Schlagwort-Archive: Rhombenporphyr

Geschiebegarten und Geschiebeausstellung auf dem Großen Ravensberg in Potsdam-Waldstadt – Die Sammlung G. Engelhardt

Abb. 1: Geschiebegarten auf dem Großen Ravensberg in Potsdam-Waldstadt.
  1. Einleitung
  2. Dokumentation der Geschiebefunde
    2.1. Kristallingeschiebe
    2.2. Sedimentärgeschiebe
    2.3. Elbgerölle
  3. Literatur

1. Einleitung

Ein Geschiebegarten und eine Geschiebe-Fossilien-Ausstellung auf dem Großen Ravensberg in Potsdam-Waldstadt bietet dem erdgeschichtlich interessierten Besucher einen Einblick in die Vielfalt an Gesteinen und Fossilien, die mit den Gletschern der nordischen Inlandvereisungen als Geschiebe in dieses Gebiet gelangten. Die Sammlung auf dem Gelände der Waldschule wurde ab 2004 durch Mitglieder der Fachgruppe Mineralogie, Geologie und Paläontologie Potsdam angelegt und wird seitdem gepflegt und erweitert. Der überwiegende Teil dieser Lokalsammlung ist der jahrzehntelangen und regen Sammeltätigkeit von Herrn Georg Engelhardt (Potsdam) zu verdanken. Die Funde stammen fast ausschließlich aus der Kiesgrube Fresdorfer Heide (abgekürzt KFH).

Geschiebegarten und Geschiebesammlung sind thematisch nach Erdzeitaltern (Sedimentärgeschiebe), Herkunft (kristalline Leitgeschiebe, Elbgerölle) oder petrographischen Kriterien geordnet. Eigens für diese Ausstellung wurden mehrere Großgeschiebe aus der KFH auf den Ravensberg gebracht. Beachtenswert ist weiterhin die hohe Fundanzahl an Windkantern. Das Gelände ist zu Fuß vom Bahnhof Rehbrücke oder von Parkmöglichkeiten am Caputher Heuweg aus erreichbar. Neuerdings säumen zahlreiche Großgeschiebe den Waldweg und geleiten den Besucher bis zum Großen Ravensberg. Der Geschiebegarten ist unregelmäßig geöffnet, Besuchern wird eine Anmeldung empfohlen. Für kleinere Gruppen und Schulklassen werden Führungen angeboten.

Abb. 2: Sammlung kristalliner Geschiebe und Leitgeschiebe, teilweise mit polierter Schnittfläche.

2015 bat mich Georg Engelhardt um eine Erfassung und Bestimmung der Kristallingeschiebe seiner Sammlung. Mittlerweile liegt die dritte Revision einer ausführlichen Dokumentation (129 S., 193 Abb.) vor, die in der Waldschule als Paperback käuflich erworben oder als pdf-Datei zum Download bereit steht. Im Folgenden wird nur eine kleine Auswahl nordischer Geschiebe aus der Sammlung G. Engelhardt gezeigt. Der Schwerpunkt liegt auf den kristallinen Geschieben und Leitgeschieben, ein kurzer Abriss ist den Sedimentärgeschieben und Elbgeröllen gewidmet.

Abb. 3: Eisrandlagen des Brandenburger Stadiums südlich von Berlin. Der annähernd in N-S-Richtung verlaufende Saarmunder Endmoränenlobus (SEZ) ist grün markiert. Lokalität 1: Kiesgrube Fresdorfer Heide, 2: Geschiebegarten auf dem Großen Ravensberg. Kartenskizze verändert nach: FRANZ & WEISSE 1965.

Die Kiesgrube Fresdorfer Heide liegt etwa 10 km südlich von Potsdam, im Saarmunder Endmoränenzug, einem etwa 20 km langen, annähernd in N-S Richtung streichenden Moränenrücken im unmittelbar rückwärtigen Raum der weichselkaltzeitlichen Brandenburgischen Eisrandlage (Abb. 3). In der KFH treten sandige, kiesige und schluffige sowie gröbere Gesteinslagen in ständigem Wechsel. Sie werden als eisrandnahe glaziale Ablagerungen einer Satzendmoräne aufgefasst. Die Basis bildet ein saalezeitlicher, aus Norden gestauchter Till (WEIßE 1997; Beschreibungen der Lokalität in ENGELHARDT 1997, ENGELHARDT 2016 und ENGELHARDT & SEIBERTZ 2023.

Abb. 4: Überkornhalde in der Kiesgrube Fresdorfer Heide (KFH) mit Herrn Georg Engelhardt.

In der KFH konnten mehrere Eisvorstöße dokumentiert werden, die jeweils unterschiedliche Vergesellschaftungen von Geschieben aufweisen. In den Ablagerungen des älteren Saale-Vorstoßes finden sich viele Gesteine der ostbaltischen Geschiebegemeinschaft (Åland-Kristallin, Roter Ostsee-Quarzporphyr), im ersten weichselzeitlichen Vorstoß zahlreiche Geschiebe aller Stufen der Oberkreide, Kristallingeschiebe aus Dalarna sowie Muschelkalk-Geschiebe. Letztere stammen aus dem östlich von Berlin gelegenen Vorkommen von Rüdersdorf. Der zweite weichselzeitliche Eisvorstoß zeichnet sich durch zahlreiche violette Quarzite (darunter Västervik-Quarzite), unterkambrische Sandsteine und Åland-Gesteine aus. In den höchsten weichselzeitlichen Schmelzwasserlagen konnten temporär Anhäufungen umgelagerter Gerölle der mittelpleistozänen „Berliner Elbe“ aufgesammelt werden. Eine große Anzahl an Windkantern lässt auf eine Anreicherung größerer Steine durch Deflation und äolische Einwirkung schließen. Gegenwärtig (2024) sind sowohl Muschelkalk-Geschiebe als auch Elbgerölle nur vereinzelt in der KFH anzutreffen.

2. Dokumentation der Geschiebefunde

Die Herkunftsgebiete der Geschiebe erstrecken sich vom Oslograben über Schweden und den Grund der Ostsee bis nach SW-Finnland. Bei den kristallinen Geschiebetypen und Leitgeschieben lassen sich einige Besonderheiten hinsichtlich Fundhäufigkeit und Vergesellschaftung festhalten:

  • Kristallingeschiebe aus Dalarna, insbesondere Vulkanite, sind für weichselzeitliche Ablagerungen ungewöhnlich häufig zu finden. Ein Teil von ihnen dürfte aus saalekaltzeitlichen Ablagerungen umgelagert worden sein. Hierzu gehören Bredvad-Porphyr, Grönklitt-Porphyrit, Älvdalen-Ignimbrite, Einsprenglingsreiche Porphyre aus Dalarna, Heden-Porphyr, Kallberget-Porphyr, Särna-Quarzporphyr und Särna-Tinguait.
  • Von großer Häufigkeit sind auch Gesteine der baltischen Geschiebegemeinschaft, vor allem Åland-Rapakiwis. Das ungefähr gleiche Aufkommen von Rotem und Braunem Ostsee-Quarzporphyr weist auf einen ostbaltischen Einschlag hin, allerdings fehlen die damit assoziierten Dolomite und Kugel-sandsteine weitgehend.
  • Eine Besonderheit im Vergleich zu anderen Brandenburger Kiesgruben sind häufige Funde westschwedischer Leitgeschiebe wie Kinne-Diabas sowie Småland-Värmland-Granitoide vom Filipstad-Typ (porphyrische Monzogranite mit Plagioklas-Säumen um einzelne Alkalifeldspat-Ovoide). Einen westschwedischen Einfluss belegen auch klar drei Funde des Weißen Filipstad-Granits.
  • Die typischen Blauquarzgranite des TIB (Småland-Granite, Typ Växjö) treten eher zurück. Småland-Porphyre vom Typ Påskallvik fanden sich mehrfach, der Typ Emarp ist selten.
  • Leitgeschiebe aus NE-Småland sind durch zahlreiche Funde von Gesteinen aus dem Västervik-Gebiet belegt: Västervik-Quarzit, Västervik-Fleckengestein, Västervik-Fleckenquarzit. Vergleichs-weise selten kommen hingegen die etwas weiter südlich oder westlich beheimateten Granitoide vor (Vånevik-, Kinda- oder Flivik-Granit).
  • Leitgeschiebe aus dem Oslograben treten im Brandenburger Stadium etwas häufiger als in den jüngeren weichelkaltzeitlichen Randlagen auf. Aus der KFH liegen bisher acht Funde von Rhombenporphyren sowie zwei Larvikite vor.
  • Auch SW-schwedische Leitgeschiebe wurden beobachtet, u.a. ein Schonen-Granulit mit charnockitisierter Partie (Abb. 47-48).
  • Insgesamt ist ein Zurücktreten der ost-mittelschwedischen Geschiebegemeinschaft zu beobachten (Granite vom Typ Stockholm, Uppsala-Granit, Sala-Granit, Vänge-Granit; auch schwarz-weiße Granitoide im Allgemeinen). Granat-Cordierit-Gneise vom „Sörmland-Gneis“ sind nur vereinzelt anzutreffen.
  • Das Leitgeschiebe mit der weitesten „Anreise“ sind vier Funde von Nordingrå-Rapakiwis aus Nordschweden.
  • gelegentliche Funde von Bornholm-Granit. Belege südschwedischer Geschiebe, z. B. Karlshamn-Granit aus Blekinge oder Schonen-Basanit und Schonen-Lamprophyr fehlen bisher.
Abb. 5: Herkunftsgebiete der in der KFH gesammelten Leitgeschiebe.

1 Rhombenporphyr (Oslograben)
2 Larvikit (Oslograben)
3 Kinne-Diabas (Västergötland)
4 Schonen-Granulit (NW-Schonen, Halland)
5 Filipstad-Granitfamilie, weißer Filipstad-Granit (Värmland)
6 Bornholm-Granite
7 Siljan-Granit (Dalarna)
8 Öje-Basalt, Heden-Porphyr, Kallberget-Porphyr (SW-Dalarna)
9 Särna-Quarzporphyr (rot/violett), Särna-Tinguait
10 Kristallin aus Dalarna (Bredvad-Porphyr, Grönklitt-Porphyr, Venjan- Porphyr, Älvdalen-Ignimbrite, ESR-Dalaporphyr, Digerberg- Konglomerat, Garberg-Granit)
11 Påskallavik-Porphyr, Småland-Gangporphyre
12 Lönneberga-Porphyr und Lönneberga-Lapillituff
13 Västervik-Fleckengestein, Västervik-Fleckenquarzit, Västervik- Quarzit (NE-Småland)
14 Åland-Kristallin: Åland-Quarzporphyr, Åland-Ignimbrit, Hammarudda-Quarzporphyr, Åland-Ringquarzporphyr, Åland- Wiborgite, Åland-Pyterlite; post-svekofennischer Lemland-Granit
15 Brauner Ostsee-Quarzporphyr
16 Roter Ostsee-Quarzporphyr und Ostsee-Rapakiwi, wahrscheinlich vom Nordbaltischen Pluton
17 Nordingrå-Rapakiwi

2.1. Kristallingeschiebe

Alle abgebildeten Funde stammen aus der Kiesgrube Fresdorfer Heide (KFH) und sind, soweit nicht anders vermerkt, unter der jeweiligen Nummer in der Sammlung G. Engelhardt inventarisiert.

Abb. 6: Rhombenporphyr aus dem Oslograben (Nr. 1), Länge 15 cm.

Geschiebe aus dem Gebiet des Oslograbens finden sich nur vereinzelt in Brandenburg. Funde von Rhombenporphyren sind bis in das Gebiet der Oder belegt, vergleichsweise häufig kommen sie im Brandenburger Stadium vor (SCHNEIDER & TORBOHM 2020). Aus der KFH liegen bislang 8 Funde vor.

Bedeutend seltener sind Larvikit-Geschiebe, von denen bisher 2 Exemplare in der KFH gefunden wurden. Die im angewitterten Zustand eher unauffälligen Gesteine können mit den wesentlich häufigeren Anorthositen verwechselt werden. Zur Unterscheidung gilt es, auf teils rhombenförmige Anschnitte der ternären Feldspäte im Larvikit zu achten. Ternäre Feldspäte zeigen eine Streifung, die unabhängig vom Lichteinfall sichtbar ist; die polysynthetische Verzwilligung der Plagioklase in Anorthositen nur in Reflektionsstellung.

Abb. 9: Die Nahaufnahme zeigt ein coronitisches Gefüge der dunklen Minerale, wahrscheinlich Pyroxen mit dunklen Amphibol-Rändern.

Vulkanite aus Dalarna treten in der KFH häufig und in großer Vielfalt auf. Bredvad- und Grönklitt-Porphyr sind die häufigsten Vertreter, gefolgt von Älvdalen-Ignimbriten, Einsprenglingsreichen Porphyren und Särna-Quarzporphyr. Seltener sind der Kallberget-Porphyr (bisher 3 Funde) und der Heden-Porphyr (1 Fund) aus dem südlichen Vulkanitgebiet in Dalarna, ebenso der Särna-Tinguait (1 Fund). Ebenfalls aus Dalarna stammt das Digerberg-Konglomerat (Abb. 14).

Abb. 10: Bredvad-Porphyre im Geschiebegarten, Bildbreite ca. 35 cm.
Abb. 11: Brauner Älvdalen-Ignimbrit mit roter Fiamme, Aufnahme unter Wasser (Slg. Torbohm).
Abb. 12: Violetter Särna-Quarzporphyr (Nr. 103), nasse Schnittfläche („Bruine Särnakwartporfier“ in ZANDSTRA 1999: 216, vgl. rapakivi.dk).
Abb. 13: Särna-Tinguait (Nr. 3032, Slg. Torbohm), Aufnahme unter Wasser.

Der Särna-Tinguait ist mit einem Alter von 285 Mill. Jahre wesentlich jünger als die ca. 1,7 Milliarden Jahre alten Dala-Vulkanite, zudem ein seltenes Leitgeschiebe. Es stammt aus Gängen in der Nähe eines kleinen Alkaligestein-Massivs im nördlichen Dalarna, die das Grundgebirge und den Dala-Sandstein durchschlagen.

Abb. 14: Digerberg-Konglomerat aus Dalarna (Nr. 48), polierte Schnittfläche.
Abb. 15: Plagioklas-porphyrischer Basalt-Mandelstein (Nr. 43), angefeuchtete Schnittfläche.

In der rotbraunen und sehr feinkörnigen Grundmasse liegen weiße Mandeln (Quarz, HCl-Test negativ) sowie grüne Plagioklas-Einsprenglinge mit einer auffälligen Streifung entlang der Spaltflächen. Die Plagioklase weisen teilweise „ausgefranste“ Ränder auf (links im Bild) und befanden sich zum Zeitpunkt der Erstarrung des Magmas in Auflösung (magmatische Korrosion).

Abb. 16: Gleicher Stein, Nahaufnahme eines magmatisch korrodierten Plagioklases (randliche Auflösung). Entlang der Spaltflächen sind Einschlüsse der feinkörnigen rotbraunen Grundmasse erkennbar.

Solche in der Geschiebekunde als „Öje-Diabasporphyrit“ bezeichnete feinkörnige basaltische Gesteine mit großen Plagioklas-Einsprenglingen, die eine auffällige parallele Zeichnung entlang ihrer Spaltrichtung aufweisen, stammen nicht aus Dalarna, wie Untersuchungen von M. Bräunlich vor Ort ergaben. Die Herkunft dieses Geschiebetyps ist unbekannt (nördliche Ostsee?). Der Geschiebetyp wurde in der KFH gehäuft gefunden.

Einen attraktiven basaltischen Mandelstein aus der KFH mit weißem und rotem Achat zeigt Abb. 47-50 im Artikel Basaltische Mandelsteine, einen einschlussführenden Diabas Abb. 18-19 im gleichnamigen Artikel.

Von den Småland-Vulkaniten ist der Påskallavik-Porphyr ein häufiger Fund in der KFH, während der Emarp-Porphyr bisher nicht in Erscheinung trat. In großer Zahl fanden sich auch die als Hälleflinta bezeichneten Metavulkanite, von denen ein großer Teil aus Småland stammen dürfte (Småland-Hälleflinta). Mehrere Funde heller Aschentuffe mit kantigen und rotbraunen bis braunen Vulkanit-Fragmenten wurden als Lönneberga-Lapillituff bestimmt, ein Leitgeschiebe für das mittlere Småland.

Abb. 17: Påskallavik-Porphyr (Nr. 117), Aufnahme einer Schnittfläche unter Wasser. Fleischfarbene und abgerundete Feldspäte sowie leuchtend blaue Quarze bilden ein kontrastreiches Gefüge.
Abb. 18: Fluidaler Metavulkanit mit wenigen hellen Feldspat-Einsprenglingen (Småland-Hälleflinta), Slg. Torbohm, Nr. 2571.

Zu den Vulkaniten aus der nördlichen Ostsee zählen der Rote und der Braune Ostsee-Quarzporphyr. Biede sind ein häufiger Fund in der KFH. Der in der Geschiebekunde als Ostsee-Syenitporphyr bezeichnete Geschiebetyp wurde einmal, Bottensee-Porphyre bisher nicht angetroffen. Der Rote Ostsee-Quarzporphyr stammt sehr wahrscheinlich aus einem Rapakiwi-Vorkommen (Nordbaltischer Pluton). Bemerkenswert ist der Fund eines Roten Ostsee-Quarzporphyrs als Ignimbrit mit einem Fremdgestein-Einschluss eines Granophyrs (Rapakiwi-Gefügevariante).

Abb. 19: Ignimbritischer Roter Ostsee-Quarzporphyr (Nr. 116) mit braunroter Grundmasse, eutaxitischem Gefüge und Granophyr-Xenolith. Bild: M. Bräunlich (kristallin.de)
Abb. 20: Nahaufnahme des granophyrischen Xenoliths (Bild: M. Bräunlich, kristallin.de). Der Xenolith ist ein sog. Granophyr und besteht fast vollständig aus graphischen Verwachsungen aus Quarz und Feldspat.

Alle Varianten quarzporphyrischer Rapakiwis aus Vorkommen von Åland fanden sich in großer Zahl in der KFH: Åland-Quarzporphyr (Skeppsvik-Typ, Toedding-Typ, dunkle Variante), Hammarudda-Quarzporphyr, Ringquarzporphyr. Ein seltener Fund sind Åland-Quarzporphyre mit eutaxitischem Gefüge (Åland-Ignimbrit, Abb. 21-22). Das ungewöhnlich große Stück von etwa 20 cm Breite entspricht nur bedingt den Anstehendproben von der kleinen Schäre Blå Klobben, westlich von Åland. Vermutlich gibt es weitere, bisher unbekannte Vorkommen unter Wasser. Die dicken und aushaltenden, quer durch das Gestein verlaufenden roten Fiamme sind ein Indiz für eine hohe Dynamik bzw. explosive Wucht während seiner Ablagerung in einem pyroklastischen Strom.

Abb. 21: Åland-Ignimbrit (Nr. 1686) mit eutaxitischem Gefüge, polierte Schnittfläche.
Abb. 22: Nahaufnahme unter Wasser. Typisches Merkmal der Quarzporphyre von Åland sind durch magmatische Korrosion abgerundete Quarze mit einem radialen Muster von Rissen („Fischchen“), gefüllt mit rotbrauner Grundmasse.

Auffällige Geschiebefunde sind Vulkanite mit primär vulkanischen Gefügemerkmalen wie Aschentuffe mit akkretionären Lapilli, Sphärolithporphyre und Vulkanite mit kugeligen Lithophysen („Kugelfelse“).

Abb. 23: Aschentuff mit akkretionären Lapilli (Nr. 109), polierte Schnittfläche.

Die helle und feinkörnige Tuffmatrix enthält wenige Einsprenglinge aus weißem Feldspat und transparentem Quarz sowie feine Schuppen dunkler Minerale (Glimmer, Chlorit o.ä.). Die eiförmigen Lapilli sind grünlich gefärbt und scheinen eine von der Tuffmatrix abweichende Zusammen-setzung zu besitzen. Der Geschiebetyp (Abb. 23) sollte nicht als „Dala-Pisolith“ bezeichnet werden. Zum einen ist „Pisolith“ eine sedimentologische Bezeichnung, zum anderen sind ganz ähnliche Vulkanite auch aus Småland (Lönneberga-Silverdalen) und den Svekofenniden bekannt.

Sphärolithe (Sphärolithporphyre Abb. 24-27) sind aus radialstrahligen Kristallaggregaten aufgebaute, meist aus Alkalifeldspat und Quarz bestehende Gebilde. Sphärolithische Texturen entstehen, wenn glasreiche rhyolithische bis dacitische und hinreichend unterkühlte Schmelzen zur Kristallisation gezwungen, aber nur wenige Kristallisationskeime vorhanden sind.

Abb. 24: Roter sphärolithischer Quarzporphyr (Nr. 18), polierte Schnittfläche. Die Sphärolithe bilden Aureolen um sämtliche Feldspat- und Quarz-Einsprenglinge und sind etwas kräftiger gefärbt als die Grundmasse.
Abb. 25: Erst in der Makroaufnahme wird der radialstrahlige Aufbau der Sphärolithe sichtbar. Die eckigen und magmatisch korrodierten Quarz-Einsprenglinge (ehemalige Hochquarze) ähneln denen im Roten Ostsee-Quarzporphyr. Foto: T. Langmann.

Der graue Sphärolithporphyr in Abb. 26-27 besitzt eine helle und feinkörnige Grundmasse aus Quarz, Feldspat und einem dunklen und nadelförmigen Mineral. Vereinzelt finden sich Butzen aus Quarz und rotem Alkalifeldspat. Das dunkle Mineral ist auch innerhalb der Sphärolithe erkennbar. Es könnte sich um Riebeckit handeln, einem Na-Amphibol, dafür spricht auch der auffallende bläuliche Farbstich der polierten Schnittfläche. Sphärolithe mit dunklen Mineralen (Riebeckit) sind selten, nach ZANDSTRA 1988: 149-152 sollen sie aus Nordschweden stammen.

Abb. 26: Grauer Sphärolithporphyr (Nr. 16), trocken fotografiert.
Abb. 27: Nahaufnahme der polierten Schnittfläche.

Das harte und sehr zähe Gestein Abb. 29-30 besitzt eine feinkörnige braune Matrix, in die zahlreiche mit Quarz gefüllte Lithophysen (mineralgefüllte Hohlräume in Vulkaniten) eingebettet sind, teils mit erkennbar konzentrischem Aufbau. Wenige eckige Feldspat-Einsprenglinge finden sich sowohl in der Matrix, als auch innerhalb der Lithophysen. Ungeklärt ist bei diesem Fund, ob es sich um ein nordisches Geschiebe oder einen Vulkanit südlicher Herkunft handelt, der mit der Berliner Elbe in dieses Gebiet gelangte.

Der Quarzporphyr (Rhyolith) Abb. 30 steht exemplarisch für die zahlreichen Einzelfunde von Vulkaniten mit auffälligem, „exotischem“ oder besonders farbenfrohem Erscheinungsbild. Vor allem Rhyolithe („Quarzporphyre“) zeichnen sich durch eine große Vielfalt und Variabilität hinsichtlich Farbe und Einsprenglingsdichte aus. Der verständliche Wunsch nach einer Beheimatung solcher Geschiebe lässt sich oftmals nicht befriedigen, weil im nordischen Grundgebirge unzählige Gänge und Kleinvorkommen existieren, von denen nur ein Bruchteil beprobt wurde, zudem Porphyre in verschiedenen, auch weit voneinander entfernten Vorkommen ganz ähnlich aussehen können.

Abb. 32: Grobkörniger Gabbro (Dolerit), Breite 40 cm.

Das Gestein ist für einen Gabbro, dessen Korngrößen sich im Regelfall zwischen 3-5 mm bewegen, ausgesprochen grobkörnig. Die Plagioklasleisten erreichen eine Länge von 5 cm Länge, dazwischen liegen grünlich angewitterte Pyroxen-Aggregate. Die Einregelung der Plagioklase dürfte auf magmatische Lamination zurückzuführen sein. Das Mineralgefüge weist nicht die für Plutonite typische Verzahnung der Mineralkörner auf, eher ähnelt es dem eines Dolerits.

Abb. 33: Porphyrischer Garberg-Granit aus Dalarna(Nr. 42), angefeuchtete Schnittfläche, Bildbreite 14 cm.

Småland-Värmland-Granitoide: die typischen roten und bunten Småland-Granite mit Blauquarz sowie regional spezifische Vertreter aus Ost- und Nordost-Småland (Kinda-Granit, Vanevik-Granit etc.) sind in der KFH nur vereinzelt anzutreffen. Im Vergleich zu anderen brandenburgischen Fundlokalitäten ist aber eine bemerkenswerte Fundhäufung Filipstad-Granittypen zu verzeichnen, deren Herkunft zumindest teilweise in Westschweden (Värmland) liegen dürfte. Es handelt sich um biotitreiche und schwach bis mäßig deformierte porphyrische Granite („Trikolore-Granite“) aus rotem und/oder grauviolettem Alkalifeldspat, Blauquarz und hellem Plagioklas; dieser bildet auch Säume um einzelne gerundete Alkalifeldspäte. Für Anteile einer westschwedischen Geschiebegemeinschaft sprechen mehrere Funde von Kinne-Diabas und drei Funde des seltenen Weißen Filipstad-Granits (Abb. 34). Das Anstehende dieses Gesteins ist nicht bekannt, es wurde bisher nur als Nahgeschiebe in Värmland (SCHEERBOOM H & A 2010) gefunden. Sein Gefüge dürfte in Skandinavien einzigartig sein, damit ist er ein guter Kandidat für ein Leitgeschiebe.

Abb. 34: Weißer Filipstad-Granit (Nr. 5), polierte Schnittfläche. Einige der cremefarbenen und runden Alkalifeldspat-Einsprenglinge sind von einem helleren Saum aus Plagioklas umgeben. Die Matrix besteht aus xenomorphem und hell- bis blaugrauem Quarz sowie Alkalifeldspat. Dunkle Minerale sind nur in sehr geringer Menge enthalten.

Rapakiwi-Granite treten der in KFH in allen bekannten Gefügevarianten auf: Quarzporphyre, Granitporphyre, Aplitgranite, Porphyraplite, Granophyre, Prick-Granite, gleichkörnige Granite, porphyrische Granite, Pyterlite und Wiborgit. Zahlreiche Funde konnten dem Åland-Pluton zugeordnet werden. Das Satelliten-Vorkommen von Kökar lieferte offenbar nur wenige Geschiebe. Ebenfalls von Åland stammt, aber nicht zu den Rapakiwi-Graniten gehört der Lemland-Granit. Rapakiwis vom westfinnischen Festland (Vehmaa- und Laitila-Pluton) sowie vom nordschwedischen Rödö-Massiv sind nicht dokumentiert. Drei Rapakiwi-Geschiebe wurden dem Vorkommen von Nordingrå (Nordschweden) zugeordnet (Abb. 36-37), ein weiteres (Ostsee-Rapakiwi) dem Nordbaltischen Pluton, ein vollständig unter Wasser liegendes Rapakiwi-Vorkommen zwischen den Åland-Inseln und den Inseln Hiiumaa und Saaremaa vor der estnischen Küste (BRÄUNLICH 2016).

Abb. 35: Åland-Wiborgit, Breite 12 cm.

Die Leitgeschiebe mit der weitesten „Anreise“ sind die Nordingrå-Rapakiwis aus Nordschweden. Der auf den ersten Blick eher unscheinbare porphyrische Rapakiwi enthält helle und rechteckige Alkalifeldspat-Einsprenglinge, wenige hellgraue und größere Quarze sowie grünlichbraun verwitternde Hornblende als dunkles Mineral. In der Grundmasse sind blassrote graphische Quarz-Feldspat-Verwachsungen erkennbar.

Als weitere Funde von granitoider Geschieben sind zu nennen: „Bottnischer“ Gneisgranit, Granite aus Bornholm und aus Mittelschweden (Uppsala-Granit), diverse Pegmatite, Aplite und Schriftgranite, turmalinführende granitoide Gesteine („Turmalingranit“) und Zweiglimmergranite.

Auf dem Gelände der Waldschule wurden mehrere Großgeschiebe von Metamorphiten aufgestellt, die mit einer angeschliffenen Fläche versehen wurden, darunter zwei Augengneise und ein migmatitischer Paragneis mit großen roten Granat-Porphyroblasten („Sörmland-Typ“). Herausragende Exponate sind ein großer Amphibolit (Abb. 38-39) sowie ein Västervik-Fleckengestein (Abb. 44-45) mit einem bemerkenswerten, durch partielle Verwitterung entstandenen Relief auf der Oberfläche.

Abb. 38: Dunkler Amphibolit, größtes Geschiebe im Findlingsgarten. Breite ca. 60 cm.
Abb. 39: Die dunkleren und eingeregelten Aggregate in der grauen Grundmasse sind größere, während der Metamorphose gewachsene Amphibole. Dem Gestein haftet eine Partie eines Quarz-Feldspat-Gesteins an, entweder ein Xenolith oder ein Kontakt zum Nebengestein. Bildbreite 30 cm.

Marmor entsteht bei der Metamorphose von Kalksteinen und Dolomiten. Tonige Verunreinigungen begünstigen die Entstehung von Silikat-mineralen, z. B. grünem forsteritischem (Mg-reichem) Olivin bzw. Ser-pentinmineralen oder Diopsid. Diese petrographisch korrekt als unreiner Marmor bezeichneten Gesteine werden auch „Silikatmarmor“ oder „Ophicalcit“ genannt, können sehr attraktiv aussehen und fallen als Geschiebe ins Auge.

Abb. 40: Unreiner Marmor, auch „Silikatmarmor“ oder „Ophicalcit“), Nr. 64, polierte Schnittfläche.
Abb. 41: Die grünen Minerale sind von Hand nicht sicher bestimmbar. Meist handelt es sich in diesem Gesteinstyp um Olivin, Serpentinminerale und/oder Diopsid (BARTOLOMÄUS & SCHLIESTEDT 2006). Hier weist die unregelmäßig-netzartige Struktur einiger grüner Mineralkörner auf serpentinisierten Olivin hin.

Das Västervik-Gebiet ist die Heimat mehrerer Leitgeschiebe (grauvioletter Västervik-Quarzit, Västervik-Fleckenquarzit, Västervik-Fleckengestein). Alle wurden mehrfach in der KFH gefunden, wobei die grauvioletten Västervik-Quarzite zeitweise ungewöhnlich häufig im südöstlichen Grubenvortrieb auftraten, viele davon auch als Windkanter.

Abb. 42: Ansammlung grauvioletter Sandsteine und Quarzite, darunter viele Quarzite vom Västervik-Typ, Bildbreite 70 cm. Die glatten Oberflächen erschweren manchmal die Unterscheidung von diagenetisch verkieselten Sandsteinen und Quarziten mit granoblastischem Gefüge.
Abb. 43: Rotfleckiger Västervik-Quarzit, Breite 35 cm. Quarzite dieser Art sind bisher nur aus dem Västervik-Gebiet bekannt.

Vom Västervik-Fleckengestein (Västervik-Cordierit-Granofels) liegen aus der KFH etwa ein halbes Dutzend Funde vor. Ein herausragendes Exponat ist ein Großgeschiebe, an dem die Verwitterung zwischen den dunklen Cordieritflecken und der Grundmasse ein deutliches Relief gezeichnet hat. Der Granofels ist aus einem Sandstein mit tonigen Anteilen hervorgegangen. Die Tonminerale begünstigten zunächst die Bildung von orangerotem Feldspat und Glimmer. Nachfolgende Kontaktmetamorphose ist für die Bildung der runden Cordierit-Granoblasten verantwortlich, die von retrograd gebildetem schwarzem Biotit durchsetzt sind. Das zur Bildung von Cordierit erforderliche Eisen stammt aus unmittelbarer Nähe, aus den nun an Fe-Mineralen verarmten Säumen um die dunklen Flecken.

Abb. 44: Västervik-Fleckengestein, Breite etwa 50 cm.
Abb. 45: Detailansicht der nassen Geschiebeoberfläche mit Vertiefungen, entstanden durch stärkere Verwitterung der dunklen Flecken. Bildbreite ca. 18 cm.
Abb. 46: Västervik-Fleckenquarzit, Aufnahme unter Wasser.

Der Gesteinstyp in Abb. 46 wurde in der Vergangenheit fälschlicherweise häufig dem Stockholm-Gebiet zugeordnet („Stockholm-Fleckenquarzit“). Genauere Untersuchungen vor Ort ergaben aber, dass solche glimmerführenden Quarzite mit weißen Sillimanit-Fibroblasten („Flecken“) aus dem Västervik-Gebiet stammen (s. Västervik-Fleckenquarzit).

Leitgeschiebe aus SW-Schweden gehören, ebenso wie Rhombenporphyre und Gesteine aus dem Oslograben, zu den seltenen Geschiebefunden in Brandenburg. Ein zeitweise verstärkter Einfluss eines von Norwegen kommenden Eisstroms im Brandenburger Stadium der Weichsel-Kaltzeit könnte auch für den Transport SW-schwedischer Leitgeschiebe verantwortlich sein, z. B. des feingneisigen Schonen-Granulits (Abb. 47-48). Dieses Gestein entstand unter granulitfaziellen Bedingungen während der Svekonorwegischen Gebirgsbildung vor etwa 1 Milliarde Jahren. Es besteht ausschließlich aus rotem bis orangefarbenem Alkalifeldspat und dunkelgrauem Quarz. Kennzeichnend sind die feinen ausgewalzten, für Granulite typischen „Plattenquarze“. Dunkle Minerale fehlen, weil sie während der granulitfaziellen Metamorphose instabil wurden.

Abb. 47: Schonen-Granulit, Aufnahme unter Wasser (Slg. Torbohm, Nr. 2299).
Abb. 48: Gleicher Stein, Nahaufnahme der Rückseite.

Eine Besonderheit dieses Fundes ist die Grünfärbung auf der Rückseite, wahrscheinlich die Folge einer „Charnockitisierung“, einer „trockenen“ Hochdruckmetamorphose, bei der es zur Bildung von Pyroxen kommt. Charnockitisierte Grundgebirgspartien sind von mehreren Lokalitäten in SW-Schweden bekannt. Im Unterschied zur Vorderseite des Geschiebes sind dunkle, von Hand aber nicht bestimmbare Minerale erkennbar (Pyroxen oder Amphibol/Biotit als retrograde Umwandlungsprodukte?). Ein Hinweis auf granulitfazielle Metamorphose ist die Anwesenheit von Magnetit, nachweisbar mit einem Handmagneten.

2.2. Sedimentärgeschiebe

Zu den häufigen Funden in der KFH gehören, wie auch in vielen anderen Kiesgruben in Brandenburg, Rotsandsteine aus dem Mesoproterozoikum (Jotnischer Sandstein), rotbraune und helle Sandsteine aus dem Unterkambrium, diese häufig mit Ichnofauna, weiterhin Kalksteine aus Ordovizium und Silur sowie Feuersteine und Kalksteine aus Oberkreide und Dan. Eine statistische Auswertung sedimentärer Geschiebefunde kann ENGELHARDT 1997: Abb. III 6-1 entnommen werden. Die Arbeit von ENGELHARDT & HOFFMANN 2012 zum Spurenfossil Syringomorpha zeigt Funde aus der KFH. Besonderheiten der KFH sind Muschelkalk-Geschiebe aus dem Vorkommen von Rüdersdorf (SCHNEIDER 2017) sowie mehrfache Funde von Konglomeraten, die der Trias zugerechnet werden (TORBOHM & BARTOLOMÄUS 2018).

Abb. 49: Mesoproterozoische („Jotnische“) Sandsteine mit Wellenrippel, Alter ca. 1200-1400 Millionen Jahre. Bildbreite 60 cm.
Abb. 50: Spurenfossil Plagiogmus (Nr. 3031) in einem glaukonitischen Sandstein, Breite 12 cm.
Abb. 51: Bunter Orthocerenkalk (Ordovizium), sog. Blomminge bladet („Blumenschicht“), polierte Schnittfläche.
Abb. 52: Echinosphaeriten-Kalk (Ober-Ordovizium), Breite 9 cm. Die runden Gehäuse der ausgestorbenen Beutelstrahler sind radialstrahlig mit Calcit ausgefüllt.
Abb. 53: Lavendelblauer Hornstein (verkieselter ordovizischer Schwamm).

Der Geschiebetyp der Lavendelblauen Hornsteine wurde durch den Baltischen Urstrom abgelagert, einem hypothetischen Flusssystem, das vor etwa 40 Millionen Jahren entstand, im Gebiet der heutigen Ostsee verlief und im Pleistozän verschwand (SCHULZ 2003, VAN KEULEN et al. 2012). Ein Teil der Lavendelblauen Hornsteine sind lose ordovizische bis silurische Einzelfossilien von lavendelblauer bis grauer Farbe. Ihr Herkunftsgebiet wird in der Bottensee und im westlichen Finnland vermutet. Funde sind von mehreren Lokalitäten und unterschiedlichen Horizonten (etwa Miozän bis Pliozän) bekannt, lokal treten sie auch gehäuft auf (Sylt, Niederlausitz, Emsland, SW-Mecklenburg, Niederlande und weitere Vorkommen). Aus der KFH liegen wenige Einzelfunde vor.

Abb. 54: Crinoidenkalk mit ausgewitterten Seelilien-Stielgliedern als „Naturpräparat“, Bildbreite 6 cm.

Eine Besonderheit der KFH ist das häufige Auftreten von Muschelkalk-Geschieben (über 80 Funde). Aller Wahrscheinlichkeit nach handelt es sich um Lokalgeschiebe aus dem Vorkommen bei Rüdersdorf. Dieses liegt allerdings nicht in direkter Bewegungsrichtung des Eises, daher wird von einer Umlagerung aus saalezeitlichem Geschiebemergel ausgegangen, der aus dem Gebiet nördlich von Potsdam bzw. dem Berliner Raum stammt (SCHNEIDER 2017).

Abb. 55: Muschelkalk-Geschiebe, kristalliner Kalk mit Rippenbruchstück von Nothosaurus sp.; Oberer Muschelkalk (Ceratiten–Schichten), det. St. Schneider.
Abb. 56: Muschelkalk-Geschiebe; gelbgrauer, dichter Kalkstein mit Steinkern eines Ammoniten (Ceratites sp.); Oberer Muschelkalk (Ceratiten-Schichten), det. St. Schneider.

Ebenfalls bemerkenswert sind gehäufte Funde (bisher 8 Exemplare) eines bunten und monomikten Konglomerat-Typs (Trias– oder “Caliche“-Konglomerat). Es handelt sich um semiterrestrische und intraformationale Bildungen mit sparitischer Zementierung, sandiger Matrix und bunten Mergelklasten. Einige der Klasten weisen calcitgefüllte Risse auf und wurden als Caliche-Knollen aus aufgearbeiteten ariden Bodenhorizonten gedeutet. Ungeklärt ist bisher die genaue Herkunft der Konglomerate. Wahrscheinlich stammen sie aus einer mesozoischen Grabenfüllung in der Ostsee, südlich von Bornholm (Rønne-Graben) und sind dem Keuper bzw. der Oberen Trias zuzurechnen. Der Geschiebetyp wird von TORBOHM & BARTOLOMÄUS 2018 beschrieben, s.a. KNAUST 1997 und den ausführlichen Artikel auf dieser Seite.

Abb. 57: Caliche-Konglomerat, Schnittfläche, Aufnahme unter Wasser. Die roten Ränder einiger Mergelstein-Lithoklasten weisen auf ein arides Ablagerungsmilieu hin.

Jurassische Kelloway-Geschiebe (Dogger/Callovien), im östlichen Brandenburg ein häufiger Geschiebefund, treten in der KFH nur selten in Erscheinung. Feuersteine aus Oberkreide und Dan sind sehr häufig zu finden, gelegentlich auch gefleckte Feuerstein aus dem Turon, „Hanaskog-Flint“ (Campan) oder „geschichtete“ Feuersteine. Weiterhin treten reichlich weiße Kalksedimente, teils weiche Schreibkreide, teils härtere Kalk- und Mergelsteine, teilweise mit Schwämmen, Schnecken, Muscheln und Seeigeln auf. Alle Stufen der Oberkreide konnten durch Bestimmungen der stratigraphisch leitenden Muschel Inoceramus nachgewiesen werden (SEIBERTZ 2004 und ENGELHARDT & SEIBERTZ 2023). Aus der Oberkreide SE-Schonens stammt das Tosterup-Konglomerat (Abb. 58). Zu den Geschieben des Dan gehören Bryozoenkalk, Faxekalk, Saltholmskalk und helle Feuersteine (Abb. 59-60).

Abb. 58: Tosterup-Konglomerat (Oberkreide), polierte Schnittfläche. Am linken Bildrand ist eine Belemnitenspitze angeschnitten.
Abb. 59: heller Dan-Feuerstein mit Linsen aus bläulichem Chalcedon.
Abb. 60: Gleicher Stein, Nahaufnahme der Bryozoen-Fauna.

In Horizonten mit gehäuften Funden von Elbgeröllen traten auch rote Feuersteine in großer Zahl auf. Eingelagerte Fe-(III)-Verbindungen (Hämatit) und schwarze, teils windpolierte und wüsten-lackartige Beläge sprechen für eine Exposition in einem warmen und trockenen Klima, z. B. zur Zeit des Holstein-Interglazials.

Abb. 61: Rote bis schwarzrote Feuersteine; oben rechts ein roter Wallstein mit Schlagmarken und konkaver Eintiefung.
Abb. 62: „Wallsteine„, abgerollte Feuersteine als Brandungsgerölle eines tertiären Meeres.

Aus der KFH liegen mehrere Hundert Exemplare von „Wallsteinen“ vor. Wallsteine sind gut gerundete, ellipsoidisch geformte Feuersteine mit unregelmäßigen, parabelartigen Schlagmarken. Sie werden als Brandungsgerölle eines tertiären Meeres (Paläozän bis Unter-Eozän) aufgefasst und erhielten ihre Form durch gegenseitige Abrollung bei fortwährender Umlagerung. An ihren gegenwärtigen Fundort gelangten sie als Geschiebe oder stammen aus glazial aufgearbeiteten Horizonten aus Hebungsstrukturen der näheren und weiteren Umgebung (SCHULZ 2003, ANSORGE 2018).

An Geschieben des Tertiärs wurden in der KFH dokumentiert: Aschgraues Paläozängestein (Paläozän); Faserkalke, Zementsteine (Eozän); Braunkohle, „Braunkohlenquarzit“, „Wurzel-Quarzit“, „Tertiär-Quarzit“, „Urtorf“ (Abb. 63), helle verkieselte Nadelhölzer bis zu einer Größe von 80 cm (Miozän); Bernstein, Stettiner Gestein, Stettiner Kugeln, Septarien aus dem Rupelton (Oligozän).

Abb. 63: „Urtorf“ (Nr. 607), verkieselter Braunkohlentorf.

Urtorf“ ist ein poröses, kieseliges, dünnplattiges und von nicht bestimmbaren Pflanzenresten vollgestopftes Gestein, das wahrscheinlich aus Verkieselungszentren in der Braunkohle stammt (verkieselter Braunkohlentorf). Funde sind südlich und östlich von Berlin sowie aus der Umgebung von Fürstenwalde belegt. GOTHAN & BENNHOLT 1929 beschreiben den Geschiebetyp sowie ein anstehendes Vorkommen aus einer Ziegeleigrube bei Saarow, wo das Gestein in Gestalt flacher, bis 5 cm mächtiger Linsen mitten in der Braunkohle beobachtet wurde. Die im Anstehenden braune bis rötlichgraue Farbe kommt Geschiebefunden durch Bleichung/Verwitterung abhanden. Die Autoren nennen grasartige und schilfähnliche Pflanzen als Hauptbestandteil des Urtorfs. Selten sind Blätter von Laubhölzern oder Reste von Wasserpflanzen (Seerosen-rhizome).

Raseneisenerz und lösskindelartige Kalk-Sand-Konkretionen sind wahrscheinlich quartäre Bildungen. In der KFH treten gelegentlich Knochen von Großsäugern auf (Mammut, Wollnashorn und Wildpferd). Funde der Sumpfdeckelschnecke Viviparus diluvianus werden dem Holstein, ein Massenfund der Schnauzenschnecke Bithynia tentaculata der Eem-Warmzeit zugeordnet.

2.3. Elbgerölle

In der KFH fanden sich zeitweise Gerölle der mittelpleistozänen Berliner Elbe in großer Zahl in den oberen weichselzeitlichen Schmelzwassersanden. Die Gesteine wurden aus ihren südlichen Herkunftsgebieten zwischen ausklingender Elster- und einsetzender Saale-Vereisung in das Gebiet von Potsdam transportiert und in ausgedehnten Schotterfächern abgelagert. Sie liegen heute unter mächtigen glazialen Ablagerungen. Ein Teil wurde durch das vorrückende Inlandeis des Saale- und Weichsel-Glazials in jüngere glaziale Sedimente eingetragen und ist im Gebiet zwischen Teltow und Fläming gelegentlich als geringe Beimengung zu nordischen Geschieben zu finden. Funde südlicher Gerölle aus dem Gebiet zwischen Teltow und Fläming werden an anderer Stelle ausführlich dokumentiert (Link folgt in Kürze).

Die Herkunftsgebiete der Elbgerölle erstrecken sich vom südlichen Brandenburg über den östlichen Teil Sachsens bis weit nach Westböhmen, in das Gebiet zwischen Pilsen und Prag, sowie nach Osten bis ins Riesengebirgsvorland. Grundlage für die Bestimmung der Elbgerölle sind die Arbeiten von Kurt Genieser (GENIESER 1953a, 1955, 1957, 1962, GENIESER & MIELECKE 1957). Seine Beschreibungen wurden durch SCHWARZ et al. 2012, SCHWARZ & LANGE 2013, 2017, SCHWARZ & RIEDRICH 2010 und SCHWARZ 2021 teilweise revidiert und erweitert. Die wichtigsten Gerölltypen sind:

  • Milchquarz-Varietäten (streifig durchscheinende Quarze; Gerüst-, Strahlen- und Zellenquarze)
  • Cherts und Hornsteine („Lydite“ und „Kieselschiefer“)
  • Böhmische Quarz-Lydit-Konglomerate
  • Achat-, Amethyst-, Chalcedon- und Jaspisgerölle sowie
  • Gangbrekzien aus dem Osterzgebirge mit Paragenesen dieser Minerale
  • Paläozoische Kieselhölzer (Döhlener Becken, permokarbonische Becken in Nordböhmen)
  • kontaktmetamorphe „Knotengrauwacken“
  • Kreidesandstein
  • „Tertiärquarzite“/“Knollensteine“
  • Postvariszische rhyolithische Vulkanite
  • Känozoische Alkalivulkanite (Tephrite, Basanite, Phonolithe).
  • Erdbrandgesteine
  • Grüne „Serizitschiefer“

Außer Erdbrandgestein und Kreidesandstein konnten alle genannten Gerölltypen in der KFH dokumentiert werden. Am häufigsten sind Hornsteine/Cherts („Lydite“), tektonische Brekzien bzw. Gangbrekzien und Milchquarze. Alkalivulkanite (Tephrite, Olivinbasalte bzw. -basanite) treten in der KFH jedoch vergleichsweise selten auf, obwohl sie der häufigste Gerölltyp der Berliner Elbe sind.

Abb. 64: Zusammenstellung schwarz-weißer, als „Lydite“ bezeichneter Hornsteine und Cherts. Dokumentiert wurden mehr als hundert Funde des Gerölltyps aus der KFH.

Die schwarzweißen „Lydite“ sind die häufigsten Vertreter und zuver-lässiger Anzeiger einer südlichen Geröllgemeinschaft. Ein großer Teil der massigen und sehr zähen Gesteine stammt aus den Brdy südwestlich von Prag. Von dort sind keine allerdings Radiolarien bekannt, daher sollte der Gerölltyp nicht als Lydit (= paläozoische Radiolarite), sondern allgemeiner als Chert oder Hornstein bezeichnet werden. Neben den schwarz-weißen Cherts und Hornsteinen treten als typische Vertreter einer südlichen Geröll-gemeinschaft eine Reihe weiterer Farbvarianten sowie geschichtete Hornsteine („Kieselschiefer“) auf.

Abb. 65: Böhmisches Quarz-Lydit-Konglomerat, nass fotografiert. Das grünliche Konglomerat enthält gut gerundete Milchquarz- und einige Chert-Lithoklasten. Lagenweise sind Übergänge in einen Sandstein erkennbar. Das Elbeleitgeröll stammt aus den Brdy und wurde über die Berounka der Elbe zugeführt.

In der Grobkies-Fraktion finden sich gelegentlich Einzelgerölle von Amethyst, Achat, Chalcedon und Jaspis. Die folgende Chalcedon-Varietät ähnelt der Beschreibung des „rötlichgelben und weinroten Gelits“ in GENIESER 1955. Diese stammt aus Melaphyr-Mandelsteinen im Einzugsgebiet der Iser (Jizera) und Cidlina und ist das einzige Leitgeröll der oberen Elbe (alle anderen kommen aus dem Moldau-Beraun-Einzugsgebiet).

Abb. 66: Orange-gelb gebänderter Chalcedon, „rötlichgelber und weinroter Gelit“ aus dem Isergebirge.

Aus dem Osterzgebirge stammen charakteristische Paragenesen aus Quarz, Amethyst, Achat und Jaspis. Solche Quarz-Amethyst-Brekzien, „Trümmerachate“ und „Strahlenquarze“ wurden in der KFH vielfach gefunden und bilden die „osterzgebirgische Geröllgemeinschaft“ (GENIESER 1957).

Abb. 67: Kastenquarz mit Amethyst, osterzgebirgische Paragenese. Die weißen Milchquarz-Kästchen sind mit kristallinem Amethyst ausgefüllt und von feinen roten und jaspisartigen Adern umrahmt.
Abb. 68: Paläozoisches Kieselholz, durch Windeinwirkung glatt poliert. Paläozoische Hölzer stammen aus dem Döhlener Becken oder Permo-karbonischen Becken in Nordböhmen. Die nordböhmischen Hölzer weisen in der Regel eine bessere Strukturerhaltung auf.

Die sog. „Knollensteine“ oder „Tertiärquarzite“ sind verkieselte konglomeratische Quarzsandsteine (Diamiktite) und eine charakteristische Erscheinung in südlichen Geröllgemeinschaften. Knollensteine bilden verstreute Vorkommen in Sachsen und Böhmen und sind oligozänen bis miozänen Alters. Typisches Merkmal vieler „Tertiärquarzite“ sind eckige bis abgerundete Quarzkörner, die in einer feinkörnigen und kieselig gebundenen Grundmasse „schwimmen“.

Abb. 69: Detailansicht eines Amethystgerölls in einem „Tertiärquarzit“, Aufnahme unter Wasser.

Die Alkalivulkanite aus der Eruptivprovinz des Egergrabens (Tephrite, Olivinbasalte bzw. -basanite, Phonolithe etc.) treten im Berliner Elbelauf in großer Zahl auf und sind der häufigste Gerölltyp in der Überkorn-Fraktion, in der KFH fehlen die Gesteine jedoch weitgehend. Vermutlich erlagen sie durch oberflächennahe Exposition weitgehend der Verwitterung oder wurden zeitweise nicht transportiert.

Abb. 70: Tephrit, der häufigste Vertreter unter den südlichen Alkalivulkaniten aus der Eruptivprovinz des Egergrabens. Die meisten Alkalivulkanit-Gerölle dürften aus dem Böhmischen Mittelgebirge (České středohoří) stammen.
Abb. 71: Pfau auf dem Gelände der Waldschule.

3. Literatur

ANSORGE J 2018 Wallsteine als Schiffsballast auf Gotland – [Cretaceous Flint Pebbles as Ship Ballast on Gotland, Sweden] – Geschiebekunde aktuell 34 (4): 106-117, 8 Abb., Hamburg/Greifswald.

BARTOLOMÄUS W & SCHLIESTEDT M 2006 Marmore als Urkalkgeschiebe – Archiv für Geschiebekunde 5 (1-5):27-56, 5 Taf., 6 Abb., Hamburg/ Greifswald 2006.

BRÄUNLICH M 2016 Kristallingesteine der nördlichen Ostsee (Teil 1: Rapakiwis) – Geschiebekunde aktuell 32 (2): 38-54, 17 farb. Abb., 3 Ktn., Hamburg/Greifswald.

EIßMANN L 1967 Rhombenporphyrgeschiebe in Elster- und Saalemoränen des Leipziger Raumes – Abhandlungen und Berichte des natur- kundlichen Museums „Mauritianum” Altenburg 5: 37-46, 2 Abb., 1 Tab., Altenburg.

ENGELHARDT G 1997: III-6 Sedimentärgeschiebe im Exkursionsgebiet, insbesondere in der Kiesgrube Fresdorfer Heide. – In: SCHROEDER JH [Hrsg.]: Führer zur Geologie von Berlin und Brandenburg. 4: Potsdam und Umgebung, 161-171, 8 Abb.; Berlin (Verl. Geo- wissenschaftler Berlin Brandenburg).

ENGELHARDT G 2016 Geschiebe aus der Kiesgrube „Fresdorfer Heide“ südlich von Potsdam. Teil I. Geologischer Rahmen der Kiesgrube und der Geschiebe-Garten auf dem Großen Ravensberg – Der Geschiebesammler 48 (4): 99-115, 8 Abb, 2 Taf; Wankendorf. (Link zum Artikel)

ENGELHARDT G & HOFFMANN R 2012 Zur unterkambrischen Ichnogattung Syringomorpha anhand norddeutscher Geschiebefunde I – Archiv für Geschiebekunde 6 (5): 281-324, 9 Taf., 9 Abb., 3 Tab., Hamburg/Greifswald Dezember 2012. ISSN 0936-2967

ENGELHARDT G & SEIBERTZ E 2023 Geschiebe aus der Kiesgrube „Fresdorfer Heide“ südlich von Potsdam (Brandenburg, N- Deutschland), Teil II. Oberkreide-Faunen und ihre Herkunft: Ein Überblick – Geschiebekunde aktuell 39 (4): 113-124, 7 Abb., Hamburg/Greifswald.

FRANZ HJ & WEISSE R 1965 Das Brandenburger Stadium. – In: Gellert HJ [Hrsg.]: Die Weichseleiszeit im Gebiet der DDR, S. 69-81; Berlin (Akad.-Verl.).

GENIESER K 1953a Einheimische und südliche Gerölle in den Deckgebirgsschichten von Dobrilugk. – Geologie, 2 (1): 35–57, Berlin.

GENIESER K 1955 Ehemalige Elbeläufe in der Lausitz. – Geologie, 4 (3): 223-279, Berlin.

GENIESER K & MIELECKE W 1957 Die Elbekiese auf der Teltowhochfläche südlich von Berlin. – Sonderheft Berichte d. Geolog. Gesellschaft, Bd II, Heft 4, S. 242-263, Berlin 1957.

GENIESER K 1957 Neue Beobachtungen im böhmischen Quartär. Geologie 6 (3): 331–337, Berlin.

GENIESER K 1962 Neue Daten zur Flussgeschichte der Elbe. – Eiszeitalter u. Gegenwart 13: 141–156, Öhringen/Württ.

GOTHAN W & BENNHOLT W 1929 Über Verkieselungszentren in der Märkischen Braunkohle – Braunkohle 1929, Heft 37, 7 S., 1 Tafel.

GOTHAN W & BENNHOLT W 1929 Über pflanzenführende Tertiärgeschiebe und ihren Ursprung – Zeitschrift für Geschiebeforschung und Flachlandsgeologie (5), S. 81-87, Berlin.

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 8 Taf. (1 Taf. im Anh.), 44 Abb., 29 Tab., 1 Kte., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

KEULEN VAN P, SMIT F & RHEBERGEN F 2012 Ordovizische Lavendelblaue Hornsteine in miozänen bis altpleistozänen Ablagerungen des “Baltischen Flußsystems – Archiv für Geschiebekunde 6 (3): 155- 204, 39 Abb., 5 Tab., Hamburg/Greifswald Januar 2012.

KNAUST D 1997 Triassische Leitgeschiebe im pleistozänen Vereisungs- gebiet Nordostdeutschlands und deren Beziehung zur Kågerød- Formation von Bornholm (Dänemark) – Zeitschrift der Deutschen Geologischen Gesellschaft 148 (1): 51-69, 3 Taf., 5 Abb., 1 Tab., Stuttgart.

LANGMANN T & TORBOHM M 2017 Fleckenquarzite im Västervik-Gebiet – Geschiebekunde aktuell 33 (3): 77-82, 3 Abb. Hamburg/Greifswald, August 2017.

LE MAITRE RW et al. 2002 A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks.

OBST K, ANSORGE J, MATTING S et al. 2015 Early Eocene volcanic ashes on Greifswalder Oie and their depositional environment, with an overview of coeval ash-bearing deposits in northern Germany and Denmark – Int J Earth Sci (Geol Rundsch) (2015) 104: 21-79.

SCHEERBOOM H & SCHEERBOOM A 2010 „Witte Rapakivi“ is witte Filipstad- graniet – Grondboor & Hamer Nr. 2, 2010. S. 42.

SCHNEIDER 2017 Geschiebe aus der Kiesgrube „Fresdorfer Heide“ südlich von Potsdam, Teil II. Muschelkalk-Geschiebe – Der Geschiebesammler 49 (2): 47-71, 6 Abb., 4 Taf., Wankendorf, November 2017.

SCHNEIDER S & TORBOHM M 2020 Rhombenporphyre aus der Region Berlin/Brandenburg – Geschiebekunde aktuell 36 (1): 2-11, 6 Abb., Hamburg/Greifswald Februar 2020, ISSN 0178-1731.

SCHROEDER J H, WEIßE R et al. 1997 Geologie von Berlin und Brandenburg, Nr.4: Potsdam und Umgebung, Selbstverlag Berlin 1997.

SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 446+42 meist farb. kapitelweise num. Abb., 1 Kte. als Beil., Schwerin (cw Verlagsgruppe).

SCHWARZ D, LANGE JM & RIEDRICH G 2012 Elbeleitgerölle aus den Brdy (Mittelböhmisches Waldgebirge) – Veröff. Museum für Naturkunde Chemnitz 35 (2012) 61-72.

SCHWARZ D & LANGE JM 2013 Leitgerölle in den pleistozänen Elbeterrassen zwischen Riesa und Torgau. – Veröff. Museum für Naturkunde Chemnitz 36 (2013): 143-156.

SCHWARZ D & LANGE JM 2017 Gravitationsgebänderte Achate in Elbeschottern nördlich von Dresden – Veröff. Museum für Naturkunde Chemnitz 40 (2017): 167-178.

SCHWARZ D & RIEDRICH G 2010 Neue südliche Gerölle in Ostsachsen und Südbrandenburg – Ein Beitrag zur Frage nach dem Ursprung fluviatilen Gerölls aus Böhmen. – Der Aufschluss, 61: 187–193; Heidelberg.

SCHWARZ D 2021 Funde südlichen Gerölls in Südbrandenburg und Ostsachsen von der Neiße bis zum nördlichen sächsischen Elbtal – www.agates.click

SMED P & EHLERS J 2002 Steine aus dem Norden – Geschiebe als Zeugen der Eiszeit in Norddeutschland – 194 S., 83 Abb., 34 Taf.; Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage (2002).

STACKEBRANDT W & FRANKE D 2015 Geologie von Brandenburg. – 805 S., 313 Abb., 60 Tab.; Schweizerbartsche Verlagsbuchhandlung Stuttgart.

SEIBERTZ E 2004 Neue Funde von Inoceramen aus der Oberkreide Zentral-Brandenburgs (Turon bis Campan, Nord-Deutschland) und ihre paläobiogeographischen Beziehungen. – Geobiologie, 1: 223- 224; Göttingen.

SEIBERTZ E, BRUER T & NIEMANN J 2002 Geobiologische Prozesse während der Hauterive-Transgression in die unterkretazische Braunschweiger Bucht (NW-Deutschland). – Schr.-R. dt. geol. Ges., 21: 312-313; Hannover.

THIEKE HU 2002 Mittelpleistozäner Berliner Elbelauf. – In: STACKEBRANDT & MANHENKE [Hrsg.]: Atlas zur Geologie von Brandenburg, 42-43, Kt. 7; Kleinmachnow.

TORBOHM M & BARTOLOMÄUS W 2018 Funde monomikter Konglomerat-Geschiebe aus der Kiesgrube Fresdorfer Heide bei Potsdam – Geschiebekunde aktuell 34 (2): 34 – 41, 6 Abb., Hamburg/Greifs- wald, Mai 2018. ISSN 0178-1731.

TORBOHM M 2018 Südliche Gerölle des mittelpleistozänen Berliner Elbelaufes südlich und südwestlich von Berlin. – Manuskript, 141 S.

KEULEN PSF VAN, SMIT R & RHEBERGEN F 2012 Ordovizische Lavendelblaue Hornsteine in miozänen bis altpleistozänen Ablagerungen des “Baltischen Flußsystems – Archiv für Geschiebekunde 6 (3): 155-204, 39 Abb., 5 Tab., Hamburg/Greifswald Januar 2012. ISSN 0936-2967.

VINX R 2016 Steine an deutschen Küsten; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verlag).

VINX R 2011 Gesteinsbestimmung im Gelände – 3. Aufl., XI+480 S., 4 S/W-Taf., 418 Abb., 14 Tab., 5 Kästen, Heidelberg etc. (Spektrum Akademischer Verlag in Springer SBM).

WEISSE R 1997 II-3 Satzendmoräne auf gestauchtem Sockel in der Fresdorfer Heide. – In: SCHROEDER JH [Hrsg.]: Führer zur Geologie von Berlin und Brandenburg. 4: Potsdam und Umgebung. 95-100, 5 Abb., 1 Kt.; Berlin (Verl. Geowissenschaftler Berlin Brandenburg).

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).

ZANDSTRA J G 1999 Platenatlas van noordelijke kristallijne gidsgesteenten, Foto’s in kleur met toelichting van gesteentetypen van Fennoscandinavië – XII+412 S., 272+12 unnum. Farb-Taf., 31 S/W- Abb., 5 Tab., Leiden (Backhuys).

Geschiebesammeln im Broager Land (DK)

Abb. 1: Geröllstrand bei Skeldekobbel, südöstlich von Broager (DK).

Für den Brandenburger Geschiebesammler ist ein Besuch des Geröllstrands von Skeldekobbel im Broager Land (Dänemark) eine willkommene Abwechslung. Hier, am nördlichen Ufer der Flensburger Förde, bietet sich eine durch den Einfluss eines von Norden kommenden Eisstroms deutlich anders zusammengesetzte Geschiebegemeinschaft. Zwar finden sich auch die üblichen „Verdächtigen“, z. B. Rapakiwigesteine von Åland, Vulkanite und Granite aus Småland und Dalarna, auffällig ist aber der hohe Anteil SW-schwedischer saurer und mafischer Granulite, Granatamphibolite und Charnockite; Oslogesteine sind etwas seltener vertreten.

Die Gelegenheit für diese Sammeltour ergab sich im Rahmen des von Dr. Frank Rudolph veranstalteten Geschiebesammlertreffens vom 13.-15.10.2023 in Flensburg. Das Eiszeit-Haus in Flensburg beherbergt eine umfangreiche und unbedingt sehenswerte Sammlung von Geschiebefossilien und Kristallingeschieben, die immer weiter ausgebaut wird.

Abb. 2: Das Eiszeit-Haus in Flensburg.
Abb. 3: Pectunculus-Sandstein von etwa 2 m Durchmesser vor dem Eiszeit-Haus.

Der riesige Pectunculus-Sandstein wurde bei Baggerarbeiten aus dem Hafenbecken von Flensburg geborgen. Das mittelmiozäne Gestein (Reinbek) ist voll von Muschelschalen der Gattung Glycimeris (vormals Pectunculus) und wird vor allem an der dänischen Grenze gefunden, Sandsteine mit Muschelpflastern von Glycimeris-Schalen sind auch aus einer Kiesgrube östlich von Lüneburg oder vom Schaal-See bei Zarrentin belegt (SCHULZ 2003: 424-427).

Abb. 4: Exponate im Eiszeit-Haus Flensburg.
Abb. 5: Gneis mit schälchenförmigen Vertiefungen („Opferstein“) auf dem Museumsberg in Flensburg, Breite ca. 50 cm.
Abb. 6: Steilufer aus Geschiebemergel am Strand von Skeldekobbel.

An Geröllstränden lassen sich immer wieder Ansammlungen dunkler, meist basischer (SiO2-armer) Gesteine sowie der metamorphen Äquivalente (Metabasite) beobachten. Bei Bewegung durch Wellenschlag kommen die basischen Gesteine aufgrund ihrer im Vergleich zu SiO2-reichen Gesteinen höheren spezifischen Dichte schneller zur Ruhe und reichern sich lokal an. In solchen Akkumulationen findet sich eine Reihe ganz unterschiedlicher Geschiebetypen (Abb. 7-26). Unter den als Leitgeschiebe geeigneten basischen Gesteinen treten in Skeldekobbel vor allem Kinne-Dolerit, aber auch Schonen-Basanit und Schonen-Lamprophyr häufig auf.

Abb. 7: Basaltisches Gestein mit wenigen Plagioklas-Einsprenglingen, vermutlich ein Öje-Basalt aus Dalarna, Breite 14 cm.
Abb. 8: Basaltisches Gestein mit doleritischem Gefüge und zahlreichen Plagioklas-Einsprenglingen (kein „Öje-Diabasporphyrit“, vgl. Beitrag von M. Bräunlich auf kristallin.de); Breite 25 cm.
Abb. 9: Schonen-Basanit, basaltähnliches Gestein mit großen Peridotit-Xenolithen. Die flaschengrünen Erdmantelgesteins-Einschlüsse bestehen im Wesentlichen aus Olivin, Orthopyroxen und etwas Chromspinell.
Abb. 10: Schonen-Basanit; hier sind die Peridotit-Xenolithe bereits ausgewittert und hinterlassen Löcher auf der Gesteinsoberfläche.
Abb. 11: Schonen-Lamprophyr, ein Ganggestein aus Schonen mit orangeroten bis gelblichgrünen Olivin- und schwarzgrünen Klinopyroxen-Einsprenglingen.
Abb. 12: Kinne-Diabas (besser: Kinne-Dolerit), Leitgeschiebe für Västergötland, leicht erkennbar an seiner Verwitterungsrinde, Breite 14 cm.
Abb. 13: Ein weiterer Kinne-Dolerit, Breite 14 cm. An den ausgewitterten Stellen zwischen den Flecken erkennt man das doleritische Gefüge.
Abb. 14: Oslo-Basaltmandelstein, Leitgeschiebe aus dem Oslograben, erkennbar an seinen feinen länglichen Plagioklas-Einsprenglingen und mit apfelgrünem Epidot gefüllten Mandeln.
Abb. 15: Dolerit, wahrscheinlich vom Åsby-Ulvö-Typ, mit intergranularem Gefüge.
Abb. 16: Doleritischer Metabasit; die Plagioklas-Einsprenglinge sind durch hydrothermale Alteration grün gefärbt, die Pyroxene der Grundmasse teilweise in Amphibol (Hornblende) umgewandelt.
Abb. 17: Amphibol-porphyroblastischer Metabasit; während der Metamorphose, vermutlich eines doleritischen Ausgangsgesteins, kam es zur Bildung größerer rundlicher Amphibol-Porphyroblasten.
Abb. 18: Feinkörniger Amphibol-porphyroblastischer Metabasit mit Plagioklas-Einsprenglingen und grünen Epidot-Adern.

Die Metabasite in Abb. 19-25 entstammen den hochmetamorphen (obere Amphibolit- bis Granulitfazies) Einheiten in SW-Schweden. Weißschlieriger Granatamphibolit, mafischer Granulit und Granatcoronit sind als Leitgeschiebe geeignet.

Abb. 19: Granatamphibolit
Abb. 20: Weißschlieriger Granatamphibolit, Breite 14 cm.
Abb. 21: Mafischer Granulit, nass fotografiert.
Abb. 22: Gleicher Stein, Nahaufnahme. Unter granulitfaziellen Bedingungen, während einer „trockenen“ Hochdruck-Metamorphose bildeten sich an der Grenzfläche zwischen Pyroxen und hellem Plagioklas schmale Säume („Coronen“) von rotem Granat. Der grünlichschwarze Pyroxen wurde während der retrograden Metamorphose teilweise in schwarzen Amphibol umgewandelt.
Abb. 23: Verschiedene mafische Granulite vom Geröllstrand bei Skeldekobbel.
Abb. 24: Mafischer Granulit, trocken fotografiert. Beim Blick auf die Foliation sind die kleinen roten Granatkörner gut erkennbar.
Abb. 25: An mafischen Granuliten, die aus grobkörnigen Gesteinen hervorgegangen sind, tritt das coronitische Gefüge noch deutlicher hervor. Solche Gesteine werden auch als Granat-Coronit (besser: coronitischer mafischer Granulit) bezeichnet. Breite 15 cm.
Abb. 26: Der letzte Fund aus der Reihe basischer und metabasischer Gesteine ist ein einschlussführender Amphibolit. Breite 14 cm.

Gesteine aus dem Oslograben sind am Strand von Skeldekobbel nicht so häufig, wie es die zahlreichen Funde SW-schwedischer Gesteine erwarten ließen. Lediglich einige Rhombenporphyre, zwei Larvikite sowie ein Oslobasalt (Abb. 14) konnten aufgelesen werden.

Abb. 27: Einsprenglingsarmer Rhombenporphyr, Aufnahme unter Wasser.

Leitgeschiebe aus Dalarna (Abb. 28-31) sowie Gesteine aus Småland (Abb. 32) und Östergötland treten ebenfalls eher vereinzelt auf.

Abb. 28: Undeformierter einsprenglingsreicher Quarzporphyr, wahrscheinlich ein Särna-Quarzporphyr aus Dalarna, Aufnahme unter Wasser.
Abb. 29: Nahaufnahme der nassen Oberfläche.
Abb. 30: Garberg-Granit aus Dalarna.
Abb. 31: Venjan-Porphyrit, Aufnahme unter Wasser.
Abb. 32: Emarp-Porphyr, Leitgeschiebe aus dem mittleren Småland, Breite 12,5 cm.
Abb. 33: Blauquarzgranit mit braunem bis rötlichem Alkalifeldspat und gelbem bis rötlichem Plagioklas. Solche Granite mit rötlichem Plagioklas sind vor allem aus Östergötland bekannt (Askersund-Granit?). Aufnahme unter Wasser.
Abb. 34: Porphyrischer Monzogranit bis Granodiorit mit grünlichem bis rotbraunem Plagioklas. Vergleichbare Gesteine sind aus NE-Småland bekannt, aber nicht näher zuzuordnen. Breite 14 cm.
Abb. 35: Vaggeryd-Syenit, Aufnahme unter Wasser. Wie es sich für einen Syenit gehört, dominiert rotbrauner Alkalifeldspat; Plagioklas und Quarz sind nur in geringer Menge enthalten. Innerhalb der Ansammlungen dunkler Minerale erkennt man keilförmige gelbe Titanit-Kristalle.

Zu den Höhepunkten der Sammeltour gehört sicherlich der Fund eines großen Rödö-Wiborgit-Geschiebes. Typisch für den Rödö-Wiborgit sind neben seiner leuchend orangeroten Gesamtfärbung einzelne Alkalifeldspat-Ovoide über 2 cm, einige davon mit einem dicken Saum aus gelbgrünem Plagioklas (Abb. 37, unten im Bild), weiterhin die großen und hellen, wenig magmatisch korrodierten Quarze.

Abb. 36: Rödö-Rapakiwi mit Wiborgitgefüge, Breite des Steins 23 cm.
Abb. 37: Nahaufnahme des Gefüges.

Aus einem Rapakiwi-Vorkommen könnte auch das folgende Mischgestein stammen, eine Vermengung von basischem und felsischem („saurem“) Magma (magma mingling). Die Grundmasse zeigt ein doleritisches Gefüge und ist stark alteriert (Grünfärbung!). Darüber hinaus sind als „saure“ Bestandteile größere rundliche Quarze und Partien mit rötlichem (Alkali?-)feldspat erkennbar. Denkbar ist auch, dass das Gestein ein basischer Xenolith aus einem sauren Wirtgestein ist.

Abb. 38: Mischgestein mit doleritischer Grundmasse, Breite 16 cm.
Abb. 39: Nahaufnahme
Abb. 40: Blassroter Quarz-Feldspat-Gneis mit roten Flecken, möglicherweise ein Geschiebe von Bornholm. Breite 15 cm.
Abb. 41: SW-schwedischer Gneis aus hellrotem Alkalifeldspat, orangerotem Plagioklas; dunkle Minerale fehlen weitgehend (SW-schwedischer Granulit), Breite 16 cm.
Abb. 42: Gneis mit einer Flasertextur und einer grobkörnigen Partie im Top, dunkle Minerale fehlen. Das Gestein könnte ebenfalls ein SW-schwedischer Granulitgneis sein. Breite 11 cm.
Abb. 43: Gelbgrüner Magmatit, ein Charnockit, Leitgeschiebe für SW-Schweden. Unter der Lupe sind kleine rote Granatkörner erkennbar. Aufnahme unter Wasser.
Abb. 44: Charnockitisierter Gneis, Breite 13 cm. Solche grünen (charnockitisierten) Partien kommen regelmäßig in den rötlichen granulitfaziellen Gneisen SW-Schwedens vor.
Abb. 45: Grünschiefer (Chloritschiefer) mit roten Granat- und hellen Feldspat-Granoblasten. Das plattige Geschiebe besteht im Wesentlichen aus grünen Schichtmineralen (Chlorit). Die Anwesenheit von Granat lässt auf ein sedimentäres Ausgangsgestein schließen, z. B. dolomitischen Kalkmergel.
Abb. 46: Nahaufnahme der nassen Oberfläche.
Abb. 47: Metasediment (etwa quarzitischer Chloritschiefer) mit Lagen aus Segregationsquarz (= durch Fluide aus dem Sediment verdrängte und lokal angereicherte Quarzpartien).
Abb. 48: Nahaufnahme der nassen Oberfläche. Die strahligen Quarzaggregate wuchsen senkrecht zur Kluftebene. Das dunkelgrüne Mineral ist vermutlich Chlorit.
Abb. 49: Quarzit mit Partien aus rotem Alkalifeldspat, Breite 10 cm.

Ein weiteres Highlight am Strand von Skeldekobbel ist der Fund eines migmatitischen Paragneises mit Granat-Porphyroblasten bis 6,5 cm Größe. Der Gesteinstyp ähnelt den Gneisen vom Sörmland-Typ. Zu denken gibt aber die Beobachtung, dass er recht häufig zu finden ist, andere Gesteine des östlichen Mittelschwedens (z. B. Uppland-Granite) hingegen fehlen. Die Literaturrecherche ergab bisher kein weiteres mögliches Herkunftsgebiet für diese migmatitischen Granat-Cordierit-Paragneise.

Abb. 50: Migmatitischer Paragneis mit großen Granat-Porphyroblasten.
Abb. 51: Granat-Porphyroblast mit einem Saum aus Feldspat, Nahaufnahme unter Wasser.
Abb. 52: Rückseite des gleichen Steins, Aufnahme unter Wasser. Die schwach bläulichgrauen, von Dunkelglimmer durchsetzten Partien sind ein Hinweis auf Cordierit, der in diesem Gestein offenbar in erheblicher Menge enthalten ist.
Abb. 53: Ein ähnlicher migmatitischer Granat-Cordierit-Paragneis, Breite 38 cm.
Abb. 54: Leukosom eines migmatitischen Granat-Cordierit-Paragneises, Aufnahme unter Wasser.
Abb. 55: Nahaufnahme, roter Granat-Porphyroblasten, umgeben von hellgrauem Cordierit (?).
Abb. 56: Paragneis mit Fleckentextur, Breite 30 cm. Im schwindenden Tageslicht fotografiert, daher etwas unscharf: ein auffälliger Quarz-Feldspat-Biotit-Gneis mit grünen Flecken (retrograd aus Cordierit gebildeter Chlorit?), die einen schmalen hellen Saum aufweisen.
Abb. 57: Tektonische Brekzie; das dichte grüne und hornsteinartige Gestein ist in situ durch tektonische Einwirkung zerbrochen; die Risse wurden nachfolgend mit Quarz als Ausscheidung hydrothermaler Lösungen verfüllt.

Ein außergewöhnliches Gestein, einen Skarn, entdeckte Frank Rudolph. Skarne sind metasomatische Gesteine, die im Kontaktbereich von einem aufsteigenden plutonischen Körper mit einem z. B. Ca-reichen Sedimentgestein entstehen. Dabei kommt es zu einem intensiven Stoffaustausch und der Neubildung von Ca- und Fe-reichen Silikatmineralen innerhalb des Sedimentgesteins. Typisch für Skarne aus Ca-reichen Sedimentgesteinen sind Neubildungen von Ca-reichem Klinopyroxen (Diopsid als Endglied), Fe-reichem Ca-Klinopyroxen (Hedenbergit als Endglied) und Granat (gelbgrüner bis dunkelgrüner Grossular, roter Almandin).

Abb. 58: Stark angewitterter Skarn mit ausgeprägter Lagentextur, Breite ca. 30 cm. Das Gestein konnte nur mit Mühe, unter Zuhilfenahme eines schweren Hammers zerlegt werden.
Abb. 59: Frische Bruchfläche, Abschlag vom obigen Block. Lagenweise sind Partien mit grünen (Diopsid), schwarzgrünen (Hedenbergit) und roten Mineralen (Granat) erkennbar.
Abb. 60: Skarn, polierte Schnittfläche.
Abb. 61: Nahaufnahme; wolkige graue Partien bestehen aus Quarz.
Abb. 62: Nahaufnahme. Das Gestein wurde offensichtlich tektonisch überprägt; rechts unterhalb der Bildmitte reflektiert ein größeres grünes und gestreiftes Kristallaggregat das einfallende Licht.

Zum Schluss noch einige Funde von Sedimentgesteinen.

Abb. 63: Bioturbater heller Sandstein mit Algenbewuchs, Breite 23 cm.
Abb. 64: Intraformationelles Konglomerat, ein glaukonitischer Sandstein mit phosphoritisch (?) gebundenen Sandstein-Intraklasten, Breite 34 cm.
Abb. 65: Nahaufnahme, Breite des Intraklasts 8 cm.
Abb. 66: Kontakt eines Hanaskog-Flints mit einem feinkörnigen Kalksandstein.
Abb. 67: Eigenartige konkretionäre(?) Sedimentstrukturen in einem Limonitsandstein.
Abb. 68: Am Strand bei Skeldekobbel finden sich vereinzelt Limonitsandsteine mit meist nicht näher bestimmbaren Muscheln, die wohl dem Paläozän zuzuordnen sind (pers. Mitteilung F. Rudolph). Breite des Geschiebes 20 cm
Abb. 69: Paläozäner Limonitsandstein, Breite 14 cm
Abb. 70: Gleicher Stein; in der Aufsicht sind neben unbestimmbaren Muschelabdrücken zwei schwarze Haifischzähne erkennbar.
Abb. 71: Konglomerat mit Toneisenstein-Lithoklasten (Jura oder Lias?).
Abb. 72: Pyritisiertes Spurenfossil, üblicherweise als Ophiomorpha nodosa bezeichnet. Vermutlich haben callianasside Krebse diesen Wohnbau angelegt.
Abb. 73: Pyrit-Konkretion
Abb. 74: Am Ende des nördlichen Strandabschnitts fanden sich an einigen Baumstämmen, die offenbar längere Zeit im Wasser lagen, Spuren der Schiffsbohrmuschel (Teredo navalis). Bildbreite 30 cm.

Literatur

SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 446+42 meist farb. kapitelweise num. Abb., 1 Kte. als Beil., Schwerin (cw Verlagsgruppe).

Geologische Streifzüge auf Rügen

Abb. 1: Steilküste auf Jasmund; Ablagerungen der Oberkreide (weiß) mit eingeschaltetem Geschiebemergel (grau).

Das bevorzugte Ziel für den geologisch interessierten Besucher von Rügen ist die beeindruckende Steilküste auf dem Inselteil Jasmund. Hier sind die als „Rügener Schreibkreide“ bezeichneten Sedimente sowie pleistozäne Ablagerungen aufgeschlossen. Nach einer kurzen Übersicht zu Rügens Geologie werden in dieser Artikelreihe Funde kristalliner Geschiebe von mehreren Stränden der Insel vorgestellt.

1. Zur Geologie von Rügen
2. Geschiebesammeln auf Rügen
2.1. Sassnitz
2.2. Dwasieden
2.3. Kap Arkona
2.4. Lohme
2.5. Sellin
2.6. Mönchgut
3. Links und ausgewählte Literatur

1. Zur Geologie von Rügen

Die Rügener Schreibkreide ist ein krümeliger und wenig verfestigter Kalkstein, der von zahlreichen Feuersteinbändern durchzogen wird. Sie entstand in einem Zeitabschnitt der Oberkreide, im Maastricht, vor etwa 72-66 Millionen Jahren. Zu dieser Zeit bedeckte ein Flachmeer praktisch ganz Mitteleuropa. Nur einige Inseln ragten aus diesem Kreidemeer hervor, die Alpen gab es noch nicht. Ein tropisches Klima, aber eine recht kühle Wassertemperatur begünstigte das Wachstum kleinster, planktonisch lebender Meerestiere, aus denen die Schreibkreide zusammengesetzt ist. Im Wesentlichen sind dies die als Coccolithen bezeichneten Kalkplättchen von Algen der Ordnung Coccolithophorida, neben weiteren Kleinfossilien. Die Sedimentation erfolgte erstaunlich langsam, etwa 35 mm in 1.000 Jahren (REICH 1998). In der Schreibkreide finden sich auch zahlreiche Makrofossilien: Seeigel, Schwämme, Belemniten, Korallen, Muscheln, Bryozoen, Schnecken, Seesterne, Ammoniten und weitere (vgl. SCHULZ 2003: 347-351, REICH et al 2018).

Innerhalb der hellen Schreibkreide treten Lagen von dunkelgrauen Feuersteinen auf. Sie entstanden nach der Ablagerung der Kreideschichten während der Diagenese und bilden Konkretionen – massige Gesteine von rundlicher, knolliger, teils auch bizarrer Gestalt. Die Feuersteine sind der „Prototyp“ des nordischen Geschiebes, weil sie in glazialen Ablagerungen praktisch allgegenwärtig auftreten. Ihre südlichste Verbreitungsgrenze, die sog. „Feuersteinlinie“ kennzeichnet die Maximalausdehnung der nordischen Inlandvereisungen.

Abb. 2: Feuersteinlagen innerhalb der Rügener Schreibkreide, Steilküste nördlich von Sassnitz. Die Lagen sind annähernd gleich mächtig und regelhaft rhythmisch angeordnet.
Abb. 3: Feuersteinlagen, Bildhöhe etwa 3 Meter.
Abb. 4: Frisch ausgebrochene Feuersteine besitzen einen splittrigen Bruch und eine weiße Rinde. Mit der Zeit werden sie abgerollt, auf Grund ihrer Härte und Zähigkeit nur durch gegenseitige Bewegung im Brandungssaum. Bildbreite ca. 50 cm.

Vor den nordischen Inlandvereisungen bildeten die Schichten der Oberkreide ein mehr oder weniger ebenes und bis 400 m mächtiges Sedimentpaket. Diese Schichten sind auch heute im Untergrund noch großflächig verbreitet und durch jüngere Schichten verdeckt. Durch tektonische Vorgänge, wahrscheinlich Störungen des Untergrundes während der alpidischen Gebirgsbildung, kam es im Tertiär zu Hebungen. Durch leichte Verkippung bildeten sich Kreide-Horste. Einst verband ein etwa 100 km breites, in Ost-West-Richtung sich erstreckendes Kreidemassiv die Vorkommen von Rügen und Møn.

Die erosive Kraft des Inlandeises führte zu einer Abtragung der oberen 100 m dieses Massivs und zur Bildung kleiner und größerer Schollen, die in der Folge teils dachziegelartig verkippt oder sogar verfaltet wurden. Dabei konnten auch größere zusammenhängende Pakete der lockeren Kreidesedimente bewegt werden, weil der Untergrund gefroren war. Durch diese glazitektonischen Vorgänge gelangten die Kreidesedimente in ihre heutige Position und bilden ein komplexes Nebeneinander mit Geschiebemergeln und anderen glazialen Ablagerungen. Erst der Geschiebemergel des letzten weichselzeitlichen Eisvorstoßes liegt über den verschuppten kreidezeitlichen und glazialen Sedimenten, was auf eine zeitliche Einordnung der Glazitektonik in die Zeit bis zum Pommerschen Stadium der Weichselvereisung vor etwa 22.000 – 20.000 Jahren deutet.

Die Verkippung und Faltung der aufragenden Schollen lässt sich an den Feuersteinbändern stellenweise gut nachvollziehen (Abb. 5). Größere Kreideschollen sind vor allem im Nordteil der Insel auf Jasmund sowie an der NE-Spitze von Wittow aufgeschlossen. Kleinere Kreideschollen und -schlieren finden sich z. B. auch an der Steilküste von Dwasieden (Abb. 6).

Abb. 5: Gebogene Feuersteinlagen (Glazitektonik). Ursprünglich horizontal abgelagerte Kreide mit den typischen Feuersteinbändern. Durch die Kraft der Gletscher in der letzten Eiszeit kam es zur Aufschiebung, Verkippung und Stauchung der Kreide.
Abb. 6: Geschiebemergel mit Kreideschlieren, Dwasieden.

Im letzten Stadium der Eisvorstöße, im späten Weichselglazial, wirkten die Inselkerne von Jasmund und Arkona als Hindernis. Der Gletscher teilte sich hier in zwei Eisströme. Ein südlich verlaufender sog. Oder-Eisstrom modellierte die hügelige Landschaft Ostrügens. Durch Stillstand und Abschmelzen des Eises entstanden die Endmoränen der sog. Mittelrügenschen Stillstandslage. Ihre heutige Gestalt nahm die Insel lange nach dem Rückzug des Eises an. Rügen war nach dem Abschmelzen des Eises zunächst Festland. Vor etwa 7.800 Jahren, zu Zeiten der Litorina-Transgression, wurde das Gebiet überflutet, nur die Inselkerne Jasmund, Wittow und Mönchgut lagen über dem Meeresspiegel. Durch Brandung entstanden an ihren Außenseiten Steilufer. Abgetragener Sand wurde durch Küstenströmungen in Gestalt von Nehrungen wieder ablagert und verbindet seitdem die Inselkerne miteinander. Im Naturschutzgebiet „Schmale Heide“ (Feuersteinfelder von Mukran) finden sich 14 Strandwälle aus Feuersteinen, die vor etwa 4.000 Jahren während mehrerer Sturmfluten aufgeschüttet wurden (Abb. 7).

Abb. 7: Feuersteinfelder von Mukran. Die wallartigen Akkumulationen von Feuersteinen sind Ablagerungen historischer Sturmfluten vor etwa 4.000 Jahren.

Rügens Steilküsten sind von einem beachtlichen Fortschreiten der Erosion betroffen, die Küstenlinie wird jährlich um durchschnittlich 30 cm zurückverlegt. Vor allem nach der Schneeschmelze und starken Regenfällen ereignen sich größere Abbrüche, Geschiebemergel und Schmelzwassersande zwischen die Kreidefelsen wirken dabei als Sollbruchstellen.

Abb. 8: Frischer Abbruch nördlich von Sassnitz (Mai 2012).
Abb. 9: Bedrohlich hängen metergroße Geschiebe in der Steilwand bei Sassnitz.

Auf Rügen gibt es eine Vielzahl interessanter geologischer Lokalitäten, die im Text genannten sind auf der Karte Abb. 10 markiert.

Abb. 10: Übersichtskarte Rügen mit besuchten Lokalitäten: Nordufer Wittow und Kap Arkona (1), Dwasieden (2), Kreideküste nördlich Sassnitz (3), Klein Zicker (4), Groß Zicker (5), Dargast (6), Kreidemuseum Gummanz (7), Feuersteinfelder Mukran (8). Karte aus wikipedia.org, Urheber: devil m25, CC BY-SA 2.0 de.

Auf Jasmund wurde die Rügener Schreibkreide zur Gewinnung von Schlämmkreide früher in zahlreichen Steinbrüchen abgebaut. Ein aktiver Tagebau liegt bei Promoisel, ein aufgelassener Bruch bei Dargast.

Abb. 11: Aufgelassener Tagebau bei Dargast.

Das Kreidemuseum in Gummanz (www.kreidemuseum.de) informiert mit einer bergbautechnischen Sammlung und einem Freilichtbereich über die Historie des Kreideabbaus und die Verwendung der Rügener Schreibkreide, ein geologisch-paläontologischer Sammlungsteil über die Entstehung der Insel Rügen. Auch eine hervorragende Ausstellung mit Kreidefossilien kann besichtigt werden.

Abb. 12: Kreidemuseum Gummanz
Abb. 13: Ehemaliger Tagebau am Freilichtmuseum Gummanz.

Auf Rügen gibt es auch mehrere große Geschiebe, z. B. der Schwanenstein bei Lohme. Auf den Siebenschneiderstein (Karlshamn-Granit) wird im Abschnitt Kap Arkona eingegangen. Der größte Findling Norddeutschlands ist der Buskam östlich von Göhren.

Abb. 14: Schwanenstein bei Lohme.

2. Geschiebesammeln auf Rügen

Abb. 15: Steilküste nördlich von Sassnitz.

Die Geröllstrände auf Rügen bieten dem Geschiebesammler gute Fundmöglichkeiten. Auf ein übermäßiges „Abräumen“ der Strände sollte man allerdings verzichten und Steine mit Bedacht entnehmen, damit auch zukünftige Besucher noch die ganze Bandbreite an nordischen Geschieben vorfinden können. Vielleicht vermag eine gute fotografische Dokumentation den „Sammeltrieb“ ebenfalls zu befriedigen. Die meisten der hier gezeigten Gesteine liegen noch vor Ort. Das Hauptaugenmerk gilt den kristallinen Geschieben, die in drei Abschnitten vorgestellt werden:

Die kristalline Geschiebegemeinschaft auf Rügen ist stark von den Gesteinen des Transskandinavischen Magmatitgürtels (TIB) geprägt, darunter die variationsreichen und oft bunten Småland-Granitoide und Småland-Porphyre. Allgemein häufig ist auch der Braune Ostsee-Quarzporphyr, der Rote Ostsee-Quarzporphyr tritt nur ganz vereinzelt auf. Rapakiwi-Gesteine von Åland sind in mäßiger Häufigkeit anzutreffen. Aus Dalarna finden sich nur wenige Kristallingesteine. Granite von Bornholm sind seltener, als es die Nähe zum Anstehenden und die Zugrichtung der Gletscher während der letzten Vereisung erwarten lässt.

Oslogesteine (z. B. Rhombenporphyre) oder SW-schwedisches Material fehlen vollständig, Rügen liegt jenseits ihrer Verbreitungsgrenzen. In diesem Zusammenhang sind Funde von dunklen und quarzfreien Porphyren mit rhombenförmigen Feldspat-Einsprenglingen interessant, die dem Rhombenporphyr ähneln, aber kaum aus dem Oslograben stammen dürften (Abb. 2-4). Ein weiterer Fund eines ganz ähnlichen Porphyrs wird im Abschnitt „Dwasieden“ (Abb. 13) gezeigt und diskutiert.

Abb. 16: Rhombenführender Porphyr, Sassnitz.
Abb. 17: Rückseite
Abb. 18: Nahaufnahme der nassen Oberfläche.
Abb. 19: Nahaufnahme einiger rhombenförmiger Feldspäte; rechts der Bildmitte ein Pyritkorn.

2.1. Sassnitz

Nördlich vom Hafen in Sassnitz wurden große Steine als Uferschutz abgelagert, neben zahlreichen Großgeschieben auch Lausitzer Granodiorit aus der Westlausitz als Fremdmaterial. Der Plutonit entstand im Zuge der Cadomischen Gebirgsbildung vor etwa 650-550 Millionen Jahren.

Abb. 20: Dunkler Xenolith in einem grauen Xenolith im Lausitzer Granodiorit. Uferbefestigung nördlich vom Hafen Sassnitz. Bildbreite 35 cm.

Etwas weiter nördlich beginnt die Steilküste von Jasmund. Aufragende Schollen von Schreibkreide wechseln sich mit Geschiebemergel und Schmelzwassersanden ab (Abb. 1). Bänder aus Feuerstein sind geradezu regelhaft in die Kreidesedimente eingeschaltet (Abb. 2). An einigen Stellen kann man auch eine Faltung dieser Bänder durch Tektonik oder Eistektonik beobachten (Abb. 5). Beim Aufenthalt am Fuße der Steilküste sollte stets die Gefahr von Steinschlag berücksichtigt werden. Besonders nach starkem Regen, während der Schneeschmelze und bei Sturm ist äußerste Vorsicht geboten.

Der vorgelagerte Geröllstrand besteht größtenteils aus schwarzen Feuersteinen. Jedes einzelne der wenigen eingestreuten Kristallingeschiebe lässt sich dadurch genauer in Augenschein nehmen. An Strandabschnitten mit aufgearbeiteten glazialen Ablagerungen treten diese auch zahlreicher in Erscheinung.

Abb. 21: Geröllstrand bei Sassnitz, Bildbreite 90 cm.
Abb. 22: Brauner Ostsee-Quarzporphyr mit einem helleren Quarzporphyr als Xenolith. Aufnahme unter Wasser.
Abb. 23: Nahaufnahme der nassen Oberfläche.
Abb. 24: Porphyrischer Rapakiwi (Kökar-Rapakiwi?), Breite 11,5 cm.
Abb. 25: Vollroter Granophyr mit hellem, teils bläulichem Quarz, Breite 12 cm.
Abb. 26: Nahaufnahme.

Solche vollroten Granophyre (granitische Gesteine, die fast vollständig aus graphischen Verwachsungen von Feldspat und Quarz bestehen) sind z. B. aus dem Nordingrå-Pluton in Nordschweden, aber auch aus anderen Rapakiwi-Vorkommen bekannt. Mangels charakteristischer Merkmale lässt sich der Gesteinstyp nicht auf ein bestimmtes Vorkommen zurückführen.

Abb. 27: Roter Rapakiwi (Rödö-Rapakiwi), Breite 17 cm.
Abb. 28: Das Gestein enthält weißen Calcit, sein Erscheinungsbild stimmt mit den Wiborgiten von Rödö überein (große, klare und magmatisch kaum korrodierte Quarze; gelber Plagioklas), wenn auch nur ein einzelnes größeres, von gelbem Plagioklas umsäumtes Kalifeldspat-Ovoid enthalten ist.
Abb. 29: Nahaufnahme
Abb. 30: Mischgestein aus einem Rapakiwi-Vorkommen. Die roten Bereiche bestehen aus graphischen Verwachsungen aus Quarz und Feldspat. Quarz bildet auch einzelne größere und rundliche Aggregate. Breite 13 cm.
Abb. 31: Nahaufnahme des Gefüges.
Abb. 32: Verhältnismäßig großes Geschiebe eines Bottenseeporphyrs, Typ Andeskeri, Breite 11,5 cm.
Abb. 33: Gleicher Stein, Aufnahme unter Wasser. Lagige oder schlierige Wechsel in der Färbung der Grundmasse sind in diesem Porphyrtyp häufig zu beobachten.
Abb. 34: Nahaufnahme der nassen Oberfläche.
Abb. 35: Polierte Schnittfläche.
Abb. 36: Nahaufnahme des Gefüges. Die dunkelgrauen Quarze weisen deutliche Spuren einer magmatischen Korrosion auf (radiale Einbuchtungen durch Anschmelzung; aufgefüllt mit Grundmasse).

Häufigster Geschiebetyp in Sassnitz sind die bunten Granitoide des Transskandinavischen Magmatitgürtels (TIB). Dazu gehören die mittelkörnigen Alkalifeldspatgranite vom Växjö-Typ mit blauem oder farblosem Quarz und braunem oder rotem Alkalifeldspat; weiterhin porphyrische Granite mit der typischen Dreifarbigkeit (blauer Quarz, brauner oder roter Alkalifeldspat sowie weißer, grüner, gelber oder orangefarbener Plagioklas). Die Anzahl der Leitgeschiebe unter den TIB-Graniten ist klein, da an verschiedenen Lokalitäten im Anstehenden Gesteine mit dem gleichen Gefüge auftreten.

Abb. 37: Mittelkörniger TIB-Granit (Flivik-Granit) aus Ost-Småland, Aufnahme unter Wasser.
Abb. 38: In der Nahaufnahme sind größere Mengen an gelblichem Titanit sichtbar.

Aus Nordost-Småland und dem südlichen Östergötland dürften die folgenden Granite mit porphyrischem Gefüge stammen. Gemeinsam ist ihnen ein Anteil von gelbem bis orangerotem Plagioklas und viel Titanit.

Abb. 39: NE-Småland-Granit (ähnlich Kinda-Granit), Breite 14 cm.
Abb. 40: NE-Småland-Granit (ähnlich Kinda-Granit), Breite 14 cm.
Abb. 41: Nahaufnahme
Abb. 42: Porphyrischer Granit mit Gefügewechsel, Breite 16 cm.
Abb. 43: Ein weiterer Gefügewechsel in einem porphyrischen Granit (grüner sowie wahrscheinlich durch Metasomatose umgewandelter gelber Plagioklas). Breite 14 cm.

Die nächsten Bilder (Abb. 44-51) sind eine Zusammenstellung einiger der überaus zahlreichen gleich- und mittelkörnigen Småland-Granite vom Växjö-Typ.

Abb. 44: Gleichkörniger Alkalifeldspat-Granit (Växjö-Typ), Breite 28 cm.
Abb. 45: Gleichkörniger Småland-Granit, Breite 11 cm.
Abb. 46: Gleichkörniger Småland-Granit mit etwas Plagioklas (gelb); Breite 14 cm.
Abb. 47: Gleichkörniger Småland-Monzogranit mit basischen Xenolithen, Breite 42 cm
Abb. 48: Nahaufnahme. Der Xenolith wurde hydrothermal alteriert und zeigt einen Saum aus hellgrünem Epidot.
Abb. 49: Gleichkörniger roter Alkalifeldspat-Granit (Växjö-Typ), Breite 13,5 cm.
Abb. 50: Bunter Växjö-Granit, kommt in N-Småland verbreitet vor und besitzt eine gewisse Ähnlichkeit mit dem Siljan-Granit aus Dalarna. Breite 10,5 cm.
Abb. 51: Quarzreicher mittelkörniger Granit vom Växjö-Typ, Breite 11 cm.
Abb. 52: Porphyrischer roter Småland-Alkalifeldspatgranit, Breite 18 cm.
Abb. 53: Braune und aplitähnliche Partie mit einer mittelkörnigen Übergangszone in einem grobkörnigen Monzogranit bis Quarzmonzonit (rechts und ganz links). Breite 45 cm.
Abb. 54: Nahaufnahme
Abb. 55: Granit mit zuckerkörnigem Quarz (TIB-Granit, Älö-Granit?). Breite 13 cm.
Abb. 56: Quarzreicher Granitoid mit wenig hellbraunem Alkalifeldspat und kleineren, deutlich voneinander abgegrenzten Plagioklas-Aggregaten von weißer bis gelblichgrüner Farbe (Granodiorit). Breite 11 cm.
Abb. 57: Bornholm-Granit (Vang-Granit), Breite 28 cm.
Abb. 58: Nahaufnahme.

Typisch für die Bornholm-Granite ist das „verwaschene“ Gefüge mit unklaren Korngrenzen aus Kalifeldspat, Quarz und Plagioklas, die rötliche, über Korngrenzen hinweg laufende Hämatit-Imprägnierung sowie runde Ansammlungen von dunklen Mineralen (Biotit). Innerhalb des Biotits findet sich reichlich Titanit.

Abb. 59: (Bornholm?-)Streifengneis; Partien des Gesteins sind mit rotem Hämatit imprägniert. Breite 17 cm.

Auch Porphyrgeschiebe aus dem TIB finden sich in großer Zahl, darunter Porphyre vom Påskallavik- und Emarp-Typ. Nicht selten sind auch Gangporphyre mit einem deformierten Gefüge, erkennbar an schlierigen Ansammlungen und einer Vorzugsrichtung der dunklen Glimmerblättchen (Abb. 60).

Abb. 60: Deformierter Gangporphyr („Högsrum-Porphyr“), Breite 13 cm.
Abb. 61: Småland-Gangporphyr vom Påskallavik-Typ, Breite 19 cm.
Abb. 62: Roter Gangporphyr mit Blauquarz und körniger Grundmasse, Breite 10 cm.

Nur vereinzelt lassen sich am Strand von Sassnitz Kristallingesteine aus Dalarna entdecken.

Abb. 63: Älvdalen-Ignimbrit aus Dalarna, Breite 10,5 cm.
Abb. 64: Auffälliger Plutonit mit rosafarbenen Alkalifeldspat-Einsprenglingen und weißer Grundmasse aus feinkörnigem Feldspat. Breite 17 cm.
Abb. 65: Nahaufnahme. Quarzkörner sind nur vereinzelt aufzufinden, wahrscheinlich liegt der Quarzgehalt unter 5%. Wenn der Feldspat der weißen Grundmasse ausschließlich Plagioklas ist, dürfte es sich um einen Monzonit handeln (35-65% Alkalifeldspat am Gesamtfeldspatanteil, Quarz unter 5%).
Abb. 66: Västervik-Fleckenquarzit, Breite 9 cm.
Abb. 67: Kontakt zwischen Pegmatit und einem grauen Gneis, Breite 65 cm.
Abb. 68: Nahaufnahme der nassen Oberfläche. Der Pegmatit besteht fast ausschließlich aus Alkalifeldspat und großen Biotit-Aggregaten (bis 5 cm). Die grauen Partien innerhalb der Feldspäte weisen auf feinste Entmischungen von Albit und Kalifeldspat hin.
Abb. 69: Geschichteter Sandstein. Die wellenförmige Oberseite der rötlichen Lagen deutet auf Strömungsrippel, während die grauen Lagen darüber planar ausgebildet sind (ruhiges Strömungsregime). Breite 25 cm.

Links und ausgewählte Literatur

3D-Modell von Jasmund

GEHRMANN A 2020 The multistage structural development of the Upper Weichselian Jasmund Glacitectonic Complex (Rügen, NE Germany) – E & G Quaternary Science Journal, 69: 59-60, https://doi.org/10.5194/egqsj-69-59-2020.

HAGENOW F VON 1839 Monographie der Rügen’schen Kreide-Versteinerungen, I. Abtheilung: Phytolithen und Polyparien – Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1839: 253-296, Taf. 4-5, Stuttgart.

HAGENOW F VON 1840 Monographie der Rügen’schen Kreide-Versteinerungen, II. Abtheilung: Radiarien und Annulaten. Nebst Nachträgen zur ersten Abtheilung – Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1840: 631-672, Taf. 9, Stuttgart.

HAGENOW F VON 1842 Monographie der Rügen’schen Kreide-Versteinerungen, III. Abtheilung: Mollusken – Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1842: 528-575, Taf. 9, Stuttgart.

KENZLER M, OBST K, HÜNEKE H, SCHÜTZE K 2010 Glazitektonische Deformation der kretazischen und pleistozänen Sedimente an der Steilküste von Jasmund nördlich des Königsstuhls (Rügen). – Brandenburgische Geowissenschaftliche Beiträge, 17: 107-122.

LUDWIG A O 2011 Zwei markante Stauchmoränen: Peski/Belorussland und Jasmund, Ostseeinsel Rügen/Nordostdeutschland – Gemeinsame Merkmale und Unterschiede. – E & G, Quaternary Science Journal, 60(4): 464-487.

MÜLLER U & OBST K 2006 Lithostratigraphie und Lagerungsverhältnisse der pleistozänen Schichten im Gebiet von Lohme (Jasmund/Rügen). – Zeitschrift für geologische Wissenschaften, 34: 39-54.

REICH M 1998 (Hrsg) Die Kreide Mecklenburg-Vorpommerns. – Exkursionsführer zur Geländetagung der Subkommission für Kreidestratigraphie – 41 S., 31 Abb., 1 Tab., Greifswald.

REICH M, HERRIG E, FRENZEL P & KUTSCHER M 2018 Die Rügener Schreibkreide – Lebewelt und Ablagerungsverhältnisse eines pelagischen oberkretazischen Sedimentationsraumes / The Rügen White Chalk – Habitat and deposits of a pelagic Late Cretaceous sedimentation area. Zitteliana. 92.

SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 446+42 meist farb. kapitelweise num. Abb., 1 Kte. als Beil., Schwerin (cw Verlagsgruppe).

WAGENBRETH O & STEINER W 1982 Geologische Streifzüge – Landschaft und Erdgeschichte zwischen Kap Arkona und Fichtelberg – 204 S., 65 Farbfotos, 16 Schwarzweißfotos, 117 Abb., VEB Deutscher Verlag für Grundstoffindustrie, Leipzig.

Geschiebesammeln auf der Halbinsel Wustrow

Die Halbinsel Wustrow bei Rerik war seit 1933 militärisches Sperrgebiet und erst 1993 nach dem Abzug der Roten Armee wieder zugänglich. Mittlerweile ist Wustrow teilweise Naturschutzgebiet, teilweise in Privatbesitz. Eine schmale Landzunge (Nehrung) verbindet die Halbinsel mit dem Festland, das Betreten ist nur mit Genehmigung möglich. Im Juli 2021 konnten die ausgedehnten Geschiebestrände der Halbinsel erkundet werden. Da hier wenig gesucht wird, sind gute Funde möglich.

Abb. 1: Alte Kasernengebäude auf Wustrow.
Abb. 2: Hinab zur Steilküste geht es mit Hilfe eines Seils.
Abb. 3: Die seeseitige Küste von Wustrow besteht aus Geschiebelehm und -mergel der Grundmoräne des Pommerschen Stadiums der Weichsel-Vereisung.

Auffällig ist das relativ häufige Vorkommen von Geschieben aus dem Gebiet des Oslograbens (Rhombenporphyre, Larvikit), während knapp 30 km weiter östlich, am Strand von Nienhagen, praktisch keine solchen Funde möglich sind. SW-schwedische Leitgeschiebe wurden nicht gefunden.

Abb. 4: Rhombenporphyr, Breite 10 cm.
Abb. 5: Rhombenporphyr, Breite 10 cm.
Abb. 6: Larvikit, Aufnahme unter Wasser.
Abb. 7: Nahaufnahme. Einige Feldspäte zeigen den für Larvikit typischen bläulichen Schiller.

Nicht selten trifft man auf Geschiebe von Schonen-Basalt und Schonen-Lamprophyr. Die Funde belegen eine Transportrichtung des Eises aus NNE.

Abb. 8: Schonen-Basalt mit gelbgrünen Olivin- sowie wenigen schwarzen Pyroxen-Einsprenglingen.
Abb. 9: Schonen-Lamprophyr mit zahlreichen hellen Mandeln.
Abb. 10: Nahaufnahme. Olivin verwittert gelblichbraun, die Pyroxen-Einsprenglinge sind grünlich gefärbt.
Abb. 11: Ein weiterer Schonen-Lamprophyr.
Abb. 12: Bruchfläche des gleichen Steins. Alterierter Olivin ist rötlich gefärbt, stellenweise auch hellgrün und weitgehend unverändert; Pyroxen ist schwarz bis flaschengrün.
Abb. 13: Das helle, teils radialstrahlige Mineral innerhalb der Mandeln ist sehr weich und zerfällt mit Salzsäure ohne Aufschäumen (Hinweis auf Zeolith).

Am Geschiebestrand von Wustrow finden sich auch Mandelsteine in großer Zahl.

Abb. 14: Grüner Mandelstein mit schwarzen Mandeln, Einsprenglingen von Plagioklas und einer durchlaufenden Ader, teils mit Achat, teils mit einem feinkörnigen blassgrünen Mineral verfüllt. Aufnahme unter Wasser, leg. S. Mantei.
Abb. 15: Nahaufnahme, nasse Oberfläche. Die Bänderung des Achats ist nur schwach ausgeprägt.
Abb. 16: Blasenreicher und stark alterierter Mandelstein. Aufnahme unter Wasser.
Abb. 17: Nahaufnahme der nassen Oberfläche.
Abb. 18: Grauer Mandelstein, Breite 15 cm.
Abb. 19: Grünstein, Breite 10 cm. Offenbar ist hier eine mit rotem Feldspat gefüllte Kluft angeschnitten.
Abb. 20: Der Feldspat (Plagioklas, polysynthetische Verzwilligung) bildet ungewöhnliche orthogonale Querschnitte aus.

Plutonite und Vulkanite des Transkandinavischen Magmatitgürtels (TIB) – die bunten Småland-Granite mit Blauquarz sowie Småland-Porphyre – sind am Strand von Wustrow nur in mäßiger Zahl vertreten.

Abb. 21: Roter Alkalifeldspatgranit. Einige Feldspäte weisen Risse auf, welche mit dunklen Mineralen verfüllt sind. Dunkle Minerale sind nur spärlich vorhanden und ungleichmäßig im Gestein verteilt (Ausschlusskriterium für Uthammar-Granit). Bildbreite 18 cm.
Abb. 22: Anorogener und undeformierter Granit mit etwas grünem Plagioklas, wahrscheinlich ein porphyrischer Rapakiwi. Aufnahme unter Wasser.

Gesteine aus Rapakiwi-Vorkommen treten regelmäßig, aber nicht besonders häufig auf. Ein besonderer Fund ist ein brauner Ignimbrit, der wahrscheinlich aus dem Vorkommen des Roten Ostsee-Quarzporphyrs stammt. Dafür sprechen die charakteristischen eckigen Hochquarz-Relikte mit Spuren magmatischer Korrosion.

Abb. 23: Roter Ostsee-Quarzporphyr-Ignimbrit, braune Variante. Aufnahme unter Wasser.
Abb. 24: Gleicher Stein, polierte Schnittfläche.
Abb. 25: Neben größeren gerundeten und trüben Quarzen finden sich auch einige eckige Quarze mit der gleichen Gestalt wie im Roten Ostsee-Quarzporphyr.
Abb. 26: Fragmente von Porphyren, einer davon ähnelt dem Roten Ostsee-Quarzporphyr.

Häufig finden sich graue Paragneise vom Sörmland-Typ. Diese enthalten in der Regel Granat und Cordierit, seltener auch reichlich Sillimanit.

Abb. 27: Granat-(Cordierit)-Sillimanitgneis (Sörmland-Gneis). Die Granat-Porphyroblasten liegen innerhalb eines Leukosoms aus Quarz und Feldspat. Aufnahme unter Wasser.
Abb. 28: Nahaufnahme. Das Gestein enthält größere Mengen an dunkelgrauem bis silbrig glänzendem Sillimanit. Cordierit (hellgrau bis graublau, zwischen den Sillimanitnadeln) ist nicht eindeutig identifizierbar.
Abb. 29: Cordierit-Sillimanit-Granofels. Solche undeformierten Quarzite mit schwarzen Cordierit- und weißen Sillimanitflecken sind anstehend aus dem Västervik-Gebiet bekannt.
Abb. 30: Porphyrischer Amphibolit. Die blastische Wuchsform der Amphibole ist ein Hinweis auf eine metamorphe Entstehung aus einem basischen Gestein, z. B. Gabbro, Dolerit oder Basalt. Breite 26 cm.

Sedimentite

Abb. 31: Feuerstein mit rhythmischer Bänderung. Breite 32 cm.
Abb. 32: Silurkoralle, Breite 11 cm.

Lias-Geschiebe (Limonitsandsteine, häufig mit Pflanzenresten) sind auf Wustrow regelmäßig anzutreffen. Das nächste Geschiebe ist ein konkretionärer Toneisenstein (von ungewisser stratigraphischer Stellung).

Abb. 33: Toneisenstein, Breite 15 cm.
Abb. 34: Konglomerat mit runden Toneisenstein-Klasten. Vergleichbare Gesteine kommen auch im Jura vor. Breite 24 cm.
Abb. 35: Postsilurisches Konglomerat, leg. K. Obst; polymikter Typ mit Klasten von rotem und grauem Beyrichienkalk, grünen Sandsteinen, Feinsandsteinen, Toneisenstein und Milchquarzgeröllen. Breite 15 cm.
Abb. 36: Rückseite des gleichen Geschiebes.
Abb. 37: Reste von rezenten Seepocken. Bildbreite ca. 7 cm.
Abb. 38: Mitten auf dem Strand eine Sonnenblume, der das salzhaltige Milieu offensichtlich nicht schadet.

Die folgenden Funde stammen aus der Nähe der Halbinsel Wustrow, von der Steilküste NE von Rerik. Gesammelt, geschnitten und poliert wurden die Geschiebe von T. Brückner (Hilter).

Abb. 39: Tektonische Brekzien sind ein häufiger Geschiebefund. Selten handelt es sich dabei um einen brekziierten geschichteten Hornstein.
Abb. 40: Das Gestein ist hälleflintartig dicht. Die feinen Wechsellagen bilden die Schichtung eines feinkörnigen Sediments oder vulkanischer Aschen ab.
Abb. 41: Nahaufnahme einer brekziierten Partie. Die Risse sind mit Quarz und einem hellgrünen Mineral verheilt.
Abb. 42: Cordierit-Sillimanit-Granofels, wahrscheinlich aus dem Västervik-Gebiet. Siehe auch Abb. 30.
Abb. 43: Nahaufnahme.
Abb. 44: Bornholm-Granit. Typisch für Bornholm-Granite ist ein verwaschenes Gefüge aus rotem Feldspat und Quarz sowie helle Plagioklase, teilweise mit dunklem Kern; dunkle Minerale bilden Flecken.
Abb. 45: Nahaufnahme. Innerhalb der dunklen Minerale findet sich reichlich Titanit.
Abb. 46: Eigenartiges zoniertes Syenit-Geschiebe. Das Gestein besteht fast vollständig aus Alkalifeldspat von grüner bis bräunlicher Farbe. Der Vaggeryd-Syenit führt in der Regel etwas Quarz und enthält mehr dunkle Minerale. Es könnte sich bei diesem Syenit auch um einen Larvikit in ungewöhnlicher Ausbildung handeln.
Abb. 47: Einige Feldspäte weisen einen bläulichen Schiller auf.
Abb. 48: Zwischen den Feldspäten und innerhalb von Rissen finden sich schmale orangefarbene Partien (Plagioklas-Entmischungen von Feldspat?).
Abb. 49: Orangefarbene Risse innerhalb schwarzgrüner Feldspäte.

Literatur

GERTH A 2008 GIS-gestützte 3D-Modellierung hochweichsel-zeitlicher Sedimente in Nordwest-Mecklenburg-Vorpommern – Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln. 196 S., Bautzen 2008.

Rhombenporphyr

Der Rhombenporphyr ist das bekannteste Leitgeschiebe aus dem Oslogebiet und für jedermann anhand der charakteristischen rhombenförmigen Feldspat-Einsprenglinge leicht erkennbar. Die Farbe der feinkörnigen bis dichten Grundmasse sowie Anzahl und Größe der Einsprenglinge variieren in weiten Grenzen (Abb. 2).

Abb. 1: Rhombenporphyr, Aufnahme unter Wasser. Geschiebe von Hanstholm (Dänemark), leg. T. Brückner.
Abb. 2: Rhombenporphyr-Nahgeschiebe von Slagen Tangen (Norwegen); Foto: D. Pittermann. Bildbreite ca. 40 cm.
  1. Vorkommen
  2. Beschreibung
  3. Verbreitung der Rhombenporphyr-Geschiebe
  4. Funde aus Berlin und Brandenburg
  5. Literatur

1. Vorkommen

Das Heimatgebiet der Rhombenporphyr-Geschiebe liegt im Oslograben in Süd-Norwegen. Vor etwa 280 Millionen Jahren stiegen entlang einer langgestreckten tektonischen Dehnungszone (Grabenbruch) magmatische Schmelzen auf. Während einer Phase intensiver vulkanischer Aktivität entstanden zahlreiche und unterschiedlich ausgebildete Lavadecken von Rhombenporphyren. Die Vorkommen setzen sich in südwestlicher Richtung am Boden von Oslofjord und Skargerrak fort. Im Zuge des Magmatismus im Oslograben kam es zur Bildung weiterer intrusiver und effusiver Gesteine, von denen einige aufgrund ihrer besonderen Entstehungsgeschichte sowie einzigartiger petrographischer Merkmale als Leitgeschiebe geeignet sind, u. a. Larvikit, Tönsbergit, Ekerit, Oslo-Basalt, Foyait und Nordmarkit.

Mit dem Aufdringen der Rhombenporphyr-Magmen ist die Entstehung eines Gangsystems aus intrusiven Rhombenporphyren verbunden, das entlang der Küste von Bohuslän in West-Schweden verläuft (KUMMEROV 1954, JACOBI 1997). Dieses Gebiet kommt ebenfalls als Lieferant von Rhombenporphyr-Geschieben in Frage, allerdings ist die Ausdehnung dieser Gänge vergleichsweise gering.

QUENSEL 1918 beschreibt ein kleines Vorkommen von (tektonisch deformierten) Rhombenporphyren aus dem Kebnekaise-Gebiet in Lappland. Ob aus diesem sehr weit nördlich gelegenen Gebiet Rhombenporphyr-Geschiebe nach Norddeutschland gelangten (und von den Rhombenporphyren des Oslo-Gebiets unterscheidbar sind), ist zweifelhaft.

Abb. 3: Rhombenporphyr, polierte Schnittfläche. Geschiebe von Hohenfelde, östlich von Schönberg, Schleswig-Holstein.
Abb. 4: Nahaufnahme. Neben rhombenförmigen Anschnitten von Feldspat-Einsprenglingen sind zwei mit Sekundärmineralen (u. a. Calcit und Epidot) verfüllte Blasenhohlräume erkennbar.

2. Beschreibung

Entscheidendes Erkennungsmerkmal der Rhombenporphyre sind die länglichen und manchmal spitz zulaufenden rauten- oder bootsförmigen Anschnitte von Feldspat-Einsprenglingen. Es handelt sich um Mischkristalle von Na-K-Ca-Feldspat, sog. ternären Feldspat, z. B. Anorthoklas (Albit+Orthoklas). Ihre Bildung ist an sehr heiße Magmen gebunden, in denen eine Entmischung der Feldspatkomponenten (Plagioklas und Alkalifeldspat) nicht oder nur unvollständig erfolgt. Diese speziellen Feldspäte sind ein charakteristischer Bestandteil der Vulkanite (und einiger Plutonite) des Oslograbens und von anderen Lokalitäten weitgehend unbekannt (s. u.). Petrographisch handelt es sich beim Rhombenporphyr um Latite, also SiO2-arme Vulkanite mit jeweils 35-65% Alkalifeldspat und Plagioklas. Latite sind das vulkanische Äquivalent der Monzonite.

Die Feldspat-Einsprenglinge weisen gelbliche, bräunliche oder graue Farben auf. Seltener sind blassgrüne, rote oder leuchtend orangefarbene Tönungen. Ihre Länge beträgt zwischen 5-30 mm. Die Feldspäte sind heller (selten dunkler) als die Grundmasse, können aber dunklere Kerne oder andersfarbige dünne Säume besitzen. Die Einsprenglingsdichte ist variabel. Nach OFTEDAHL 1967 lassen sich ein einsprenglingsreicher („klassischer“) Typ mit Feldspäten bis 2,5 cm Länge und ein einsprenglingsarmer Typ mit wenigen und kleinen Einsprenglingen bis 1,8 cm unterscheiden.

Als Folge von Entmischungsvorgängen ist manchmal eine unregelmäßig netz- oder tropfenförmige und wellige „Zeichnung“ in den Feldspäten erkennbar (Abb. 12, 27), die sich von der perthitischen Entmischung der Alkalifeldspäte und der polysynthetischen Verzwilligung der Plagioklase unterscheidet. Die Feldspäte neigen zur Bildung von Zwillingen, Mischkristalle aus mehreren Feldspat-Rhomben sind häufig. Durch Adhäsionskräfte in der Schmelze können die Feldspäte zu Kristallhaufen vereinigt sein (glomerophyrisches Gefüge, Abb. 28).

Neben rhombenförmigen können auch nahezu rechteckige Feldspat-Einsprenglinge auftreten. Eine seltene Variante ist der Rektangelporphyr mit ausschließlich rechteckigen Feldspat-Einsprenglingen und einer sehr feinkörnigen Grundmasse. Dieser Typ wird gelegentlich mit Diabasen verwechselt. Basaltische Gesteine mit rechteckigen Plagioklas-Einsprenglingen (=Diabase) besitzen häufig eine körnige Grundmasse sowie ein ophitisches Gefüge (kleine Plagioklasleisten in der Grundmasse). Die größeren Plagioklase zeigen in der Regel die typische polysynthetische Verzwilligung.

Abb. 5: Rotbrauner Rhombenporphyr; Kiesgrube Kreuzfeld, Aufnahme unter Wasser.
Abb. 6: Grünlicher Rhombenporphyr, Geschiebe von Presen/Fehmarn.
Abb. 7: Feldspat-Zwillinge in einem Rhombenporphyr aus der Kiesgrube Kröte (Wendland, Niedersachsen).
Abb. 8: Anorthoklas-„Drilling“; FO: Westermarkelsdorf/Fehmarn.
Abb. 9: Schnittfläche eines grauen Rhombenporphyrs mit dunklen Feldspäten, Aufnahme unter Wasser (FO: Steinbeck/Klütz).
Abb. 10: Rhombenporphyr; dunkle Feldspäte mit hellem Saum (Langtangen-Typ); Vigsö-Bucht (Dänemark), Slg. E. Figaj.
Abb. 11: Brauner Rhombenporphyr (oder Nordmarkit-Porphyr?) mit körniger Grundmasse und relativ viel dunklen Mineralen. Strandgeröll von Johannistal, Slg. E. Figaj, Aufnahme unter Wasser.
Abb. 12: Nahaufnahme.

Die Grundmasse der Rhombenporphyre ist feinkörnig bis dicht. Häufig sind bräunliche Farbtöne, auch mit grünlichem oder orangefarbenem Stich. Rote bis violette und sehr feinkörnige bis dichte Grundmassen finden sich vor allem in pyroklastischen Gesteinen (Abb. 13, 33). Seltener sind grüne, dunkelgraue oder sehr helle Farben (Abb. 42). Durch Verwitterung können die Gesteine oberflächlich stark ausbleichen.

Rhombenporphyre mit erkennbaren Einzelkörnern (über 1 mm) in der Grundmasse entstanden durch eine entsprechend langsame Abkühlung des Magmas und dürften subvulkanische Bildungen oder Gangporphyre sein. Solche intrusiven Typen sind sowohl aus dem Oslogebiet als auch von der westschwedischen Küste (Bohuslän) bekannt und der Herkunft nach nicht unterscheidbar. Für glaziostratigraphische Untersuchungen ist dies auch zweitrangig, da beide Vorkommen im Einzugsgebiet des norwegisch-westschwedischen Gletscherstroms liegen.

Dunkle Minerale sind nur in geringer Menge enthalten und von Hand kaum bestimmbar (Biotit, Augit und Erz nach ZANDSTRA 1988). Etwa ein Fünftel der Rhombenporphyr-Geschiebe reagiert auf einen Handmagneten, etwa jeder zehnte Geschiebefund ist deutlich bis stark magnetisch (statistische Erhebung an RP-Geschieben aus Brandenburg). Häufig sind gefüllte Blasenhohlräume (Mandeln) zu beobachten. Bei einem hohen Anteil an Mandeln kann man von einem Rhombenporphyr-Mandelstein sprechen. Als sekundäre Bildung treten Calcit oder Epidot auf, aber auch Mandelfüllungen mit glasklarem Quarz (Abb. 42).

Neben Porphyren mit weitgehend homogener Grundmasse finden sich blasenreiche Laven (weitgehend ohne Hohlraumfüllungen, meist einsprenglingsarmer Typ, Abb. 30) und aus Pyroklasten zusammengesetzte Vulkanite (Lapillisteine, Lapillituffe oder „Agglomeratlaven“, s. Abb. 13,14, 31-33). In älterer Literatur wurden letztere gelegentlich als „Rhombenporphyr-Konglomerat“ bezeichnet. Der Name sollte jedoch klastischen Sedimentgesteinen mit umgelagerten Vulkanitfragementen vorbehalten sein. Das Rhombenporphyr-Konglomerat (Krogskogen-Konglomerat), ein seltener Geschiebefund, besitzt eine sandige Matrix und enthält neben Klasten von Rhomben- und Quarz-Porphyren klastische Quarze, Sandstein und basaltische Klasten (s. skan-kristallin.de).

Abb. 13: Blasige Rhombenporphyr-Lava, Aufnahme unter Wasser; Steinbeck/Klütz.
Abb. 14: Nahaufnahme, Verzwilligung mehrerer rhombischer Feldspat-Einsprenglinge.
Abb. 15: Rhombenporphyr-Mandelstein (Hökholz bei Eckernförde).
Abb. 16: Rhombenporphyr-Mandelstein von der Vigsö-Bucht (Dänemark), Slg. E. Figaj.
Abb. 17: Rhombenporphyr, im unteren Teil eine Tufflage mit Feldspat-Bruchstücken. Polierte Schnittfläche eines Geschiebes von Westermarkelsdorf/Fehmarn (T. Brückner leg.).
Abb. 18: Spezielle Rhombenporphyr-Variante mit länglichen Feldspat-Einsprenglingen (Pipenhus-Typ); Geschiebe von Hökholz.
Abb. 19: Rhombenporphyr, Pipenhus-Typ, Breite 14 cm. Vigsö-Bucht (Dänemark), Slg. E. Figaj.

Zusammenfassung der unterschiedlichen Ausprägungen bzw. Geschiebetypen von Rhombenporphyren (Abbildungen in JENSCH 2013a und 2013b; allgemeine Beschreibung in HESEMANN 1975, SMED & EHLERS 2002, SCHULZ 2003):

  • gewöhnlicher Rhombenporphyr: einsprenglingsarmer und einsprenglingsreicher Typ
  • Rhombenporphyr-Mandelstein (Abb. 13-16)
  • blasige Laven, Pyroklastika (Lapillisteine, Lapillituffe oder „Agglomeratlaven“, Abb. 13-14, 31-33)
  • Intrusiver Rhombenporphyr (körnige Grundmasse, Abb. 39-41)
  • Rektangelporphyr (Abb. 35, s. a. kristallin.de)
  • Rhombenporphyr-Konglomerat (skan-kristallin.de).

Rhombenförmige Feldspat-Einsprenglinge finden sich in weiteren Gesteinstypen des Oslograbens, z. B. im Nordmarkit-Porphyr (s. skan-kristallin.de) oder in Plutoniten (Larvikit, Tönsbergit). Darüber hinaus treten sie auch in Gesteinen aus anderen Regionen auf, die aber kaum mit den Oslo-Gesteinen verwechselbar sind (Vaggeryd-Syenit, Sorsele-Granit, Heden-Porphyr). Einzelne rhombenförmige Plagioklase können in Diabasen enthalten sein.

Anhand der stratigraphischen Verhältnisse im Anstehenden unterscheidet OFTEDAHL 1952, 1967 etwa 30 einzelne Rhombenporphyr-Lagen (s. Proben auf vendsysselstenklub.dk). Seine Einteilung dürfte auf Geschiebefunde jedoch nur eingeschränkt anwendbar und eine entsprechende Zuordnung zu bestimmten RP-Lagen mit großen Schwierigkeiten verbunden sein. Zum einen ist von einer hohen Variationsbreite innerhalb der einzelnen RP-Lagen auszugehen. Auffällige Rhombenporphyr-Varianten müssen nicht an eine bestimmte vulkanostratigraphische Position gebunden sein, da in unterschiedlichen Phasen des Vulkanismus Porphyre mit ganz ähnlichen Merkmalen entstanden sein könnten, vor allem oberhalb der Lage RP15 (JENSCH 2013a: 60). Auch der Vergleich mit Anstehendproben führt zu Irrtümern (MEYER AP 1969). Rhombenporphyr-Lagen können durch frühere Vereisungen bereits vollständig abgetragen sein. Weiterhin ist zu bedenken, dass die Fortsetzung des Vorkommens der Oslo-Gesteine in südlicher Richtung unter Wasser weitere Varianten von Rhombenporphyren geliefert haben könnte.

3. Verbreitung der Rhombenporphyr-Geschiebe

Rhombenporphyre wurden zu verschiedenen Zeiten durch Eisströme vom Oslo-Gebiet in Richtung SSW bis SW über Dänemark und NW-Deutschland nach Süden transportiert (Abb. 21). In westlicher Richtung finden sich Rhombenporphyr-Geschiebe in Schottland und England (EHLERS 1988, K-D MEYER 1993, 2010), in südwestlicher Richtung in den Niederlanden (HUISMAN 1971). Auch aus Schweden liegt eine Fundmeldung vor (HILLEFORS 1968). Eine Kuriosität sind zwei (identische) Funde von Rhombenporphyr-Geschieben (sowie ein Drammen-Rapakiwi) von der Insel Leka, weit nördlich vom Oslograben (Mitteilung A. Bräu, Abb. 20). Der Transportmechanismus (Eisschollendrift, anthropogene Verschleppung) konnte bislang nicht geklärt werden.

Abb. 20: Rhombenporphyr, Geschiebefund von der Insel Leka (mittleres Norwegen), etwa 500 km nördlich von Oslo. Probe und Foto: A. Bräu.

In Deutschland sind Rhombenporphyr-Geschiebe von N- und NW- Deutschland bis nach Sachsen weit verbreitet. Mehrere Fundberichte liegen auch aus Polen und Tschechien vor (vgl. Literaturhinweise in SCHNEIDER & TORBOHM 2020). Außerhalb des allgemeinen Verbreitungsgebietes, östlich der Linie Mecklenburg-Brandenburg-Sachsen, treten sie als Einzelfund auf. Die östliche Verbreitungsgrenze wird in SCHULZ 1973, 2003 und 2012 ausführlich diskutiert (s. a. Abb. 21).

Abb. 21: Verbreitungsgebiet der Rhombenporphyr-Geschiebe. 1 – Gesteine des Oslograbens, Fortsetzung des Vorkommens unter Wasser; 2 – Geschiebefächer Rhombenporphyr (Hauptverbreitungsgebiet); 3 – östliche Verbreitungsgrenze; 4 – Maximalausdehnung der nordischen Inlandvereisungen. Karte nach SCHULZ 1973.

4. Funde aus Berlin und Brandenburg

Aus Berlin und Brandenburg konnten in jahrelanger Sammeltätigkeit bislang 82 Rhombenporphyr-Geschiebe zusammengetragen werden (Stand: 01/2021; Dokumentation in SCHNEIDER & TORBOHM 2020). Die Funde belegen einen weit nach Osten reichenden Transport dieser Gesteine in ein Gebiet, das überwiegend durch baltische und ostschwedische Geschiebegemeinschaften geprägt ist. Abb. 22 zeigt alle Fundpunkte. Hervorgehoben sind Kiesgruben mit der höchsten Fundanzahl. Eine hohe Fundanzahl spricht nicht unbedingt für ein gehäuftes Auftreten, sie könnte auch auf eine entsprechend aktive Sammeltätigkeit zurückzuführen sein.

Abb. 22: Fundpunkte von Rhombenporphyr-Geschieben in Brandenburg; Grafik verändert nach Benutzer Grabenstedt 2007, Quelle: wikipedia.de, Lizenz: CC BY-SA 3.0. Daten aus STACKEBRANDT & MANHENKE 2002.

1 – Damsdorf-Bochow bei Lehnin (9 Funde)
2 – Teschendorf bei Oranienburg (8 Funde)
3 – Hohensaaten (9 Funde)
4 – Niederlehme (9 Funde)
5 – Fresdorfer Heide (7 Funde)
6 – Ziezow (5 Funde)
7 – Gebiet um Fürstenwalde (Slg. Bennhold; 53 Funde).

Die brandenburgischen Rhombenporphyr-Geschiebe stammen überwiegend von Lokalitäten mit oberflächennah aufgeschlossenen Ablagerungen der Weichsel-Vereisung. Viele Kiesgruben liegen – nicht zuletzt aus bergbaulichen Erwägungen – am Rande von Hochflächen oder Urstromtälern. Lediglich 11 der insgesamt 82 Funde (14%) lassen sich unmittelbar mit saalekaltzeitlichen (oder älteren) Ablagerungen in Zusammenhang bringen. Diese im südlichen Brandenburg gelegenen Altmoränenhochflächen bieten allerdings auch nur wenige Aufschlüsse. Der Erhaltungszustand der Geschiebe ist im Allgemeinen schlecht: die Grundmassen sind ausgebleicht, die Gesteine stark verwittert, manchmal regelrecht durchgewittert.

Die in SCHNEIDER & TORBOHM 2020 dokumentierten Funde sind ausschließlich Einzelfunde von den Überkornhalden in Kiesgruben. Diese aus sandigen bis kiesigen Horizonten abgetrennte, grobe Gesteinsfraktion kann umgelagertes Material aus älteren Glazial-Ablagerungen enthalten. Statistische Daten zur glaziostratigraphischen Verbreitung von Rhombenporphyr-Geschieben in weichsel- und saalezeitlichen Ablagerungen in brandenburgischen Glazialablagerungen ließen sich durch Zählungen aus Tillablagerungen erheben. Jedoch dürften Rhombenporphyre hier auch bei ausdauernder Suche nur sehr selten anzutreffen sein.

Bemerkenswert ist die hohe Fundanzahl in unmittelbarer Nähe der nordöstlichen Verbreitungsgrenze der Rhombenporphyr-Geschiebe am Nordrand des Oderbruchs (s. SCHULZ 1973). Aus der Grube Hohensaaten (Lokalität 3 in Abb. 22) stammen 9, aus mittlerweile stillgelegten Gruben der unmittelbaren Umgebung zwei weitere Funde.

Der Geschiebesammler W. Bennhold trug im Laufe mehrerer Jahrzehnte mindestens 53 Rhombenporphyr-Geschiebe zusammen. Sie stammen überwiegend aus dem kompliziert gebauten Stauchmoränenkomplex der Rauener Berge im Bereich des Frankfurter Stadiums der Weichsel-Vereisung. Nach ZWENGER 1991 ist der genaue Herkunftshorizont zwar nicht präzisierbar, jedoch dürften die RP-Geschiebe überwiegend saalezeitlichen Bildungen entstammen, weil die weichselkaltzeitlichen Ablagerungen hier nur geringmächtig ausgebildet sind. Bennholds Funde werden in der Geschiebesammlung im Museum Fürstenwalde aufbewahrt.

Als Ursache für Fundhäufungen von Rhombenporphyren außerhalb ihres Hauptverbreitungsgebietes nennt SCHULZ 1973 einen wechselnden Einfluss des norwegischen Gletscherstroms. Rhombenporphyre wurden während des Drenthe-Stadiums der Saale-Vereisung und während des Brandenburgischen Stadiums der Weichsel-Vereisung weit nach Osten transportiert. Auch EIßMANN 1967 (in EHLERS 2011: 47) nimmt an, dass ein norwegisch-westschwedischer Eisstrom, dessen östlichste Ausdehnung etwa bis in den Raum Bornholm reichte, zu verschiedenen Zeiten durch einen nordschwedisch-finnischen Eisstrom abgelenkt wurde. Rhombenporphyr-Geschiebe von relativ weit östlich gelegenen Fundlokalitäten dürften daher nicht etwa aus aufgearbeiteten Ablagerungen der Elster-Vereisung stammen, zumal ihre Verbreitungsgrenze zumindest in Sachsen weit westlich der Maximalausdehnung elsterzeitlicher Sedimente liegt (etwa im Raum Grimma, SCHULZ 1973).

Geschiebefunde anderer Gesteine des Oslo-Grabens scheinen trotz intensiver Suche in Brandenburg nur sehr spärlich vorzukommen. MEYER AP 1964 berichtet von Fundhäufungen in der Kiesgrube am Stener Berg (Berlin). Aus der Kiesgrube Fresdorfer Heide bei Potsdam stammt ein Larvikit-Geschiebe. Ein weiterer Fund durch W. Bennhold aus den Rauener Bergen wird im Museum Fürstenwalde aufbewahrt. Herr D. Schmälzle (†) (Berlin) berichtet von einem Larvikit-Geschiebe aus dem nördlichen Brandenburg (mündl. Mitteilung). Erwähnenswert sind in diesem Zusammenhang vereinzelte Funde südwestschwedischer Leitgeschiebe wie Schonengranulit und „Flammenpegmatit“ (Slg. Torbohm: 7 Funde), die bisher offenbar nur wenig Beachtung fanden und ebenfalls durch einen norwegisch-westschwedischen Eisstrom nach Brandenburg gelangt sein dürften.

Abb. 23: Bisher größter Rhombenporphyr-Fund aus Brandenburg (20 x 15 x 10 cm); gut erhaltenes Exemplar mit dunkelgrauer Grundmasse und silbrig glänzenden, transparenten Feldspäten; Kiesgrube Niederlehme bei Berlin; Slg. M. Torbohm.
Abb. 24: Brauner Rhombenporphyr, Aufnahme unter Wasser (Kiesgrube Niederlehme).
Abb. 25: Rhombenporphyr mit eingeregelten Feldspäten (fluidaler Typ, „RP1“); Kiesgrube Niederlehme.
Abb. 26: Rhombenporphyr mit hellen und orangefarbenen Feldspäten, Aufnahme unter Wasser (Kiesgrube Niederlehme).
Abb. 27: Rhombenförmiger Feldspat-Einsprengling mit subparallelen, welligen Entmischungslamellen und randlicher Zonierung. Geschiebe aus der Kiesgrube Damsdorf-Bochow bei Lehnin, Slg. D. Lüttich.
Abb. 28: Glomerophyrisches Gefüge; zu kleinen Kristallhaufen aggregierte Feldspat-Einsprenglinge. Rhombenporphyr aus der Kiesgrube Hoppegarten, leg. St. Schneider.
Abb. 29: Eigens gedrucktes „Festkärtchen“ zum 50. Rhombenporphyr-Fund aus der Umgebung von Fürstenwalde (Sammlung Bennhold, Museum Fürstenwalde).
Abb. 30: Blasige Rhombenporphyr-Lava, einsprenglingsarmer Typ. Kiesgrube Teschendorf, leg. St. Schneider.
Abb. 31: Lapillistein mit Rhombenporphyr- und Mandelstein-Fragmenten, Aufnahme unter Wasser. Kiesgrube Teschendorf, leg. St. Schneider.
Abb. 32: Rhombenporphyr-Lapillistein, polierte Schnittfläche. Kiesgrube Falkenthal, Löwenberger Land.
Abb. 33: Rhombenporphyr aus roten und braunen, fest miteinander verbundenen Pyroklasten (pyroklastische Brekzie). Die Bezeichnung „Agglomeratlava“ ist nach aktueller Nomenklatur Pyroklastiten vorbehalten, die zu mind. 75% aus Bomben (Vulkanoklasten über 63 mm) bestehen. Fundort: Hohensaaten an der Oder, Slg. St. Schneider.
Abb. 34: Rhombenporphyr-Geschiebe aus SE-Brandenburg (Papproth, Tagebau Welzow-Süd, Niederlausitz).
Abb. 35: Rhombenporphyr mit rechteckigen Feldspat-Einsprenglingen (Rektangel-Porphyr); Lesesteinhaufen bei Schlunkendorf, Slg. D. Lüttich.
Abb. 36: Fund aus dem Berliner Stadtgebiet; Kiesgrube Spandau, leg. A.P. Meyer, Aufnahme unter Wasser.
Abb. 37: Rotgrauer Rhombenporphyr, Kiesgrube Hartmannsdorf bei Berlin.
Abb. 38: Graubrauner, deutlich magnetischer Rhombenporphyr mit dunkelgrauen Feldspäten, die von gelben Säumen umgeben sind (Langtangen-Typ, RP14a); Kiesgrube Teschendorf bei Oranienburg.
Abb. 39: Rhombenporphyr mit körniger Grundmasse. Kiesgrube Oderberg-Bralitz; Slg. St. Schneider.
Abb. 40: Intrusiver Typ mit körniger Grundmasse. Kiesgrube Hoppegarten bei Müncheberg.
Abb. 41: Nahaufnahme der nassen Oberfläche.
Abb. 42: Heller Rhombenporphyr. Das Gestein enthält runde und transparente Quarzaggregate, vermutlich eine sekundäre Füllung von Blasenhohlräumen. Kiesgrube Borgsdorf/Velten bei Oranienburg, leg. St. Schneider.

5. Literatur

EHLERS J 1988 Skandinavische Geschiebe in Großbritannien – Der Geschiebesammler 22 (2): 49-64, 5 Abb., Hamburg.

EHLERS J 2011 Das Eiszeitalter – Spektrum Sachbuch: IX+363 S., 347 meist kapitelweise num. Abb. (davon 327 farbig), 12 kapitelweise num. Tab., 32 Text-Kästen, Heidelberg etc. (Spektrum Akademischer Verlag in Springer SBM).

EIßMANN L 1967 Rhombenporphyrgeschiebe in Elster- und Saalemoränen des Leipziger Raumes – Abhandlungen und Berichte des naturkundlichen Museums „Mauritianum” Altenburg 5: 37-46, 2 Abb., 1 Tab., Altenburg.

GÁBA Z 1974 Rhombenporphyr und Prickgranit als Geschiebe im tschechoslowakischen Schlesien – Der Geschiebesammler 9 (1): 29-30, 1 Abb., Hamburg.

GÁBA Z & MATYÁŠEK J 1997 Rhombenporphyr-Geschiebe in der Tschechischen Republik- Geschiebekunde aktuell 13 (4): 123-125, 3 Abb., Hamburg.

GÓRSKA M 2003 Nowe znaleziska narzutniaków porfiru rombowego z Oslo na terenie północno-zachodniej Polski [New finds of erratics of the Oslo rhomb porphyry in North-Western Poland] – Przegląd Geologiczny 51 (7): 580-585, 7 Abb., 1 Tab., Warszawa.

HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 44 Abb., 8 Taf., 1 Kt., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

HILLEFORS Å 1968 Fynd av stora block av rombporfyr [Discovery of large boulders of rhombporphyry] – Svensk geografisk Årsbok, 44: 186-188, Lund (Lunds Universitet, Geografiska Institution).

HUISMAN H 1971 Die Verbreitung der Rhombenporphyre – Der Geschiebesammler 6 (2): 47-52, Hamburg.

JENSCH J-F 2013a Bestimmungspraxis Rhombenporphyre – Der Geschiebesammler 46 (2-3): 47-103, 35 Abb.,3 Tab., 18 Taf., 1 Karte, Wankendorf.

JENSCH J-F 2013b Korrekturen zu Bestimmungspraxis Rhombenporphyre – Der Geschiebesammler 46(4): 120, 1 Abb., Wankendorf.

KUMMEROW E 1954 Grundfragen der Geschiebeforschung (Heimat, Transport und Verteilung der Geschiebe) – Geologie 3 (1): 42-54, Berlin.

LAMPE R 2012 Erster Nachweis eines Rhombenporphyr-Geschiebes in Vorpommern!? – Geschiebekunde aktuell 28 (3/4) [Werner-Schulz-Festschrift]: 95-98, 1 Abb., Hamburg/Greifswald.

LÜTTIG G 1997 Beitrag zur Geschiebeforschung in Böhmen und Mähren – Geschiebekunde aktuell 13 (2): 43-46, 2 Abb., Hamburg.

MEYER A P 1964 Über Funde kristalliner Geschiebe aus Berlin – Der Aufschluss, Sonderheft 14: 111-116, Heidelberg.

MEYER A P 1969 Ein Blick nach Norden – Der Geschiebesammler 4 (1): 21-27, 4 (2):58-62, 1 Karte, 4 (3/4): 83-94, 2 Abb., Hamburg.

MEYER K-D 1993 Rhombenporphyre an Englands und Schottlands Ostküste – Der Geschiebesammler 26 (1): 9-17, 6 Abb., Hamburg.

MEYER K-D 2010 200 Jahre Rhombenporphyr – Der Geschiebesammler 43 (3): 97-105, 4 Abb., 1 Karte, Wankendorf.

OFTEDAHL C 1952 Studies on the igneous rock complex of the Oslo region. XII. The Lavas – Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo (I) Matematisk-Naturvidenskapelig Klasse 3: 64 S., 21 Abb., 6 Tab., Oslo (Universitetsforlag).

OFTEDAHL C 1967 Magmen-Entstehung nach Lava-Stratigraphie im südlichen Oslo-Gebiete – Geologische Rundschau 47: 203-218, 5 Abb., 2 Tab., Stuttgart.

QUENSEL P 1918 Über ein Vorkommen von Rhombenporphyren in dem präkambrischen Grundgebirge des Kebnekaisegebietes. – Bulletin of the Geological Institution of the University of Upsala 16: 1-14, 2 Abb., 1 Taf., 3 Tab.,Uppsala.

SCHULZ W 1973 Rhombenporphyrgeschiebe und deren östliche Verbreitungsgrenze im nordeuropäischen Vereisungsgebiet – Zeitschrift für geologische Wissenschaften 1 (9): 1141-1154, 5 Abb., Berlin.

SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 1 Taf., div. Abb., Schwerin (cw Verlagsgruppe).

SCHULZ W 2012 Stratigraphie und Geschiebeführung am Kliff des Klützer Winkels Nordwest – Mecklenburg) – Geschiebekunde aktuell 28 (1): 13-27, 8 Abb.; Hamburg/Greifswald.

SMED P & EHLERS J 2002 Steine aus dem Norden (2.Aufl.) – 194 S., 34 Taf., 67 Abb., 1 Kte. (rev. 2008), Berlin, Stuttgart (Gebr. Borntraeger).

STACKEBRANDT W & MANHENKE V [Hrsg.] 2002 Atlas zur Geologie von Brandenburg – Landesamt für Geowissenschaften und Rohstoffe Brandenburg, (2. Aufl.): 142 S., 43 Ktn., Kleinmachnow.

TIETZ O 1999b Otoczaki porfiru rombowego z Pogórza Łużyckiego (pd.-wsch. Niemcy) – Przyroda Sudetów Zachodnich t.2: 105-108, 2 Abb., 1 Tab., 1 Kt., Jelenia Gora.

VIŠEK J & NÝVLT D 2006 Leitgeschiebestatistische Untersuchungen im Kontinentalvereisungsgebiet Nordböhmens – Archiv für Geschiebeforschung 5 (1-5) [Festschrift Gerd Lüttig]: 229-236, 2 Abb., 2 Tab., Hamburg/Greifswald.

ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).

ZWANZIG M, BÜLTE R, LIEBERMANN S & SCHNEIDER S 1994 Sedimentärgeschiebe in den Kiesgruben Oderberg-Bralitz, Hohensaaten und Althüttendorf – In: Schroeder J H [Hrsg]: Führer zur Geologie von Berlin und Brandenburg, No. 2: Bad Freienwalde-Parsteiner See: 131-141, 7 Abb., Berlin (Geowissenschaftler in Berlin und Brandenburg e.V., Selbstverlag).

ZWENGER W H 1991 Die Geschiebesammlung W. Bennhold im Museum Fürstenwalde (Spree) Teil 1: Kristalline Geschiebe – Archiv für Geschiebekunde 1 (2): 65-78, 2 Taf., 4 Abb., 2 Tab., Hamburg.