Schlagwort-Archive: Geschiebe

Fleckengranite

1. Allgemeine Beschreibung
2. Leitgeschiebe?
3. Stockholm-Fleckengranit
4. Fleckengesteine mit körniger Grundmasse
5. Blekinge-Fleckengranit
6. Geschiebefunde
7. Verzeichnis der Lokalitäten
8. Literatur

1. Allgemeine Beschreibung

Fleckengranite (spotted granite) sind kleinkörnige Plutonite mit einer Fleckentextur. Nicht alle Fleckengesteine mit einer klein- und gleichkörnigen Matrix aus Quarz, Feldspat und Biotit sollten als Fleckengranit bezeichnet werden, auch andere Zusammensetzungen kommen in Frage (z. B. Quarzdiorit). Allerdings können die Mengenanteile an Quarz, Alkalifeldspat und Plagioklas von Hand nur schwer abschätzbar sein.

Unter den Metamorphiten gibt es Gesteine mit einem ähnlichen Erscheinungsbild (Migmatite, Granofelse). Mögliche Anhaltspunkte auf eine metamorphe Entstehungsgeschichte sind eine Lagen- oder Gneistextur, eine inhomogene Grundmasse sowie das Vorhandensein von feinfaserigem Sillimanit oder dunklen Cordieritflecken.

Die Flecken in Fleckengraniten besitzen meist einen zonaren Aufbau aus einer hellen, selten auch roten Randzone aus Feldspat und Quarz und einem dunkleren Kernbereich mit braunem oder rötlichem Titanit und/oder schwarzen Biotitplättchen. Titanit kann an seiner charakteristischen keilförmigen Kristallform erkennbar sein.

Abb. 1: Blekinge-Fleckengranit, Anstehendprobe vom Yasjön im Eringsboda-Massiv (Lok. 4), Aufnahme unter Wasser. Das kleinkörnige Gestein besitzt eine Quarz-Feldspat-Biotit-Matrix und enthält Flecken mit einem zonaren Aufbau. Die Säume bestehen aus Quarz und Feldspat, die roten Kerne aus Titanit und etwas Feldspat.
Abb. 2: Nahaufnahme der nassen Oberfläche.

2. Leitgeschiebe?

Mehrere kleine Vorkommen von Fleckengraniten sind aus dem Stockholm-Gebiet („Stockholm-Fleckengranit“) und aus Blekinge („Blekinge-Fleckengranit“) bekannt. Mit weiteren und bisher nicht entdeckten Vorkommen, möglicherweise auch in anderen Regionen, muss gerechnet werden. Die petrographische Variabilität des Gesteinstyps – kaum ein Geschiebefund gleicht dem anderen – erschwert eine Referenzierung mit den wenigen vorliegenden Vergleichsproben, die allesamt aus Kleinvorkommen stammen. Fleckengranite eignen sich daher nicht als Leitgeschiebe. Auch eine grobe Unterscheidbarkeit von Geschiebefunden nach Herkunft (Stockholm oder Blekinge) ist aufgrund ganz ähnlicher Merkmale wohl kaum möglich.

Die Darstellung des Stockholm-Fleckengranits in der Geschiebeliteratur ist wenig befriedigend. Hesemann 1975: 188-191 nennt neben den Gesteinen aus dem Stockholm-Gebiet weitere „abweichende“ Fleckengranite, die er (methodisch problematisch) von Geschiebefunden aus Norddeutschland ableitet und annimmt, dass sie aus dem gleichen Gebiet stammen. Zandstra 1988: 205 unterscheidet zwei Typen und ordnet ihnen ein größeres Herkunftsgebiet zu („Södermanland und Uppland“). Für den ersten Typ, ein kleinkörniger Fleckengranit, der dem „normalen“ (?) Stockholm-Granit ähnelt, übernimmt er die Beschreibungen von Geijer 1913b. Der zweite Typ ist eine dunklere und feinkörnige Variante, die in Zandstra 1999, Nr. 123 als Migmatit bezeichnet wird. Hier werden also zwei verschiedene Gesteinstypen, Plutonite und Metamorphite, unter der gleichen Bezeichnung zusammengefasst. Feldstudien ergaben, dass dieser zweite Typ nicht im Zusammenhang mit dem Stockholm-Granit steht, sondern im Gebiet von Kolmården, etwa 100 km südwestlich von Stockholm, verbreitet als Geschiebe auftritt (s. Abb. 5).

3. Stockholm-Fleckengranit

Geijer 1913b beschreibt elf anstehende Vorkommen von Fleckengraniten aus dem Gebiet des Stockholm-Granits. Ihre Ausdehnung beträgt wenige bis einige Hundert Quadratmeter. Bis auf eine Lokalität (Almnäs, 30 km SW Stockholm) liegen sie innerhalb des Stadtgebiets von Stockholm. In fast allen Proben ist Titanit das dominierende Mineral in den Kernen der Flecken, Biotit tritt viel seltener auf. Der Titanit ist meist braun und als kompaktes Mineralkorn von max. 3-4 mm Länge oder als schwammartige Masse ausgebildet. Die hellen Säume um die Kerne der Flecken bestehen aus Quarz und Feldspat und können bis 6-7 mm breit werden.

Fleckenbildungen im Stockholm-Granit treten im Abstand von wenigen Metern zum Kontakt mit älteren Gneisen auf (Geijer 1913b). Die Minerale in den Flecken könnten z. B. durch metasomatische Vorgänge aus den Metamorphiten mobilisiert worden sein. Nach Lohberg 1963 sind die Kerne der Fleckengranite postkinematische, dicht unter 500 Grad gebildete Rekristallisationsprodukte als Folge metamorpher Differenzierungen (in Hesemann 1975).

Möller & Stålhös 1969 (Kartenblatt Stockholm SV) nennen zwei Vorkommen von Fleckengraniten innerhalb des Stockholm-Granits. Die Gesteine besitzen 1-3 cm große und runde oder elliptische Flecken mit einer hellroten Randzone aus Quarz und Feldspat und dunklen Kernen aus Biotit, Titanit oder beiden Mineralen.

Abb. 3: Stockholm-Fleckengranit, Anstehendprobe, wahrscheinlich südwestlich vom Thorsvikssvängen, Stockholm, Insel Lidingö (leg. o. A. 1960, Slg. Geozentrum Hannover). Foto aus skan-kristallin.de.

Während mehrerer Exkursionen in das Gebiet zwischen Norrköping und Stockholm konnte ich lediglich ein einziges Fleckengranit-Geschiebe in einer Kiesgrube unmittelbar westlich von Stockholm finden, das aller Wahrscheinlichkeit nach mit dem Stockholm-Granit im Zusammenhang steht (Abb. 4).

Abb. 4: Fleckengranit, Geschiebe aus der Kiesgrube Järna, W von Stockholm (Lok. 2). Die Flecken weisen einen undeutlichen Zonarbau auf, mit einer Randzone aus Feldspat und Quarz und einem unbekannten Mineralgemisch im Kern.

4. Fleckengesteine mit körniger Grundmasse

Graue Fleckengesteine mit einer kleinkörnigen, nicht näher differenzierbaren Grundmasse aus Quarz, Feldspat und Biotit sowie einer Gneistextur, manchmal auch einer kaum erkennbaren Foliation (Streifung, Einregelung der Flecken) konnten vor allem im südlichen Södermanland und östlichen Östergötland, etwa 100 km südwestlich von Stockholm, verbreitet als Geschiebe beobachtet werden. Dabei scheint es sich offenbar um etwas körnigere Varianten der feinkörnigen Fleckengesteine zu handeln, die in diesem Gebiet verbreitet auftreten (vgl. auch Geschiebefunde Abb. 15, 17 und 26 im Artikel Fleckengesteine). Aus der näheren Umgebung von Stockholm liegt lediglich ein Einzelfund dieses Typs  (Abb. 7) vor.

Ein Teil der Funde entspricht dem zweiten Typ in Zandstra 1988, einem dunklen, biotit- und hornblendereichem Metamorphit (migmatitischer Gneis) mit einer Flecken-Struktur (Nr. 123 in Zandstra 1999, auch Rudolph 2017: 214). Die Bezeichnung „Stockholm-Fleckengranit“ für diesen Gesteinstyp dürfte obsolet sein, ebenso der Begriff „Stictolith“ oder stictolithische Textur für Migmatite mit Flecken von Reliktmineralen (Fettes & Desmons 2007).

Flecken von 0,5-3 cm Größe sind annähernd rund bis länglich geformt und liegen regellos im Gestein verteilt oder sind in Reihen angeordnet. Einfache Flecken bestehen meist aus einem Gemenge von Quarz und Feldspat. Zonierte Flecken zeigen einen weißen oder rötlichen Saum aus Feldspat und Quarz um einen dunklen Kern. Der schwarze, graue, rötliche, selten auch grün getönte Kernbereich kann aus einem einzelnen Mineral oder einem Mineralgemisch bestehen, z. B. schwarzen Biotitplättchen (manchmal nur ein einzelnes größeres Korn), grünlich-schwarzen Chloritmineralen oder gelbem, braunem oder rotem Titanit (gelegentlich an seiner keilförmigen Kristallform erkennbar).

Abb. 5: Graues Fleckengestein mit kleinkörniger Grundmasse aus Quarz, Feldspat und Biotit sowie länglichen und zonierten Flecken. Das hellbraune und transparente Mineral im Kern der Flecken könnte Titanit sein, keilförmige Kristallaggregate waren jedoch nicht erkennbar. Geschiebe vom Campingplatz Kolmården (Lok. 1).
Abb. 6: Ähnlicher Geschiebefund von Kolmården (Lok. 1) mit feinkörniger Grundmasse und gelb- bis rötlich-braunem Titanit in den Kernen der Flecken (keilförmige Kristalle erkennbar).
Abb. 7: Ähnlicher Typ eines Fleckengesteins mit einfachen Flecken, einige auch mit rötlichen Kernen; Geröllstrand in Skansholmen, südlich Stockholm (Lok. 3).

5. Blekinge-Fleckengranit

Kleinkörnige Granite mit einer Fleckentextur kommen an mehreren Lokalitäten in Nordost-Blekinge vor (Wiklander 1974: 52f). In der Nähe von Tving, innerhalb des Yasjö-Granits, einer Variante des 1,45 Ga alten Eringsboda-Granits, ist ein etwa 6 m breiter Gang eines Fleckengranits („sphen-spotted granite“) aufgeschlossen. Der etwas jüngere Fleckengranit durchschlägt den Yasjö-Granit und enthält Flecken mit rotem Titanit.

Abb. 8: Blekinge-Fleckengranit, angefeuchtete Anstehendprobe mit frischer Bruchfläche (Lok. 4).

Das hellgraue Gestein (s. a. Abb. 1 und 2) besitzt ein klein- und gleichkörniges Mineralgefüge aus Quarz, Feldspat und Biotit. Die annähernd runden, bis 10 mm großen Flecken besitzen einen zonaren Aufbau aus einer hellen Quarz-Feldspat-Aureole (2-4 mm) und einen roten Kern (3 mm) aus Titanit und etwas Feldspat. Die Ränder der Flecken setzen sich nur unscharf von der Matrix ab.

Abb. 9: Nahaufnahme unter Wasser.

6. Geschiebefunde

Fleckengesteine mit körniger Grundmasse (Korngrößen bis etwa 1 mm) treten als Geschiebe ebenso variantenreich in Erscheinung wie die feinkörnigen Vertreter. Gesteinstypen, die den folgenden Geschiebefunden aus Norddeutschland ähneln, konnten im Gebiet südlich und westlich von Stockholm sowie in Sörmland und Östergötland nicht beobachtet werden.

Abb. 10: Kleinkörniger Fleckengranit, Geschiebefund von Travemünde, E. Figaj leg.

Das Gestein ähnelt dem Geschiebetyp des Stockholm-Granits. Die länglichen Flecken scheinen eine bevorzugte Ausrichtung zu besitzen, während die hellgraue Matrix ein gleichkörnig-richtungsloses Mineralgefüge aufweist.

Abb. 11: Nahaufnahme der zonierten Flecken mit einem weißen Saum aus Quarz und Feldspat und einem dunklen Kern mit Biotit.
Abb. 12: Roter Fleckengranit. Die Matrix enthält roten Alkalifeldspat und Quarz (Mengenanteile nicht abschätzbar) und reichlich dunkle Minerale. Die Randzone der Flecken besteht aus Quarz und Feldspat, der dunkle Kern enthält Biotit und vermutlich Titanit. Nahaufnahme einer polierten Schnittfläche, Geschiebe aus der Kiesgrube Arendsee (Brandenburg).
Abb. 13: Biotitreiches und feinkörniges Fleckengestein mit roten Flecken aus Biotit und Titanit, Aufnahme unter Wasser. Geschiebe aus der Kiesgrube Hoppegarten bei Müncheberg.
Abb. 14: Ähnlicher Geschiebetyp aus der Kiesgrube Gusow, Ost-Brandenburg; Aufnahme unter Wasser.

Weitere Abbildungen von Geschiebefunden finden sich auf skan-kristallin.de.

7. Verzeichnis der Lokalitäten

Lokalität 1: Geschiebe Fleckengesteine, Rollsteinstrand am Campingplatz Kolmården; 58.65718, 16.40712.
Lokalität 2: Geschiebe Fleckengranit; aktive Kiesgrube zwischen Järna und Nykvarn; 59.12040, 17.46764.
Lokalität 3: Geschiebe Fleckengestein; Geröllstrand am Campingplatz Skansholmen/S Sandviken; 59.04647, 17.69313
Lokalität 4: Anstehender Blekinge-Fleckengranit; Gang im Eringsboda-Granit, ca. 3,5 km N Tving, am Fahrweg N des Yasjön; 56.33846, 15.48692.

8. Literatur

Fettes DJ & Desmons J 2007 Metamorphic rocks – A classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks – Cambridge University Press.

Geijer P 1913b Zur Petrographie des Stockholm-Granites – GFF 35: 123-150

Hesemann J 1975 Kristalline Geschiebe der nordischen Vereisungen – GLA Nordrhein-Westfalen, S. 188-191.

Loberg B 1963 The Formation of a Flecky Gneiss and Similar Phenomena in Relation to the Migmatite and Vein Gneiss Problem – Geologiska Föreningen i Stockholm Förhandlingar, 85:1, 3-109, Stockholm.

Möller H & Stålhös G 1969 Beskrivning till geologiska kartbladet Stockholm SV. SGU Ae 4, S. 28.

Rudolph F 2017 Das große Buch der Strandsteine – 320 S., zahlr. Abb., Kiel/Hamburg (Wachholz-Verlag – Murmann Publishers).

Wiklander U 1974 Precambrian petrology, geochemestry and age relations of northeastern Blekinge, southern Sweden – Sveriges Geologiska Undersökning (C) Avhandlingar och uppsatser 704 [Årsbok 68 (11)]: 142 S., 59 Abb., 9 Tab., 1 Kte., Uppsala.

Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).

Zandstra J G 1999: Platenatlas van noordelijke kristallijne gidsgesteenten – Backhuys Leiden, Nr. 123 und 124.

Teil 2: Fleckengesteine- Geschiebefunde aus Norddeutschland

Die folgenden Geschiebefunde aus Norddeutschland illustrieren die petrographische Vielfalt von Fleckengesteinen. Kaum ein Fund gleicht dem nächsten, kaum ein Geschiebe lässt sich einem näheren Herkunftsgebiet zuordnen. Mögen in einigen Fällen auch Ähnlichkeiten mit den Funden aus Schweden bestehen (siehe 1. Teil), ist der Umkehrschluss nicht zulässig, dass der betreffende Gesteinstyp nur an einer einzigen Lokalität vorkommt. – Das erste Geschiebe stammt aus einer Kiesgrube in Brandenburg (E. Fuchs leg.) und wurde freundlicherweise von Herrn U. Maerz dünnschliffmikroskopisch untersucht.

Abb. 1: Grünlichbraunes und feinkörniges Fleckengestein, Aufnahme unter Wasser.
Abb. 2: Nahaufnahme der polierten Schnittfläche. Die Flecken sind mehrfach zoniert und bestehen aus einem grünlichen Kern, einer hellen Zwischenzone und einer schmalen grünlichen Randzone.

Die Dünnschliffuntersuchung ergab, dass die Matrix aus xenomorphen, teilweise polygonalen Kristallen von Quarz, Kalifeldspat (überwiegend Mikroklin) und Plagioklas sowie idiomorphen Biotit-Kristallen besteht. Die äußere Randzone der Flecken ist deutlich grobkörniger als die Matrix und enthält ebenfalls Quarz, Kalifeldspat und Plagioklas. Die helle Zwischenzone enthält zusätzlich Serizit, die dunklen Kerne Serizit und Chlorit. Diese Minerale dürften Alterationsprodukte von Cordierit sein, der durch wässrige Fluide instabil wurde. Unalterierter Cordierit konnte nicht beobachtet werden. In den Kernen wurde weiterhin feinnadeliger Sillimanit gefunden. Die grünen Umwandlungsprodukte von Cordierit finden sich auch außerhalb der Blasten und umschließen die Körner der Matrix.

Abb. 3: Dünnschliffaufnahme einer Fleckenzone unter linear polarisiertem Licht. Bildbreite 3 mm. Foto: U. Maerz.
Abb. 4: Gleicher Ausschnitt unter gekreuzten Polarisatoren. Foto: U. Maerz.

Das Zentrum des Kerns bilden Büschel von wirrstrahlig angeordneten, mit Serizit verwachsenen Sillimanitnadeln. Rechts und links schließen sich Bereiche an, die von überwiegend feinst verwachsenem Serizit ausgefüllt werden. Der Randbereich mit den größeren Kristallen aus Quarz und Feldspat setzt sich gut von der feiner körnigen Matrix ab.

Abb. 5: Polierte Schnittfläche eines grünen Fleckengesteins, Kiesgrube Damsdorf/Bochow, Brandenburg (D. Lüttich leg.).
Abb. 6: Nahaufnahme.

Die Flecken besitzen eine dunkelgrüne äußere Randzone, eine helle Zwischenzone und grüne oder weiße Kerne, teilweise aus feinfaserigem Sillimanit. Bei den grünen Mineralen könnte es sich ebenfalls um Chlorit als Alterationsprodukt von Cordierit handeln.

Abb. 7: Grauer Fleckengneis mit biotitreicher Grundmasse aus der Kiesgrube Ruhlsdorf bei Bernau (Brandenburg). Aufnahme unter Wasser.
Abb. 8: Nahaufnahme des gleichen Steins, Flecken mit grünen Kernen und hellem Saum.
Abb. 9: Grauer Fleckengneis mit weißen Flecken aus Quarz und Feldspat. Kiesgrube Teschendorf bei Oranienburg, Brandenburg.
Abb. 10: Quarz-Feldspat-Biotit-Gneis mit großen Flecken aus Quarz und Feldspat, umgeben von einer dunklen und biotitreichen Randzone. Kiesgrube Penkun, Ost-Brandenburg; Slg. A. Bräu.
Abb. 11: Grauer Fleckengneis mit einzelnen größeren Biotitplättchen innerhalb der feinkörnigen weißen Flecken. Kiesgrube Hoppegarten bei Müncheberg, Brandenburg.
Abb. 12: Sehr feinkörniges Fleckengestein mit quarzitischer Grundmasse. Kiesgrube Hohensaaten, Brandenburg.
Abb. 13: Muskovithaltiger Quarz-Feldspat-Gneis; helle Flecken mit rötlichem Kern. Fundort: Geröllstrand Hökholz bei Eckernförde, Schleswig-Holstein.
Abb. 14: Nahaufnahme, nasse Oberfläche. Die hellen Säume enthalten Quarz, Feldspat sowie ein feinfaseriges Mineral, vermutlich Sillimanit. Die Minerale in den roten Kernen sind feinkörnig und nicht bestimmbar.
Abb. 15: Feinkörniger Fleckengneis, Strandgeröll von Travemünde (E. Figaj leg.).
Abb. 16: Nahaufnahme.

Bemerkenswert ist ein mehrphasiger Aufbau der Flecken: 1. Kernbereich mit einem einzelnen Biotit- und/oder hellem Feldspat-Korn, 2. quarzreicher Saum, umgeben von 3. gelben Mineralen mit stumpfem Glanz (angewitterter Feldspat?). 4. Heller und stärker ausgelängter Bereich aus Quarz und Feldspat, schließlich 5. eine biotitreichere Hülle, ohne klare Abgrenzung zur Matrix aus Quarz, Feldspat und Biotit (+Amphibol?).

Abb. 17: Schnittfläche eines Fleckengneises, Aufnahme unter Wasser. Das Gestein ist auffällig schwer und enthält neben Biotit wahrscheinlich auch Amphibol in bedeutender Menge. Die länglichen Flecken bestehen aus feinfaserigem Sillimanit. Strandgeröll von Nienhagen bei Rostock, leg. G. Engelhardt.
Abb. 18: Nahaufnahme der faserigen Sillimanit-Aggregate.
Abb. 19: Fleckengestein als Windkanter. Die Kernbereiche der Flecken weisen Vertiefungen auf, während die hellen Säume der erosiven Einwirkung des Windes widerstehen konnten. Kiesgrube Rietz bei Treuenbietzen, Brandenburg; Slg. D. Lüttich.
Abb. 20: Feinkörniger Gneis mit länglichen und glimmerreichen Flecken. Kiesgrube Gusow, Ost-Brandenburg.
Abb. 21: Grünlicher Flecken-Granofels mit dunklen Cordierit- und weißen Sillimanit-Granoblasten (Strandgeröll von Misdroy in Westpolen). Das undeformierte Gestein könnte aus dem Västervik-Gebiet stammen, ein vergleichbares grünes Fleckengestein wurde dort bisher allerdings nicht gefunden.
Abb. 22: Roter Fleckengneis, Geschiebe von der Ostsee. Foto: M. Bräunlich.
Abb. 23: Nahaufnahme der länglichen Flecken mit wellenförmig ausgebildeten Aggregaten eines feinfaserigen Minerals, wahrscheinlich Sillimanit.

Als Geschiebe weniger verbreitet sind Glimmerschiefer oder glimmerreiche Metasedimente mit einer Fleckentextur (Flecken- oder Knoten-Glimmerschiefer, Abb. 24-26). In den meisten Fällen dürfte es sich um Kontaktmetamorphite mit Andalusit oder Cordierit als Mineralneubildung handeln.

Abb. 24: Knoten-Glimmerschiefer aus der Kiesgrube Vogelsang bei Eisenhüttenstadt, Brandenburg (St. Schneider leg.).
Abb. 25: Metamorphit mit einer grünlich-grauen und an Hellglimmer reichen Matrix sowie dunklen Flecken (Kiesgrube Hohensaaten, Ost-Brandenburg).
Abb. 26: Glimmerreicher Metamorphit (Metasediment) mit dunklen Flecken und einigen einzelnen hellen Feldspatkörnern (Kiesgrube Niederlehme bei Berlin).
Abb. 27: Fleckengestein mit dunkler und feinkörniger Grundmasse aus der Kiesgrube Kröte (Wendland, Ost-Niedersachsen).
Abb. 28: Für den Mineralbestand des Kernbereichs mit rötlich-gelben Mineralkörnern und der feinkörnigen weißen Randzone gibt es bisher keine Anhaltspunkte.
Abb. 29: Polierte Schnittfläche eines Fleckengneises mit länglichen dunklen Flecken aus der Kiesgrube Althüttendorf in Brandenburg.
Abb. 30: Helle und graugrüne Partien scheinen eine quarzitische Zusammensetzung zu besitzen, während die roten Partien zusätzlich Feldspat enthalten. Das Gestein ist von senkrecht verlaufenden Klüften durchzogen, die einzelnen Bereiche weisen einen leichten Versatz auf.
Abb. 31: Eine schmale rote Partie enthält kleine nadelförmige Porphyroblasten (wahrscheinlich Amphibol).
Abb. 32: Dunkle Cordierit-Flecken mit hellem Saum in einem feinkörnigen Granofels. Kiesgrube Waltersdorf bei Berlin.
Abb. 33: Heller Quarz-Feldspat-Biotit-Gneis mit grünlich-braunen Flecken (alterierter Cordierit?). Polierte Schnittfläche eines Geschiebes aus der Kiesgrube Damsdorf/Bochow, Brandenburg; leg. D. Lüttich.
Abb. 34: Dunkles Metasediment (Granofels) mit gelblichen Flecken (Kiesgrube Niederlehme bei Berlin).
Abb. 35: Nahaufnahme der nassen Gesteinsoberfläche. Die gelblichgrauen Flecken auf der Außenseite weisen auf der Bruchfläche eine unvollständige Spaltbarkeit, einen lebhaften Glasglanz und eine dunkelgraue Tönung auf (Cordierit oder Andalusit).

Ein seltener Geschiebefund sind Vulkanite mit einer Fleckentextur. Die Neubildung von Mineralen könnte bevorzugt von sekundär entstandenen Strukturen mit abweichender chemischer Zusammensetzung ausgegangen sein (z. B. Lithophysen).

Abb. 36: Metavulkanit, Aufnahme unter Wasser. Fundortangabe: „Roth“, wahrscheinlich aus der Umgebung von Parchim (D. Schmälzle leg.).
Abb. 37: Nahaufnahme der polierten Schnittfläche. Innerhalb der kugeligen Aggregate ist ein feinfaseriges gelbbraunes Mineral als metamorphe Neubildung erkennbar (z. B. ein Amphibol wie Anthophyllit).

Vänge-Granit

Der Vänge-Granit gehört zu den etwa 1,89-1,87 Ga alten mittelschwedischen Uppland-Graniten und kommt im gleichen Gebiet wie der Uppsala-Granit vor. Das Gestein ist zumindest in Brandenburg bei praktisch jedem Kiesgrubenbesuch anzutreffen, meist in größeren Blöcken, seltener in Handstückgröße.

Abb. 1: Vänge-Granit aus der Kiesgrube Horstfelde südlich von Berlin.

Als Leitgeschiebe geeignet sind grobkörnige und besonders quarzreiche Varianten dieses Alkalifeldspatgranits. Alkalifeldspat ist blassrot, seltener auch kräftig rot oder orangefarben getönt und bildet unregelmäßig begrenzte Kristalle von 1-3 cm Länge. Weißer Plagioklas ist deutlich kleiner und nur in geringer Menge enthalten (max. 10 %). Er erscheint häufig an den Rändern der Alkalifeldspäte. Quarz kommt reichlich in Form grauer bis gelblich- oder grünlich-grauer und zerdrückter („zuckerkörniger“) Massen vor. Daneben finden sich meist auch einzelne größere und trübe Quarzkörner von bläulichgrauer Farbe, die nicht zerdrückt sind. Durch den hohen Quarzgehalt „schwimmen“ die Alkalifeldspäte regelrecht in der Quarzmasse und das Gefüge wirkt auf den ersten Blick porphyrisch. Dunkle Minerale (Biotit) sind nur in geringer Menge enthalten.

Das Mineralgefüge ist insgesamt undeformiert (richtungslos-körniges Gefüge, keine länglichen Aggregate von dunklen Mineralen). Lediglich Quarz wurde weitgehend granuliert, nachdem der Granitkörper bereits erstarrt war. Nach Zandstra 1988 ist der Vänge-Granit mittelkörnig, nach Lundegardh 1956: 55 „grob mittelkörnig“. Die Alkalifeldspäte in Anstehendproben (vgl. skan-kristallin.de) sind in der Regel größer als 1 cm.

Mittelschwedische Granite verschiedener Vorkommen besitzen teilweise ähnliche Merkmale wie der Vänge-Granit. Dies betrifft den Norrtälje-/Vätö-Granit und einige Granite des Hedesunda-Massivs (s. Abb. 2). Der Vätö-Granit ist mittelkörnig, enthält weniger, zudem kräftiger rot gefärbten Alkalifeldspat und mehr dunkle Minerale. Die zerdrückten Quarze zeigen eine mittelgraue Tönung. Nur einige Varianten des Vätö-Granits besitzen blassrote Alkalifeldspäte. Proben auf skan-kristallin.de. Proben aus dem Hedesunda-Massiv (siehe skan-kristallin.de) zeigen Ähnlichkeiten zum Vänge-Granit in Farbe und Gefüge. Der Quarzanteil ist hier geringer, die Quarze sind nicht oder nicht durchgängig granuliert. Der Älö-Granit aus Nordost-Småland ist ein sehr quarzreicher Granit mit vollständig granuliertem Quarz. Im Vergleich zum Vänge-Granit bestehen Gefüge- und Farbunterschiede: mittelkörniges Gefüge, hellroter bis braunroter Alkalifeldspat, manchmal bläulicher Quarz, mehr dunkle Minerale. Proben auf skan-kristallin.de.

Die drei genannten Granite konnten bisher nicht als Geschiebe identifiziert werden. Ihr Status als Leitgeschiebe ist umstritten oder noch nicht geklärt.

Abb. 2: Herkunftsgebiet des Vänge-Granits und anderer im Text erwähnter Granit-Vorkommen.
Abb. 3: Vänge-Granit, Abschlag mit frischer Bruchfläche aus einem größeren Block  (Kiesgrube Hohensaaten, Brandenburg).
Abb. 4: Die Nahaufnahme zeigt hellroten Alkalifeldspat und gelblichgrüne Massen von zerdrücktem Quarz.
Abb. 5: Vänge-Granit, Großgeschiebe aus der Niederlausitz (Findlingshalde Steinitz bei Drebkau, Bildbreite etwa 30 cm).
Abb. 6: Gleicher Stein, Nahaufnahme. Das Gefüge besteht aus hellrotem Alkalifeldspat und kleineren weißen Plagioklaskörnern. Granulierter Quarz bildet eine grünlichgraue Masse, daneben finden sich einige größere milchig-hellgraue Quarzkörner. Stellenweise „schwimmen“ die Alkalifeldspäte in der Quarzmasse.
Abb. 7: Diese leicht angewitterte Bruchfläche eines Vänge-Granits zeigt schön die Gruppierung kleiner weißer Plagioklaskörner um hellrote Alkalifeldspäte. Geschiebe aus Merzdorf am ehemaligen Tagebau Cottbus-Nord.
Abb. 8: Vänge-Granit aus der Kiesgrube Teschendorf bei Oranienburg (Brandenburg), Aufnahme unter Wasser.
Abb. 9: Vänge-Granit mit sehr wenig Plagioklas aus der Kiesgrube Fresdorfer Heide bei Potsdam; Aufnahme unter Wasser.
Abb. 10: Heller Granit mit orangefarbenem Alkalifeldspat, mäßig hohem Quarzgehalt und wenig dunklen Mineralen. Kiesgrube Teschendorf bei Oranienburg (Brandenburg).
Abb. 11: Quarz ist vollständig granuliert; einige Plagioklase besitzen einen rötlichen Kern.
Abb. 12: Granit vom Vänge-Typ mit einem höheren Anteil dunkler Minerale. Breite 40 cm, Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 13: Gleicher Stein, Nahaufnahme.
Abb. 14: Heller Granit mit wenig dunklen Mineralen aus dem ehem. Tagebau Cottbus-Nord, Breite 45 cm.
Abb. 15: Nahaufnahme des Gefüges. Der Granit ist nicht grob-, sondern mittelkörnig. Die übrigen Gefügemerkmale stimmen ansonsten mit denen des Vänge-Granits überein.
Abb. 16: Grobkörniger Granit mit hellrotem Alkalifeldspat und weißem bis grünlich-grauem Plagioklas. Quarz ist grünlich-grau getönt, bildet aber einzelne Körner aus und ist nicht zerdrückt (kein Vänge-Granit gemäß der Beschreibung des Leitgeschiebes). Findlingslager Steinitz am Tagebau Welzow-Süd.

Das letzte Großgeschiebe zeigt einige Merkmale des Vänge-Granits (hellroter Alkalifeldspat, grünliche Massen aus zerdrücktem Quarz, größere trübe Quarzkörner). Durch den hohen Gehalt an Plagioklas ist das Gestein aber kein Granit, sondern ein Granodiorit. Die Art des Gefüges der kleinen Plagioklaskörner erinnert an andere Uppland-„Granite“, z. B. den Uppsala-Granit. Im Vänge-Massiv kommen auch Plutonite mit intermediärer Zusammensetzung vor (Lundegardh 1956: 55). Ob das Geschiebe tatsächlich von dort stammt, lässt sich allerdings nicht mit Sicherheit feststellen.

Abb. 17: (Uppland?-)Granodiorit, Findlingslager Steinitz am Tagebau Welzow-Süd (Brandenburg), Bildbreite 30 cm.
Abb. 18: gleicher Stein, Nahaufnahme.

Literatur

Lundegårdh P-H & Lundqvist G 1956 Beskrivning kartbladet Uppsala – SGU Serie Aa 199, Uppsala.

Zandstra J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië –    XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).

Einschlussführende Diabase

1. Allgemeines
2. Geschiebetypen
3. Weitere Anstehendproben
4. Geschiebefunde
5. Lokalitäten
6. Literatur

Ein feinkörniges basaltisches Gestein mit kantigen oder runden Fremdgesteins-Einschlüssen (Xenolithe) wird schlicht als einschlussführender Diabas bezeichnet. Es entsteht, wenn basaltisches Magma bei seinem Aufstieg Quarz- und feldspathaltige Fragmente des Nebengesteins oder auch Einzelkristalle aufnimmt. Durch die hohe Temperatur basaltischer Schmelzen werden diese Fragmente leicht abgerundet, weil sie einen deutlich niedrigeren Schmelzpunkt besitzen, zudem einen chemischen Ausgleich mit der Schmelze anstreben. Die häufig rundlichen Formen von Einschlüssen in basaltischen Gesteinen führten wahrscheinlich zu der etwas unglücklichen Bezeichnung „Gerölldiabas“. Nur in wenigen Fällen dürfte es sich tatsächlich um Geröll-Horizonte handeln, die durch eine basaltische Schmelze aufgearbeitet wurden.

Abb. 1: Einschlussführender Diabas mit feinkörniger Grundmasse. Das Gestein enthält abgerundete Xenolithe von Alkalifeldspat und eckige Quarz-Feldspat-Fragmente. Polierte Schnittfläche eines Geschiebes aus der Kiesgrube Niederlehme bei Berlin.
Abb. 2: Die runden Feldspäte sind stark alteriert, teilweise auch zoniert durch wechselnde Anteile dunkler Minerale.

Einschlussführende Diabase können monomikt (nur eine Gesteinsart als Fremdeinschluss) oder oligomikt/polymikt (mehrere Gesteinsarten) zusammengesetzt sein. Als Einschluss kommen Plutonite und Gneise aller Art, Sandsteine und Quarzite sowie einzelne Quarze und Feldspäte in Frage. Wesentlich häufiger als einschlussführende Diabase lässt sich übrigens das umgekehrte Phänomen beobachten: Xenolithe basaltischer Gesteine in Plutoniten (Abb. 3).

Abb. 3: Basische Xenolithe (Basaltoide, Gabbro) in einem dioritischen Gestein. Kiesgrube Arendsee/Weggun, Brandenburg.

2. Geschiebetypen

In der Geschiebekunde werden mehrere Typen einschlussführender Diabase unterschieden: Björbo-Diabas, Brevik-Gerölldiabas und Ålsarp-Diabas. Neben diesen Typlokalitäten (s. Abb. 6) sind rund ein Dutzend weitere Vorkommen aus Blekinge, Mittelschweden (Grängesberg), von Bornholm sowie aus Norwegen und Finnland bekannt (Hesemann 1975, Korn 1927, Meyer 1981, Bartolomäus & Herrendorf 2003). Darüber hinaus dürfte es eine Reihe weiterer Lokalitäten mit einschlussführenden Partien innerhalb der schwarmartigen Vorkommen verschiedener Generationen von Diabasgängen geben. Die Gangschwärme nehmen jeweils größere Gebiete ein, von Bornholm bis nach Dalarna. Einschlussführende Partien treten nur lokal begrenzt und ausschließlich in kleinen Vorkommen auf. Es ist kaum möglich, hier spezifische Gesteinstypen mit einem begrenzten Herkunftsgebiet herauszustellen. Dies gilt auch für den Sandstein führenden Brevik-Typ (s. a. Bartolomäus & Herrendorf 2003). Einschlussführende Diabase sind daher nicht als Leitgeschiebe geeignet.

Abb. 4: Übersichtskarte mit einigen postorogenen Diabas-Gangschwärmen und im Text angeführten Lokalitäten.
Abb. 5: Brevik-Gerölldiabas, Foto aus skan-kristallin.de.

Der Brevik-„Gerölldiabas“ enthält eckige bis schwach gerundete Klasten von Sandsteinen aus der Almesåkra-Formation sowie bis zu 10 % Granit- und Porphyrklasten. Im Schwedischen heißt das Gestein diabaskonglomerat. Vorkommen dieses Gesteinstyps sind nicht auf das Gebiet von Brevik beschränkt (Bartolomäus & Herrendorf 2003).

Abb. 6: Björbo-Diabas aus Dalarna (4 km westlich von Björbo, K.-D. Meyer leg.) , Foto aus skan-kristallin.de.

Der Björbo-Diabas aus Dalarna besitzt eine feinkörnige bis dichte Grundmasse und runde, eigentümlich korrodierte Xenolithe aus rotem Feldspat. Quarz fehlt in dieser Probe, kann aber in den Diabasen dieses Typs zusätzlich enthalten sein. Beschreibung des Aufschlusses in Meyer KD 1981.

Abb. 7: Alsarp-Diabas, Anstehendprobe mit polierter Schnittfläche, K.-D. Meyer leg., Foto aus skan-kristallin.de.

Der einschlussführende Alsarp-Diabas besitzt eine ophitische Grundmasse und runde Xenolithe von roten Feldspäten. Foto aus skan-kristallin.de, siehe dort für eine Beschreibung und weitere Anstehendproben; siehe Abb. 14-16 für Bilder von der Lokalität Alsarp.

3. Weitere Anstehendproben

3.1. Södregården: Nördlich von Växjö wurde ein Diabasgang mit einer ungewöhnlichen Kombination von Einschlüssen aus Anorthosit und Sandstein/Quarzit beprobt (Lokalität 1). Nach Wikman 2000 (Kartenblatt Växjö NO, SGU) gibt es in diesem Gebiet weitere Aufschlüsse mit ähnlichen einschlussführenden Diabasen.

Abb. 8: Große Anorthosit-Xenolithe und kleinere quarzitartige Einschlüsse in einem Diabas an der Lokalität Södregården. Bildbreite 30 cm.
Abb. 9: Probe aus dem gleichen Aufschluss; Bruchfläche eines einschlussführenden Diabas mit quarzitähnlichen Einschlüssen, Aufnahme unter Wasser.
Abb. 10: Die Xenolithe sind Sandsteine der Almesakra-Formation, die bei der Aufnahme in das basaltische Magma aufgeschmolzen wurden. Die Sedimentite der Almesåkra-Formation dürften einst ein wesentlich größeres Gebiet eingenommen haben, da einschlussführende Diabase dieses Typs auch weit außerhalb ihrer heutigen Verbreitung gefunden wurden. Die Lokalität Södregården liegt über 40 km südlich davon.

3.2. Forserum: In der Nähe der Lokalität Brevik fanden sich einschlussführende Partien eines Diabases im Kontakt zu einem Småland-Granit (Lokalität 2). Gerundete Feldspat-Xenolithe im Diabas weisen darauf hin, dass es sich nicht um basaltische Xenolithe im Granit handelt.

Abb. 11: Einschlussführender Diabas in einem Småland-Granit (Lokalität 2).

3.3. Värlebo bei Påskallavik (Lokalität 3): Einige Vorkommen von Gangporphyren im östlichen Småland werden von Diabasen begleitet, die den gleichen Aufstiegsweg nutzten und an den Rändern der Gänge auftreten (bimodaler Magmatismus). Im Kontakt zu einem Påskallavik-Porphyr fand sich in der Nähe der Ortschaft Värlebo ein grüner Diabas, der gerundete Feldspäte und einige Blauquarze als Xenolithe führt.

Abb. 12: Graugrüner Diabas mit runden Einschlüssen von Feldspat und Blauquarz, die aus dem benachbarten Påskallavik-Porphyr stammen. Aufnahme unter Wasser.
Abb. 13: Gleicher Stein, nasse Bruchfläche.

3.4. Alsarp (Lokalität 4): Der Besuch eines Straßenaufschlusses in der Nähe der Typlokalität Alsarp in Ost-Småland war enttäuschend, weil der anstehende Diabasgang keine Einschlüsse von runden Feldspäten enthielt. Lediglich der benachbarte Småland-Granit wies Einschlüsse von Diabas sowie unterschiedliche Stadien einer Vermengung auf. Nach Meyer KD 1981 liegt der Aufschluss mit den einschlussführenden Partien 650 m weiter südwestlich (etwa 57.52943, 16.02641, s. a. Abb. 7).

Abb. 14: Småland-Granit mit Diabas-Einschlüssen vom Straßenaufschluss bei Alsarp. Breite des Abschlags ca. 15 cm.
Abb. 15: Anstehender Småland-Monzogranit mit teilweise assimilierten Diabas-Xenolithen; Aufnahme unter Wasser.
Abb. 16: Nahaufnahme einer weiteren Probe. Insgesamt handelt es sich um ein granitisches Gestein. Die Grundmasse enthält reichlich dunkle Minerale aus dem benachbarten Diabas (magma mingling).

4. Geschiebefunde

Abb. 17: Einschlussführender Diabas vom Brevik-Typ, Geschiebefund mit polierter Schnittfläche. Die feinkörnige, graue und basaltartige Matrix führt eckige bis schwach gerundete Einschlüsse von Sandstein. Die graue Matrix ist leicht magnetisch, der Sandstein nicht. Fundort: Kiesgrube Fresdorfer Heide bei Potsdam, leg. G. Engelhardt.
Abb. 18: Gleicher Stein, Nahaufnahme. Auffällig sind die schwarzen Reaktionsränder um die Sandsteinfragmente, die auf eine mineralische Veränderung des basaltischen Gesteins durch Stoffaustausch mittels Fluiden (Wasser) schließen lassen.
Abb. 19: Einschlussführender Diabas („Björbo-Typ“) mit feinkörniger Grundmasse. Geschiebe aus der Kiesgrube Penkun bei Stettin, Aufnahme unter Wasser.
Abb. 20: Nahaufnahme, runde Einschlüsse mit orangerotem Alkalifeldspat, grauem Quarz und wenigen dunklen Mineralen.
Abb. 21: Grenze eines feinkörnigen basaltischen Gesteins zu einem Rapakiwi-Quarzporphyr. Mitten im Basalt befindet sich ein einzelnes Porphyr-Fragment. Während basische Xenolithe in Rapakiwi-Graniten, z. B. Granitporphyren, regelmäßig zu finden sind, scheinen basaltische Gesteine mit Rapakiwi-Einschlüssen wesentlich seltener zu sein. Strandgeröll von Misdroy in Westpolen, Aufnahme unter Wasser.
Abb. 22: Basaltisches Gestein mit Einschlüssen granitischer Zusammensetzung; Kiesgrube Hoppegarten bei Müncheberg (Brandenburg).
Abb. 23: Einschlussführender Diabas aus der Kiesgrube Hohensaaten (Brandenburg), Aufnahme einer frischen Bruchfläche unter Wasser.

Das Gestein enthält runde Feldspat- und Blauquarz-Einschlüsse sowie feinkörnige basaltische Xenolithe. Die Einschlüsse, besonders gut erkennbar an den Quarzen, weisen einen dunklen Reaktionssaum auf. Solche Säume, wie sie auch im Aland-„Ringquarzporphyr“ auftreten, sind ein Hinweis auf unvollständige Mineralumwandlungen. Die Reaktion fand nur an der Grenzfläche zweier Minerale statt, ein chemisches Gleichgewicht konnte sich nicht einstellen, weil die Reaktion vorzeitig zum Stillstand kam.

Abb. 24: Diabas mit Einschlüssen aus rotem Feldspat und runden Ringquarzen. Polierte Schnittfläche eines Geschiebes von Mukran auf Rügen (Slg. D. Lüttich).
Abb. 25: Diabas mit runden und eckigen Feldspäten und bläulichgrauem Quarz als Einschluss. Strandgeröll von Westermarkelsdorf, Fehmarn.
Abb. 26: Einschlussführender Diabas mit großen Alkalifeldspat-Xenokristallen und runden Blauquarzen. Kiesgrube Niederlehme bei Berlin.
Abb. 27: Schweres basaltartiges Gestein mit großen Feldspat-Fragmenten. Breite 16 cm, Kiesgrube Althüttendorf (Brandenburg).
Abb. 28: Einschlussführender Diabas, Großgeschiebe vom Rand des Tagebaus Welzow-Süd in Brandenburg, Höhe 90 cm.
Abb. 29: Das Gestein enthält schwach gerundete Fragmente von Gneisen und granitischen Plutoniten.

5. Lokalitäten

Lokalität 1: Einschlussführender Diabas mit Anorthosit- und quarzitähnlichen Sandstein-Fragmenten; Diabasgang 850 m OSO Södregården, Kartenblatt Växjö NO; WGS84DD 57.20566, 14.73403.

Lokalität 2: Småland-Granit mit Partien einschlussführender Diabase; lose Steine vom Anstehenden am Wegesrand; Waldweg bei Olstorp, SW Forserum; 57.67967, 14.44153.

Lokalität 3: Einschlussführender Diabas im Kontakt zum Påskallavik-Porphyr; Bahnanschnitt 1 km NW des ehemaligen Bahnhofs Värlebo; 57.06050, 16.19424.

Lokalität 4: Diabasgang und Diabas-Xenolithe im Småland-Granit; Aufschluss an der Straße von Alsarp nach Sjunnarp (57.53253, 16.03591), Typlokalität liegt ca. 650 m weiter südwestlich (57.52943, 16.02641).

6. Literatur

Bartholomäus WA & Herrendorf G 2003 Ein großes Gerölldiabas-Geschiebe von Varel in Oldenburg – Geschiebekunde aktuell 19 (1): 1-15, 2 Taf., 6 Abb., 1 Tab., Hamburg / Greifswald.

Hesemann J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 8 Taf. (1 Taf. im Anh.), 44 Abb., 29 Tab., 1 Kte., Krefeld (Geologisches Landesamt Nordrhein-Westfalen).

Korn J 1927 Die wichtigsten Leitgeschiebe der nordischen kristallinen Gesteine im norddeutschen Flachlande ; Ein Führer für den Sammler kristalliner Geschiebe – VI+64 S., 48 farb. Abb. auf Taf. 1-6, 8 Farb-Ktn. auf Taf. 7-14, 1 Tab., Berlin (Preußische geologische Landesanstalt).

Meyer K-D 1981 Ein Vorkommen einschlußführender Diabase bei Björbo, 60 km WSW Falun, Dalarna / Mittelschweden – Der Geschiebesammler 15 (3): 93-98 (-106), 3 Taf., 3 Abb., Hamburg. Wikman H 2000 Berggrundskartan 5E Växjö NO, skala 1:50 000. Sveriges geologiska undersökning Af 201.

Karbonatite

In Nordeuropa gibt es nur kleine Karbonatit-Vorkommen. Als Geschiebe spielt der Gesteinstyp bisher keine Rolle, weil er sehr selten zu finden und wahrscheinlich nur schwer erkennbar sein dürfte. Dennoch lohnt ein Blick auf diese kuriosen Gesteine, da es sich um die einzigen Magmatite handelt, die nicht aus silikatischen, sondern aus karbonatreichen Schmelzen hervorgehen.

Karbonatite enthalten mindestens 50 % Karbonat. Häufig ist dies Calcit, aber auch Ankerit, Siderit, Dolomit oder Na-Karbonate kommen als bestimmende Karbonatphase in Frage. Verbreitet sind Varianten mit einem Anteil von 70-90% Calcit. Mittel- bis grobkörnige Calcit-Karbonatite werden als Sövit, feinkörnige als Alvikit bezeichnet. Als Begleitminerale können Glimmer (Phlogopit), Olivin, Magnetit und Apatit auftreten. Spezifische, aber nur gelegentlich enthaltene Karbonatit-Minerale sind Ägirin, Pyrochlor und Nephelin.

Abb. 1: Karbonatit (Sövit) von Alnö, grobkörniges Gefüge aus kristallinem Calcit und Dunkelglimmer. Foto: M. Bräunlich.
Abb. 2: Nahaufnahme des Gefüges.

Vorkommen des seltenen Gesteinstyps sind mit Alkaligesteinen assoziiert und an kontinentale Riftsysteme mit Hot-spot-Vulkanismus gebunden. Karbonatite bilden meist kleine subvulkanische Körper in Form von Gängen oder Stöcken. Effusive, also an der Erdoberfläche austretende Karbonatite sind nur von einer einzigen Lokalität bekannt, dem Ol Doinyo Lengai in Tansania. Dort konnten auch sehr dünnflüssige, aber nur etwa 500°C heiße und eigenartig blau glühende Lavaströme beobachtet werden (Video auf youtube, Bilder auf nationalgeographic.com).

Die Karbonatit-Schmelzen entstehen nicht etwa durch Aufschmelzung von karbonatreichen Sedimenten, sondern werden im Erdmantel gebildet. Karbonatitische Schmelze, einmal durch magmatische Differenziationsprozesse vom Mantelgestein (Peridotit) abgesondert, ist mit Silikatschmelzen nicht mehr mischbar und steigt als eigenständiger Intrusivkörper auf. Karbonatite sind eine wichtige Lagerstätte. In keinem anderen Gesteinstyp kommt es zu einer vergleichbaren Anreicherung von Elementen wie Nb, P, vor allem aber Seltenen Erden.

Aus Skandinavien sind mehrere kleine Karbonatit-Vorkommen bekannt. Im Fen-Komplex (Norwegen) treten neben Söviten auch Fe- und Mg-reiche Karbonatite auf (Abb. 4, weitere Proben auf skan-kristallin.de). Kleinere Massive existieren in Nordschweden: Alnö in Västernorrlands län (Abb. 1-3, s. a. skan-kristallin.de sowie Kresten & Troll 2018) und Kalix in Norrbottens län (Kresten et al 1981). Im Gebiet von Gävle wurde ein karbonatitisches Gestein aus einem unbekannten Vorkommen als Geschiebe gefunden (Nyström et al 1985). Auch in Finnland gibt es mehrere kleine Karbonatit-Vorkommen (O´Brien 2015)

Geschiebe könnten, wenn auch sehr selten, in den Ablagerungen eines norwegischen Eisstroms (Karbonatite aus dem Fen-Komplex) und in mittelschwedischen Geschiebegemeinschaften (Karbonatite aus Alnö) zu erwarten sein. Fundberichte liegen bislang nicht vor. Entweder sind die Gesteine zu unscheinbar, können mit Marmor verwechselt werden oder wirken als Geschiebe unattraktiv, weil sie bei der Verwitterung rostige Gesteinsoberflächen ausbilden. Marmor kann – wie Calcit-Karbonatit / Sövit – ebenfalls grobkörnig ausgebildet sein und Dunkelglimmer als Begleitmineral enthalten (s. Abb. 26 im Artikel über Marmor). Magnetit ist kein eindeutiger Hinweis auf Karbonatit, weil er hin und wieder auch in Marmor auftritt. Karbonatit-typische Minerale wie Pyrochlor, Ägirin oder Nephelin dürften erst durch eine mikroskopische Untersuchung sicher erkennbar sein.

Abb. 3: Grobkörniger Karbonatit (Sövit) von Alnö aus weißem Calcit, braunem Nephelin (laut Etikett) und wenigen dunklen Mineralen. Sammlung der BGR in Berlin-Spandau.
Abb. 4: Rødbergit, ein eisenreicher Karbonatit aus Ankerit, Calcit und Hämatit. Anstehendprobe aus dem Fen-Gebiet. Foto: M. Bräunlich.

In Süddeutschland gibt es ein größeres Karbonatitvorkommen im Kaiserstuhl. Das Gestein ist in mehreren kleinen Steinbrüchen aufgeschlossen und wurde in den 50er-Jahren versuchsweise bergmännisch abgebaut, da es lagenweise Anreicherungen des Nb-haltigen Minerals Pyrochlor (Koppit) enthält.

Abb. 5: Mittelkörniger und glimmerhaltiger Karbonatit (Sövit) aus dem Steinbruch Orberg im Kaiserstuhl. Aufnahme einer frischen Bruchfläche unter Wasser.
Abb. 6: Nahaufnahme einer weiteren Probe vom Orberg. Das Gestein reagiert nur mäßig auf einen Handmagneten. Es dürfte sich also nicht bei allen dunklen und teilweise oktaedrisch ausgebildeten Mineralkörnern um Magnetit handeln, auch Minerale der Spinellgruppe (Magnesioferrit) und/oder Pyrochlor kommen in Frage.

Literatur

Kresten P & Troll VR 2018 The Alnö Carbonatite Complex, Central Sweden – 194 S., Springer International Publishing AG.

Kresten P, Ahmann E & Brunfelt AO 1981 Alkaline ultramafic lamprophyres and associated carbonatite dykes from the Kalix area, northern Sweden. – Geologische Rundschau 70, S. 1215-1231.

Nyström JO 1985 Apatite iron ores of the Kiruna Field, northern Sweden: Magmatic textures and carbonatitic affinity – Geologiska Föreningen i Stockholm Förhandlingar, 107:2, S. 133-141, DOI: 10.1080/11035898509452625

O´Brien H 2015 Mineral Deposits of Finland, Chapter 4.1 – Introduction to Carbonatite Deposits of Finland, S. 291-303, Elsevier.

Ein ausführlicher Artikel zum Thema Karbonatite findet sich auf wikipedia.de und weitere Probenbilder auf mineralienatlas.de.

Marmor

  1. Allgemeines
  2. Marmor-Geschiebe
  3. Vorkommen und Entstehung
  4. Geschiebefunde
  5. Beispiele für nicht metamorphe kristalline Kalksteine
  6. Literatur

1. Allgemeines

In der steinverarbeitenden Industrie wird eine ganze Reihe von polierfähigen Gesteinen als „Marmor“ bezeichnet, sowohl metamorphe als auch nicht metamorphe Karbonatgesteine oder „marmorierte“ Werksteine. Die Gesteinskunde sieht eine enge Definition des Begriffs vor: Marmor ist ein metamorpher Kalkstein mit mindestens 50 Vol.% Calcit (seltener auch Aragonit oder Dolomit). Abhängig vom Karbonat-Gehalt, lassen sich mehrere Arten von metamorphen Kalksteinen unterscheiden:

  • Reiner Marmor (über 95 Vol.% Calcit); entsteht aus reinen Kalksteinen.
  • Unreiner Marmor (50-95 Vol.% Calcit), auch „Silikatmarmor“; entsteht aus Kalksteinen mit tonigen oder sandigen Beimengungen, z. B. Mergelsteinen.
  • Karbonatsilikatgestein (5-50 Vol.% Calcit).
  • Kalksilikatgestein oder „Kalksilikatfels“ (unter 5 Vol.% Calcit).

Marmor kommt weltweit in ganz unterschiedlichen geologischen Settings vor und besitzt ein variables Erscheinungsbild. In diesem Artikel geht es um Marmor-Geschiebe aus dem fennoskandischen Grundgebirge. Ein zweiter Teil zeigt Bilder von einigen Marmorvorkommen in Östergötland und Sörmland.

Abb. 1: Reiner Marmor, Anstehendprobe von der Insel Oaxen. Das mittelkörnige Gestein besteht fast vollständig aus kristallinem Calcit. Die Bruchfläche zeigt glitzernde Spaltflächen von Kalkspat-Kristallen.
Abb. 2: Marmorgerölle von der Insel Oaxen (Sörmland/Schweden): ein reiner Marmor (links) und zwei unreine Marmore mit grünen Silikatmineralen („Silikatmarmor“ oder „Ophicalcit“).

2. Marmor-Geschiebe

Als reiner oder unreiner Marmor erkennbare Geschiebe sind vor allem mittel- bis grobkörnige kristalline Kalksteine mit Beimengungen von Silikatmineralen. Eine veraltete Sammelbezeichnung hierfür ist „Urkalk“. Feinkörnige metamorphe Karbonatgesteine, Karbonatsilikatgesteine, Kalksilikatgesteine oder auch Skarne dürften mit einfachen Mitteln kaum sicher bestimmbar sein. Bartolomäus & Schliestedt 2006 untersuchten über 160 Marmorgeschiebe. Aus dieser Arbeit sei eine allgemeine Beschreibung zitiert:

Geschiebemarmore sind vorherrschend weiße bis graue, seltener gelbliche bis röt-liche, meist aber grünlich getönte Gesteine feiner bis grober Körnung. Die meisten Gesteine enthalten im geringen Umfang Silikate. Teils handelt es sich um Einschlüsse des Nebengesteins, teils um Minerale der Metamorphose, teils um Umwandlungsminerale und Verwitterungsbildungen. Serpentinführende Gesteine (Ophicalzite) sind weit verbreitet. Durch dieses Mineral, weniger durch Körner von Pyroxen oder Olivin, sind die meisten Geschiebe grün gesprenkelt. Gestein und eingeschlossene Kristalle verschiedener Silikate sind häufig tektonisch deformiert.

Reiner Marmor (Abb. 1) kommt als Geschiebe zwar häufiger vor, ist aber durch den geringen Anteil an Silikatmineralen eher unscheinbar und meistens nicht rein weiß, sondern gelblich oder schmutzig-grau getönt. Ziemlich auffällig (Abb. 2) ist unreiner Marmor mit grünen Silikatmineralen, der auch als „Ophicalcit“ bezeichnet wird. Der Name [1] verweist auf die häufig enthaltenen Serpentinminerale, die während der Metamorphose gebildet wurden. Sie können auf verwitterten Geschiebeoberflächen rostbraun, gelb oder matt weiß verfärbt sein und zeigen ihre grüne Farbe unter Umständen erst auf einer Bruchfläche.

Maßgeblich für die Bestimmung von Marmor ist ein Calcit-Gehalt von mind. 50 %. Calcit lässt sich mit dem Messer ritzen und reagiert auf verdünnte Salzsäure unter kräftigem Aufbrausen. Die seltenen Dolomitmarmore enthalten nur anteilig Dolomit und sind mittels Säuretest nicht von Calcit-Marmor unterscheidbar. Auf einer Bruchfläche erkennt man ein verzahntes Gefüge von xenomorphen Calcit-Kristallen mit glänzenden Spaltflächen, manchmal mit ausgeprägter Zwillingsstreifung diagonal zu den Spaltebenen (s. a. kristallin.de). Calcit in Marmorgeschieben ist häufig durchscheinend und reinweiß, hellgrau oder grau getönt, selten dunkel oder von gelblicher oder rötlicher Farbe.

Grüne Silikatminerale lassen sich von Hand nicht sicher bestimmen. Nach Bartolomäus & Schliestedt 2006 handelt es sich in den meisten Geschieben um Serpentin. Etwas weniger häufig kommen Olivin und diopsidischer Klinopyroxen vor, Orthopyroxen ist selten. Die Mineralkörner besitzen satt hellgrüne bis schwarzgrüne, manchmal auch graue oder braune Farben. Serpentin kann in zwei farblich unterschiedlichen Generationen vorkommen.

Viele Marmorgeschiebe enthalten Glimmerminerale von 1-5 mm Durchmesser. Dies können Phlogopit, Muskovit, farbarmer Biotit, Sprödglimmer oder Talk sein. Eine genaue Bestimmung ist nur durch mikroskopische Untersuchungen möglich. Seltener treten zwei Arten von Glimmer auf. Glimmerplättchen können durch tektonische Deformation verbogen sein.

Xenolithe aus dem Nebengestein bestehen aus Feldspat, Quarz oder Gesteinsbruchstücken (Quarzite, Gneise oder hälleflintartige Gesteine). Bei einem hohen Xenolith-Anteil kann man von einem einschlussführenden Marmor sprechen. Quarz als metamorphe Neubildung ist meist unauffällig und nur selten identifizierbar (kleine, rauchig getönte Körner). Gelegentlich finden sich weitere Minerale in Marmorgeschieben, z. B. dunkler und idiomorpher Amphibol, Fluorit, Granat, Chlorit, Epidot oder Erz. Magnetit ist hin und wieder mit einem Magneten nachweisbar. Graphit als Hinweis auf ehemals vorhandene organische Substanz tritt nur in Spuren und fein verteilt auf und lässt sich von Hand nicht bestimmen.

Marmor ist mit folgenden Gesteinsarten verwechselbar:

  • In Skarnen können metasomatisch veränderte Kalksteine oder Meta-Karbonate vorkommen, die von Marmor kaum zu unterscheiden sind. Typische für einige Skarne sind Vergesellschaftungen aus Ca-reichen Silikaten wie Granat, Diopsid und Epidot mit Calcit und Quarz.
  • Karbonatite sind kristalline Kalksteine aus magmatischen Schmelzen. Es gibt kleine Vorkommen im Fen-Gebiet (Norwegen), in Nordschweden (Alnö) und in Finnland. Über Geschiebefunde ist bisher nichts bekannt geworden. Als Indikatorminerale für Karbonatite kommen Ägirin und Pyrochlor sowie Nephelin in Frage, die aber nicht immer enthalten sind.
  • Merkmalsarme, weiße und rein calcitische Marmore können von Kontaktmetamorphiten (z. B. kontaktmetamorphe paläozoische Kalksteine aus Südnorwegen) sowie diagenetisch umkristallisierten Kalksteinen unter Umständen nicht unterscheidbar sein (Abb. 22, 23). Grauer oder bunter Ceratopyge-Kalk könnte auf den ersten Blick für Silikatmarmor gehalten werden, ist aber feinkörnig und enthält Glaukonit-Körner sowie Fossilreste (Abb. 24, 25).

3. Vorkommen und Entstehung

Die meisten Marmor-Geschiebe dürften aus den zahlreichen Vorkommen in Mittelschweden stammen. Marmor entstand dort während der svekofennischen Gebirgsbildung vor etwa 1,9 Ga aus tief versenkten kalkigen Sedimenten unter amphibolitfaziellen Metamorphose-Bedingungen. Dabei wurde Calcit aus den feinkörnigen Sedimenten mobilisiert und unter Kornvergrößerung (Blastese) umkristallisiert. Je nach Anteil toniger Komponente im Ausgangsgestein, bildeten sich gleichzeitig Silikatminerale. Marmor und Silikatmarmor sind Granofelse. Das primäre Mineralgefüge kann durch gleichzeitige oder nachfolgende tektonische Prozesse mäßig bis stark deformiert sein.

Zumindest ein Teil der svekofennischen Marmor-Vorkommen soll aus Kalksteinen entstanden sein, die durch Organismen ausgefällt wurden. An einigen Lokalitäten fand man Stromatolithe (Dannemora, Sala, Arvidsjaur). Kleinere Vorkommen von Marmor können zwar auch aus submarin-exhalativ gebildeten Kalksteinen in vulkanischen Sequenzen hervorgehen. Die Größe mancher Vorkommen spricht aber gegen einen solchen Ursprung. Geochemische Untersuchungen an svekofennischen Meta-Karbonaten in Finnland ergaben hohe Sr-Gehalte, die auf eine Ausfällung von aragonitischem (=biogenem?) CaCO3 in marinem Milieu hinweisen (Maier 2015).

Marmor kommt auch als Begleiter von Skarnen vor, als kontaktmetamorphe Bildung, als metasomatisch umgewandelter Kalkstein oder einer Kombination aus beiden Prozessen. Metasomatose bezeichnet eine Gesteinsumwandlung durch fluide Phasen, mobilisiert z. B. durch in der Nähe aufsteigende Magmatitkörper.

Aus Mittelschweden sind etwa 200, meist kleinere Marmor- und Skarn-Vorkommen bekannt. Sie wurden zum Teil bergmännisch genutzt und sind Bestandteil der sog. Leptit-Hälleflinta-Serien, die sich vom Bergslagen-Gebiet bis nach SW-Finnland erstrecken. In der Bottensee ist mit weiteren, untermeerischen Vorkommen zu rechnen. Auch in Südschweden gibt es ca. 20 kleinere Vorkommen (z. B. bei Vetlanda in Smaland, s. Sundlad et al 1997). Weiterhin tritt Marmor geringmächtig in Form von Wechsellagerungen, Klüften, Gängen oder Einschaltungen in kalkhaltigen Grundgebirgsgesteinen auf. Ehlers et al 1993 fanden Marmor in svekofennischen Gneisen im Seegebiet zwischen Aland und dem finnischen Festland. Aufgrund seiner weiten Verbreitung und wechselhaften Ausbildung ist Marmor nicht als Leitgeschiebe geeignet. Dies gilt auch für Lokaltypen wie dem Marmor vom „Kolmarden-Typ“, der an mehreren Orten in Södermanland vorkommt.

4. Geschiebefunde

Abb. 3: Ophicalcit (unreiner Marmor, Silikatmarmor). Die frische Bruchfläche zeigt ein gleichkörniges Gefüge aus Calcit und grünen Silikatmineralen. Am Rand ist eine cm-dicke braune Verwitterungsrinde erkennbar (Kiesgrube Horstfelde, südlich von Berlin).
Abb. 4: Nahaufnahme des gleichkörnig-richtungslosen Mineralgefüges.
Abb. 5: Ophicalcit, polierte Schnittfläche. Die gelblich-weißen und matten Silikatminerale in der Verwitterungsrinde besitzen offenbar einen geringen Eisengehalt, andernfalls wären rostbraune Verfärbungen zu erwarten. Fundort: Kiesgrube Fresdorfer Heide bei Potsdam, Slg. G. Engelhardt.
Abb. 6: Nahaufnahme hell- bis dunkelgrüner xenomorpher Silikatminerale.
Abb. 7: Hellgrauer, eher unscheinbarer Silikatmarmor mit dunklen Silikatmineralen. Strandgeröll von Johannistal, Schleswig-Holstein, leg. E. Figaj.
Abb. 8: Der mittelkörnige, teils von Rissen durchzogene Calcit zeigt unscharfe Korngrenzen. An Silikatmineralen finden sich grüne bis hellbraune, teilweise durchscheinende sowie dunkle und opake Körner. Glimmer und Magnetit sind nicht enthalten.
Abb. 9: Silikatmarmor mit reichlich grünlich-braunen bis braunen Silikatmineralen. Strandgeröll von Misdroy / Polen, Breite 96 mm.
Abb. 10: Heller Marmor mit lagenweise konzentrierten grünen Silikatmineralen. Großes Geschiebe von 40 cm Länge aus der Grube Hohensaaten an der Oder.
Abb. 11: Nahaufnahme der Bruchfläche: xenomorpher und durchscheinender Calcit, begleitet von wenigen Körnern hell- bis mittelgrüner Silikate und einem braunen Glimmermineral.
Abb. 12: Polierte Schnittfläche des gleichen Gesteins mit parallelen Lagen grüner Silikatminerale.

Vom Marmorgeschiebe aus Hohensaaten wurde ein Dünnschliff gefertigt, freundlicherweise ausgeführt von Herrn U. Maerz (Hattingen). Die Untersuchung ergab, dass es sich bei den grünen Mineralen um Serpentin und Olivin handelt. Das helle Glimmermineral ist Phlogopit. Quarz und Diopsid (Amphibol) wurden nicht beobachtet. Die nächsten beiden Bilder (Abb. 13/14) zeigen eine Detailaufnahme eines Dünnschliffs, Bildbreite etwa 185 µm.

Links (gekreuzte Polarisatoren in Dunkelstellung) erkennt man die charakteristische Zwillingsstreifung des hellen Calcits, der ein verzahntes Verwachsungsgefüge aus xenomorphen Kristallen bildet. Das dunkle Mineral in der Bildmitte ist Olivin. Die bunten Anlauffarben, randlich und in Spaltrissen, zeigen seine teilweise Umwandlung in Serpentin an. Im rechten Bild (gekreuzte Polarisatoren in Hellstellung) sind jene Teile des Olivinkorns hellblau gefärbt, die nicht serpentinisiert wurden.

Das nächste Marmorgeschiebe ist ein Exot aus der Kiesgrube Horstfelde, südlich von Berlin. Erst ein Test mit verdünnter Salzsäure erbrachte den Hinweis, dass es sich überhaupt um einen Marmor handelt. Das Gestein ist recht schwer und spricht stark auf einen Handmagneten an (Magnetit). Ungewöhnlich sind die bunten Mineralkörner. Eine Dünnschliffuntersuchung ergab, dass sie von dunklen Magnetitsäumen umgeben sind.

Abb. 15: kantengerundetes Marmor-Geschiebe mit hellgrauer und rauer Oberfläche. Rechts unten sind grünschwarze Glimmerplättchen bis 5 mm Größe erkennbar.
Abb. 16: Seitenansicht des gleichen Geschiebes.
Abb. 17: Detailaufnahme ockergelber, roter bis violettroter und schwach bläulicher Minerale, umgeben von dunklen Magnetit-Säumen. Einige Mineralkörner besitzen einen mehrfarbigen und zonaren Aufbau.
Abb. 18: Kleiner Abschlag mit frischer Bruchfläche. Unüblich für Marmorgeschiebe ist die dunkelgraue Tönung des Calcits. Die bunten Mineralkörner zeigen einen stumpfen bis matten Glanz und wurden offenbar stark umgewandelt.
Abb. 19: Polierte Schnittfläche; nebulöse Streifen in unterschiedlichen Richtungen lassen auf eine mehrfache tektonische Deformation des Gesteins schließen. Die Farbabfolge der bunten Körner (oben: rot, Mitte: weiß, unten: bläulich) deutet auf verschiedene Umwandlungsstadien, möglicherweise desselben Minerals.
Abb. 20: Detailaufnahme. Rechts der Bildmitte ein hellgrünes und längliches Aggregat, das einen ovalen, von einem weißen Saum umgebenen Kernbereich enthält. Der Kern ähnelt der Farbe und Textur mancher Serpentinite. Dunkelglimmer-Plättchen im Querschnitt sind durch tektonische Beanspruchung leicht verbogen.

Die Dünnschliffuntersuchung ergab, dass die dunkle Matrix aus feinkörnigem und stark verwachsenem Calcit besteht. Die Korngrenzen des Calcits sind durch dunkle Erzspuren nachgezeichnet (Imprägnierung durch Magnetit, Abb. 19). Auch das Innere verschiedener Calcit-Individuen zeigt solche Spuren und bildet wohl frühere Korngrenzen ab, die durch Umkristallisierungsprozesse überwachsen wurden. Der Mineralbestand des Gesteins wurde wie folgt geschätzt: Calcit  ca. 75-80%,  Reliktminerale („bunte“ Minerale) ca. 15-20%, Magnetit ca. 3-5%, Biotit <2%. Nicht beobachtet wurden Quarz und Amphibol.

Die bunten Minerale dürften Relikte verschieden weit fortgeschrittener Umwandlungen sein. Zumindest teilweise handelt es sich dabei um fein verwachsene Serpentinminerale. Andere Reliktkristalle zeigen kein Serpentinisierungsgefüge und sind meistens durch feinere Calcitkristalle (möglicherweise mit ankeritischem oder sideritischem Anteil) ausgefüllt. Für das Ausgangsmaterial dieser Relikte gibt es bisher keine Anhaltspunkte. Die meisten Reliktminerale besitzen ebenfalls dunkle Säume von Magnetit.

Abb. 21: Erzpartikel und Magnetit zeichnen die Korngrenzen des Calcits nach. Teilweise folgen sie den aktuellen Korngrenzen (grüne Pfeile), teilweise durchquert die Erzspur Calcit-Individuen (rote Pfeile).

5. Beispiele für nicht metamorphe kristalline Kalksteine

Abb. 22: Diagenetisch umkristallisierter Kalkstein (Biosparit) aus dem Malm (ehem. Steinbruch Schwanteshagen / Polen). Unter der Lupe sind keine Silikatminerale, aber zertrümmerte Schalenreste erkennbar.
Abb. 23: Grobkristalliner, oberflächlich fossilfreier Anthrakonit, loser Stein vom Anstehenden (Aleklinta auf Öland, Oberkambrium), Bildbreite 28 cm. Anthrakonite besitzen eine dunkle Bruchfläche und riechen nach dem Anschlagen nach Bitumen („Stinkkalk“).
Abb. 24: Ceratopyge-Kalk (Ordovizium), loser Stein vom Anstehenden (Öland), grauer und massiger Kalkstein mit Glaukonitkörnern.
Abb. 25: Der Glaukonit bildet xenomorphe, teils wurmförmige Aggregate. Ein bunter Ceratopyge-Kalk ist hier abgebildet.

6. Literatur

BARTHOLOMÄUS WA & SCHLIESTEDT M 2006 Marmore als Urkalkgeschiebe – Archiv für Geschiebekunde 5 (1-5): 27–56, 5 Taf., 6 Abb., Hamburg/ Greifswald, September 2006. ISSN 0936-2967.

EHLERS C, LINDROOS A & SELONEN O 1993 The late Svekofennian granite-migmatite zone of southern Finland – a belt of transpressive deformation and granite emplacement – Precambrian Research 64: 295-309; Elsevier Science Publishers B.V., Amsterdam

MAIER W D, LAHTINEN R, O`BRIEN H 2015 Mineral Deposits of Finland: 291-303 – 802 S., Elsevier Inc., ISBN 978-0-12-410438-9.

SUNDBLAD K, MANSFELD J & SÄRKINEN M 1997 Palaeoproterozoic rifting and formation of sulphide deposits along the southwestern margin of the Svecofennian Domain, southern Sweden – Precambrian Research 82, Issues 1–2, March 1997, S. 1-12. https://doi.org/10.1016/S0301-9268(97)00012-0


[1] ophítēs (griech.): schlangenähnlich; serpens (lat.): Schlange.

Schriftgranit

Abb. 1: Schriftgranit aus der Kiesgrube Waddeweitz/Kröte (Ost-Niedersachsen).

Als „Schriftgranit“ werden Gesteine mit einem besonderen Verwachsungsgefüge aus Quarz und Alkalifeldspat bezeichnet. Die Verwachsungen erinnern manchmal an arabische, hebräische oder germanische (= „Runit“) Schriftzeichen. Sie entstehen durch das gleichzeitige Auskristallisieren von Quarz und Feldspat unter besonderen Bedingungen.

Schriftgranite sind genetisch an Granitplutone gebunden, entsprechend viele Vorkommen sind bekannt (Norwegen, Westschweden, Bornholm, im Götemar-Pluton und im svekofennischen Bereich). In den Granitkörpern des Transkandinavischen Magmatitgürtels scheinen Pegmatite (und damit assoziierte Schriftgranite) weitgehend zu fehlen. Ein Beispiel für einen anstehenden Schriftgranit zeigt Abb. 2.

Abb. 2: Anstehender Schriftgranit, Bildbreite 36 cm. Die Partie fand sich in unmittelbarer Nähe zur Plutongrenze des etwa 1,45 Ga alten Götemar-Granits in Ost-Småland. Die untere Bildhälfte zeigt das Wirtgestein, einen etwa 1,8 Ga alten Granit des Transkandinavischen Magmatitgürtels. Der Schriftgranit bildet hier, zusammen mit Pegmatiten und Granitporphyr-Gängen, einen Fortsatz außerhalb des eigentlichen Granitmassivs.
Abb. 3: Gefüge des Schriftgranits, Bildbreite 18,5 cm.

Schriftgranite sind mittel- bis grobkörnige Gesteine mit graphischen Verwachsungen aus Quarz und Alkalifeldspat. Eine kleinkörnige Variante dieses Gefüges kennt man aus der Grundmasse bestimmter Rapakiwi-Granite und aus Granophyren (Gesteine, die fast ausschließlich aus feinen graphischen Verwachsungen bestehen). Das skelettartige Gefüge von Schriftgraniten entsteht bei der raschen Kristallisation aus einer Schmelze, in der Solidus- und Liquiduslinie durch das Mischverhältnis von Quarz und Feldspat in einem Punkt zusammenfallen (Eutektikum). Vereinfacht gesagt erfolgte keine allmähliche Kristallisation von Quarz und Feldspat, während sich die Zusammensetzung der Restschmelze ändert, sondern beide Komponenten erstarrten gleichzeitig. Solche Bedingungen finden sich z. B. in wasserreichen Spätkristallisaten magmatischer Schmelzen, aus denen die riesenkörnigen Pegmatite kristallisieren, die ihrerseits von schriftgranitischen Partien begleitet sein können.

In Schriftgraniten bilden die beiden Komponenten Kalifeldspat und Quarz Einkristalle, die sich gegenseitig skelettartig durchdringen. Erkennbar ist dies, wenn der Alkalifeldspat auf einer ebenen Gesteinsfläche das einfallende Licht vollständig reflektiert (Abb. 6, 8 und 12). Auch ein durchgängig gleichlaufendes Muster der perthitischen Entmischungslamellen des Alkalifeldspats lässt sich manchmal beobachten (Abb. 5). Nicht alle Schriftgranite zeigen ein kontrastreiches Gefüge aus Quarz-Feldspat-Verwachsungen. Die unauffälligen Vertreter kann man aber an diesem großflächigen Reflektieren der Feldspat-Einkristalle erkennen (Abb. 7,8 12-14).

Abb. 4: Orangeroter Schriftgranit aus der Kiesgrube Niederlehme bei Berlin.
Abb. 5: In der Vergrößerung erkennt man, dass die feinen perthitischen Entmischungslamellen des Alkalifeldspats einer bevorzugten Richtung folgen (Einkristall).
Abb. 6: Rückseite des gleichen Steins. Am linken Bildrand wird seitlich einfallendes Licht flächenhaft vom Alkalifeldspat reflektiert. Bei geeignetem Lichteinfall reflektiert die gesamte Gesteinsoberfläche und zeigt, dass es sich um einen großen Einkristall handelt.
Abb. 7: Wenig auffälliger, gneisartiger und rotfleckiger Schriftgranit (Kiesgrube Hoppegarten bei Müncheberg/Brandenburg).
Abb. 8: Gleicher Stein. Seitlich einfallendes Licht zeigt auf der trockenen Gesteinsoberfläche einen Alkalifeldspat-Einkristall sowie seine skelettartige Verwachsung mit Quarz. Schriftgranite und rote, die Korngrenzen überschreitende Flecken sind u. a. von einigen Bornholm-Graniten bekannt.
Abb. 9: Polierte Schnittfläche eines Schriftgranits aus der Kiesgrube Fresdorfer Heide bei Potsdam (Sammlung Georg Engelhardt).
Abb. 10: Schriftgranit aus der Kiesgrube Waddeweitz/Kröte in Ost-Niedersachsen. Gehäufte Funde ähnlicher heller Schriftgranite konnten in saalekaltzeitlichen Drenthe-Ablagerungen im Hannoverschen Wendland (Ost-Niedersachsen) beobachtet werden.
Abb. 11: Schriftgranit aus der Kiesgrube Tiesmesland (Ost-Niedersachsen).
Abb. 12: Heller Schriftgranit mit reflektierender Oberfläche eines Alkalifeldspat-Einkristalls. Geschiebestrand bei Misdroy (Polen), Breite des Steins: 15 cm.
Abb. 13: gleicher Stein, angefeuchtet.
Abb. 14: Heller Schriftgranit, angefeuchtete Schnittfläche. Im Bild senkrecht und annähernd parallel verlaufen Quarz-Feldspat-Lamellen, die waagerecht von feinen Aplit-Adern durchschnitten werden. Die hellgraue Aplitader ganz unten führt Hellglimmer. Aplite treten nicht selten als randliche Begleiter in Schriftgranit- bzw. Pegmatit-Vorkommen auf. Fundort: Geröllstrand bei Ustronie Morskie, östlich von Kolberg (Polen), Slg. D. Lüttich.
Abb. 15: Schriftgranitische Partie in einem bunten Pegmatit (Nr. 200, Findlingslager Steinitz/ Niederlausitz).

Västervik-Fleckenquarzit

Polierte Oberfläche eines Fleckenquarzits aus der Kiesgrube Niederlehme.

Die bisher als „Stockholm-Fleckenquarzite“ bezeichneten Gesteine kommen aus dem Gebiet um Västervik in Südschweden. Das steht fest, nachdem bei mehreren Exkursionen größere Mengen dieser metamorphen Gesteine in der Umgebung von Västervik gefunden wurden. Gleichzeitig sind nach wie vor keine Vorkommen solcher Gesteine im Raum Stockholm bekannt.
Die Quarzite zeichnen sich durch helle Flecken von wenigen Millimetern Größe aus, die regellos in den feinkörnigen, meist grauen, braunen oder auch rötlichen Gesteinen verteilt sind. Diese Flecken bestehen aus Sillimanit, das während der Metamorphose von Sedimenten neu gebildet wurde. Gelegentlich sind noch Reste der ursprünglichen Sedimentschichtung erkennbar. Textauszug aus und ausführliche Beschreibung auf kristallin.de.