter und ganz ähnlicher Porphyrtyp am Strand von Sassnitz aufgelesen werden. Viel wahrscheinlicher ist also eine Herkunft aus einem unbekannten Vorkommen mit syenitischen Porphyren, z. B. in Småland.
Es folgen Bilder von Åland-Gesteinen, Rapakiwis unbekannter Herkunft und Porphyren aus dem Ostseebecken.
Abb. 14: Åland-Rapakiwi mit Wiborgitgefüge, Breite 12,5 cm.Abb. 15: Großes Geschiebe eines Åland-Wiborgits, Breite 50 cm.Abb. 16: Nahaufnahme des Gefüges.Abb. 17: Ein weiterer Åland-Wiborgit. Breite 15 cm.Abb. 18: Åland-Ringquarzporphyr. Charakteristisch sind die dunklen Säume um die größeren und gerundeten Quarzkörner. Breite 17 cm.Abb. 19: Das Gestein enthält einen schwammartigen Einschluss (Xenolith) aus Quarz und Feldspat, wahrscheinlich ein in der Porphyrschmelze angeschmolzenes Relikt eines gleichkörnigen Rapakiwigranits.Abb. 20: Schlieriger Åland-Quarzporphyr, Breite 32 cm. Ob es sich um einen Åland-Ignimbrit handelt, ist unklar. Ein eindeutig eutaxitisches Gefüge konnte nicht beobachtet werden. Porphyre können auch durch die Vermengung zweier Magmen ein schlieriges Aussehen annehmen.Abb. 21: Kleines Geschiebe eines Åland-Ignimbrits, Aufnahme unter Wasser.Abb. 22: Ebenfalls von den Åland-Inseln stammt der Lemland-Granit. Er gehört nicht zu den Rapakiwigesteinen, sondern ist älter und entstand nach dem Ende der svekofennischen Gebirgsbildung vor ca. 1,8 Ga. Breite des Steins 20 cm.
Stets finden sich auch interessante Rapakiwigeschiebe, die keiner näheren Herkunft zugeordnet werden können.
Abb. 23: Mischgefüge Wiborgit und porphyrischer Rapakiwi-Granit mit rotem Plagioklas. Breite 11,5 cm.Abb. 24: Mischgefüge Wiborgit/Pyterlit mit idiomorphen und leicht bläulichen Quarzen (Åland oder Kökar?). Breite 18 cm.Abb. 25: Ein einzelnes Ovoid erreicht einen Durchmesser von 35 mm.Abb. 26: Orangeroter Wiborgit (Rödö-Rapakiwi) mit lebhaftem Blauquarz. Breite 13 cm.Abb. 27: Rückseite des gleichen Geschiebes.Abb. 28: Nahaufnahme.
Die größeren Blauquarze weisen nur geringe Spuren einer magmatischen Korrosion auf, die größten Feldspat-Ovoide erreichen einen Durchmesser von 2 cm. Graphische Verwachsungen aus Quarz und Feldspat in der Grundmasse sind eher eckig (aplitartig), nicht gewunden. Der Geschiebefund besitzt Merkmale der Wiborgite vom Rödö-Pluton, vgl. die auf kristallin.de gezeigten Typen.
Abb. 29: Bottensee-Porphyr, Quarzporphyr vom Typ Andeskeri.
Eine Reihe von braunen bis grünen Quarzporphyren mit orangefarbenen Feldpäten und oft schlieriger Grundmasse wird einem vermuteten Vorkommen in der Bottensee zugeordnet und als Bottenseeporphyr bezeichnet. Diese Porphyre finden sich auf Åland vermehrt als Geschiebe und müssen aus einem Vorkommen weiter nördlich stammen. Ob sie alle aus einem einzigen autonomen Vorkommen stammen oder wenigstens zum Teil aus dem Åland-Pluton, ist ungeklärt.
Abb. 30: Nahaufnahme des Gefüges.
Als Herkunftsgebiete des folgenden Ignimbrits kommen das Vulkanitgebiet von Dalarna, aber auch das Vorkommen des Roten Ostsee-Quarzporphyrs in Frage. Dafür sprechen das gänzlich undeformierte Gefüge, Xenolithe basischer Gesteine und einzelne Quarze, die den charakteristischen magmatisch korrodierten Hochquarz-Relikten des gewöhnlichen Roten Ostsee-Quarzporphyrs ähneln.
Abb. 31: Ignimbrit; polierte Schnittfläche eines Funds von D. Lüttich.Abb. 32: Nahaufnahme. Das Gestein enthält Bruchstücke anderer Porphyre sowie Diabas-Xenolithe.Abb. 33: Weitere Nahaufnahme. Sollte das Gestein tatsächlich zum Roten Ostsee-Quarzporphyr gehören, wäre aus diesem Vorkommen mit einer Vielzahl weiterer Porphyr-Varianten zu rechnen.Abb. 34: Dieser Geschiebetyp dürfte einer der variantenreichen Ostsee-Syenitporphyre sein. Eine grünliche bis braune und feinkörnige Grundmasse enthält wenige rote Feldspat-Einsprenglinge sowie einige dunkle Mandeln. Einsprenglinge und Mandeln sind konzentrisch von Ringen umgeben. Polierte Schnittfläche, leg. D. Lüttich.Abb. 35: Nahaufnahme. Eine einzelne ovale Mandel ist mit sekundärem Quarz verfüllt.
Granite des Transskandinavischen Magmatitgürtels (TIB), die bunten „Småland“-Granite mit Blauquarz, finden sich in großer Anzahl in Dwasieden.
Abb. 36: Gleichkörniger Småland-Granit (Växjö-Typ) mit Blauquarz, Breite 14 cm.Abb. 37: Porphyrischer Granit mit braunem Alkalifelspat und Blauquarz. Einige orangerot pigmentierte Feldspäte sowie das reichliche Vorhandensein von Titanit deuten auf eine Herkunft aus NE-Småland.Abb. 38: Nahaufnahme. Gelber Titanit bildet teilweise gut entwickelte keilförmige Kristalle.Abb. 39: Uthammar-Granit, Breite 20 cm.
Eine Reihe von Merkmalen unterscheidet den 1,45 Ga alten anorogenen Uthammar-Granit von den grobkörnigen roten Småland-Graniten. Der Uthammar-Granit besitzt ein undeformiertes Gefüge; dunkle Minerale finden sich in kleinen Aggregaten, nicht in Schnüren und Schlieren (Hinweis auf Deformation). Mit der Lupe erkennt man weitgehend unverbogene Biotit-Plättchen. Grünlicher und roter Plagioklas sind nur in geringer Menge enthalten. Innerhalb der Alkalifeldspäte finden sich kleine eckige Quarzeinschlüsse.
Abb. 40: Grob porphyrischer Quarz-Monzonit mit etwas Blauquarz. Herkunft: wahrscheinlich Östergötland. Breite 23 cm.Abb. 41: Granit aus hellrotem Alkalifeldspat, gelblichem Plagioklas und grauem Quarz. Herkunft unbekannt. Breite 15 cm.Abb. 42: Hellroter Granit, Vänge-Granit (Uppland), Breite 16 cm.Abb. 43: Nahaufnahme des Gefüges. Grünlichgrauer Quarz ist zuckerkörnig ausgebildet. Kleinere Aggregate eines zweiten Feldspats (Plagioklas) sind gelblich, grün, teilweise auch rötlich pigmentiert.Abb. 44: Mittel- und gleichkörniger Granit aus weißem Alkalifeldspat, rotem Plagioklas, farblosem Quarz und etwas Biotit. Breite 14 cm, Herkunft unbekannt.Abb. 45: Nahaufnahme.
Basische Gesteine
Abb. 46: Kinne-Diabas aus Västergötland. Breite 18 cm.Abb. 47: Grauvioletter porphyrischer Basalt bzw. basaltisches Gestein („Öje-Diabasporphyrit“). Breite 21 cm.Abb. 48: Nahaufnahme. Die großen Plagioklas-Einsprenglinge sind durch hydrothermale Alteration grün gefärbt und enthalten dunkle Minerale. Teilweise zeichnen diese die Spaltlinien der Plagioklas-Kristalle nach.Abb. 49: Basaltischer Mandelstein, trocken fotografiert, leg. S. Mantei.Abb. 50: Nahaufnahme, nasse Oberfläche. Ein größerer Feldspat-Einsprengling wurde durch magmatische Korrosion siebartig durchlöchert.Abb. 51: Grobkörniger grüner Anorthosit, Breite 10 cm.Abb. 52: Bemerkenswertes gabbroides Gestein mit rundlichen Mineralaggregaten und einer feinkörnigen Grundmasse eines weißen Minerals. Es ist nicht erkennbar, ob es sich dabei um Plagioklas handelt. Breite 11 cm.Abb. 53: Nahaufnahme. Die rundlichen Aggregate besitzen teilweise eine diallagartige Textur und einen seidigen Glanz. Diallag ist kein eigenständiges Mineral, sondern ein Produkt der Entmischung von augitischem Pyroxen.
Metamorphite
Abb. 54: Fleckengneis mit weißen Sillimanitflecken. Feinkörnige Quarz-Feldspat-Gneise mit weißen Flecken kommen z. B. an verschiedenen Orten in Sörmland vor, nicht jedoch im Västervik-Gebiet. Breite 10 cm.Abb. 55: Feinkörniger Fleckenquarzit mit ausgelängten Sillimanit-Flecken, Herkunft ungewiss. Nur die undeformierten Fleckenquarzite lassen sich mit einiger Sicherheit dem Västervik-Gebiet zuordnen. Breite 14 cm.Abb. 56: „Turmalingranit“ – pegmatitähnlicher Quarz-Feldspat-Magmatit mit reichlich schwarzem Turmalin (Schörl).
Sedimentgesteine
Der Strandabschnitt von Dwasieden ist bekannt durch die häufigen Funde von paläozoischen Kalken, insbesondere Stinkkalken. Tatsächlich ist die Belegung mit paläozoischen Geschieben hoch.
Abb. 57: Paläozoische Kalksteine in unveränderter Lage am Fuße der Steilwand. Die Kalke stammen direkt aus dem Geschiebemergel. Bildbreite 80 cm.Abb. 58: Bioturbater glaukonitischer Sandstein mit Phosphorit-Geröllen (Typ Norretorp-Sandstein), Unterkambrium von Bornholm und Südost-Schonen.Abb. 59: Norretorp-Sandstein, Breite 18 cm.Abb. 60: Rispebjerg-Sandstein mit Phosphorit-Geröllen (Unterkambrium). Breite 19 cm.Abb. 61: Stinkkalk, Breite 15 cm. Die oberkambrischen Stinkkalke enthalten Bitumen und riechen nach dem Aufschlagen nach Erdöl. In diesen Kalken ist mitunter eine reichhaltige Trilobitenfauna zu finden.Abb. 62: Stinkkalk mit Einlagerungen von schwarzem, kristallinem Calcit (Anthrakonit), Breite 13 cm.Abb. 63: Ceratopygekalk. Der unterordovizische Kalk enthält reichlich schwarzgrüne Glaukonitkörner von pelletartiger Gestalt . Breite 14 cm.Abb. 64: Ceratopygekalk, Breite 12 cm.Abb. 65: Graugrüner bis rötlicher Orthocerenkalk mit Anschnitt eines Kopffüßlers; Breite 17 cm.Abb. 66: Der unterordovizische Paläoporellenkalk gehört zu den häufigsten Sedimentärgeschieben, eher selten sind hellrote Varianten. Breite 11,5 cm.Abb. 67: Konglomeratischer Dolomit (Obersilur bis Devon). Das Gestein ist sehr schwer und reagiert nur sehr verhalten auf 10%ige Salzsäure. Es enthält Klasten eines konglomeratischen Rotsandsteins mit gerundeten Sandstein- sowie grünlichen Silt- oder Tonklasten. Breite 10 cm.Abb. 68: Postsilurisches Konglomerat. Dieser polymikte Typ ist seltener als das gewöhnliche postsilurische Konglomerat, das aus Bruchstücken des roten Beyrichienkalks sowie Tonschiefern besteht. Der abgebildet Fund enthält zusätzlich Klasten von Basalt, Porphyr und Granit.Abb. 69: Seeigel (Galerites).
In Dwasieden treten reichlich Limonitsandsteine auf, die überwiegend jurassischen Alters sein dürften und wahrscheinlich aus Vorkommen von Bornholm, SE-Schonen oder dem Ostseegrund stammen.
Abb. 70: Roter Limonitsandstein, Breite 8 cm.
Abb. 71: Gelbbraune Limonitsandsteine, Bildbreite 16 cm.
Abb. 72: Glimmerreicher rotgelber Limonitsandstein, Breite 12 cm.
Abb. 73: Konglomeratischer Sandstein mit limonitischem Zement, vermutlich jurassisch.
Abb. 74: Limonitsandstein mit Konglomerat-Lage aus Milchquarzgeröllen. Breite 13 cm.
Literatur
LUDWIG A O, PANZIG W-A & KENZLER M 2010 Das Pleistozän nördlich von Sassnitz – Fazies, Lagerung und Stratigraphie des Pleistozän-Streifens 4 in: LAMPE R & LORENZ S (Hrsg.) 2010 Eiszeitlandschaften in Mecklenburg-Vorpommern. S. 65-68. Verlag Geozon Science Media, ISBN 3-941971-05-0.
Die Steilküste bei Nienhagen, etwa 8 km westlich von Warnemünde, ist ein aktives Kliff aus weichselkaltzeitlichem Geschiebemergel, Geschiebelehm und Schmelzwassersanden. Hier finden sich zwei jüngere Geschiebemergel der Weichselvereisung, getrennt durch eine dünne Sand-, Kies- bzw. Gerölllage. Der liegende graue Geschiebemergel ist dem Hauptvorstoß des Pommerschen Stadiums vor 15.000 Jahren zuzuordnen, der braune Geschiebemergel dem vor ca. 13.200 Jahren einsetzenden Mecklenburger Stadium. Eine ähnliche Zusammensetzung findet sich am gesamten Küstenabschnitt von Geinitzort bis Kühlungsborn, während weiter östlich, entlang der Stoltera, Geschiebemergel älterer weichselzeitlicher Eisvorstöße abgelagert wurden (SCHULZ & PETERSS 1989, KLAFACK 1996).
Durch fortschreitende Küstenerosion ist das Nienhagener Kliff ständigen Veränderungen unterworfen, entsprechend ergeben sich immer neue Fundmöglichkeiten. Am westlichen Abstieg fallen zunächst große Blöcke von Larvikit ins Auge, die offenbar als Uferbefestigung dienen. Larvikit ist ein Anorthoklas-Syenit und kommt, wie alle übrigen Gesteine aus dem Oslograben sowie SW-schwedische Leitgeschiebe (Schonengranulit, Flammenpegmatit etc.), in Nienhagen nicht als Geschiebe vor.
Abb. 2: Larvikit als Uferbefestigung, Breite etwa 1 Meter.Abb. 3: Das Gestein ist sehr grobkörnig, einzelne Anorthoklas-Kristalle erreichen eine Länge von 4 cm. Trocken fotografiert, Bildbreite 22 cm.Abb. 4: Nahaufnahme, nass fotografiert. Einige der grünlichen Feldspäte besitzen den typisch blauen Schiller. Dieser entsteht durch Lichtbrechung an feinsten Entmischungslamellen innerhalb der Feldspäte.
Kristalline Geschiebe
In Nienhagen überwiegen ganz klar Magmatite und Vulkanite des Transkandinavischen Magmatitgürtels (TIB). Der Anteil an Åland- bzw. Rapakiwi-Gesteinen ist nicht besonders hoch (keine Bilder), der Braune Ostseeporphyr tritt hingegen sehr häufig auf. Dieser unterliegt – wie alle Vulkanite – Variationen hinsichtlich Farbe und Gefüge. Gemeinsame Merkmale dieses Porphyrtyps sind: Reichtum an Einsprenglingen, dichte Grundmasse, kleine Quarze, mafische Enklaven.
Abb. 5: Varianten des Braunen Ostsee-Quarzporphyrs. Bildbreite 25 cm.Abb. 6: Brauner Ostsee-Quarzporphyr mit orangefarbenen Feldspat-Einsprenglingen. Breite 10 cm.Abb. 7: Brauner Ostsee-Quarzporphyr mit weißen und roten Feldspat-Einsprenglingen, die deutliche Spuren magmatischer Korrosion zeigen. Leg. Sebastian Mantei.Abb. 8: Brauner Ostsee-Quarzporphyr, Feldspäte teilweise stark magmatisch korrodiert. Breite 8,5 cm.Abb. 9: Dem Braunen Ostsee-Quarzporphyr ähnliches Porphyrgeschiebe mit einer Abfolge verschiedener Gefügevarianten, vermutlich eine Folge von magma mingling bzw. einer mafischen Enklave.
Bei gehäuften Funden des Braunen Ostsee-Quarzporphyrs ist auch vermehrt mit Funden des Ostsee-Syenitporphyrs zu rechnen, dem ein ähnliches Herkunftsgebiet zugeschrieben wird. Aus Nienhagen liegen 4 Funde vor. Der gewöhnliche Ostsee-Syenitporphyr ist ein recht unauffälliges Gestein, einige seltene Varianten fallen ins Auge (Abb. 13-14).
Abb. 10: Ostsee-Syenitporphyr; grünlichgraue Grundmasse, schwarze Mandeln und Feldspateinsprenglinge in geringer Menge. Breite 15 cm.Abb. 11: Ostsee-Syenitporphyr, grünliche Variante. Die Grundmasse wird von einem Netz aus Rissen durchzogen; Aufnahme unter Wasser.Abb. 12: Ostsee-Syenitporphyr mit Gefügewechsel zwischen rotbrauner und grünlichgrauerGrundmasse; Aufnahme unter Wasser.Abb. 13: Ostsee-Syenitporphyr, seltene blaugraue Variante; Aufnahme unter Wasser (Sebastian Mantei leg.).Abb. 14: Nahaufnahme der nassen Oberfläche.
Auch basaltische Mandelsteine sind häufig anzutreffen.
Abb. 15: Violettgrauer basaltischer Mandelstein. Breite 11 cm.Abb. 16: Basaltischer Mandelstein; zonierter Aufbau der Mandeln mit hellgrünem Epidot am Rand der ehemaligen Blasenhohlräume.Abb. 17: Sehr blasenreicher basaltischer Mandelstein. Das hornsteinartige und dichte rote Material sind Ausscheidungen von Jaspis.
Vulkanite und Magmatite (Porphyre und Granite) aus Småland bzw. dem Transskandinavischen Magmatitgürtel (TIB) sind die häufigsten Kristallingeschiebe in Nienhagen.
Abb. 18: Järeda-Granit; blassroter Småland-Granit mit viel Blauquarz. Besonderes Kennzeichen sind die feinen, mit dunklen Mineralen gefüllten Risse innerhalb der Feldspäte. Breite 13 cm.Abb. 19: Kinda-Granit. Porphyrischer Granit aus trübem, leicht bläulichem Quarz, größeren braunen Alkalifeldspäten und kleineren orangefarbenen Plagioklasen. Plagioklas bildet stellenweise unvollständige Säume um Alkalifeldspat. Innerhalb der dunklen Minerale ist gelblicher Titanit erkennbar.Abb. 20: Ein weiterer Kinda-Granit bzw. NE-Småland-Granit. Breite 11 cm.Abb. 21: Roter Småland-Granit (Filipstad-Typ) mit etwas gelblichem Plagioklas. Breite 17 cm.Abb. 22: Leicht deformierter Småland-Granit vom Växjö-Typ (gleichkörnig) mit blassrotem Alkalifeldspat und weißem bis gelblichem Plagioklas. Der Blick geht auf die Foliationsebene, dadurch wirkt das Gestein quarzreicher. Breite 12 cm.Abb. 23: Vollroter und grobkörniger Alkalifeldspatgranit, Breite 11 cm. Das Gefüge erscheint undeformiert; Plagioklas ist nicht erkennbar, Mafite nur in geringer Menge vorhanden. Es dürfte sich um einen Uthammar-Granit handeln.Abb. 24: Granit vom Typ Filipstad mit runden Feldspat-Ovoiden, teilweise umgeben von einem gelbem Plagioklassaum; ohne nähere Herkunftsangabe. Breite 13 cm.Abb. 25: Weißer Filipstad-Granit. Seltene Variante aus der Familie der Filipstad-Granite, evtl. als Leitgeschiebe für das westliche Värmland geeignet. Polierte Schnittfläche, leg. Sebastian Mantei.
Auch Granite aus anderen Gebieten als dem TIB finden sich in Nienhagen, z. B. der Karlshamn-Granit aus Blekinge, seltener auch Bornholm-Granite.
Abb. 26: Gneisgranit mit roten Flecken, evtl. von Bornholm. Breite 12 cm.Abb. 27: Karlshamn-Granit aus Blekinge, Aufnahme unter Wasser.Abb. 28: Der Granit enthält reichlich gelben Titanit.Abb. 29: Ein ähnlicher Granit, wahrscheinlich Karlshamn-Granit. Breite 12 cm.
Die meisten der zahlreichen Porphyr-Geschiebe sind auf das Gebiet des TIB zurückzuführen, vor allem auf Småland, wo ausgedehnte Porphyrgebiete existieren. Eine genauere Herkunftsangabe lässt sich aber meist nicht machen. Als Leitgeschiebe eignen sich der Paskallavik- und Emarp-Typ, mit Abstrichen auch Lönneberga-, Högsrum- und Nymala-Porphyr. Porphyre aus Dalarna treten in Nienhagen nur untergeordnet auf; häufiger sind – neben Bredvad- und Grönklitt-Porphyr – Geschiebe vom Typ „Einsprenglingsreicher Porphyr aus Dalarna“. Auch unter den Småland-Porphyren gibt es einsprenglingsreiche Varianten (Abb. 34). Sie enthalten Enklaven mit dunklen Mineralen und sind in der Regel leicht deformiert.
Abb. 30: Påskallavik-Porphyr, Breite 11 cm.Abb. 31: Deformierter Gangporphyr, „Högsrum-Porphyr„. Breite 9 cm.Abb. 32: Nymåla-Porphyr, Breite 9 cm.Abb. 33: Lönneberga-Porphyr, Breite 75 mm. Dieser Porphyrtyp ist in Nienhagen recht häufig anzutreffen.Abb. 34: Einsprenglingsreicher Porphyr (Småland-Porphyr), Breite 10 cm.Abb. 35: Quarzporphyr, Herkunft unbekannt. Breite 15 cm.Abb. 36: Aus Dalarna stammt dieser Lapillituff aus roten, violetten und braunen, teils gerundeten Porphyr-Klasten (Digerberg-Tuffit). Breite 14 cm.
Unter den kleineren Strandsteinen in Nienhagen kann man sehr viele basische Gesteine beobachten, vor allem Dolerite vom Asby-Ulvö-Typ.
Abb. 37: Schonen-Lamprophyr. Dunkles und basaltähnliches Gestein mit Einsprenglingen von Pyroxen (schwarz), Olivin (gelbbraun) sowie weißen Mandeln. Breite ca. 30 cm. Einziger Fund dieses Gesteinstyps in Nienhagen.Abb. 38: Dolerit mit grünem Olivin, Aufnahme unter Wasser.Abb. 39: Nahaufnahme.Abb. 40: Sehr grobkörniger Dolerit vom Åsby-Ulvö-Typ. Diese Variante ist aus Nordingrå (Ulvö) bekannt. Aufnahme unter Wasser.Abb. 41: Gabbroides Gestein mit Glimmer. Breite 9 cm.Abb. 42: Dioritisches Gestein mit länglichen Amphibolen und etwas Glimmer. Breite 16 cm.Abb. 43: Porphyroblastischer Amphibolit. Die runden Amphibol-Blasten sind ein deutlicher Hinweis auf seine metamorphe Bildung aus einem Gabbro oder Dolerit. Das Gestein kein Hornblendegabbro, da dieser zu einem großen Teil aus magmatisch gebildetem Amphibol bestehen muss. Breite 85 mm.
Unter den Metamorphiten sind Paragneise vom Sörmland-Typ mit violettroten Granat-Porphyroblasten sehr häufig anzutreffen. Auch die Fundmöglichkeiten für Fleckengesteine aus dem Västervik-Gebiet scheinen in Nienhagen günstig zu sein. Allerdings treten die violetten Västervik-Quarzite nur selten auf, obwohl sie mengenmäßig die Fleckengesteine überwiegen müssten.
Abb. 44: Paragneis vom Sörmland-Typ mit violettroten Granat-Porphyroblasten; Breite 10 cm.Abb. 45: Glimmerführender Quarzit mit weißen Sillimanit-Granoblasten. Solche Fleckenquarzite mit deformiertem Gefüge lassen sich nicht ausschließlich auf das Västervik-Gebiet zurückführen. Breite 14 cm.Abb. 46: Västervik-Fleckengestein (Cordierit-Granofels), Breite 12 cm.Abb. 47: Diverse Fleckengesteine aus der ehem. Sammlung Somann. Eine Erläuterung der Funde findet sich auf kristallin.de, Abb. 51.Abb. 48: Rotfleckiger Quarzit, Breite 8,5 cm.Abb. 49: Nahaufnahme.Abb. 50: Rotfleckiger Quarzit. Dieser Typ kommt auch im Västervik-Gebiet vor. Polierte Schnittfläche. Ehem. Sammlung Somann.Abb. 51: Silikatmarmor („Ophicalcit“), Breite 17 cm. Näheres zu Marmor.Abb. 52: Nahaufnahme unter Wasser.Abb. 53: Glimmerquarzit. Früher als „Weißer Glimmerschiefer von Schonen“ in KORN 1927 bezeichnetes Gestein kommt u. a. in Västana, aber auch an anderen Lokalitäten vor. Mitunter ist eine seltene Mineralisation phosphathaltiger Minerale zu beobachten. Kein Leitgeschiebe, Breite 13 cm.Abb. 54: Epidotisierter Magmatit (Metasomatit) aus rotem Alkalifeldspat, hellgrünem Epidot, epidotisiertem Plagioklas sowie etwas Quarz. Breite 12 cm.Abb. 55: Weitgehend aus Feldspäten bestehende Brekzie, Risse verfüllt mit feinkristallinem Quarz und Milchquarz. Breite 11 cm.Abb. 56: Tektonische Brekzie. Das Wirtgestein besteht aus rotem Alkalifeldspat und Quarz und besitzt eine granitische Zusammensetzung. Die Risse wurden mit feinkristallinem Quarz und Milchquarz verfüllt. Breite 12 cm.Abb. 57: Mylonitischer Augengneis mit hellen Feldspat-Porphyroblasten. Der als „Tännas-Augengneis“ bezeichnete Geschiebetyp dürften in vergleichbarer Ausbildung auch in anderen Mylonit-Vorkommen zu erwarten sein. Breite 9 cm.Abb. 58: Feinkörniger gebänderter Gneis (Leptit). Aufnahme unter Wasser.Abb. 59: Nahaufnahme der nassen Oberfläche. Die Grundmasse besteht aus einem gleichkörnigem Gefüge aus Quarz und Feldspat.Abb. 60: Pegmatoide Quarz-Feldspat-Partie mit großen hellroten Granat-Porphyroblasten, wahrscheinlich Teil eines Leukosoms in einem Migmatit. Leg. Sebastian Mantei.Abb. 61: Nahaufnahme des Granats, durchsetzt von schwarzer Hornblende.
Sedimentärgeschiebe
In Nienhagen finden sich sehr viele Feuersteine. Günstig scheinen die Fundmöglichkeiten für Lias-Geschiebe (Toneisensteine mit Pflanzenresten) zu sein, weiterhin Kambrische Geschiebe (BUCHHOLZ 2011, HINZ-SCHALLREUTER & KOPPKA 1996), Stinkkalke, Silur-Geschiebe mit Graptolithen (MALETZ 1995, 1996) Gelegentlich kommen Roter Beyrichienkalk sowie Unterkreide-Geschiebe vor.
Abb. 62: „Rhät-Lias“-Geschiebe, Feinsandstein mit kohligen Pflanzenresten, leg. Sebastian Mantei.Abb. 63: Grünliche Sandstein-Konkretion (wahrscheinlich Unterkreide) mit phosphorischem Zement sowie Holzresten.Abb. 64: Bruchfläche.Abb. 65: Trias-Konglomerat („Caliche-Konglomerat“). Bunte Mergelklasten in einem sparitischen Zement. Leg. Georg Engelhardt (Potsdam).Abb. 66: Bruchfläche.Abb. 67: Nahaufnahme der Bruchfläche.Abb. 68: Roter Beyrichienkalk, Aufnahme unter Wasser.Abb. 69: Knolliger Dolomit mit Dolomit-Drusen.Abb. 70: Druse mit würfelförmigen Dolomit-Kristallen. Der Nachweis von Dolomit gelingt mit verdünnter Salzsäure: Dolomit zeigt nur eine sehr schwache Reaktion unter Bildung von CO2-Bläschen.Abb. 71: Sandstein-Konglomerat mit phosphoritisch gebundenen Klasten, Breite 13 cm.
Nach einem Hinweis von S. Mantei handelt es sich bei diesem Konglomerat nicht etwa um den unterkambrischen Rispeberg-Sandstein, vielmehr sprechen enthaltene Trilobitenreste von Agnostus pisiformis für das obere Mittelkambrium. Dies ist ungewöhnlich, da eine sandige Fazies in der A. pisiformis-Zone in der Literatur bisher nicht beschrieben wurde. Von hier bekannt sind entweder (Stink-)kalkige Konglomerate mit oder sandige Konglomerate ohne A. pisiformis.
Abb. 72: Steilufer und Geröllstrand bei Nienhagen.
Literatur
SCHULZ W & PETERSS K 1989 Geologische Verhältnisse im Steiluferbereich des Fischlandes sowie zwischen Stoltera und Kühlungsborn – In: Mitteilungen der Forschungsanstalt für Schiffahrt, Wasser- und Grundbau; Schriftenreihe Wasser- und Grundbau 54. Berlin: Forschungsanstalt für Schiffahrt, Wasser- und Grundbau. S. 132-148.
BUCHHOLZ A 2011 Ein Geschiebe des A[ht]iella jentzschi-Konglomerates von Nienhagen, Mecklenburg (Norddeutschland) – Mitteilungen der Naturforschenden Gesellschaft Mecklenburg 11 (1): 24-30, 14 Abb., Ludwigslust.
BÜLOW K VON 1937 Grundmoränenbilder – Zeitschrift für Geschiebeforschung und Flachlandsgeologie 13 (1): 5-8, 3 Abb., Leipzig.
GEINITZ E 1910 Das Uferprofil des Fischlandes – Mitteilungen aus der Großherzoglichen Mecklenburgischen Geologischen Landesanstalt 21: 11 S., 11 Taf., Rostock (Leopold i. Komm.).
HINZ-SCHALLREUTER I & KOPPKA J 1996 Die Ostrakodenfauna eines mittelkambrischen Geschiebes von Nienhagen (Mecklenburg) [The Ostracod Fauna of a Middle Cambrian Geschiebe from Nienhagen (Mecklenburg)] – Archiv für Geschiebekunde 2 (1): 27-42, 5 Taf., Hamburg.
KLAFAK R 1996 Bericht über die Exkursion zur Steilküste Nienhagen – Geschiebekunde aktuell 12 (2): 61, Hamburg.
MALETZ J 1995 Dicranograptus clingani in einem Geschiebe von Nienhagen (Mecklenburg) – Geschiebekunde aktuell 11 (2): 33-36, 2 Abb., Hamburg.
MALETZ J 1996 Saetograptus cf. leintwardinensis in einem Geschiebe von Nienhagen – Geschiebekunde aktuell 12 (4): 111-116, 2 Abb., Hamburg.
PETERSS K 1990 Strukturtektonische Untersuchungen glazigener Sedimente im Raum Stoltera-Kühlung – Zeitschrift für geologische Wissenschaften 18 (12): 1093-1103, 10 Abb., Berlin (Verlag für Geowissenschaften).
Der Rhombenporphyr ist das bekannteste Leitgeschiebe aus dem Oslogebiet und für jedermann anhand der charakteristischen rhombenförmigen Feldspat-Einsprenglinge leicht erkennbar. Die Farbe der feinkörnigen bis dichten Grundmasse sowie Anzahl und Größe der Einsprenglinge variieren in weiten Grenzen (Abb. 2).
Abb. 1: Rhombenporphyr, Aufnahme unter Wasser. Geschiebe von Hanstholm (Dänemark), leg. T. Brückner.Abb. 2: Rhombenporphyr-Nahgeschiebe von Slagen Tangen (Norwegen); Foto: D. Pittermann. Bildbreite ca. 40 cm.
Das Heimatgebiet der Rhombenporphyr-Geschiebe liegt im Oslograben in Süd-Norwegen. Vor etwa 280 Millionen Jahren stiegen entlang einer langgestreckten tektonischen Dehnungszone (Grabenbruch) magmatische Schmelzen auf. Während einer Phase intensiver vulkanischer Aktivität entstanden zahlreiche und unterschiedlich ausgebildete Lavadecken von Rhombenporphyren. Die Vorkommen setzen sich in südwestlicher Richtung am Boden von Oslofjord und Skargerrak fort. Im Zuge des Magmatismus im Oslograben kam es zur Bildung weiterer intrusiver und effusiver Gesteine, von denen einige aufgrund ihrer besonderen Entstehungsgeschichte sowie einzigartiger petrographischer Merkmale als Leitgeschiebe geeignet sind, u. a. Larvikit, Tönsbergit, Ekerit, Oslo-Basalt, Foyait und Nordmarkit.
Mit dem Aufdringen der Rhombenporphyr-Magmen ist die Entstehung eines Gangsystems aus intrusiven Rhombenporphyren verbunden, das entlang der Küste von Bohuslän in West-Schweden verläuft (KUMMEROV 1954, JACOBI 1997). Dieses Gebiet kommt ebenfalls als Lieferant von Rhombenporphyr-Geschieben in Frage, allerdings ist die Ausdehnung dieser Gänge vergleichsweise gering.
QUENSEL 1918 beschreibt ein kleines Vorkommen von (tektonisch deformierten) Rhombenporphyren aus dem Kebnekaise-Gebiet in Lappland. Ob aus diesem sehr weit nördlich gelegenen Gebiet Rhombenporphyr-Geschiebe nach Norddeutschland gelangten (und von den Rhombenporphyren des Oslo-Gebiets unterscheidbar sind), ist zweifelhaft.
Abb. 3: Rhombenporphyr, polierte Schnittfläche. Geschiebe von Hohenfelde, östlich von Schönberg, Schleswig-Holstein.Abb. 4: Nahaufnahme. Neben rhombenförmigen Anschnitten von Feldspat-Einsprenglingen sind zwei mit Sekundärmineralen (u. a. Calcit und Epidot) verfüllte Blasenhohlräume erkennbar.
2. Beschreibung
Entscheidendes Erkennungsmerkmal der Rhombenporphyre sind die länglichen und manchmal spitz zulaufenden rauten- oder bootsförmigen Anschnitte von Feldspat-Einsprenglingen. Es handelt sich um Mischkristalle von Na-K-Ca-Feldspat, sog. ternären Feldspat, z. B. Anorthoklas (Albit+Orthoklas). Ihre Bildung ist an sehr heiße Magmen gebunden, in denen eine Entmischung der Feldspatkomponenten (Plagioklas und Alkalifeldspat) nicht oder nur unvollständig erfolgt. Diese speziellen Feldspäte sind ein charakteristischer Bestandteil der Vulkanite (und einiger Plutonite) des Oslograbens und von anderen Lokalitäten weitgehend unbekannt (s. u.). Petrographisch handelt es sich beim Rhombenporphyr um Latite, also SiO2-arme Vulkanite mit jeweils 35-65% Alkalifeldspat und Plagioklas. Latite sind das vulkanische Äquivalent der Monzonite.
Die Feldspat-Einsprenglinge weisen gelbliche, bräunliche oder graue Farben auf. Seltener sind blassgrüne, rote oder leuchtend orangefarbene Tönungen. Ihre Länge beträgt zwischen 5-30 mm. Die Feldspäte sind heller (selten dunkler) als die Grundmasse, können aber dunklere Kerne oder andersfarbige dünne Säume besitzen. Die Einsprenglingsdichte ist variabel. Nach OFTEDAHL 1967 lassen sich ein einsprenglingsreicher („klassischer“) Typ mit Feldspäten bis 2,5 cm Länge und ein einsprenglingsarmer Typ mit wenigen und kleinen Einsprenglingen bis 1,8 cm unterscheiden.
Als Folge von Entmischungsvorgängen ist manchmal eine unregelmäßig netz- oder tropfenförmige und wellige „Zeichnung“ in den Feldspäten erkennbar (Abb. 12, 27), die sich von der perthitischen Entmischung der Alkalifeldspäte und der polysynthetischen Verzwilligung der Plagioklase unterscheidet. Die Feldspäte neigen zur Bildung von Zwillingen, Mischkristalle aus mehreren Feldspat-Rhomben sind häufig. Durch Adhäsionskräfte in der Schmelze können die Feldspäte zu Kristallhaufen vereinigt sein (glomerophyrisches Gefüge, Abb. 28).
Neben rhombenförmigen können auch nahezu rechteckige Feldspat-Einsprenglinge auftreten. Eine seltene Variante ist der Rektangelporphyr mit ausschließlich rechteckigen Feldspat-Einsprenglingen und einer sehr feinkörnigen Grundmasse. Dieser Typ wird gelegentlich mit Diabasen verwechselt. Basaltische Gesteine mit rechteckigen Plagioklas-Einsprenglingen (=Diabase) besitzen häufig eine körnige Grundmasse sowie ein ophitisches Gefüge (kleine Plagioklasleisten in der Grundmasse). Die größeren Plagioklase zeigen in der Regel die typische polysynthetische Verzwilligung.
Abb. 5: Rotbrauner Rhombenporphyr; Kiesgrube Kreuzfeld, Aufnahme unter Wasser.Abb. 6: Grünlicher Rhombenporphyr, Geschiebe von Presen/Fehmarn.Abb. 7: Feldspat-Zwillinge in einem Rhombenporphyr aus der Kiesgrube Kröte (Wendland, Niedersachsen).Abb. 8: Anorthoklas-„Drilling“; FO: Westermarkelsdorf/Fehmarn.Abb. 9: Schnittfläche eines grauen Rhombenporphyrs mit dunklen Feldspäten, Aufnahme unter Wasser (FO: Steinbeck/Klütz).Abb. 10: Rhombenporphyr; dunkle Feldspäte mit hellem Saum (Langtangen-Typ); Vigsö-Bucht (Dänemark), Slg. E. Figaj.Abb. 11: Brauner Rhombenporphyr (oder Nordmarkit-Porphyr?) mit körniger Grundmasse und relativ viel dunklen Mineralen. Strandgeröll von Johannistal, Slg. E. Figaj, Aufnahme unter Wasser.Abb. 12: Nahaufnahme.
Die Grundmasse der Rhombenporphyre ist feinkörnig bis dicht. Häufig sind bräunliche Farbtöne, auch mit grünlichem oder orangefarbenem Stich. Rote bis violette und sehr feinkörnige bis dichte Grundmassen finden sich vor allem in pyroklastischen Gesteinen (Abb. 13, 33). Seltener sind grüne, dunkelgraue oder sehr helle Farben (Abb. 42). Durch Verwitterung können die Gesteine oberflächlich stark ausbleichen.
Rhombenporphyre mit erkennbaren Einzelkörnern (über 1 mm) in der Grundmasse entstanden durch eine entsprechend langsame Abkühlung des Magmas und dürften subvulkanische Bildungen oder Gangporphyre sein. Solche intrusiven Typen sind sowohl aus dem Oslogebiet als auch von der westschwedischen Küste (Bohuslän) bekannt und der Herkunft nach nicht unterscheidbar. Für glaziostratigraphische Untersuchungen ist dies auch zweitrangig, da beide Vorkommen im Einzugsgebiet des norwegisch-westschwedischen Gletscherstroms liegen.
Dunkle Minerale sind nur in geringer Menge enthalten und von Hand kaum bestimmbar (Biotit, Augit und Erz nach ZANDSTRA 1988). Etwa ein Fünftel der Rhombenporphyr-Geschiebe reagiert auf einen Handmagneten, etwa jeder zehnte Geschiebefund ist deutlich bis stark magnetisch (statistische Erhebung an RP-Geschieben aus Brandenburg). Häufig sind gefüllte Blasenhohlräume (Mandeln) zu beobachten. Bei einem hohen Anteil an Mandeln kann man von einem Rhombenporphyr-Mandelstein sprechen. Als sekundäre Bildung treten Calcit oder Epidot auf, aber auch Mandelfüllungen mit glasklarem Quarz (Abb. 42).
Neben Porphyren mit weitgehend homogener Grundmasse finden sich blasenreiche Laven (weitgehend ohne Hohlraumfüllungen, meist einsprenglingsarmer Typ, Abb. 30) und aus Pyroklasten zusammengesetzte Vulkanite (Lapillisteine, Lapillituffe oder „Agglomeratlaven“, s. Abb. 13,14, 31-33). In älterer Literatur wurden letztere gelegentlich als „Rhombenporphyr-Konglomerat“ bezeichnet. Der Name sollte jedoch klastischen Sedimentgesteinen mit umgelagerten Vulkanitfragementen vorbehalten sein. Das Rhombenporphyr-Konglomerat (Krogskogen-Konglomerat), ein seltener Geschiebefund, besitzt eine sandige Matrix und enthält neben Klasten von Rhomben- und Quarz-Porphyren klastische Quarze, Sandstein und basaltische Klasten (s. skan-kristallin.de).
Abb. 13: Blasige Rhombenporphyr-Lava, Aufnahme unter Wasser; Steinbeck/Klütz.Abb. 14: Nahaufnahme, Verzwilligung mehrerer rhombischer Feldspat-Einsprenglinge.Abb. 15: Rhombenporphyr-Mandelstein (Hökholz bei Eckernförde).Abb. 16: Rhombenporphyr-Mandelstein von der Vigsö-Bucht (Dänemark), Slg. E. Figaj.Abb. 17: Rhombenporphyr, im unteren Teil eine Tufflage mit Feldspat-Bruchstücken. Polierte Schnittfläche eines Geschiebes von Westermarkelsdorf/Fehmarn (T. Brückner leg.).Abb. 18: Spezielle Rhombenporphyr-Variante mit länglichen Feldspat-Einsprenglingen (Pipenhus-Typ); Geschiebe von Hökholz.Abb. 19: Rhombenporphyr, Pipenhus-Typ, Breite 14 cm. Vigsö-Bucht (Dänemark), Slg. E. Figaj.
Zusammenfassung der unterschiedlichen Ausprägungen bzw. Geschiebetypen von Rhombenporphyren (Abbildungen in JENSCH 2013a und 2013b; allgemeine Beschreibung in HESEMANN 1975, SMED & EHLERS 2002, SCHULZ 2003):
gewöhnlicher Rhombenporphyr: einsprenglingsarmer und einsprenglingsreicher Typ
Rhombenporphyr-Mandelstein (Abb. 13-16)
blasige Laven, Pyroklastika (Lapillisteine, Lapillituffe oder „Agglomeratlaven“, Abb. 13-14, 31-33)
Rhombenförmige Feldspat-Einsprenglinge finden sich in weiteren Gesteinstypen des Oslograbens, z. B. im Nordmarkit-Porphyr (s. skan-kristallin.de) oder in Plutoniten (Larvikit, Tönsbergit). Darüber hinaus treten sie auch in Gesteinen aus anderen Regionen auf, die aber kaum mit den Oslo-Gesteinen verwechselbar sind (Vaggeryd-Syenit, Sorsele-Granit, Heden-Porphyr). Einzelne rhombenförmige Plagioklase können in Diabasen enthalten sein.
Anhand der stratigraphischen Verhältnisse im Anstehenden unterscheidet OFTEDAHL 1952, 1967 etwa 30 einzelne Rhombenporphyr-Lagen (s. Proben auf vendsysselstenklub.dk). Seine Einteilung dürfte auf Geschiebefunde jedoch nur eingeschränkt anwendbar und eine entsprechende Zuordnung zu bestimmten RP-Lagen mit großen Schwierigkeiten verbunden sein. Zum einen ist von einer hohen Variationsbreite innerhalb der einzelnen RP-Lagen auszugehen. Auffällige Rhombenporphyr-Varianten müssen nicht an eine bestimmte vulkanostratigraphische Position gebunden sein, da in unterschiedlichen Phasen des Vulkanismus Porphyre mit ganz ähnlichen Merkmalen entstanden sein könnten, vor allem oberhalb der Lage RP15 (JENSCH 2013a: 60). Auch der Vergleich mit Anstehendproben führt zu Irrtümern (MEYER AP 1969). Rhombenporphyr-Lagen können durch frühere Vereisungen bereits vollständig abgetragen sein. Weiterhin ist zu bedenken, dass die Fortsetzung des Vorkommens der Oslo-Gesteine in südlicher Richtung unter Wasser weitere Varianten von Rhombenporphyren geliefert haben könnte.
3. Verbreitung der Rhombenporphyr-Geschiebe
Rhombenporphyre wurden zu verschiedenen Zeiten durch Eisströme vom Oslo-Gebiet in Richtung SSW bis SW über Dänemark und NW-Deutschland nach Süden transportiert (Abb. 21). In westlicher Richtung finden sich Rhombenporphyr-Geschiebe in Schottland und England (EHLERS 1988, K-D MEYER 1993, 2010), in südwestlicher Richtung in den Niederlanden (HUISMAN 1971). Auch aus Schweden liegt eine Fundmeldung vor (HILLEFORS 1968). Eine Kuriosität sind zwei (identische) Funde von Rhombenporphyr-Geschieben (sowie ein Drammen-Rapakiwi) von der Insel Leka, weit nördlich vom Oslograben (Mitteilung A. Bräu, Abb. 20). Der Transportmechanismus (Eisschollendrift, anthropogene Verschleppung) konnte bislang nicht geklärt werden.
Abb. 20: Rhombenporphyr, Geschiebefund von der Insel Leka (mittleres Norwegen), etwa 500 km nördlich von Oslo. Probe und Foto: A. Bräu.
In Deutschland sind Rhombenporphyr-Geschiebe von N- und NW- Deutschland bis nach Sachsen weit verbreitet. Mehrere Fundberichte liegen auch aus Polen und Tschechien vor (vgl. Literaturhinweise in SCHNEIDER & TORBOHM 2020). Außerhalb des allgemeinen Verbreitungsgebietes, östlich der Linie Mecklenburg-Brandenburg-Sachsen, treten sie als Einzelfund auf. Die östliche Verbreitungsgrenze wird in SCHULZ 1973, 2003 und 2012 ausführlich diskutiert (s. a. Abb. 21).
Abb. 21: Verbreitungsgebiet der Rhombenporphyr-Geschiebe. 1 – Gesteine des Oslograbens, Fortsetzung des Vorkommens unter Wasser; 2 – Geschiebefächer Rhombenporphyr (Hauptverbreitungsgebiet); 3 – östliche Verbreitungsgrenze; 4 – Maximalausdehnung der nordischen Inlandvereisungen. Karte nach SCHULZ 1973.
4. Funde aus Berlin und Brandenburg
Aus Berlin und Brandenburg konnten in jahrelanger Sammeltätigkeit bislang 82 Rhombenporphyr-Geschiebe zusammengetragen werden (Stand: 01/2021; Dokumentation in SCHNEIDER & TORBOHM 2020). Die Funde belegen einen weit nach Osten reichenden Transport dieser Gesteine in ein Gebiet, das überwiegend durch baltische und ostschwedische Geschiebegemeinschaften geprägt ist. Abb. 22 zeigt alle Fundpunkte. Hervorgehoben sind Kiesgruben mit der höchsten Fundanzahl. Eine hohe Fundanzahl spricht nicht unbedingt für ein gehäuftes Auftreten, sie könnte auch auf eine entsprechend aktive Sammeltätigkeit zurückzuführen sein.
Abb. 22: Fundpunkte von Rhombenporphyr-Geschieben in Brandenburg; Grafik verändert nach Benutzer Grabenstedt 2007, Quelle: wikipedia.de, Lizenz: CC BY-SA 3.0. Daten aus STACKEBRANDT & MANHENKE 2002.
Die brandenburgischen Rhombenporphyr-Geschiebe stammen überwiegend von Lokalitäten mit oberflächennah aufgeschlossenen Ablagerungen der Weichsel-Vereisung. Viele Kiesgruben liegen – nicht zuletzt aus bergbaulichen Erwägungen – am Rande von Hochflächen oder Urstromtälern. Lediglich 11 der insgesamt 82 Funde (14%) lassen sich unmittelbar mit saalekaltzeitlichen (oder älteren) Ablagerungen in Zusammenhang bringen. Diese im südlichen Brandenburg gelegenen Altmoränenhochflächen bieten allerdings auch nur wenige Aufschlüsse. Der Erhaltungszustand der Geschiebe ist im Allgemeinen schlecht: die Grundmassen sind ausgebleicht, die Gesteine stark verwittert, manchmal regelrecht durchgewittert.
Die in SCHNEIDER & TORBOHM 2020 dokumentierten Funde sind ausschließlich Einzelfunde von den Überkornhalden in Kiesgruben. Diese aus sandigen bis kiesigen Horizonten abgetrennte, grobe Gesteinsfraktion kann umgelagertes Material aus älteren Glazial-Ablagerungen enthalten. Statistische Daten zur glaziostratigraphischen Verbreitung von Rhombenporphyr-Geschieben in weichsel- und saalezeitlichen Ablagerungen in brandenburgischen Glazialablagerungen ließen sich durch Zählungen aus Tillablagerungen erheben. Jedoch dürften Rhombenporphyre hier auch bei ausdauernder Suche nur sehr selten anzutreffen sein.
Bemerkenswert ist die hohe Fundanzahl in unmittelbarer Nähe der nordöstlichen Verbreitungsgrenze der Rhombenporphyr-Geschiebe am Nordrand des Oderbruchs (s. SCHULZ 1973). Aus der Grube Hohensaaten (Lokalität 3 in Abb. 22) stammen 9, aus mittlerweile stillgelegten Gruben der unmittelbaren Umgebung zwei weitere Funde.
Der Geschiebesammler W. Bennhold trug im Laufe mehrerer Jahrzehnte mindestens 53 Rhombenporphyr-Geschiebe zusammen. Sie stammen überwiegend aus dem kompliziert gebauten Stauchmoränenkomplex der Rauener Berge im Bereich des Frankfurter Stadiums der Weichsel-Vereisung. Nach ZWENGER 1991 ist der genaue Herkunftshorizont zwar nicht präzisierbar, jedoch dürften die RP-Geschiebe überwiegend saalezeitlichen Bildungen entstammen, weil die weichselkaltzeitlichen Ablagerungen hier nur geringmächtig ausgebildet sind. Bennholds Funde werden in der Geschiebesammlung im Museum Fürstenwalde aufbewahrt.
Als Ursache für Fundhäufungen von Rhombenporphyren außerhalb ihres Hauptverbreitungsgebietes nennt SCHULZ 1973 einen wechselnden Einfluss des norwegischen Gletscherstroms. Rhombenporphyre wurden während des Drenthe-Stadiums der Saale-Vereisung und während des Brandenburgischen Stadiums der Weichsel-Vereisung weit nach Osten transportiert. Auch EIßMANN 1967 (in EHLERS 2011: 47) nimmt an, dass ein norwegisch-westschwedischer Eisstrom, dessen östlichste Ausdehnung etwa bis in den Raum Bornholm reichte, zu verschiedenen Zeiten durch einen nordschwedisch-finnischen Eisstrom abgelenkt wurde. Rhombenporphyr-Geschiebe von relativ weit östlich gelegenen Fundlokalitäten dürften daher nicht etwa aus aufgearbeiteten Ablagerungen der Elster-Vereisung stammen, zumal ihre Verbreitungsgrenze zumindest in Sachsen weit westlich der Maximalausdehnung elsterzeitlicher Sedimente liegt (etwa im Raum Grimma, SCHULZ 1973).
Geschiebefunde anderer Gesteine des Oslo-Grabens scheinen trotz intensiver Suche in Brandenburg nur sehr spärlich vorzukommen. MEYER AP 1964 berichtet von Fundhäufungen in der Kiesgrube am Stener Berg (Berlin). Aus der Kiesgrube Fresdorfer Heide bei Potsdam stammt ein Larvikit-Geschiebe. Ein weiterer Fund durch W. Bennhold aus den Rauener Bergen wird im Museum Fürstenwalde aufbewahrt. Herr D. Schmälzle (†) (Berlin) berichtet von einem Larvikit-Geschiebe aus dem nördlichen Brandenburg (mündl. Mitteilung). Erwähnenswert sind in diesem Zusammenhang vereinzelte Funde südwestschwedischer Leitgeschiebe wie Schonengranulit und „Flammenpegmatit“ (Slg. Torbohm: 7 Funde), die bisher offenbar nur wenig Beachtung fanden und ebenfalls durch einen norwegisch-westschwedischen Eisstrom nach Brandenburg gelangt sein dürften.
Abb. 23: Bisher größter Rhombenporphyr-Fund aus Brandenburg (20 x 15 x 10 cm); gut erhaltenes Exemplar mit dunkelgrauer Grundmasse und silbrig glänzenden, transparenten Feldspäten; Kiesgrube Niederlehme bei Berlin; Slg. M. Torbohm.Abb. 24: Brauner Rhombenporphyr, Aufnahme unter Wasser (Kiesgrube Niederlehme).Abb. 25: Rhombenporphyr mit eingeregelten Feldspäten (fluidaler Typ, „RP1“); Kiesgrube Niederlehme.Abb. 26: Rhombenporphyr mit hellen und orangefarbenen Feldspäten, Aufnahme unter Wasser (Kiesgrube Niederlehme).Abb. 27: Rhombenförmiger Feldspat-Einsprengling mit subparallelen, welligen Entmischungslamellen und randlicher Zonierung. Geschiebe aus der Kiesgrube Damsdorf-Bochow bei Lehnin, Slg. D. Lüttich.Abb. 28: Glomerophyrisches Gefüge; zu kleinen Kristallhaufen aggregierte Feldspat-Einsprenglinge. Rhombenporphyr aus der Kiesgrube Hoppegarten, leg. St. Schneider.Abb. 29: Eigens gedrucktes „Festkärtchen“ zum 50. Rhombenporphyr-Fund aus der Umgebung von Fürstenwalde (Sammlung Bennhold, Museum Fürstenwalde).Abb. 30: Blasige Rhombenporphyr-Lava, einsprenglingsarmer Typ. Kiesgrube Teschendorf, leg. St. Schneider.Abb. 31: Lapillistein mit Rhombenporphyr- und Mandelstein-Fragmenten, Aufnahme unter Wasser. Kiesgrube Teschendorf, leg. St. Schneider.Abb. 32: Rhombenporphyr-Lapillistein, polierte Schnittfläche. Kiesgrube Falkenthal, Löwenberger Land.Abb. 33: Rhombenporphyr aus roten und braunen, fest miteinander verbundenen Pyroklasten (pyroklastische Brekzie). Die Bezeichnung „Agglomeratlava“ ist nach aktueller Nomenklatur Pyroklastiten vorbehalten, die zu mind. 75% aus Bomben (Vulkanoklasten über 63 mm) bestehen. Fundort: Hohensaaten an der Oder, Slg. St. Schneider.Abb. 34: Rhombenporphyr-Geschiebe aus SE-Brandenburg (Papproth, Tagebau Welzow-Süd, Niederlausitz).Abb. 35: Rhombenporphyr mit rechteckigen Feldspat-Einsprenglingen (Rektangel-Porphyr); Lesesteinhaufen bei Schlunkendorf, Slg. D. Lüttich.Abb. 36: Fund aus dem Berliner Stadtgebiet; Kiesgrube Spandau, leg. A.P. Meyer, Aufnahme unter Wasser.Abb. 37: Rotgrauer Rhombenporphyr, Kiesgrube Hartmannsdorf bei Berlin.Abb. 38: Graubrauner, deutlich magnetischer Rhombenporphyr mit dunkelgrauen Feldspäten, die von gelben Säumen umgeben sind (Langtangen-Typ, RP14a); Kiesgrube Teschendorf bei Oranienburg.Abb. 39: Rhombenporphyr mit körniger Grundmasse. Kiesgrube Oderberg-Bralitz; Slg. St. Schneider.Abb. 40: Intrusiver Typ mit körniger Grundmasse. Kiesgrube Hoppegarten bei Müncheberg.Abb. 41: Nahaufnahme der nassen Oberfläche.Abb. 42: Heller Rhombenporphyr. Das Gestein enthält runde und transparente Quarzaggregate, vermutlich eine sekundäre Füllung von Blasenhohlräumen. Kiesgrube Borgsdorf/Velten bei Oranienburg, leg. St. Schneider.
5. Literatur
EHLERS J 1988 Skandinavische Geschiebe in Großbritannien – Der Geschiebesammler 22 (2): 49-64, 5 Abb., Hamburg.
EHLERS J 2011 Das Eiszeitalter – Spektrum Sachbuch: IX+363 S., 347 meist kapitelweise num. Abb. (davon 327 farbig), 12 kapitelweise num. Tab., 32 Text-Kästen, Heidelberg etc. (Spektrum Akademischer Verlag in Springer SBM).
EIßMANN L 1967 Rhombenporphyrgeschiebe in Elster- und Saalemoränen des Leipziger Raumes – Abhandlungen und Berichte des naturkundlichen Museums „Mauritianum” Altenburg 5: 37-46, 2 Abb., 1 Tab., Altenburg.
GÁBA Z 1974 Rhombenporphyr und Prickgranit als Geschiebe im tschechoslowakischen Schlesien – Der Geschiebesammler 9 (1): 29-30, 1 Abb., Hamburg.
GÁBA Z & MATYÁŠEK J 1997 Rhombenporphyr-Geschiebe in der Tschechischen Republik- Geschiebekunde aktuell 13 (4): 123-125, 3 Abb., Hamburg.
GÓRSKA M 2003 Nowe znaleziska narzutniaków porfiru rombowego z Oslo na terenie północno-zachodniej Polski [New finds of erratics of the Oslo rhomb porphyry in North-Western Poland] – Przegląd Geologiczny 51 (7): 580-585, 7 Abb., 1 Tab., Warszawa.
HILLEFORS Å 1968 Fynd av stora block av rombporfyr [Discovery of large boulders of rhombporphyry] – Svensk geografisk Årsbok, 44: 186-188, Lund (Lunds Universitet, Geografiska Institution).
HUISMAN H 1971 Die Verbreitung der Rhombenporphyre – Der Geschiebesammler 6 (2): 47-52, Hamburg.
JENSCH J-F 2013b Korrekturen zu Bestimmungspraxis Rhombenporphyre – Der Geschiebesammler 46(4): 120, 1 Abb., Wankendorf.
KUMMEROW E 1954 Grundfragen der Geschiebeforschung (Heimat, Transport und Verteilung der Geschiebe) – Geologie 3 (1): 42-54, Berlin.
LAMPE R 2012 Erster Nachweis eines Rhombenporphyr-Geschiebes in Vorpommern!? – Geschiebekunde aktuell 28 (3/4) [Werner-Schulz-Festschrift]: 95-98, 1 Abb., Hamburg/Greifswald.
LÜTTIG G 1997 Beitrag zur Geschiebeforschung in Böhmen und Mähren – Geschiebekunde aktuell 13 (2): 43-46, 2 Abb., Hamburg.
MEYER A P 1964 Über Funde kristalliner Geschiebe aus Berlin – Der Aufschluss, Sonderheft 14: 111-116, Heidelberg.
MEYER A P 1969 Ein Blick nach Norden – Der Geschiebesammler 4 (1): 21-27, 4 (2):58-62, 1 Karte, 4 (3/4): 83-94, 2 Abb., Hamburg.
MEYER K-D 1993 Rhombenporphyre an Englands und Schottlands Ostküste – Der Geschiebesammler 26 (1): 9-17, 6 Abb., Hamburg.
MEYER K-D 2010 200 Jahre Rhombenporphyr – Der Geschiebesammler 43 (3): 97-105, 4 Abb., 1 Karte, Wankendorf.
OFTEDAHL C 1952 Studies on the igneous rock complex of the Oslo region. XII. The Lavas – Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo (I) Matematisk-Naturvidenskapelig Klasse 3: 64 S., 21 Abb., 6 Tab., Oslo (Universitetsforlag).
OFTEDAHL C 1967 Magmen-Entstehung nach Lava-Stratigraphie im südlichen Oslo-Gebiete – Geologische Rundschau 47: 203-218, 5 Abb., 2 Tab., Stuttgart.
QUENSEL P 1918 Über ein Vorkommen von Rhombenporphyren in dem präkambrischen Grundgebirge des Kebnekaisegebietes. – Bulletin of the Geological Institution of the University of Upsala 16: 1-14, 2 Abb., 1 Taf., 3 Tab.,Uppsala.
SCHULZ W 1973 Rhombenporphyrgeschiebe und deren östliche Verbreitungsgrenze im nordeuropäischen Vereisungsgebiet – Zeitschrift für geologische Wissenschaften 1 (9): 1141-1154, 5 Abb., Berlin.
SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 1 Taf., div. Abb., Schwerin (cw Verlagsgruppe).
SCHULZ W 2012 Stratigraphie und Geschiebeführung am Kliff des Klützer Winkels Nordwest – Mecklenburg) – Geschiebekunde aktuell 28 (1): 13-27, 8 Abb.; Hamburg/Greifswald.
SMED P & EHLERS J 2002 Steine aus dem Norden (2.Aufl.) – 194 S., 34 Taf., 67 Abb., 1 Kte. (rev. 2008), Berlin, Stuttgart (Gebr. Borntraeger).
STACKEBRANDT W & MANHENKE V [Hrsg.] 2002 Atlas zur Geologie von Brandenburg – Landesamt für Geowissenschaften und Rohstoffe Brandenburg, (2. Aufl.): 142 S., 43 Ktn., Kleinmachnow.
TIETZ O 1999b Otoczaki porfiru rombowego z Pogórza Łużyckiego (pd.-wsch. Niemcy) – Przyroda Sudetów Zachodnich t.2: 105-108, 2 Abb., 1 Tab., 1 Kt., Jelenia Gora.
VIŠEK J & NÝVLT D 2006 Leitgeschiebestatistische Untersuchungen im Kontinentalvereisungsgebiet Nordböhmens – Archiv für Geschiebeforschung 5 (1-5) [Festschrift Gerd Lüttig]: 229-236, 2 Abb., 2 Tab., Hamburg/Greifswald.
ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).
ZWANZIG M, BÜLTE R, LIEBERMANN S & SCHNEIDER S 1994 Sedimentärgeschiebe in den Kiesgruben Oderberg-Bralitz, Hohensaaten und Althüttendorf – In: Schroeder J H [Hrsg]: Führer zur Geologie von Berlin und Brandenburg, No. 2: Bad Freienwalde-Parsteiner See: 131-141, 7 Abb., Berlin (Geowissenschaftler in Berlin und Brandenburg e.V., Selbstverlag).
ZWENGER W H 1991 Die Geschiebesammlung W. Bennhold im Museum Fürstenwalde (Spree) Teil 1: Kristalline Geschiebe – Archiv für Geschiebekunde 1 (2): 65-78, 2 Taf., 4 Abb., 2 Tab., Hamburg.
Abb. 1: Ostsee-Syenitporphyr mit grüner Grundmasse, wenigen roten Feldspat-Einsprenglingen und Mandeln mit zonarem Aufbau. Kiesgrube Hoppegarten (Brandenburg), Breite 10 cm.
Der Ostsee-Syenitporphyr ist nur als Geschiebe bekannt und kommt in mehreren Spielarten vor. Die häufigere braune bis grünlichbraune Variante kann recht unscheinbar sein und leicht übersehen werden (Abb. 6-7,10, 18-20). Seltener sind intensiv grüne Typen, teilweise mit großen Mandeln (Abb. 1-3, 13-16). Gemeinsam sind allen Varianten eine feinkörnige Grundmasse, wenige und kleine Einsprenglinge aus weißem bis rotem Feldspat sowie ovale Mandeln, die meist einen zonierten Aufbau aufweisen.
Abb. 2: Gleicher Stein, polierte Schnittfläche.Abb. 3: Nahaufnahme. Einige Feldspäte weisen gitterförmige Texturen auf. Die Mandeln sind mehrfach zoniert und besitzen teils dunkle, teils helle Kerne.
Beschreibung
Die Grundmasse des Ostsee-Syenitporphyrs kann weitgehend homogen (Abb. 4), schlierig (Abb. 11-12) oder von Rissen netzartig durchzogen (Abb. 8-9) sein. Oftmals sind einzelne, seltener zahlreiche runde und bräunliche Gesteinseinschlüsse enthalten (z. B. Abb. 6, 15, 19, 25). Neben braunen Tönungen finden sich auffällig grüne, selten auch blaugrüne Grundmassen (Abb. 17). Die grünlichen Färbungen dürften auf hydrothermale Alterationsprodukte wie Epidot und Chlorit zurückzuführen sein. Für einen vulkanischen Ursprung des Gesteins spricht die Anwesenheit von Mandeln.
Weiße bis rötliche Feldspat-Einsprenglinge sind nur spärlich vorhanden und lose im Gestein verteilt. Sie erreichen eine Größe von 1-5 mm. Einige Feldspäte zeigen ein gitterartiges, durch Ausscheidungen dunkler Minerale nachgezeichnetes Muster (Abb. 3, 5). Quarz-Einsprenglinge fehlen, nur vereinzelt und nicht in jedem Geschiebe finden sich unregelmäßig geformte bis rundliche Quarzaggregate (Abb. 18).
Die Mandeln erreichen einen Durchmesser von 1-5 mm, seltener sind über 1 cm groß. Sie weisen ovale Umrisse und meist einen zonaren Aufbau auf. Dabei lassen sich verschiedene Mineralabfolgen beobachten: heller Kern, dunkler Rand (oder umgekehrt); schwarze Kerne, grüner Rand usw. Gelegentlich besteht der Kern der Mandeln aus milchig-weißem bis bläulichem Chalcedon (massig) oder Achat (gebändert). Die Mandeln können von einem breiten Reaktionssaum umgeben sein, der auf einen Stoffaustausch zwischen Grundmasse und Mandeln hinweist. Ein seltener Fund sind farblich attraktive Varianten mit cm-großen und zonierten Mandeln (Abb. 13-16; s. a. kristallin.de).
Syenitporphyr ist eine veraltete und nach gegenwärtiger Nomenklatur nicht mehr verwendete Bezeichnung für Vulkanite oder feinkörnige Magmatite, die Alkalifeldspat-, aber keine Quarzeinsprenglinge enthalten. Vorkommen solcher Gesteine sind von verschiedenen Lokalitäten bekannt (z. B. Rödö, Ragunda). Abb. 33-34 zeigt ein Beispiel, das nicht dem hier beschriebenen Geschiebetyp entspricht.
Abb. 4: Ostsee-Syenitporphyr mit grünlich-grauer Grundmasse. Die zonierten Mandeln weisen helle, sich in die Grundmasse fortsetzende Aureolen auf. Geschiebe aus der Kiesgrube Teschendorf bei Oranienburg, Aufnahme unter Wasser.Abb. 5: Gleicher Stein, Nahaufnahme. Links unten ein netzartig von dunklen Mineralen durchsetzter Feldspat.Abb. 6: Grüner Ostsee-Syenitporphyr, polierte Schnittfläche, Aufnahme unter Wasser. Geschiebe von Binz auf Rügen, leg. D. Lüttich.Abb. 7: Nahaufnahme: rote Feldspat-Einsprenglinge, längliche Mandeln mit weißem Achat/Chalcedon, rundliche Gesteinseinschlüsse sowie ein einzelnes dunkelgraues Quarzaggregat.Abb. 8: Grüner Ostsee-Syenitporphyr, durchzogen von einem Netzwerk aus Rissen. Polierte Schnittfläche eines Geschiebes aus der Kiesgrube Damsdorf/Bochow (Brandenburg); leg. D. Lüttich.Abb. 9: Nahaufnahme. Einige Mandeln enthalten Kerne aus hellem Chalcedon/Achat und sind von einem dunklen Rand sowie einer breiten Aureole in der Grundmasse umgeben.Abb. 10: Graugrüner Ostsee-Syenitporphyr mit blassroten Feldspat-Einsprenglingen und zonierten Mandeln (dunkler Kern, heller Rand). Kiesgrube Hohensaaten, Brandenburg.
Herkunft
Das Heimatgebiet des Ostsee-Syenitporphyrs wird am Grund der Ostsee zwischen Gotland und dem Landorttief vermutet. Die Erstbeschreibung geht auf HEDSTRÖM 1894 zurück (vgl. a. COHEN & DEECKE 1896, HESEMANN 1975, ZANDSTRA 1988). HEDSTRÖM 1894 berichtet von häufigen Geschiebefunden des braunen Ostsee-Quarzporphyrs, basaltischen Mandelsteinen („Ostsee-Melaphyr-Mandelstein“) und gelegentlichen Funden des Ostsee-Syenitporphyrs auf Gotland und der etwas weiter nördlich gelegenen Insel Gotska Sandön. Diese Funde verweisen auf ein gemeinsames oder ähnliches Herkunftsgebiet in nördlicher Richtung. Eine Probe aus Hedströms Erstbeschreibung ist auf skan-kristallin.de abgebildet, eine Übersetzung seiner Beschreibung findet sich auf kristallin.de.
In Norddeutschland tritt der Ostsee-Syenitporphyr mitunter gehäuft an Lokalitäten mit viel braunem Ostsee-Quarzporphyr auf. ZANDSTRA 1988: 177 weist auf eine große Variabilität des Gesteinstyps hin. Neben Ostsee-Syenitporphyren, die mit den Beschreibungen von Hedström weitgehend übereinstimmen (Abb. 1-17), finden sich weitere Syenitporphyr-Geschiebe mit ähnlichen Merkmalen (Abb. 18-32). Es ist derzeit unklar, ob alle diese Varianten aus dem gleichen Vorkommen stammen oder ähnliche Gesteine auch an anderen Lokalitäten vorkommen. Eine Untersuchung von Geschieben auf Gotland und Gotska Sandön könnte hier Klarheit schaffen.
Abb. 11: Ostsee-Syenitporphyr mit inhomogener und schlieriger Grundmasse. Der Fund zeigt die Variationsbreite möglicher Färbungen der Grundmasse. Polierte Schnittfläche, Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).Abb. 12: Nahaufnahme: rundlicher Gesteinseinschluss sowie mehrfach zonierte Mandeln mit breiter Aureole. Einige Mandeln besitzen helle Kerne aus Chalcedon.
Abb. 13-16 zeigt einen Ostsee-Syenitporphyr mit großen und mehrfach zonierten Mandeln, braunen und grünlichen Gesteinseinschlüssen und einen großen Alkalifeldspat-Xenokristall. Fundort: Kiesgrube Horstfelde bei Berlin.
Abb. 13: Aufnahme unter Wasser
Abb. 14: Aufnahme unter Wasser
Abb. 15: Polierte Schnittfläche
Abb. 16: Nahaufnahme
Abb. 17: Ostsee-Syenitporphyr mit blaustichiger Grundmasse. Geschiebe von Nienhagen bei Rostock, nass fotografiert, leg. S. Mantei.Abb. 18: Graubrauner Ostsee-Syenitporphyr mit zahlreichen Feldspat-Einsprenglingen sowie rundlichen Gesteinseinschlüssen (teilweise mit dunklem Reaktionssaum). Strandgeröll von Hohenfelde, östlich von Kiel.Abb. 19: Polierte SchnittflächeAbb. 20: NahaufnahmeAbb. 21: Zusammenstellung diverser Syenitporphyre mit wenigen Feldspat-Einsprenglingen, Mandeln und Fremdgesteinseinschlüssen, Geschiebefunde aus Brandenburg.Abb. 22: Brauner Syenitporphyr mit grünlichen Gesteinseinschlüssen; gleiches Gestein wie in Abb. 21 links unten. Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).Abb. 23: Brauner Ostsee(?)-Syenitporphyr mit wenigen Feldspat-Einsprenglingen (teilweise netzartig korrodiert) und schwarzen Mandeln mit grünem Rand. Polierte Schnittfläche, Geschiebe aus der Kiesgrube Teschendorf bei Oranienburg (Brandenburg), Aufnahme unter Wasser.Abb. 24: Grünlichbrauner Syenitporphyr mit Gesteinseinschlüssen; einige rote Feldspat-Einsprenglinge sind gitterartig korrodiert. Geschiebe aus der Kiesgrube Horstfelde in Brandenburg, Aufnahme unter Wasser.Abb. 25: Brauner Syenitporphyr mit roten Feldspat-Einsprenglingen, dunklen Mandeln und Einschlüssen eines grünen Gesteins. Geschiebe von Steinbeck/Klütz, Aufnahme einer Bruchfläche unter Wasser.Abb. 26: Gleicher Stein, Nahaufnahme einer polierten Schnittfläche.Abb. 27: Ähnlicher Gesteinstyp: brauner Syenitporphyr mit roten Feldspat-Einsprenglingen, zonierten Mandeln und braunen Gesteins-Einschlüssen. Fundort „Baro“, leg. und ex coll. D. Schmälzle.Abb. 28: Nahaufnahme der nassen Oberfläche.Abb. 29: Brauner Syenitporphyr mit zonierten Aureolen um korrodierte rote Feldspat-Einsprenglinge. Polierte Schnittfläche, Geschiebe von Dwasiden (Rügen), leg. D. Lüttich.Abb. 30: Gleicher Stein, Nahaufnahme.Abb. 31: Brauner Syenitporphyr mit großen Mandeln; Kiesgrube Buchholz bei Prenzlau, Aufnahme unter Wasser.Abb. 33: Nahaufnahme der zonierten Mandeln.
Abb. 33-34 zeigt einen braunen Syenitporphyr (nur Feldspat-, keine Quarzeinsprenglinge), der keine Ähnlichkeit mit dem Ostsee-Typ aufweist. Neben roten treten auch grüne Feldspat-Einsprenglinge auf; Mandeln fehlen.
Abb. 33: Syenitporphyr, polierte Schnittfläche eines Geschiebes von Klütz, leg. T. Brückner.Abb. 34: Nahaufnahme.
Literatur
HEDSTRÖM H 1894 Studier öfver bergarter från morän vid Visby – Geologiska Föreningens i Stockholm Förhandlingar Serie c, Nr. 139; 16: 247-274, 9 Abb., Stockholm.
COHEN E & DEECKE W 1897 Über Geschiebe aus Neu-Vorpommern und Rügen. Erste Fortsetzung. – Mittheilungen des naturwissenschaftlichen Vereins für Neu-Vorpommern und Rügen zu Greifswald 28 (1896): 1-95, Berlin (R. Gaertner’s Verlagsbuchhandlung Hermann Heyfelder).
HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – Geologisches Landesamt Nordrhein-Westfalen, S. 137, 138.
ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).
Fleckengranite (spotted granite) sind kleinkörnige
Plutonite mit einer Fleckentextur. Nicht alle Fleckengesteine mit einer klein-
und gleichkörnigen Matrix aus Quarz, Feldspat und Biotit sollten als
Fleckengranit bezeichnet werden, auch andere Zusammensetzungen kommen in Frage
(z. B. Quarzdiorit). Allerdings können die Mengenanteile an Quarz,
Alkalifeldspat und Plagioklas von Hand nur schwer abschätzbar sein.
Unter den Metamorphiten gibt
es Gesteine mit einem ähnlichen Erscheinungsbild (Migmatite, Granofelse). Mögliche
Anhaltspunkte auf eine metamorphe Entstehungsgeschichte sind eine Lagen- oder
Gneistextur, eine inhomogene Grundmasse sowie das Vorhandensein von
feinfaserigem Sillimanit oder dunklen Cordieritflecken.
Die Flecken in Fleckengraniten besitzen meist einen zonaren Aufbau aus einer hellen, selten auch roten Randzone aus Feldspat und Quarz und einem dunkleren Kernbereich mit braunem oder rötlichem Titanit und/oder schwarzen Biotitplättchen. Titanit kann an seiner charakteristischen keilförmigen Kristallform erkennbar sein.
Abb. 1: Blekinge-Fleckengranit, Anstehendprobe vom Yasjön im Eringsboda-Massiv (Lok. 4), Aufnahme unter Wasser. Das kleinkörnige Gestein besitzt eine Quarz-Feldspat-Biotit-Matrix und enthält Flecken mit einem zonaren Aufbau. Die Säume bestehen aus Quarz und Feldspat, die roten Kerne aus Titanit und etwas Feldspat.Abb. 2: Nahaufnahme der nassen Oberfläche.
2. Leitgeschiebe?
Mehrere kleine Vorkommen von Fleckengraniten sind aus dem Stockholm-Gebiet („Stockholm-Fleckengranit“) und aus Blekinge („Blekinge-Fleckengranit“) bekannt. Mit weiteren und bisher nicht entdeckten Vorkommen, möglicherweise auch in anderen Regionen, muss gerechnet werden. Die petrographische Variabilität des Gesteinstyps – kaum ein Geschiebefund gleicht dem anderen – erschwert eine Referenzierung mit den wenigen vorliegenden Vergleichsproben, die allesamt aus Kleinvorkommen stammen. Fleckengranite eignen sich daher nicht als Leitgeschiebe. Auch eine grobe Unterscheidbarkeit von Geschiebefunden nach Herkunft (Stockholm oder Blekinge) ist aufgrund ganz ähnlicher Merkmale wohl kaum möglich.
Die Darstellung des Stockholm-Fleckengranits in der Geschiebeliteratur ist wenig befriedigend. Hesemann 1975: 188-191 nennt neben den Gesteinen aus dem Stockholm-Gebiet weitere „abweichende“ Fleckengranite, die er (methodisch problematisch) von Geschiebefunden aus Norddeutschland ableitet und annimmt, dass sie aus dem gleichen Gebiet stammen. Zandstra 1988: 205 unterscheidet zwei Typen und ordnet ihnen ein größeres Herkunftsgebiet zu („Södermanland und Uppland“). Für den ersten Typ, ein kleinkörniger Fleckengranit, der dem „normalen“ (?) Stockholm-Granit ähnelt, übernimmt er die Beschreibungen von Geijer 1913b. Der zweite Typ ist eine dunklere und feinkörnige Variante, die in Zandstra 1999, Nr. 123 als Migmatit bezeichnet wird. Hier werden also zwei verschiedene Gesteinstypen, Plutonite und Metamorphite, unter der gleichen Bezeichnung zusammengefasst. Feldstudien ergaben, dass dieser zweite Typ nicht im Zusammenhang mit dem Stockholm-Granit steht, sondern im Gebiet von Kolmården, etwa 100 km südwestlich von Stockholm, verbreitet als Geschiebe auftritt (s. Abb. 5).
3. Stockholm-Fleckengranit
Geijer 1913b beschreibt elf anstehende Vorkommen von
Fleckengraniten aus dem Gebiet des Stockholm-Granits. Ihre Ausdehnung beträgt wenige bis einige Hundert
Quadratmeter. Bis
auf eine Lokalität (Almnäs, 30 km SW Stockholm) liegen sie innerhalb des
Stadtgebiets von Stockholm. In fast allen Proben ist Titanit das dominierende
Mineral in den Kernen der Flecken, Biotit tritt viel seltener auf. Der Titanit ist
meist braun und als kompaktes Mineralkorn von max. 3-4 mm Länge oder als
schwammartige Masse ausgebildet. Die hellen Säume um die Kerne der Flecken
bestehen aus Quarz und Feldspat und können bis 6-7 mm breit werden.
Fleckenbildungen im Stockholm-Granit treten im Abstand von wenigen Metern zum Kontakt mit älteren Gneisen auf (Geijer 1913b). Die Minerale in den Flecken könnten z. B. durch metasomatische Vorgänge aus den Metamorphiten mobilisiert worden sein. Nach Lohberg 1963 sind die Kerne der Fleckengranite postkinematische, dicht unter 500 Grad gebildete Rekristallisationsprodukte als Folge metamorpher Differenzierungen (in Hesemann 1975).
Möller & Stålhös 1969 (Kartenblatt Stockholm SV) nennen zwei Vorkommen von Fleckengraniten innerhalb des Stockholm-Granits. Die Gesteine besitzen 1-3 cm große und runde oder elliptische Flecken mit einer hellroten Randzone aus Quarz und Feldspat und dunklen Kernen aus Biotit, Titanit oder beiden Mineralen.
Abb. 3: Stockholm-Fleckengranit, Anstehendprobe, wahrscheinlich südwestlich vom Thorsvikssvängen, Stockholm, Insel Lidingö (leg. o. A. 1960, Slg. Geozentrum Hannover). Foto aus skan-kristallin.de.
Während mehrerer Exkursionen in das Gebiet zwischen Norrköping und Stockholm konnte ich lediglich ein einziges Fleckengranit-Geschiebe in einer Kiesgrube unmittelbar westlich von Stockholm finden, das aller Wahrscheinlichkeit nach mit dem Stockholm-Granit im Zusammenhang steht (Abb. 4).
Abb. 4: Fleckengranit, Geschiebe aus der Kiesgrube Järna, W von Stockholm (Lok. 2). Die Flecken weisen einen undeutlichen Zonarbau auf, mit einer Randzone aus Feldspat und Quarz und einem unbekannten Mineralgemisch im Kern.
4. Fleckengesteine mit körniger Grundmasse
Graue Fleckengesteine mit einer kleinkörnigen, nicht näher differenzierbaren Grundmasse aus Quarz, Feldspat und Biotit sowie einer Gneistextur, manchmal auch einer kaum erkennbaren Foliation (Streifung, Einregelung der Flecken) konnten vor allem im südlichen Södermanland und östlichen Östergötland, etwa 100 km südwestlich von Stockholm, verbreitet als Geschiebe beobachtet werden. Dabei scheint es sich offenbar um etwas körnigere Varianten der feinkörnigen Fleckengesteine zu handeln, die in diesem Gebiet verbreitet auftreten (vgl. auch Geschiebefunde Abb. 15, 17 und 26 im Artikel Fleckengesteine). Aus der näheren Umgebung von Stockholm liegt lediglich ein Einzelfund dieses Typs (Abb. 7) vor.
Ein Teil der Funde entspricht dem zweiten Typ in Zandstra 1988, einem dunklen, biotit- und hornblendereichem Metamorphit (migmatitischer Gneis) mit einer Flecken-Struktur (Nr. 123 in Zandstra 1999, auch Rudolph 2017: 214). Die Bezeichnung „Stockholm-Fleckengranit“ für diesen Gesteinstyp dürfte obsolet sein, ebenso der Begriff „Stictolith“ oder stictolithische Textur für Migmatite mit Flecken von Reliktmineralen (Fettes & Desmons 2007).
Flecken von 0,5-3 cm Größe sind annähernd rund bis länglich geformt und liegen regellos im Gestein verteilt oder sind in Reihen angeordnet. Einfache Flecken bestehen meist aus einem Gemenge von Quarz und Feldspat. Zonierte Flecken zeigen einen weißen oder rötlichen Saum aus Feldspat und Quarz um einen dunklen Kern. Der schwarze, graue, rötliche, selten auch grün getönte Kernbereich kann aus einem einzelnen Mineral oder einem Mineralgemisch bestehen, z. B. schwarzen Biotitplättchen (manchmal nur ein einzelnes größeres Korn), grünlich-schwarzen Chloritmineralen oder gelbem, braunem oder rotem Titanit (gelegentlich an seiner keilförmigen Kristallform erkennbar).
Abb. 5: Graues Fleckengestein mit kleinkörniger Grundmasse aus Quarz, Feldspat und Biotit sowie länglichen und zonierten Flecken. Das hellbraune und transparente Mineral im Kern der Flecken könnte Titanit sein, keilförmige Kristallaggregate waren jedoch nicht erkennbar. Geschiebe vom Campingplatz Kolmården (Lok. 1).Abb. 6: Ähnlicher Geschiebefund von Kolmården (Lok. 1) mit feinkörniger Grundmasse und gelb- bis rötlich-braunem Titanit in den Kernen der Flecken (keilförmige Kristalle erkennbar).Abb. 7: Ähnlicher Typ eines Fleckengesteins mit einfachen Flecken, einige auch mit rötlichen Kernen; Geröllstrand in Skansholmen, südlich Stockholm (Lok. 3).
5. Blekinge-Fleckengranit
Kleinkörnige Granite mit einer Fleckentextur kommen an mehreren Lokalitäten in Nordost-Blekinge vor (Wiklander 1974: 52f). In der Nähe von Tving, innerhalb des Yasjö-Granits, einer Variante des 1,45 Ga alten Eringsboda-Granits, ist ein etwa 6 m breiter Gang eines Fleckengranits („sphen-spotted granite“) aufgeschlossen. Der etwas jüngere Fleckengranit durchschlägt den Yasjö-Granit und enthält Flecken mit rotem Titanit.
Abb. 8: Blekinge-Fleckengranit, angefeuchtete Anstehendprobe mit frischer Bruchfläche (Lok. 4).
Das hellgraue Gestein (s. a. Abb. 1 und 2) besitzt ein klein- und gleichkörniges Mineralgefüge aus Quarz, Feldspat und Biotit. Die annähernd runden, bis 10 mm großen Flecken besitzen einen zonaren Aufbau aus einer hellen Quarz-Feldspat-Aureole (2-4 mm) und einen roten Kern (3 mm) aus Titanit und etwas Feldspat. Die Ränder der Flecken setzen sich nur unscharf von der Matrix ab.
Abb. 9: Nahaufnahme unter Wasser.
6. Geschiebefunde
Fleckengesteine mit körniger Grundmasse (Korngrößen bis etwa 1 mm) treten als Geschiebe ebenso variantenreich in Erscheinung wie die feinkörnigen Vertreter. Gesteinstypen, die den folgenden Geschiebefunden aus Norddeutschland ähneln, konnten im Gebiet südlich und westlich von Stockholm sowie in Sörmland und Östergötland nicht beobachtet werden.
Abb. 10: Kleinkörniger Fleckengranit, Geschiebefund von Travemünde, E. Figaj leg.
Das Gestein ähnelt dem Geschiebetyp des Stockholm-Granits. Die länglichen Flecken scheinen eine bevorzugte Ausrichtung zu besitzen, während die hellgraue Matrix ein gleichkörnig-richtungsloses Mineralgefüge aufweist.
Abb. 11: Nahaufnahme der zonierten Flecken mit einem weißen Saum aus Quarz und Feldspat und einem dunklen Kern mit Biotit.Abb. 12: Roter Fleckengranit. Die Matrix enthält roten Alkalifeldspat und Quarz (Mengenanteile nicht abschätzbar) und reichlich dunkle Minerale. Die Randzone der Flecken besteht aus Quarz und Feldspat, der dunkle Kern enthält Biotit und vermutlich Titanit. Nahaufnahme einer polierten Schnittfläche, Geschiebe aus der Kiesgrube Arendsee (Brandenburg).Abb. 13: Biotitreiches und feinkörniges Fleckengestein mit roten Flecken aus Biotit und Titanit, Aufnahme unter Wasser. Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg.Abb. 14: Ähnlicher Geschiebetyp aus der Kiesgrube Gusow, Ost-Brandenburg; Aufnahme unter Wasser.
Weitere Abbildungen von Geschiebefunden finden sich auf skan-kristallin.de.
7. Verzeichnis der Lokalitäten
Lokalität 1: Geschiebe Fleckengesteine, Rollsteinstrand am Campingplatz Kolmården; 58.65718, 16.40712. Lokalität 2: Geschiebe Fleckengranit; aktive Kiesgrube zwischen Järna und Nykvarn; 59.12040, 17.46764. Lokalität 3: Geschiebe Fleckengestein; Geröllstrand am Campingplatz Skansholmen/S Sandviken; 59.04647, 17.69313 Lokalität 4: Anstehender Blekinge-Fleckengranit; Gang im Eringsboda-Granit, ca. 3,5 km N Tving, am Fahrweg N des Yasjön; 56.33846, 15.48692.
8. Literatur
Fettes DJ & Desmons J 2007 Metamorphic rocks – A classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks – Cambridge University Press.
Geijer P 1913b Zur Petrographie des Stockholm-Granites – GFF 35: 123-150
Hesemann
J 1975 Kristalline Geschiebe der
nordischen Vereisungen – GLA Nordrhein-Westfalen, S. 188-191.
Loberg B 1963 The Formation of a Flecky Gneiss and
Similar Phenomena in Relation to the Migmatite and Vein Gneiss Problem – Geologiska
Föreningen i Stockholm Förhandlingar, 85:1, 3-109, Stockholm.
Möller H &
Stålhös G 1969 Beskrivning till
geologiska kartbladet Stockholm SV. SGU Ae 4, S. 28.
Rudolph
F 2017 Das große Buch der Strandsteine –
320 S., zahlr. Abb., Kiel/Hamburg (Wachholz-Verlag – Murmann Publishers).
Wiklander U 1974 Precambrian petrology, geochemestry and
age relations of northeastern Blekinge, southern Sweden – Sveriges Geologiska
Undersökning (C) Avhandlingar och uppsatser 704 [Årsbok 68 (11)]:
142 S., 59 Abb., 9 Tab., 1 Kte., Uppsala.
Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ;
Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië
– XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1
sep. Kte., Leiden etc. (Brill).
Zandstra J G 1999: Platenatlas van noordelijke kristallijne gidsgesteenten – Backhuys Leiden, Nr. 123 und 124.
Die folgenden Geschiebefunde aus Norddeutschland illustrieren die petrographische Vielfalt von Fleckengesteinen. Kaum ein Fund gleicht dem nächsten, kaum ein Geschiebe lässt sich einem näheren Herkunftsgebiet zuordnen. Mögen in einigen Fällen auch Ähnlichkeiten mit den Funden aus Schweden bestehen (siehe 1. Teil), ist der Umkehrschluss nicht zulässig, dass der betreffende Gesteinstyp nur an einer einzigen Lokalität vorkommt. – Das erste Geschiebe stammt aus einer Kiesgrube in Brandenburg (E. Fuchs leg.) und wurde freundlicherweise von Herrn U. Maerz dünnschliffmikroskopisch untersucht.
Abb. 1: Grünlichbraunes und feinkörniges Fleckengestein, Aufnahme unter Wasser.Abb. 2: Nahaufnahme der polierten Schnittfläche. Die Flecken sind mehrfach zoniert und bestehen aus einem grünlichen Kern, einer hellen Zwischenzone und einer schmalen grünlichen Randzone.
Die Dünnschliffuntersuchung ergab, dass die Matrix aus xenomorphen, teilweise polygonalen Kristallen von Quarz, Kalifeldspat (überwiegend Mikroklin) und Plagioklas sowie idiomorphen Biotit-Kristallen besteht. Die äußere Randzone der Flecken ist deutlich grobkörniger als die Matrix und enthält ebenfalls Quarz, Kalifeldspat und Plagioklas. Die helle Zwischenzone enthält zusätzlich Serizit, die dunklen Kerne Serizit und Chlorit. Diese Minerale dürften Alterationsprodukte von Cordierit sein, der durch wässrige Fluide instabil wurde. Unalterierter Cordierit konnte nicht beobachtet werden. In den Kernen wurde weiterhin feinnadeliger Sillimanit gefunden. Die grünen Umwandlungsprodukte von Cordierit finden sich auch außerhalb der Blasten und umschließen die Körner der Matrix.
Abb. 3: Dünnschliffaufnahme einer Fleckenzone unter linear polarisiertem Licht. Bildbreite 3 mm. Foto: U. Maerz. Abb. 4: Gleicher Ausschnitt unter gekreuzten Polarisatoren. Foto: U. Maerz.
Das Zentrum des Kerns bilden Büschel von wirrstrahlig angeordneten, mit Serizit verwachsenen Sillimanitnadeln. Rechts und links schließen sich Bereiche an, die von überwiegend feinst verwachsenem Serizit ausgefüllt werden. Der Randbereich mit den größeren Kristallen aus Quarz und Feldspat setzt sich gut von der feiner körnigen Matrix ab.
Abb. 5: Polierte Schnittfläche eines grünen Fleckengesteins, Kiesgrube Damsdorf/Bochow, Brandenburg (D. Lüttich leg.).Abb. 6: Nahaufnahme.
Die Flecken besitzen eine dunkelgrüne äußere Randzone, eine helle Zwischenzone und grüne oder weiße Kerne, teilweise aus feinfaserigem Sillimanit. Bei den grünen Mineralen könnte es sich ebenfalls um Chlorit als Alterationsprodukt von Cordierit handeln.
Abb. 7: Grauer Fleckengneis mit biotitreicher Grundmasse aus der Kiesgrube Ruhlsdorf bei Bernau (Brandenburg). Aufnahme unter Wasser.Abb. 8: Nahaufnahme des gleichen Steins, Flecken mit grünen Kernen und hellem Saum.Abb. 9: Grauer Fleckengneis mit weißen Flecken aus Quarz und Feldspat. Kiesgrube Teschendorf bei Oranienburg, Brandenburg.Abb. 10: Quarz-Feldspat-Biotit-Gneis mit großen Flecken aus Quarz und Feldspat, umgeben von einer dunklen und biotitreichen Randzone. Kiesgrube Penkun, Ost-Brandenburg; Slg. A. Bräu.Abb. 11: Grauer Fleckengneis mit einzelnen größeren Biotitplättchen innerhalb der feinkörnigen weißen Flecken. Kiesgrube Hoppegarten bei Müncheberg, Brandenburg.Abb. 12: Sehr feinkörniges Fleckengestein mit quarzitischer Grundmasse. Kiesgrube Hohensaaten, Brandenburg.Abb. 13: Muskovithaltiger Quarz-Feldspat-Gneis; helle Flecken mit rötlichem Kern. Fundort: Geröllstrand Hökholz bei Eckernförde, Schleswig-Holstein.Abb. 14: Nahaufnahme, nasse Oberfläche. Die hellen Säume enthalten Quarz, Feldspat sowie ein feinfaseriges Mineral, vermutlich Sillimanit. Die Minerale in den roten Kernen sind feinkörnig und nicht bestimmbar.Abb. 15: Feinkörniger Fleckengneis, Strandgeröll von Travemünde (E. Figaj leg.).Abb. 16: Nahaufnahme.
Bemerkenswert ist ein mehrphasiger Aufbau der Flecken: 1. Kernbereich mit einem einzelnen Biotit- und/oder hellem Feldspat-Korn, 2. quarzreicher Saum, umgeben von 3. gelben Mineralen mit stumpfem Glanz (angewitterter Feldspat?). 4. Heller und stärker ausgelängter Bereich aus Quarz und Feldspat, schließlich 5. eine biotitreichere Hülle, ohne klare Abgrenzung zur Matrix aus Quarz, Feldspat und Biotit (+Amphibol?).
Abb. 17: Schnittfläche eines Fleckengneises, Aufnahme unter Wasser. Das Gestein ist auffällig schwer und enthält neben Biotit wahrscheinlich auch Amphibol in bedeutender Menge. Die länglichen Flecken bestehen aus feinfaserigem Sillimanit. Strandgeröll von Nienhagen bei Rostock, leg. G. Engelhardt.Abb. 18: Nahaufnahme der faserigen Sillimanit-Aggregate.Abb. 19: Fleckengestein als Windkanter. Die Kernbereiche der Flecken weisen Vertiefungen auf, während die hellen Säume der erosiven Einwirkung des Windes widerstehen konnten. Kiesgrube Rietz bei Treuenbietzen, Brandenburg; Slg. D. Lüttich.Abb. 20: Feinkörniger Gneis mit länglichen und glimmerreichen Flecken. Kiesgrube Gusow, Ost-Brandenburg.Abb. 21: Grünlicher Flecken-Granofels mit dunklen Cordierit- und weißen Sillimanit-Granoblasten (Strandgeröll von Misdroy in Westpolen). Das undeformierte Gestein könnte aus dem Västervik-Gebiet stammen, ein vergleichbares grünes Fleckengestein wurde dort bisher allerdings nicht gefunden.Abb. 22: Roter Fleckengneis, Geschiebe von der Ostsee. Foto: M. Bräunlich.Abb. 23: Nahaufnahme der länglichen Flecken mit wellenförmig ausgebildeten Aggregaten eines feinfaserigen Minerals, wahrscheinlich Sillimanit.
Als Geschiebe weniger verbreitet sind Glimmerschiefer oder glimmerreiche Metasedimente mit einer Fleckentextur (Flecken- oder Knoten-Glimmerschiefer, Abb. 24-26). In den meisten Fällen dürfte es sich um Kontaktmetamorphite mit Andalusit oder Cordierit als Mineralneubildung handeln.
Abb. 24: Knoten-Glimmerschiefer aus der Kiesgrube Vogelsang bei Eisenhüttenstadt, Brandenburg (St. Schneider leg.).Abb. 25: Metamorphit mit einer grünlich-grauen und an Hellglimmer reichen Matrix sowie dunklen Flecken (Kiesgrube Hohensaaten, Ost-Brandenburg).Abb. 26: Glimmerreicher Metamorphit (Metasediment) mit dunklen Flecken und einigen einzelnen hellen Feldspatkörnern (Kiesgrube Niederlehme bei Berlin). Abb. 27: Fleckengestein mit dunkler und feinkörniger Grundmasse aus der Kiesgrube Kröte (Wendland, Ost-Niedersachsen). Abb. 28: Für den Mineralbestand des Kernbereichs mit rötlich-gelben Mineralkörnern und der feinkörnigen weißen Randzone gibt es bisher keine Anhaltspunkte.Abb. 29: Polierte Schnittfläche eines Fleckengneises mit länglichen dunklen Flecken aus der Kiesgrube Althüttendorf in Brandenburg.Abb. 30: Helle und graugrüne Partien scheinen eine quarzitische Zusammensetzung zu besitzen, während die roten Partien zusätzlich Feldspat enthalten. Das Gestein ist von senkrecht verlaufenden Klüften durchzogen, die einzelnen Bereiche weisen einen leichten Versatz auf.Abb. 31: Eine schmale rote Partie enthält kleine nadelförmige Porphyroblasten (wahrscheinlich Amphibol).Abb. 32: Dunkle Cordierit-Flecken mit hellem Saum in einem feinkörnigen Granofels. Kiesgrube Waltersdorf bei Berlin.Abb. 33: Heller Quarz-Feldspat-Biotit-Gneis mit grünlich-braunen Flecken (alterierter Cordierit?). Polierte Schnittfläche eines Geschiebes aus der Kiesgrube Damsdorf/Bochow, Brandenburg; leg. D. Lüttich.Abb. 34: Dunkles Metasediment (Granofels) mit gelblichen Flecken (Kiesgrube Niederlehme bei Berlin).Abb. 35: Nahaufnahme der nassen Gesteinsoberfläche. Die gelblichgrauen Flecken auf der Außenseite weisen auf der Bruchfläche eine unvollständige Spaltbarkeit, einen lebhaften Glasglanz und eine dunkelgraue Tönung auf (Cordierit oder Andalusit).
Ein seltener Geschiebefund
sind Vulkanite mit einer Fleckentextur. Die Neubildung von Mineralen könnte
bevorzugt von sekundär entstandenen Strukturen mit abweichender chemischer Zusammensetzung
ausgegangen sein (z. B. Lithophysen).
Abb. 36: Metavulkanit, Aufnahme unter Wasser. Fundortangabe: „Roth“, wahrscheinlich aus der Umgebung von Parchim (D. Schmälzle leg.).Abb. 37: Nahaufnahme der polierten Schnittfläche. Innerhalb der kugeligen Aggregate ist ein feinfaseriges gelbbraunes Mineral als metamorphe Neubildung erkennbar (z. B. ein Amphibol wie Anthophyllit).
Der Vänge-Granit gehört zu den etwa 1,89-1,87 Ga alten mittelschwedischen Uppland-Graniten und kommt im gleichen Gebiet wie der Uppsala-Granit vor. Das Gestein ist zumindest in Brandenburg bei praktisch jedem Kiesgrubenbesuch anzutreffen, meist in größeren Blöcken, seltener in Handstückgröße.
Abb. 1: Vänge-Granit aus der Kiesgrube Horstfelde südlich von Berlin.
Als Leitgeschiebe geeignet sind grobkörnige und besonders quarzreiche Varianten dieses Alkalifeldspatgranits. Alkalifeldspat ist blassrot, seltener auch kräftig rot oder orangefarben getönt und bildet unregelmäßig begrenzte Kristalle von 1-3 cm Länge. Weißer Plagioklas ist deutlich kleiner und nur in geringer Menge enthalten (max. 10 %). Er erscheint häufig an den Rändern der Alkalifeldspäte. Quarz kommt reichlich in Form grauer bis gelblich- oder grünlich-grauer und zerdrückter („zuckerkörniger“) Massen vor. Daneben finden sich meist auch einzelne größere und trübe Quarzkörner von bläulichgrauer Farbe, die nicht zerdrückt sind. Durch den hohen Quarzgehalt „schwimmen“ die Alkalifeldspäte regelrecht in der Quarzmasse und das Gefüge wirkt auf den ersten Blick porphyrisch. Dunkle Minerale (Biotit) sind nur in geringer Menge enthalten.
Das Mineralgefüge ist insgesamt undeformiert (richtungslos-körniges Gefüge, keine länglichen Aggregate von dunklen Mineralen). Lediglich Quarz wurde weitgehend granuliert, nachdem der Granitkörper bereits erstarrt war. Nach Zandstra 1988 ist der Vänge-Granit mittelkörnig, nach Lundegardh 1956: 55 „grob mittelkörnig“. Die Alkalifeldspäte in Anstehendproben (vgl. skan-kristallin.de) sind in der Regel größer als 1 cm.
Mittelschwedische Granite verschiedener Vorkommen besitzen teilweise ähnliche Merkmale wie der Vänge-Granit. Dies betrifft den Norrtälje-/Vätö-Granit und einige Granite des Hedesunda-Massivs (s. Abb. 2). Der Vätö-Granit ist mittelkörnig, enthält weniger, zudem kräftiger rot gefärbten Alkalifeldspat und mehr dunkle Minerale. Die zerdrückten Quarze zeigen eine mittelgraue Tönung. Nur einige Varianten des Vätö-Granits besitzen blassrote Alkalifeldspäte. Proben auf skan-kristallin.de. Proben aus dem Hedesunda-Massiv (siehe skan-kristallin.de) zeigen Ähnlichkeiten zum Vänge-Granit in Farbe und Gefüge. Der Quarzanteil ist hier geringer, die Quarze sind nicht oder nicht durchgängig granuliert. Der Älö-Granit aus Nordost-Småland ist ein sehr quarzreicher Granit mit vollständig granuliertem Quarz. Im Vergleich zum Vänge-Granit bestehen Gefüge- und Farbunterschiede: mittelkörniges Gefüge, hellroter bis braunroter Alkalifeldspat, manchmal bläulicher Quarz, mehr dunkle Minerale. Proben auf skan-kristallin.de.
Die drei genannten Granite konnten bisher nicht als Geschiebe identifiziert werden. Ihr Status als Leitgeschiebe ist umstritten oder noch nicht geklärt.
Abb. 2: Herkunftsgebiet des Vänge-Granits und anderer im Text erwähnter Granit-Vorkommen. Abb. 3: Vänge-Granit, Abschlag mit frischer Bruchfläche aus einem größeren Block (Kiesgrube Hohensaaten, Brandenburg). Abb. 4: Die Nahaufnahme zeigt hellroten Alkalifeldspat und gelblichgrüne Massen von zerdrücktem Quarz.Abb. 5: Vänge-Granit, Großgeschiebe aus der Niederlausitz (Findlingshalde Steinitz bei Drebkau, Bildbreite etwa 30 cm).Abb. 6: Gleicher Stein, Nahaufnahme. Das Gefüge besteht aus hellrotem Alkalifeldspat und kleineren weißen Plagioklaskörnern. Granulierter Quarz bildet eine grünlichgraue Masse, daneben finden sich einige größere milchig-hellgraue Quarzkörner. Stellenweise „schwimmen“ die Alkalifeldspäte in der Quarzmasse.Abb. 7: Diese leicht angewitterte Bruchfläche eines Vänge-Granits zeigt schön die Gruppierung kleiner weißer Plagioklaskörner um hellrote Alkalifeldspäte. Geschiebe aus Merzdorf am ehemaligen Tagebau Cottbus-Nord.Abb. 8: Vänge-Granit aus der Kiesgrube Teschendorf bei Oranienburg (Brandenburg), Breite 14 cm.Abb. 9: Vänge-Granit, polierte Schnittfläche, Kiesgrube Schweinrich (Brandenburg), Slg. F. Wilcke (Wittstock).Abb. 10: Nahaufnahme.Abb. 11: Granit vom Vänge-Typ mit einem höheren Anteil dunkler Minerale. Breite 40 cm, Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).Abb. 12: Gleicher Stein, Nahaufnahme.Abb. 13: Heller Granit mit orangefarbenem Alkalifeldspat, mäßig hohem Quarzgehalt und wenig dunklen Mineralen. Kiesgrube Teschendorf bei Oranienburg (Brandenburg).Abb. 14: Quarz ist weitgehend granuliert, einige Plagioklase besitzen einen rötlichen Kern.Abb. 15: Heller Granit mit wenig dunklen Mineralen aus dem ehem. Tagebau Cottbus-Nord, Breite 45 cm.Abb. 16: Nahaufnahme des Gefüges. Der Granit ist nicht grob-, sondern mittelkörnig. Die übrigen Gefügemerkmale stimmen ansonsten mit denen des Vänge-Granits überein.Abb. 17: Grobkörniger Granit mit hellrotem Alkalifeldspat und weißem bis grünlich-grauem Plagioklas. Quarz ist grünlich-grau getönt, bildet aber einzelne Körner aus und ist nicht zerdrückt (kein Vänge-Granit gemäß der Beschreibung des Leitgeschiebes). Findlingslager Steinitz am Tagebau Welzow-Süd.
Das letzte Großgeschiebe zeigt einige Merkmale des Vänge-Granits (hellroter Alkalifeldspat, grünliche Massen aus zerdrücktem Quarz, größere trübe Quarzkörner). Durch den hohen Gehalt an Plagioklas ist das Gestein aber kein Granit, sondern ein Granodiorit. Die Art des Gefüges der kleinen Plagioklaskörner erinnert an andere Uppland-„Granite“, z. B. den Uppsala-Granit. Im Vänge-Massiv kommen auch Plutonite mit intermediärer Zusammensetzung vor (Lundegardh 1956: 55). Ob das Geschiebe tatsächlich von dort stammt, lässt sich allerdings nicht mit Sicherheit feststellen.
Abb. 18: (Uppland?-)Granodiorit, Findlingslager Steinitz am Tagebau Welzow-Süd (Brandenburg), Bildbreite 30 cm. Abb. 19: gleicher Stein, Nahaufnahme.
Literatur
Lundegårdh P-H & Lundqvist G 1956 Beskrivning kartbladet Uppsala – SGU Serie Aa 199, Uppsala.
Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).
In Nordeuropa gibt es nur kleine Karbonatit-Vorkommen. Als Geschiebe spielt der Gesteinstyp bisher keine Rolle, weil er sehr selten zu finden und wahrscheinlich nur schwer erkennbar sein dürfte. Dennoch lohnt ein Blick auf diese kuriosen Gesteine, da es sich um die einzigen Magmatite handelt, die nicht aus silikatischen, sondern aus karbonatreichen Schmelzen hervorgehen.
Karbonatite enthalten mindestens 50 % Karbonat. Häufig ist dies Calcit, aber auch Ankerit, Siderit, Dolomit oder Na-Karbonate kommen als bestimmende Karbonatphase in Frage. Verbreitet sind Varianten mit einem Anteil von 70-90% Calcit. Mittel- bis grobkörnige Calcit-Karbonatite werden als Sövit, feinkörnige als Alvikit bezeichnet. Als Begleitminerale können Glimmer (Phlogopit), Olivin, Magnetit und Apatit auftreten. Spezifische, aber nur gelegentlich enthaltene Karbonatit-Minerale sind Ägirin, Pyrochlor und Nephelin.
Abb. 1: Karbonatit (Sövit) von Alnö, grobkörniges Gefüge aus kristallinem Calcit und Dunkelglimmer. Foto: M. Bräunlich. Abb. 2: Nahaufnahme des Gefüges.
Vorkommen des seltenen Gesteinstyps sind mit Alkaligesteinen assoziiert und an kontinentale Riftsysteme mit Hot-spot-Vulkanismus gebunden. Karbonatite bilden meist kleine subvulkanische Körper in Form von Gängen oder Stöcken. Effusive, also an der Erdoberfläche austretende Karbonatite sind nur von einer einzigen Lokalität bekannt, dem Ol Doinyo Lengai in Tansania. Dort konnten auch sehr dünnflüssige, aber nur etwa 500°C heiße und eigenartig blau glühende Lavaströme beobachtet werden (Video auf youtube, Bilder auf nationalgeographic.com).
Die Karbonatit-Schmelzen entstehen
nicht etwa durch Aufschmelzung von karbonatreichen Sedimenten, sondern werden im
Erdmantel gebildet. Karbonatitische Schmelze, einmal durch magmatische
Differenziationsprozesse vom Mantelgestein (Peridotit) abgesondert, ist mit
Silikatschmelzen nicht mehr mischbar und steigt als eigenständiger Intrusivkörper
auf. Karbonatite sind eine wichtige Lagerstätte. In keinem anderen Gesteinstyp
kommt es zu einer vergleichbaren Anreicherung von Elementen wie Nb, P, vor
allem aber Seltenen Erden.
Aus Skandinavien sind mehrere kleine Karbonatit-Vorkommen bekannt. Im Fen-Komplex (Norwegen) treten neben Söviten auch Fe- und Mg-reiche Karbonatite auf (Abb. 4, weitere Proben auf skan-kristallin.de). Kleinere Massive existieren in Nordschweden: Alnö in Västernorrlands län (Abb. 1-3, s. a. skan-kristallin.de sowie Kresten & Troll 2018) und Kalix in Norrbottens län (Kresten et al 1981). Im Gebiet von Gävle wurde ein karbonatitisches Gestein aus einem unbekannten Vorkommen als Geschiebe gefunden (Nyström et al 1985). Auch in Finnland gibt es mehrere kleine Karbonatit-Vorkommen (O´Brien 2015)
Geschiebe könnten, wenn auch sehr selten, in den Ablagerungen eines norwegischen Eisstroms (Karbonatite aus dem Fen-Komplex) und in mittelschwedischen Geschiebegemeinschaften (Karbonatite aus Alnö) zu erwarten sein. Fundberichte liegen bislang nicht vor. Entweder sind die Gesteine zu unscheinbar, können mit Marmor verwechselt werden oder wirken als Geschiebe unattraktiv, weil sie bei der Verwitterung rostige Gesteinsoberflächen ausbilden. Marmor kann – wie Calcit-Karbonatit / Sövit – ebenfalls grobkörnig ausgebildet sein und Dunkelglimmer als Begleitmineral enthalten (s. Abb. 26 im Artikel über Marmor). Magnetit ist kein eindeutiger Hinweis auf Karbonatit, weil er hin und wieder auch in Marmor auftritt. Karbonatit-typische Minerale wie Pyrochlor, Ägirin oder Nephelin dürften erst durch eine mikroskopische Untersuchung sicher erkennbar sein.
Abb. 3: Grobkörniger Karbonatit (Sövit) von Alnö aus weißem Calcit, braunem Nephelin (laut Etikett) und wenigen dunklen Mineralen. Sammlung der BGR in Berlin-Spandau. Abb. 4: Rødbergit, ein eisenreicher Karbonatit aus Ankerit, Calcit und Hämatit. Anstehendprobe aus dem Fen-Gebiet. Foto: M. Bräunlich.
In Süddeutschland gibt es ein größeres Karbonatitvorkommen im Kaiserstuhl. Das Gestein ist in mehreren kleinen Steinbrüchen aufgeschlossen und wurde in den 50er-Jahren versuchsweise bergmännisch abgebaut, da es lagenweise Anreicherungen des Nb-haltigen Minerals Pyrochlor (Koppit) enthält.
Abb. 5: Mittelkörniger und glimmerhaltiger Karbonatit (Sövit) aus dem Steinbruch Orberg im Kaiserstuhl. Aufnahme einer frischen Bruchfläche unter Wasser. Abb. 6: Nahaufnahme einer weiteren Probe vom Orberg. Das Gestein reagiert nur mäßig auf einen Handmagneten. Es dürfte sich also nicht bei allen dunklen und teilweise oktaedrisch ausgebildeten Mineralkörnern um Magnetit handeln, auch Minerale der Spinellgruppe (Magnesioferrit) und/oder Pyrochlor kommen in Frage.
Literatur
Kresten P & Troll VR 2018 The Alnö Carbonatite
Complex, Central Sweden – 194 S., Springer International Publishing AG.
Kresten P, Ahmann E & Brunfelt AO 1981 Alkaline
ultramafic lamprophyres and associated carbonatite dykes from the Kalix area,
northern Sweden. – Geologische Rundschau 70,
S. 1215-1231.
Nyström JO 1985 Apatite iron ores of the Kiruna Field,
northern Sweden: Magmatic textures and carbonatitic affinity – Geologiska
Föreningen i Stockholm Förhandlingar, 107:2, S. 133-141, DOI: 10.1080/11035898509452625
O´Brien H 2015 Mineral Deposits of Finland,
Chapter 4.1 – Introduction to Carbonatite Deposits of Finland, S. 291-303,
Elsevier.
Ein ausführlicher Artikel zum Thema Karbonatite findet sich auf wikipedia.de und weitere Probenbilder auf mineralienatlas.de.
Abb. 1: Reiner Marmor, Anstehendprobe von der Insel Oaxen. Das mittelkörnige Gestein besteht fast vollständig aus kristallinem Calcit. Die Bruchfläche zeigt glitzernde Spaltflächen von Kalkspat-Kristallen. Abb. 2: Marmorgerölle von der Insel Oaxen (Sörmland/Schweden): ein reiner Marmor (links) und zwei unreine Marmore mit grünen Silikatmineralen („Silikatmarmor“ oder „Ophicalcit“).
In der steinverarbeitenden Industrie wird eine ganze Reihe von polierfähigen Gesteinen als „Marmor“ bezeichnet, sowohl metamorphe als auch nicht metamorphe Karbonatgesteine oder „marmorierte“ Werksteine. Die Petrographie sieht eine enge Definition des Begriffs vor: Marmor ist ein metamorpher Kalkstein mit mindestens 50 Vol.% Calcit (seltener auch Aragonit oder Dolomit). Abhängig vom Karbonat-Gehalt, lassen sich mehrere Arten von metamorphen Kalksteinen unterscheiden:
Reiner Marmor (über 95 Vol.% Calcit); entsteht aus reinen Kalksteinen.
Unreiner Marmor (50-95 Vol.% Calcit), auch „Silikatmarmor“; entsteht aus Kalksteinen mit tonigen oder sandigen Beimengungen, z. B. Mergelsteinen.
Karbonatsilikatgestein (5-50 Vol.% Calcit).
Kalksilikatgestein oder „Kalksilikatfels“ (unter 5 Vol.% Calcit).
Marmor kommt weltweit in ganz unterschiedlichen geologischen Settings vor und besitzt ein variables Erscheinungsbild. In diesem Artikel geht es um Marmor-Geschiebe aus dem fennoskandischen Grundgebirge. Ein zweiter Teil zeigt Bilder von einigen Marmorvorkommen in Östergötland und Sörmland.
2. Marmor-Geschiebe
Als reiner bis unreiner Marmor erkennbare Geschiebe sind vor allem mittel- bis grobkörnige, überwiegend aus kristallinem Calcit bestehende Gesteine mit Beimengungen von oftmals grünen Silikatmineralen. Eine veraltete Sammelbezeichnung hierfür ist „Urkalk“. Feinkörnige metamorphe Karbonatgesteine, Karbonatsilikatgesteine, Kalksilikatgesteine oder auch Skarne dürften mit einfachen Mitteln kaum sicher bestimmbar sein. Bartolomäus & Schliestedt 2006 untersuchten über 160 Marmorgeschiebe. Aus dieser Arbeit sei eine allgemeine Beschreibung zitiert:
„Geschiebemarmore sind vorherrschend weiße bis graue, seltener gelbliche
bis röt-liche, meist aber grünlich getönte Gesteine feiner bis grober Körnung.
Die meisten Gesteine enthalten im geringen Umfang Silikate. Teils handelt es
sich um Einschlüsse des Nebengesteins, teils um Minerale der Metamorphose,
teils um Umwandlungsminerale und Verwitterungsbildungen. Serpentinführende
Gesteine (Ophicalzite) sind weit verbreitet. Durch dieses Mineral, weniger
durch Körner von Pyroxen oder Olivin, sind die meisten Geschiebe grün
gesprenkelt. Gestein und eingeschlossene Kristalle verschiedener Silikate sind
häufig tektonisch deformiert.“
Reiner Marmor (Abb. 1) kommt als Geschiebe zwar häufiger vor, ist aber durch den geringen Anteil an Silikatmineralen eher unscheinbar und meistens nicht rein weiß, sondern gelblich oder schmutzig-grau getönt. Ziemlich auffällig (Abb. 2) ist unreiner Marmor mit grünen Silikatmineralen, der auch als „Ophicalcit“ bezeichnet wird. Der Name [1] verweist auf die häufig enthaltenen Serpentinminerale, die während der Metamorphose gebildet wurden. Sie können auf verwitterten Geschiebeoberflächen rostbraun, gelb oder matt weiß verfärbt sein und zeigen ihre grüne Farbe unter Umständen erst auf einer Bruchfläche.
Maßgeblich für die Bestimmung von Marmor ist ein Calcit-Gehalt von mind. 50 %. Calcit lässt sich mit dem Messer ritzen und reagiert auf verdünnte Salzsäure unter kräftigem Aufbrausen. Die seltenen Dolomitmarmore enthalten nur anteilig Dolomit und sind mittels Säuretest nicht von Calcit-Marmor unterscheidbar. Auf einer Bruchfläche erkennt man ein verzahntes Gefüge von xenomorphen Calcit-Kristallen mit glänzenden Spaltflächen, manchmal mit ausgeprägter Zwillingsstreifung diagonal zu den Spaltebenen (s. a. kristallin.de). Calcit in Marmorgeschieben ist häufig durchscheinend und reinweiß, hellgrau oder grau getönt, selten dunkel oder von gelblicher oder rötlicher Farbe.
Die grünen Silikatminerale lassen sich von Hand nicht sicher bestimmen. Nach Bartolomäus & Schliestedt 2006 handelt es sich in den meisten Geschieben um Serpentin. Etwas weniger häufig kommen Olivin und diopsidischer Klinopyroxen vor, Orthopyroxen ist selten. Die Mineralkörner besitzen satt hellgrüne bis schwarzgrüne, manchmal auch graue oder braune Farben. Serpentin kann in zwei farblich unterschiedlichen Generationen vorkommen.
Viele Marmorgeschiebe
enthalten Glimmerminerale von 1-5 mm
Durchmesser. Dies können Phlogopit, Muskovit, farbarmer Biotit, Sprödglimmer
oder Talk sein. Eine genaue Bestimmung ist nur durch mikroskopische
Untersuchungen möglich. Seltener treten zwei Arten von Glimmer auf.
Glimmerplättchen können durch tektonische Deformation verbogen sein.
Xenolithe
aus dem Nebengestein bestehen aus Feldspat, Quarz oder Gesteinsbruchstücken
(Quarzite, Gneise oder hälleflintartige Gesteine). Bei einem hohen
Xenolith-Anteil kann man von einem einschlussführenden Marmor sprechen. Quarz als metamorphe Neubildung ist
meist unauffällig und nur selten identifizierbar (kleine, rauchig getönte
Körner). Gelegentlich finden sich weitere Minerale in Marmorgeschieben, z. B.
dunkler und idiomorpher Amphibol, Fluorit, Granat, Chlorit, Epidot oder Erz. Magnetit ist hin und wieder mit einem
Magneten nachweisbar. Graphit als
Hinweis auf ehemals vorhandene organische Substanz tritt nur in Spuren und fein
verteilt auf und lässt sich von Hand nicht bestimmen.
Marmor ist mit folgenden Gesteinsarten
verwechselbar:
In Skarnen können metasomatisch veränderte Kalksteine oder Meta-Karbonate vorkommen, die von Marmor kaum zu unterscheiden sind. Typische für einige Skarne sind Vergesellschaftungen aus Ca-reichen Silikaten wie Granat, Diopsid und Epidot mit Calcit und Quarz.
Karbonatite sind kristalline Kalksteine aus magmatischen Schmelzen. Es gibt kleine Vorkommen im Fen-Gebiet (Norwegen), in Nordschweden (Alnö) und in Finnland. Über Geschiebefunde ist bisher nichts bekannt geworden. Als Indikatorminerale für Karbonatite kommen Ägirin und Pyrochlor sowie Nephelin in Frage, die aber nicht immer enthalten sind.
Merkmalsarme, weiße und rein calcitische Marmore können von Kontaktmetamorphiten (z. B. kontaktmetamorphe paläozoische Kalksteine aus Südnorwegen) sowie diagenetisch umkristallisierten Kalksteinen unter Umständen nicht unterscheidbar sein (Abb. 33, 34). Grauer oder bunter Ceratopyge-Kalk könnte auf den ersten Blick für Silikatmarmor gehalten werden, ist aber feinkörnig und enthält Glaukonit-Körner sowie Fossilreste (Abb. 35, 36).
3. Vorkommen und Entstehung
Die meisten Marmor-Geschiebe dürften aus den zahlreichen Vorkommen in Mittelschweden stammen. Marmor entstand dort während der svekofennischen Gebirgsbildung vor etwa 1,9 Ga aus tief versenkten kalkigen Sedimenten unter amphibolitfaziellen Metamorphose-Bedingungen. Dabei wurde Calcit aus den feinkörnigen Sedimenten mobilisiert und unter Kornvergrößerung (Blastese) umkristallisiert. Je nach Anteil toniger Komponente im Ausgangsgestein, bildeten sich gleichzeitig Silikatminerale. Marmor und Silikatmarmor sind Granofelse. Das primäre Mineralgefüge kann durch gleichzeitige oder nachfolgende tektonische Prozesse mäßig bis stark deformiert sein.
Zumindest ein Teil der
svekofennischen Marmor-Vorkommen soll aus Kalksteinen entstanden sein, die
durch Organismen ausgefällt wurden. An einigen Lokalitäten fand man
Stromatolithe (Dannemora, Sala, Arvidsjaur). Kleinere
Vorkommen von Marmor können zwar auch aus submarin-exhalativ gebildeten
Kalksteinen in vulkanischen Sequenzen hervorgehen. Die Größe mancher Vorkommen
spricht aber gegen einen solchen Ursprung. Geochemische
Untersuchungen an svekofennischen Meta-Karbonaten in Finnland ergaben hohe Sr-Gehalte,
die auf eine Ausfällung von aragonitischem (=biogenem?) CaCO3 in marinem Milieu hinweisen (Maier
2015).
Marmor kommt auch als Begleiter von Skarnen vor, als
kontaktmetamorphe Bildung, als metasomatisch umgewandelter Kalkstein oder einer
Kombination aus beiden Prozessen. Metasomatose bezeichnet
eine Gesteinsumwandlung durch fluide Phasen, mobilisiert z. B. durch in der
Nähe aufsteigende Magmatitkörper.
Aus Mittelschweden
sind etwa 200, meist kleinere Marmor- und Skarn-Vorkommen bekannt. Sie wurden
zum Teil bergmännisch genutzt und sind Bestandteil der sog.
Leptit-Hälleflinta-Serien, die sich vom Bergslagen-Gebiet bis nach SW-Finnland
erstrecken. In der Bottensee ist mit weiteren, untermeerischen Vorkommen zu
rechnen. Auch in Südschweden gibt es ca.
20 kleinere Vorkommen (z. B. bei Vetlanda in Smaland, s. Sundlad et al 1997). Weiterhin tritt Marmor geringmächtig in Form von Wechsellagerungen,
Klüften, Gängen oder Einschaltungen in kalkhaltigen Grundgebirgsgesteinen auf. Ehlers
et al 1993
fanden Marmor in svekofennischen Gneisen im Seegebiet zwischen Aland und dem finnischen Festland.
Aufgrund seiner weiten Verbreitung und wechselhaften Ausbildung ist Marmor
nicht als Leitgeschiebe geeignet. Dies gilt auch für Lokaltypen wie dem
Marmor vom „Kolmarden-Typ“, der an mehreren Orten in Södermanland vorkommt.
4. Geschiebefunde
Abb. 3: Reiner Marmor („Urkalk“), Geschiebe mit gelblich verfärbter Außenseite in der Kiesgrube Neuendorf bei Oranienburg, Breite 18 cm. Undeutlich ist eine Lagentextur erkennbar, ein Abbild der sedimentären Schichtung mit silikatreicheren Partien (entstanden durch Anteile z. B. toniger Beimengungen).Abb. 4: Handstück aus dem gleichen Block, frische Bruchfläche.Abb. 5: Nahaufnahme; der Anteil schwarz- bis bräunlichgrüner Silikatminerale ist gering.Abb. 6: Ophicalcit (unreiner Marmor, Silikatmarmor) mit auf der Außenseite gelblichgrün gefärbten Silikatmineralen; Kiesgrube Niederlehme bei Berlin.Abb. 7: Ophicalcit, Geschiebe aus der Kiesgrube Horstfelde, S Berlin. Die frische Bruchfläche zeigt ein gleichkörniges und richtungsloses Gefüge aus Calcit und grünen Silikatmineralen. Am Rand ist eine cm-dicke braune Verwitterungsrinde erkennbar.Abb. 8: Nahaufnahme. Abb. 9: Ophicalcit, polierte Schnittfläche. Die gelblich-weißen und matten Silikatminerale in der Verwitterungsrinde besitzen offenbar einen geringen Eisengehalt (z. B. stark forsteritischer Olivin), andernfalls wären rostbraune Verfärbungen zu erwarten. Fundort: Kiesgrube Fresdorfer Heide bei Potsdam, Slg. G. Engelhardt.Abb. 10: Nahaufnahme hell- bis dunkelgrüner und xenomorpher Silikatminerale.Abb. 11: Hellgrauer, eher unscheinbarer Silikatmarmor mit dunklen Silikatmineralen; Strandgeröll von Johannistal, Schleswig-Holstein, leg. E. Figaj.Abb. 12: Der mittelkörnige, teils von Rissen durchzogene Calcit zeigt unscharfe Korngrenzen. An Silikatmineralen finden sich grüne bis hellbraune, teilweise durchscheinende sowie dunkle und opake Körner. Glimmer und Magnetit sind nicht enthalten.Abb. 13: Heller Marmor mit lagenweise konzentrierten grünen Silikatmineralen. Großes Geschiebe von 40 cm Länge aus der Grube Hohensaaten an der Oder. Abb. 14: Nahaufnahme der Bruchfläche: xenomorpher und durchscheinender Calcit, begleitet von wenigen Körnern hell- bis mittelgrüner Silikate und einem braunen Glimmermineral (Phlogopit).Abb. 15: Polierte Schnittfläche des gleichen Gesteins mit parallelen Lagen grüner Silikatminerale.
Vom Marmorgeschiebe aus Hohensaaten wurde ein Dünnschliff gefertigt, freundlicherweise ausgeführt von Herrn U. Maerz (Hattingen). Die Untersuchung ergab, dass es sich bei den grünen Mineralen um Serpentin und Olivin handelt. Das helle Glimmermineral ist Phlogopit. Quarz und Diopsid (Amphibol) wurden nicht beobachtet. Die nächsten beiden Bilder (Abb. 16/17) zeigen eine Detailaufnahme eines Dünnschliffs, Bildbreite etwa 185 µm.
Links (gekreuzte Polarisatoren in Dunkelstellung) erkennt man die charakteristische Zwillingsstreifung des hellen Calcits, der ein verzahntes Verwachsungsgefüge aus xenomorphen Kristallen bildet. Das dunkle Mineral in der Bildmitte ist Olivin. Die bunten Anlauffarben, randlich und in Spaltrissen, zeigen seine teilweise Umwandlung in Serpentin an. Im rechten Bild (gekreuzte Polarisatoren in Hellstellung) sind jene Teile des Olivinkorns hellblau gefärbt, die nicht serpentinisiert wurden.
Das nächste Marmorgeschiebe ist ein Exot aus der Kiesgrube Horstfelde, südlich von Berlin. Erst ein Test mit verdünnter Salzsäure erbrachte den Hinweis, dass es sich überhaupt um einen Marmor handelt. Das Gestein ist recht schwer und spricht stark auf einen Handmagneten an (Magnetit). Ungewöhnlich sind die bunten Mineralkörner. Eine Dünnschliffuntersuchung ergab, dass sie von dunklen Magnetitsäumen umgeben sind.
Abb. 18: Kantengerundetes Marmor-Geschiebe mit hellgrauer und rauer Oberfläche. Rechts unten sind grünschwarze Glimmerplättchen bis 5 mm Größe erkennbar. Abb. 19: Seitenansicht des gleichen Geschiebes. Abb. 20: Detailaufnahme ockergelber, roter bis violettroter und schwach bläulicher Minerale, umgeben von dunklen Magnetit-Säumen. Einige Mineralkörner besitzen einen mehrfarbigen und zonaren Aufbau. Abb. 21: Kleiner Abschlag mit frischer Bruchfläche. Unüblich für Marmorgeschiebe ist die dunkelgraue Tönung des Calcits. Die bunten Mineralkörner zeigen einen stumpfen bis matten Glanz und wurden offenbar stark umgewandelt. Abb. 22: Polierte Schnittfläche; nebulöse Streifen in unterschiedlichen Richtungen lassen auf eine mehrfache tektonische Deformation des Gesteins schließen. Die Farbabfolge der bunten Körner (oben: rot, Mitte: weiß, unten: bläulich) deutet auf verschiedene Umwandlungsstadien, möglicherweise desselben Minerals. Abb. 23: Detailaufnahme. Rechts der Bildmitte ein hellgrünes und längliches Aggregat, das einen ovalen, von einem weißen Saum umgebenen Kernbereich enthält. Der Kern ähnelt der Farbe und Textur mancher Serpentinite. Dunkelglimmer-Plättchen im Querschnitt sind durch tektonische Beanspruchung leicht verbogen.
Die Dünnschliffuntersuchung ergab, dass die dunkle Matrix aus feinkörnigem und stark verwachsenem Calcit besteht. Die Korngrenzen des Calcits sind durch dunkle Erzspuren nachgezeichnet (Imprägnierung durch Magnetit, Abb. 24). Auch das Innere verschiedener Calcit-Individuen zeigt solche Spuren und bildet wohl frühere Korngrenzen ab, die durch Umkristallisierungsprozesse überwachsen wurden. Der Mineralbestand des Gesteins wurde wie folgt geschätzt: Calcit ca. 75-80%, Reliktminerale („bunte“ Minerale) ca. 15-20%, Magnetit ca. 3-5%, Biotit <2%. Nicht beobachtet wurden Quarz und Amphibol.
Die bunten Minerale dürften Relikte
verschieden weit fortgeschrittener Umwandlungen sein. Zumindest teilweise handelt
es sich dabei um fein verwachsene Serpentinminerale. Andere Reliktkristalle zeigen
kein Serpentinisierungsgefüge und sind meistens durch feinere Calcitkristalle (möglicherweise
mit ankeritischem oder sideritischem Anteil) ausgefüllt. Für das
Ausgangsmaterial dieser Relikte gibt es bisher keine Anhaltspunkte. Die meisten
Reliktminerale besitzen ebenfalls dunkle Säume von Magnetit.
Abb. 24: Erzpartikel und Magnetit zeichnen die Korngrenzen des Calcits nach. Teilweise folgen sie den aktuellen Korngrenzen (grüne Pfeile), teilweise durchquert die Erzspur Calcit-Individuen (rote Pfeile). Abb. 25: Einschlussführender Marmor, grünlicher Ophicalcit mit runden Gneis- und Migmatit-„Geröllen“. Großgeschiebe am Strand von Jastrzębia Góra (Danziger Bucht/PL), Bildbreite ca. 50 cm. Siehe weitere Marmor-Großgeschiebe von dieser Lokalität im Fundbericht, Abb. 57-64.Abb. 26: Tektonisch überprägter Marmor mit geringen Anteilen grüner Silikatminerale. Polierte Schnittfläche, Geschiebe aus der Kiesgrube Schweinrich, Slg. F. Wilcke (Wittstock).Abb. 27: Nahaufnahme.Abb. 28: Silikatmarmor mit einer Flasertextur aus dunkelgrauen und weißen Partien. Polierte Schnittfläche, Abschlag aus einem Großgeschiebe in der Kiesgrube Schwarz (S-Mecklenburg).Abb. 29: Nahaufnahme; zum Rand des Geschiebes (links) ist eine Zonierung unterschiedlicher Verwitterungsstadien erkennbar: grün, bräunlichgrün, schließlich gelb. Die helle Calcit-Matrix erscheint fein zuckerkörnig und wurde durch tektonische Einwirkung fein zerrieben.Abb. 30: Silikatmarmor mit Lagentextur und zwei größeren Porphyroblasten (Hellglimmer). Polierte Schnittfläche, Geschiebe aus der Kiesgrube Schweinrich, Slg. F. Wilcke.Abb. 31: Nahaufnahme der Hellglimmer-Porphyroblasten; rechts mit bläulichem Schimmer.Abb. 32: Silikatmarmor/Ophicalcit am Strand von Nienhagen bei Rostock, Breite 17 cm.
5. Beispiele für nicht metamorphe kristalline Kalksteine
Abb. 33: Diagenetisch umkristallisierter Kalkstein (Biosparit) aus dem Malm (ehem. Steinbruch Schwanteshagen / Polen). Unter der Lupe sind keine Silikatminerale, aber zertrümmerte Schalenreste erkennbar. Abb. 34: Grobkristalliner, oberflächlich fossilfreier Anthrakonit, loser Stein vom Anstehenden (Aleklinta auf Öland, Oberkambrium), Bildbreite 28 cm. Anthrakonite besitzen eine dunkle Bruchfläche und riechen nach dem Anschlagen nach Bitumen („Stinkkalk“). Abb. 35: Ordovizischer Kalk (Expansus-Kalk), loser Stein vom Anstehenden (Öland), grauer und massiger Kalkstein mit Glaukonitkörnern. Abb. 36: Der Glaukonit bildet xenomorphe, teils wurmförmige Aggregate. Auch der Ceratopyge-Kalk enthält Glaukonit. Ein buntes Exemplar ist hier abgebildet.
6. Literatur
BARTHOLOMÄUS WA &
SCHLIESTEDT M 2006 Marmore als Urkalkgeschiebe – Archiv für Geschiebekunde 5
(1-5): 27–56, 5 Taf., 6 Abb., Hamburg/ Greifswald, September 2006. ISSN
0936-2967.
EHLERS C, LINDROOS A & SELONEN O 1993 The late Svekofennian
granite-migmatite zone of southern Finland – a belt of transpressive
deformation and granite emplacement – Precambrian Research 64: 295-309; Elsevier Science Publishers B.V., Amsterdam
MAIER W D, LAHTINEN R, O`BRIEN H 2015 Mineral Deposits of Finland: 291-303
– 802 S., Elsevier Inc., ISBN 978-0-12-410438-9.
SUNDBLAD K, MANSFELD J & SÄRKINEN M 1997 Palaeoproterozoic rifting
and formation of sulphide deposits along the southwestern margin of the
Svecofennian Domain, southern Sweden – Precambrian Research 82, Issues 1–2, March 1997, S. 1-12. https://doi.org/10.1016/S0301-9268(97)00012-0
Abb. 1: Schriftgranit aus der Kiesgrube Waddeweitz/Kröte (Ost-Niedersachsen).
Als „Schriftgranit“ werden
Gesteine mit einem besonderen Verwachsungsgefüge aus Quarz und Alkalifeldspat
bezeichnet. Die Verwachsungen erinnern manchmal an arabische, hebräische oder
germanische (= „Runit“) Schriftzeichen. Sie entstehen durch das gleichzeitige
Auskristallisieren von Quarz und Feldspat unter besonderen Bedingungen.
Schriftgranite sind genetisch an Granitplutone gebunden, entsprechend viele Vorkommen sind bekannt (Norwegen, Westschweden, Bornholm, im Götemar-Pluton und im svekofennischen Bereich). In den Granitkörpern des Transkandinavischen Magmatitgürtels scheinen Pegmatite (und damit assoziierte Schriftgranite) weitgehend zu fehlen. Ein Beispiel für einen anstehenden Schriftgranit zeigt Abb. 2.
Abb. 2: Anstehender Schriftgranit, Bildbreite 36 cm. Die Partie fand sich in unmittelbarer Nähe zur Plutongrenze des etwa 1,45 Ga alten Götemar-Granits in Ost-Småland. Die untere Bildhälfte zeigt das Wirtgestein, einen etwa 1,8 Ga alten Granit des Transkandinavischen Magmatitgürtels. Der Schriftgranit bildet hier, zusammen mit Pegmatiten und Granitporphyr-Gängen, einen Fortsatz außerhalb des eigentlichen Granitmassivs. Abb. 3: Gefüge des Schriftgranits, Bildbreite 18,5 cm.
Schriftgranite sind mittel- bis grobkörnige Gesteine mit graphischen Verwachsungen aus Quarz und Alkalifeldspat. Eine kleinkörnige Variante dieses Gefüges kennt man aus der Grundmasse bestimmter Rapakiwi-Granite und aus Granophyren (Gesteine, die fast ausschließlich aus feinen graphischen Verwachsungen bestehen). Das skelettartige Gefüge von Schriftgraniten entsteht bei der raschen Kristallisation aus einer Schmelze, in der Solidus- und Liquiduslinie durch das Mischverhältnis von Quarz und Feldspat in einem Punkt zusammenfallen (Eutektikum). Vereinfacht gesagt erfolgte keine allmähliche Kristallisation von Quarz und Feldspat, während sich die Zusammensetzung der Restschmelze ändert, sondern beide Komponenten erstarrten gleichzeitig. Solche Bedingungen finden sich z. B. in wasserreichen Spätkristallisaten magmatischer Schmelzen, aus denen die riesenkörnigen Pegmatite kristallisieren, die ihrerseits von schriftgranitischen Partien begleitet sein können.
In Schriftgraniten bilden die beiden Komponenten Kalifeldspat und Quarz Einkristalle, die sich gegenseitig skelettartig durchdringen. Erkennbar ist dies, wenn der Alkalifeldspat auf einer ebenen Gesteinsfläche das einfallende Licht vollständig reflektiert (Abb. 6, 8 und 12). Auch ein durchgängig gleichlaufendes Muster der perthitischen Entmischungslamellen des Alkalifeldspats lässt sich manchmal beobachten (Abb. 5). Nicht alle Schriftgranite zeigen ein kontrastreiches Gefüge aus Quarz-Feldspat-Verwachsungen. Die unauffälligen Vertreter kann man aber an diesem großflächigen Reflektieren der Feldspat-Einkristalle erkennen (Abb. 7,8 12-14).
Abb. 4: Orangeroter Schriftgranit aus der Kiesgrube Niederlehme bei Berlin. Abb. 5: In der Vergrößerung erkennt man, dass die feinen perthitischen Entmischungslamellen des Alkalifeldspats einer bevorzugten Richtung folgen (Einkristall). Abb. 6: Rückseite des gleichen Steins. Am linken Bildrand wird seitlich einfallendes Licht flächenhaft vom Alkalifeldspat reflektiert. Bei geeignetem Lichteinfall reflektiert die gesamte Gesteinsoberfläche und zeigt, dass es sich um einen großen Einkristall handelt. Abb. 7: Wenig auffälliger, gneisartiger und rotfleckiger Schriftgranit (Kiesgrube Hoppegarten bei Müncheberg/Brandenburg). Abb. 8: Gleicher Stein. Seitlich einfallendes Licht zeigt auf der trockenen Gesteinsoberfläche einen Alkalifeldspat-Einkristall sowie seine skelettartige Verwachsung mit Quarz. Schriftgranite und rote, die Korngrenzen überschreitende Flecken sind u. a. von einigen Bornholm-Graniten bekannt. Abb. 9: Polierte Schnittfläche eines Schriftgranits aus der Kiesgrube Fresdorfer Heide bei Potsdam (Sammlung Georg Engelhardt). Abb. 10: Schriftgranit aus der Kiesgrube Waddeweitz/Kröte in Ost-Niedersachsen. Gehäufte Funde ähnlicher heller Schriftgranite konnten in saalekaltzeitlichen Drenthe-Ablagerungen im Hannoverschen Wendland (Ost-Niedersachsen) beobachtet werden. Abb. 11: Schriftgranit aus der Kiesgrube Tiesmesland (Ost-Niedersachsen). Abb. 12: Heller Schriftgranit mit reflektierender Oberfläche eines Alkalifeldspat-Einkristalls. Geschiebestrand bei Misdroy (Polen), Breite des Steins: 15 cm. Abb. 13: gleicher Stein, angefeuchtet. Abb. 14: Heller Schriftgranit, angefeuchtete Schnittfläche. Im Bild senkrecht und annähernd parallel verlaufen Quarz-Feldspat-Lamellen, die waagerecht von feinen Aplit-Adern durchschnitten werden. Die hellgraue Aplitader ganz unten führt Hellglimmer. Aplite treten nicht selten als randliche Begleiter in Schriftgranit- bzw. Pegmatit-Vorkommen auf. Fundort: Geröllstrand bei Ustronie Morskie, östlich von Kolberg (Polen), Slg. D. Lüttich. Abb. 15: Schriftgranitische Partie in einem bunten Pegmatit (Nr. 200, Findlingslager Steinitz/ Niederlausitz).