Schlagwort-Archive: Rödö-Rapakiwi

Geschiebesammeln im Broager Land (DK)

Abb. 1: Geröllstrand bei Skeldekobbel, südöstlich von Broager (DK).

Für den Brandenburger Geschiebesammler ist ein Besuch des Geröllstrands von Skeldekobbel im Broager Land (Dänemark) eine willkommene Abwechslung. Hier, am nördlichen Ufer der Flensburger Förde, bietet sich eine durch den Einfluss eines von Norden kommenden Eisstroms deutlich anders zusammengesetzte Geschiebegemeinschaft. Zwar finden sich auch die üblichen „Verdächtigen“, z. B. Rapakiwigesteine von Åland, Vulkanite und Granite aus Småland und Dalarna, auffällig ist aber der hohe Anteil SW-schwedischer saurer und mafischer Granulite, Granatamphibolite und Charnockite; Oslogesteine sind etwas seltener vertreten.

Die Gelegenheit für diese Sammeltour ergab sich im Rahmen des von Dr. Frank Rudolph veranstalteten Geschiebesammlertreffens vom 13.-15.10.2023 in Flensburg. Das Eiszeit-Haus in Flensburg beherbergt eine umfangreiche und unbedingt sehenswerte Sammlung von Geschiebefossilien und Kristallingeschieben, die immer weiter ausgebaut wird.

Abb. 2: Das Eiszeit-Haus in Flensburg.
Abb. 3: Pectunculus-Sandstein von etwa 2 m Durchmesser vor dem Eiszeit-Haus.

Der riesige Pectunculus-Sandstein wurde bei Baggerarbeiten aus dem Hafenbecken von Flensburg geborgen. Das mittelmiozäne Gestein (Reinbek) ist voll von Muschelschalen der Gattung Glycimeris (vormals Pectunculus) und wird vor allem an der dänischen Grenze gefunden, Sandsteine mit Muschelpflastern von Glycimeris-Schalen sind auch aus einer Kiesgrube östlich von Lüneburg oder vom Schaal-See bei Zarrentin belegt (SCHULZ 2003: 424-427).

Abb. 4: Exponate im Eiszeit-Haus Flensburg.
Abb. 5: Gneis mit schälchenförmigen Vertiefungen („Opferstein“) auf dem Museumsberg in Flensburg, Breite ca. 50 cm.
Abb. 6: Steilufer aus Geschiebemergel am Strand von Skeldekobbel.

An Geröllstränden lassen sich immer wieder Ansammlungen dunkler, meist basischer (SiO2-armer) Gesteine sowie der metamorphen Äquivalente (Metabasite) beobachten. Bei Bewegung durch Wellenschlag kommen die basischen Gesteine aufgrund ihrer im Vergleich zu SiO2-reichen Gesteinen höheren spezifischen Dichte schneller zur Ruhe und reichern sich lokal an. In solchen Akkumulationen findet sich eine Reihe ganz unterschiedlicher Geschiebetypen (Abb. 7-26). Unter den als Leitgeschiebe geeigneten basischen Gesteinen treten in Skeldekobbel vor allem Kinne-Dolerit, aber auch Schonen-Basanit und Schonen-Lamprophyr häufig auf.

Abb. 7: Basaltisches Gestein mit wenigen Plagioklas-Einsprenglingen, vermutlich ein Öje-Basalt aus Dalarna, Breite 14 cm.
Abb. 8: Basaltisches Gestein mit doleritischem Gefüge und zahlreichen Plagioklas-Einsprenglingen (kein „Öje-Diabasporphyrit“, vgl. Beitrag von M. Bräunlich auf kristallin.de); Breite 25 cm.
Abb. 9: Schonen-Basanit, basaltähnliches Gestein mit großen Peridotit-Xenolithen. Die flaschengrünen Erdmantelgesteins-Einschlüsse bestehen im Wesentlichen aus Olivin, Orthopyroxen und etwas Chromspinell.
Abb. 10: Schonen-Basanit; hier sind die Peridotit-Xenolithe bereits ausgewittert und hinterlassen Löcher auf der Gesteinsoberfläche.
Abb. 11: Schonen-Lamprophyr, ein Ganggestein aus Schonen mit orangeroten bis gelblichgrünen Olivin- und schwarzgrünen Klinopyroxen-Einsprenglingen.
Abb. 12: Kinne-Diabas (besser: Kinne-Dolerit), Leitgeschiebe für Västergötland, leicht erkennbar an seiner Verwitterungsrinde, Breite 14 cm.
Abb. 13: Ein weiterer Kinne-Dolerit, Breite 14 cm. An den ausgewitterten Stellen zwischen den Flecken erkennt man das doleritische Gefüge.
Abb. 14: Oslo-Basaltmandelstein, Leitgeschiebe aus dem Oslograben, erkennbar an seinen feinen länglichen Plagioklas-Einsprenglingen und mit apfelgrünem Epidot gefüllten Mandeln.
Abb. 15: Dolerit, wahrscheinlich vom Åsby-Ulvö-Typ, mit intergranularem Gefüge.
Abb. 16: Doleritischer Metabasit; die Plagioklas-Einsprenglinge sind durch hydrothermale Alteration grün gefärbt, die Pyroxene der Grundmasse teilweise in Amphibol (Hornblende) umgewandelt.
Abb. 17: Amphibol-porphyroblastischer Metabasit; während der Metamorphose, vermutlich eines doleritischen Ausgangsgesteins, kam es zur Bildung größerer rundlicher Amphibol-Porphyroblasten.
Abb. 18: Feinkörniger Amphibol-porphyroblastischer Metabasit mit Plagioklas-Einsprenglingen und grünen Epidot-Adern.

Die Metabasite in Abb. 19-25 entstammen den hochmetamorphen (obere Amphibolit- bis Granulitfazies) Einheiten in SW-Schweden. Weißschlieriger Granatamphibolit, mafischer Granulit und Granatcoronit sind als Leitgeschiebe geeignet.

Abb. 19: Granatamphibolit
Abb. 20: Weißschlieriger Granatamphibolit, Breite 14 cm.
Abb. 21: Mafischer Granulit, nass fotografiert.
Abb. 22: Gleicher Stein, Nahaufnahme. Unter granulitfaziellen Bedingungen, während einer „trockenen“ Hochdruck-Metamorphose bildeten sich an der Grenzfläche zwischen Pyroxen und hellem Plagioklas schmale Säume („Coronen“) von rotem Granat. Der grünlichschwarze Pyroxen wurde während der retrograden Metamorphose teilweise in schwarzen Amphibol umgewandelt.
Abb. 23: Verschiedene mafische Granulite vom Geröllstrand bei Skeldekobbel.
Abb. 24: Mafischer Granulit, trocken fotografiert. Beim Blick auf die Foliation sind die kleinen roten Granatkörner gut erkennbar.
Abb. 25: An mafischen Granuliten, die aus grobkörnigen Gesteinen hervorgegangen sind, tritt das coronitische Gefüge noch deutlicher hervor. Solche Gesteine werden auch als Granat-Coronit (besser: coronitischer mafischer Granulit) bezeichnet. Breite 15 cm.
Abb. 26: Der letzte Fund aus der Reihe basischer und metabasischer Gesteine ist ein einschlussführender Amphibolit. Breite 14 cm.

Gesteine aus dem Oslograben sind am Strand von Skeldekobbel nicht so häufig, wie es die zahlreichen Funde SW-schwedischer Gesteine erwarten ließen. Lediglich einige Rhombenporphyre, zwei Larvikite sowie ein Oslobasalt (Abb. 14) konnten aufgelesen werden.

Abb. 27: Einsprenglingsarmer Rhombenporphyr, Aufnahme unter Wasser.

Leitgeschiebe aus Dalarna (Abb. 28-31) sowie Gesteine aus Småland (Abb. 32) und Östergötland treten ebenfalls eher vereinzelt auf.

Abb. 28: Undeformierter einsprenglingsreicher Quarzporphyr, wahrscheinlich ein Särna-Quarzporphyr aus Dalarna, Aufnahme unter Wasser.
Abb. 29: Nahaufnahme der nassen Oberfläche.
Abb. 30: Garberg-Granit aus Dalarna.
Abb. 31: Venjan-Porphyrit, Aufnahme unter Wasser.
Abb. 32: Emarp-Porphyr, Leitgeschiebe aus dem mittleren Småland, Breite 12,5 cm.
Abb. 33: Blauquarzgranit mit braunem bis rötlichem Alkalifeldspat und gelbem bis rötlichem Plagioklas. Solche Granite mit rötlichem Plagioklas sind vor allem aus Östergötland bekannt (Askersund-Granit?). Aufnahme unter Wasser.
Abb. 34: Porphyrischer Monzogranit bis Granodiorit mit grünlichem bis rotbraunem Plagioklas. Vergleichbare Gesteine sind aus NE-Småland bekannt, aber nicht näher zuzuordnen. Breite 14 cm.
Abb. 35: Vaggeryd-Syenit, Aufnahme unter Wasser. Wie es sich für einen Syenit gehört, dominiert rotbrauner Alkalifeldspat; Plagioklas und Quarz sind nur in geringer Menge enthalten. Innerhalb der Ansammlungen dunkler Minerale erkennt man keilförmige gelbe Titanit-Kristalle.

Zu den Höhepunkten der Sammeltour gehört sicherlich der Fund eines großen Rödö-Wiborgit-Geschiebes. Typisch für den Rödö-Wiborgit sind neben seiner leuchend orangeroten Gesamtfärbung einzelne Alkalifeldspat-Ovoide über 2 cm, einige davon mit einem dicken Saum aus gelbgrünem Plagioklas (Abb. 37, unten im Bild), weiterhin die großen und hellen, wenig magmatisch korrodierten Quarze.

Abb. 36: Rödö-Rapakiwi mit Wiborgitgefüge, Breite des Steins 23 cm.
Abb. 37: Nahaufnahme des Gefüges.

Aus einem Rapakiwi-Vorkommen könnte auch das folgende Mischgestein stammen, eine Vermengung von basischem und felsischem („saurem“) Magma (magma mingling). Die Grundmasse zeigt ein doleritisches Gefüge und ist stark alteriert (Grünfärbung!). Darüber hinaus sind als „saure“ Bestandteile größere rundliche Quarze und Partien mit rötlichem (Alkali?-)feldspat erkennbar. Denkbar ist auch, dass das Gestein ein basischer Xenolith aus einem sauren Wirtgestein ist.

Abb. 38: Mischgestein mit doleritischer Grundmasse, Breite 16 cm.
Abb. 39: Nahaufnahme
Abb. 40: Blassroter Quarz-Feldspat-Gneis mit roten Flecken, möglicherweise ein Geschiebe von Bornholm. Breite 15 cm.
Abb. 41: SW-schwedischer Gneis aus hellrotem Alkalifeldspat, orangerotem Plagioklas; dunkle Minerale fehlen weitgehend (SW-schwedischer Granulit), Breite 16 cm.
Abb. 42: Gneis mit einer Flasertextur und einer grobkörnigen Partie im Top, dunkle Minerale fehlen. Das Gestein könnte ebenfalls ein SW-schwedischer Granulitgneis sein. Breite 11 cm.
Abb. 43: Gelbgrüner Magmatit, ein Charnockit, Leitgeschiebe für SW-Schweden. Unter der Lupe sind kleine rote Granatkörner erkennbar. Aufnahme unter Wasser.
Abb. 44: Charnockitisierter Gneis, Breite 13 cm. Solche grünen (charnockitisierten) Partien kommen regelmäßig in den rötlichen granulitfaziellen Gneisen SW-Schwedens vor.
Abb. 45: Grünschiefer (Chloritschiefer) mit roten Granat- und hellen Feldspat-Granoblasten. Das plattige Geschiebe besteht im Wesentlichen aus grünen Schichtmineralen (Chlorit). Die Anwesenheit von Granat lässt auf ein sedimentäres Ausgangsgestein schließen, z. B. dolomitischen Kalkmergel.
Abb. 46: Nahaufnahme der nassen Oberfläche.
Abb. 47: Metasediment (etwa quarzitischer Chloritschiefer) mit Lagen aus Segregationsquarz (= durch Fluide aus dem Sediment verdrängte und lokal angereicherte Quarzpartien).
Abb. 48: Nahaufnahme der nassen Oberfläche. Die strahligen Quarzaggregate wuchsen senkrecht zur Kluftebene. Das dunkelgrüne Mineral ist vermutlich Chlorit.
Abb. 49: Quarzit mit Partien aus rotem Alkalifeldspat, Breite 10 cm.

Ein weiteres Highlight am Strand von Skeldekobbel ist der Fund eines migmatitischen Paragneises mit Granat-Porphyroblasten bis 6,5 cm Größe. Der Gesteinstyp ähnelt den Gneisen vom Sörmland-Typ. Zu denken gibt aber die Beobachtung, dass er recht häufig zu finden ist, andere Gesteine des östlichen Mittelschwedens (z. B. Uppland-Granite) hingegen fehlen. Die Literaturrecherche ergab bisher kein weiteres mögliches Herkunftsgebiet für diese migmatitischen Granat-Cordierit-Paragneise.

Abb. 50: Migmatitischer Paragneis mit großen Granat-Porphyroblasten.
Abb. 51: Granat-Porphyroblast mit einem Saum aus Feldspat, Nahaufnahme unter Wasser.
Abb. 52: Rückseite des gleichen Steins, Aufnahme unter Wasser. Die schwach bläulichgrauen, von Dunkelglimmer durchsetzten Partien sind ein Hinweis auf Cordierit, der in diesem Gestein offenbar in erheblicher Menge enthalten ist.
Abb. 53: Ein ähnlicher migmatitischer Granat-Cordierit-Paragneis, Breite 38 cm.
Abb. 54: Leukosom eines migmatitischen Granat-Cordierit-Paragneises, Aufnahme unter Wasser.
Abb. 55: Nahaufnahme, roter Granat-Porphyroblasten, umgeben von hellgrauem Cordierit (?).
Abb. 56: Paragneis mit Fleckentextur, Breite 30 cm. Im schwindenden Tageslicht fotografiert, daher etwas unscharf: ein auffälliger Quarz-Feldspat-Biotit-Gneis mit grünen Flecken (retrograd aus Cordierit gebildeter Chlorit?), die einen schmalen hellen Saum aufweisen.
Abb. 57: Tektonische Brekzie; das dichte grüne und hornsteinartige Gestein ist in situ durch tektonische Einwirkung zerbrochen; die Risse wurden nachfolgend mit Quarz als Ausscheidung hydrothermaler Lösungen verfüllt.

Ein außergewöhnliches Gestein, einen Skarn, entdeckte Frank Rudolph. Skarne sind metasomatische Gesteine, die im Kontaktbereich von einem aufsteigenden plutonischen Körper mit einem z. B. Ca-reichen Sedimentgestein entstehen. Dabei kommt es zu einem intensiven Stoffaustausch und der Neubildung von Ca- und Fe-reichen Silikatmineralen innerhalb des Sedimentgesteins. Typisch für Skarne aus Ca-reichen Sedimentgesteinen sind Neubildungen von Ca-reichem Klinopyroxen (Diopsid als Endglied), Fe-reichem Ca-Klinopyroxen (Hedenbergit als Endglied) und Granat (gelbgrüner bis dunkelgrüner Grossular, roter Almandin).

Abb. 58: Stark angewitterter Skarn mit ausgeprägter Lagentextur, Breite ca. 30 cm. Das Gestein konnte nur mit Mühe, unter Zuhilfenahme eines schweren Hammers zerlegt werden.
Abb. 59: Frische Bruchfläche, Abschlag vom obigen Block. Lagenweise sind Partien mit grünen (Diopsid), schwarzgrünen (Hedenbergit) und roten Mineralen (Granat) erkennbar.
Abb. 60: Skarn, polierte Schnittfläche.
Abb. 61: Nahaufnahme; wolkige graue Partien bestehen aus Quarz.
Abb. 62: Nahaufnahme. Das Gestein wurde offensichtlich tektonisch überprägt; rechts unterhalb der Bildmitte reflektiert ein größeres grünes und gestreiftes Kristallaggregat das einfallende Licht.

Zum Schluss noch einige Funde von Sedimentgesteinen.

Abb. 63: Bioturbater heller Sandstein mit Algenbewuchs, Breite 23 cm.
Abb. 64: Intraformationelles Konglomerat, ein glaukonitischer Sandstein mit phosphoritisch (?) gebundenen Sandstein-Intraklasten, Breite 34 cm.
Abb. 65: Nahaufnahme, Breite des Intraklasts 8 cm.
Abb. 66: Kontakt eines Hanaskog-Flints mit einem feinkörnigen Kalksandstein.
Abb. 67: Eigenartige konkretionäre(?) Sedimentstrukturen in einem Limonitsandstein.
Abb. 68: Am Strand bei Skeldekobbel finden sich vereinzelt Limonitsandsteine mit meist nicht näher bestimmbaren Muscheln, die wohl dem Paläozän zuzuordnen sind (pers. Mitteilung F. Rudolph). Breite des Geschiebes 20 cm
Abb. 69: Paläozäner Limonitsandstein, Breite 14 cm
Abb. 70: Gleicher Stein; in der Aufsicht sind neben unbestimmbaren Muschelabdrücken zwei schwarze Haifischzähne erkennbar.
Abb. 71: Konglomerat mit Toneisenstein-Lithoklasten (Jura oder Lias?).
Abb. 72: Pyritisiertes Spurenfossil, üblicherweise als Ophiomorpha nodosa bezeichnet. Vermutlich haben callianasside Krebse diesen Wohnbau angelegt.
Abb. 73: Pyrit-Konkretion
Abb. 74: Am Ende des nördlichen Strandabschnitts fanden sich an einigen Baumstämmen, die offenbar längere Zeit im Wasser lagen, Spuren der Schiffsbohrmuschel (Teredo navalis). Bildbreite 30 cm.

Literatur

SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 446+42 meist farb. kapitelweise num. Abb., 1 Kte. als Beil., Schwerin (cw Verlagsgruppe).

Exkursionsbericht Öland 2 – Kristallingeschiebe

Abb. 42: Kartenskizze mit den Heimatgebieten einiger Kristallingesteine in Ost-Småland und den Geschiebefundorten auf Öland. Der Pfeil markiert die Hauptzugrichtung des Eises während der letzten Vereisung. Karte verändert nach: WIK et al 2005: Berggrundskartan Kalmar län – 1:250 000.

2.1. Äleklinta
2.2. Byxelkrog
2.3. Eskilslund
2.4. Hagskog
2.5. Ramsnäs

Das Sammeln von Nahgeschieben auf Öland bietet einen Einblick in die Gesteine des nahen Grundgebirges in Ost- und Nordost-Småland und ist eine vergleichsweise bequeme Abwechslung zum mühsamen Sammeln von Anstehendproben. Die Gletscher der nordischen Inlandvereisungen transportierten Gesteine auf dem Festland nur über geringe Distanzen, in der Regel wenige Zehnerkilometer. Auch Öland dürfte damals Festland gewesen sein und der Meeresspiegel bedeutend niedriger gelegen haben als heute. An den Inselstränden finden sich ganz überwiegend Kristallingeschiebe aus dem östlichen und nordöstlichen Småland, dem Gebiet entgegen der vorherrschenden südöstlichen Zugrichtung des Eises. Zur Lage der Fundlokalitäten s. Abb. 3 im ersten Teil des Exkursionsberichtes.

Von Strand zu Strand unterscheidet sich die Geschiebegemeinschaft. Ganz klar dominieren granitoide Gesteine des Transskandinavischen Magmatitgürtels (TIB) aus Ost- und Nordost-Småland und dem südlichen Östergötland. Dabei lassen sich grob drei Gefügevarianten unterscheiden:

  1. gleichkörnige Alkalifeldspatgranite vom Växjö-Typ mit rotem bis rotbraunem Alkalifeldspat, häufig mit lebhaftem Blauquarz (z. B. Abb. 43);
  2. grobkörnige rote Alkalifeldspatgranite (z. B. Abb. 48);
  3. dunkle und porphyrische Monzogranite mit Blauquarz, braunem Alkalifeldspat, gelbem oder orangefarbenem Plagioklas sowie reichlich Titanit (z. B. Abb. 53). Zu diesem Granittyp gehört auch der Kinda-Granit (z. B. Abb. 82). Der Anteil dieses Geschiebetyps nimmt nach Norden hin zu.

Funde der geschiebekundlich interessanten anorogenen Ost-Småland-Granite (Uthammar-, Götemar- und Jungfrun-Granit) werden im dritten Abschnitt vorgestellt.

Vulkanite und Porphyre des TIB sind nur vereinzelt anzutreffen (meist Gangporphyre), was wenig verwunderlich ist, denn ihr Herkunftsgebiet liegt entweder weiter südlich (Påskallavik-Porphyr oder die hälleflintartigen Småland-Vulkanite mit wenigen Feldspat-Einsprenglingen aus dem Gebiet um Växjö) oder zu weit westlich. Denn auch Porphyre aus dem Vulkanitgebiet von Lönneberga wie Lönneberga-Porphyr oder der Nymåla-Porphyrtyp kommen auf Öland nicht vor (lediglich ein Emarp-Porphyr wurde gesichtet, Abb. 56).

Der Anteil an Ferngeschieben ist gering. Regelmäßig fallen allerdings einzelne Rapakiwigranite vom Åland-Pluton ins Auge (z. B. Abb. 68-69). Der Åland-Pluton liegt über 350 NNW von Öland und nicht in Zugrichtung der letzten Vereisung. Eine Besonderheit sind gleich zwei Funde von Rödö-Rapakiwis aus Nordschweden am Strand von Eskilslund (Abb. 99-102).

Auch svekofennische Gesteine sind nur vereinzelt zu finden, z. B. die spätorogenen grauen Plutonite (Uppland-Granite) oder auch allgemein Gneise und Migmatite. Eine Ausnahme bilden lokale Häufungen von Fleckengesteinen mit den dazugehörigen Quarziten aus dem nahen Västervik-Gebiet (Lokalität Ramsnäs). Der Loftahammar-Augengneis in typischer Ausbildung tritt hingegen kaum in Erscheinung.

2.1. Äleklinta

Neben den im ersten Abschnitt besprochenen Sedimentgesteinen (mittelkambrische Sandsteine, Anthrakonite, Orthocerenkalke etc.) treten an der Lokalität Äleklinta auch Kristallingeschiebe auf. Durch ihre Farbigkeit und den Kontrast sind sie leicht zu lokalisieren, kaum eines der vereinzelten Geschiebe entgeht dem Blick. Unter den TIB-Graniten finden sich reichlich gleichkörnige bis schwach porphyrische, meist mittelkörnige Alkalifeldspatgranite vom Växjö-Typ mit lebhaftem Blauquarz (Abb. 43-46).

Abb. 43: Alkalifeldspatgranit vom Växjö-Typ; rosafarbener bis bräunlicher Alkalifeldspat, reichlich Blauquarz und Titanit in den Biotit-Ansammlungen. Breite 12,5 cm. Es besteht eine Ähnlichkeit zum Vånevik-Granit, allerdings liegt das Vorkommen direkt westlich vom Fundort.
Abb. 44: Alkalifeldspatgranit, Breite 12 cm.
Abb. 45: Brauner Granit mit Blauquarz, Breite 13,5 cm.
Abb. 46: Mittelkörniger Småland-Granit vom Växjö-Typ, Breite 13 cm.

Grobkörnige rote Småland-Granite mit grauem oder blauem Quarz, kaum Plagioklas
(Abb. 47-52):

Abb. 47: Roter Småland-Granit; einige Risse innerhalb der Feldspäte sind mit dunklen Mineralen verfüllt. Breite 10,5 cm.
Abb. 48: gewöhnlicher roter Småland-Alkalifeldspatgranit, Breite 11 cm.
Abb. 49: roter Småland-Granit. In den Zwickeln zwischen Alkalifeldspat und Quarz ist eine feinkörnige grüne und epidotähnliche Masse erkennbar. Breite 15 cm.
Abb. 50: Ungleichkörniger roter Ost-Småland-Granit mit reichlich Titanit. Breite 12,5 cm.

Die typischen porphyrischen NE-Småland-Granite mit braunem Alkalifeldspat, trübem und leicht bläulichem Quarz und orangefarbenem Plagioklas sowie Titanit treten in Äleklinta nur untergeordnet auf.

Abb. 51: Småland-Granit mit rotem bis braunem Alkalifeldspat, Blauquarz, etwas gelblichem Plagioklas und Biotit. Breite 12,5 cm.
Abb. 52: Geht man etwas näher heran, erkennt man viel gelblichen Titanit. Bildbreite 80 mm.
Abb. 53: Titanitführender porphyrischer NE-Småland-Granit aus braunem Alkalifeldspat, trübem und leicht bläulichem Quarz und orangefarbenem Plagioklas. Breite 13 cm.
Abb. 54: Ungleichkörniger NE-Småland-Granit; einzelner größerer Alkalifeldspat mit orangefarbenem Plagioklas-Saum. Breite 12 cm.

Ein alter Bekannter und ein Leitgeschiebe für das mittlere Småland ist der Järeda-Granit, der mehrmals in Äleklinta angetroffen wurde. Typisch sind die mit dunklen Mineralen gefüllten parallelen Risse innerhalb der Alkalifeldspäte.

Abb. 55: Järeda-Granit, Breite 10,5 cm.

Ebenfalls aus dem mittleren Småland stammt der Emarp-Porphyr (Einzelfund in Äleklinta).

Abb. 56: Emarp-Porphyr, Breite 12 cm.

Der nächste Fund ähnelt dem „Högsrum-Porphyr“. Sein Herkunftsgebiet liegt allerdings weiter südlich und nicht in der Zugrichtung des Eises. Vermutlich treten Porphyre vom Högsrum-Typ nicht nur an ihrer Typlokalität auf.

Abb. 57: Deformierter Gangporphyr, Breite 19 cm.
Abb. 58: Rotbrauner deformierter Småland-Gangporphyr, ähnlich dem Påskallavik-Typ, mit runden Blauquarzen. Es fehlen die dunklen Kerne innerhalb der Alkalifeldspäte. Breite 15 cm.
Abb. 59: Roter Granitporphyr mit runden Feldspat-Einsprenglingen. Breite 17 cm.
Abb. 60: Nahaufnahme, Bildbreite 10 cm.

Der nächste Granit ist ein grobkörniges, rot-orangefarbiges Gestein mit viel Titanit. Sein Habitus entspricht weitgehend dem „massiven Typ Virbo-Granit“ (TIB-Granit, ZANDSTRA 1999:164), anstehend bei Saltvik, unmittelbar südlich vom Uthammar-Pluton.

Abb. 61: Virbo-Granit, massiger Typ, Breite 10 cm.
Abb. 62: Nahaufnahme; gelblicher Titanit innerhalb der dunklen Mineralaggregate.
Abb. 63: Roter, vermutlich metasomatisch überprägter Plutonit (Quarzsyenit), Breite 18 cm.
Abb. 64: Nahaufnahme. Viel Quarz ist nicht zu entdecken. Das Gestein besteht aus rotem Alkalifeldspat und grünem, stellenweise auch weißem Plagioklas (Quarzsyenit). Das Dunkelrote sind Hämatitflecken, Titanit ist reichlich enthalten.
Abb. 65: Småland-Granit mit leichter Deformation, erkennbar an der Einregelung der dunklen Minerale. Das Gestein führt keinen Titanit; der Gefügetyp wurde mehrfach als Geschiebe angetroffen. Breite 19 cm.
Abb. 66: Roter Småland-Granit, Breite 16 cm.

Das Gefüge des Granits in Abb. 67 weicht durch den Kontrast zwischen rosafarbenem Alkalifeldspat und weißem Plagioklas deutlich ab von den bisher gezeigten Proben (Einzelfund, Emsfors-Granit?).

Abb. 67: Granit mit grauem Quarz; einige Alkalifeldspäte besitzen einen hellen Plagioklas-Saum. Breite 13 cm.

Hin und wieder finden sich in Äleklinta auch Rapakiwi-Geschiebe. Ihr Transportweg ist unklar, denn alle Rapakiwivorkommen, insbesondere der Åland-Pluton, liegen nicht in der Hauptzugrichtung der letzten Inlandvereisung.

Abb. 68: Mischgefüge Pyterlit/porphyrischer Rapakiwi, vermutlich von Åland. Breite 13,5 cm.
Abb. 69: Heller Wiborgit/gleichkörniger Rapakiwi, vermutlich von Åland. Breite 13 cm.
Abb. 70: Mischgestein, Granitporphyr, ähnlich dem Åland-Ringquarzporphyr. Breite 10,5 cm.

Der letzte Fund aus Äleklinta zeigt ein interessantes Gefüge. In den Zwickeln zwischen den roten Alkalifeldspäten sind rote bis gelbliche und eckige graphische Verwachsungen erkennbar. Die Herkunft des Gesteins ist unbekannt.

Abb. 71: Hellroter Granit mit graphischen Verwachsungen. Bildbreite 20 cm.

2.2. Byxelkrog

Etwa 500 m nördlich von Byxelkrog (letzter Parkplatz vor der Lokalität Neptuni åkrar) liegen am Strand einige große Geschiebe. Die Bedingungen zum Fotografieren vor Ort waren schlecht, daher fehlen einige Nahaufnahmen.

Abb. 72: Strand nördlich von Byxelkrog.
Abb. 73: Porphyrischer brauner Småland-Östergötland-Granit mit gelbem Plagioklas. Für einen Kinda-Granit fehlen die partiellen Plagioklassäume um die braunen Alkalifeldspäte. Bildbreite 19 cm.
Abb. 74: Porphyrischer Monzogranit mit blassrotem bis grauviolettem Alkalifeldspat und weißem Plagioklas (kein Titanit). Bildbreite 22 cm.
Abb. 75: Großes Geschiebe eines dunklen Fleckengesteins, Breite 36 cm.
Abb. 76: Länglicher Einschluss eines dunklen Fleckengesteins (oder fleckigen Metabasits) in einem roten Småland-Granit. Breite 40 cm.

Südlich von Byxelkrog am Enerumsvägen, vor dem Campingplatz und dem Leuchtturm, lassen sich am Strand maximal handgroße Kristallingeschiebe sammeln.

Abb. 77: Repräsentative Auswahl an Geschieben vom Strand bei Byxelkrog. Bildbreite 41 cm.

Hier finden sich deutlich mehr braune porphyrische Monzogranite (einige vom Typ Kinda-Granit) als in Äleklinta, neben gewöhnlichen mittel- bis grobkörnigen roten Småland-Graniten. Der Anteil an stärker deformierten Graniten – teilweise auch Augengranite, aber keine Loftahammar-Typen – ist höher als an den weiter südlich gelegenen Fundlokalitäten (Abb. 79).

Abb. 78: Einige Granitgeschiebe, näher fotografiert. Bildbreite 26 cm.
Abb. 79: Quarzreicher und leicht deformierter Blauquarzgranit. Schmutzig-grüner Plagioklas bildet Säume um die roten Alkalifeldspäte. Das Gestein enthält reichlich Titanit. Aufnahme unter Wasser.
Abb. 80: Gleichkörniger Småland-Granit vom Typ Tuna-Granit, nass fotografiert.
Abb. 81: Nahaufnahme des Gefüges.
Abb. 82: Kinda-Granit, Aufnahme unter Wasser.
Abb. 83: Graues Fleckengestein, quarzitisches Metasediment mit dunklen Cordierit-Flecken, wahrscheinlich aus dem Västervik-Gebiet.

2.3. Eskilslund

An der weitgehend monotonen, aus Grauem Orthocerenkalk bestehenden Küste von Eskilslund finden sich auch kleinere Strandabschnitte mit Kristallingeschieben. Häufig sind grobkörnige rote Småland-Granite und Augengranite, aber auch porphyrische Monzogranite sowie unterkambrische Kalmarsund-Sandsteine (s. Abb. 23-28 in Teil 1).

Abb. 84: Küste bei Eskilslund, Blick auf die Insel Blå Jungfrun.
Abb. 85: Strandabschnitt mit Kristallingeschieben.
Abb. 86: Titanitreicher Småland-Monzogranit mit blassrotem Alkalifeldspat und gelblichem Plagioklas; ähnlich Kinda-Typ, mit unvollständigen Plagioklas-Säumen um einzelne Alkalifeldspäte. Breite 9 cm.
Abb. 87: Småland-Monzogranit mit rotem Plagioklas (spricht für nördlichere Herkunft: Östergötland-Granite enthalten gelegentlich roten Plagioklas). Breite 9 cm.

Typische, wenn auch weniger auffällige NE-Småland-Granite sind grobkörnige Granite mit hellrotem Alkalifeldspat, reichlich Titanit und grünem sowie etwas rotem Plagioklas. Eine entsprechende Anstehendprobe konnte in der Umgebung vom Götemar-Pluton gesammelt werden.

Abb. 88: NE-Småland-Granit mit rotem und grünem Plagioklas, Breite 13 cm.

Am Strand fanden sich auch grobkörnige und leicht deformierte Granite vom Virbo-Typ (Abb. 89-91).

Abb. 89: NE-Småland-Granit, Typ Virbo-Granit. Breite 17 cm.
Abb. 90: Nahaufnahme.
Abb. 91: NE-Småland-Granit, Typ Virbo-Granit. Breite 17 cm.
Abb. 92: Plutonit mit geringem Quarzanteil (Monzonit bis Quarzmonzonit) aus blassrotem Alkalifeldspat und orangefarbenem Plagioklas (wahrscheinlich aus NE-Småland). Breite 17 cm.
Abb. 93: Nahaufnahme.
Abb. 94: Ungewöhnliche Farbkombination: orangeroter Granit mit weißem Plagioklas, Breite 15,5 cm.
Abb. 95: Grauer Gangporphyr mit Einschlüssen basischer Gesteine und wenig Quarz (klare runde Aggregate), Breite 20 cm.
Abb. 96: Nahaufnahme, Bildbreite 140 mm.
Abb. 97: Porphyrischer Monzogranit mit grünlichem und rotem (Mischfarbe: braun) Plagioklas. Der Typ wurde mehrfach auf Öland und in einer Kiesgrube in E-Småland beobachtet. Herkunft: vermutlich nördliches Småland – südliches Östergötland. Breite 20 cm.
Abb. 98: Helsinkitähnliches Gestein. Innerhalb der feinkörnigen rötlichen Masse zwischen den weißen Feldspäten ist etwas Blauquarz erkennbar. Breite 13 cm.

In Eskilslund fanden sich zwei Rapakiwis vom Rödö-Massiv in Nordschweden. Die hellen Feldspat-Ovoide im zweiten Fund (Abb. 101-102) erreichen allerdings kaum 2 cm (wichtiges Erkennungsmerkmal!).

Abb. 99: Rödö-Rapakiwi mit Wiborgitgefüge. Breite 21 cm.
Abb. 100: Nahaufnahme.
Abb. 101: Rödö-Rapakiwi mit Wiborgitgefüge (dicker Plagioklassaum rechts unten im Bild). Aufnahme unter Wasser.
Abb. 102: Nahaufnahme der nassen Oberfläche. Die großen runden und klaren Quarze der ersten Generation weisen kaum Spuren einer magmatischen Korrosion auf.
Abb. 103: Porphyr mit Ringquarzen aus einem Rapakiwi-Vorkommen. Die roten Partien bestehen aus graphischen Verwachsungen von Feldspat und Quarz. Breite 12,5 cm.

2.4. Hagskog

Am Strand von Hagskog fanden sich vergleichsweise häufig anorogene Ost-Småland-Granite (Götemar- oder Jungfrun-Granit, s. Teil 3 des Berichts) sowie Granite vom Kinda-Typ.

Abb. 104: Granit vom Kinda-Typ mit reichlich Titanit. Breite 13 cm.
Abb. 105: Kinda-Granit mit reichlich Titanit. Breite 15 cm.
Abb. 106: Västervik-Fleckenquarzit mit reliktischer sedimentärer Schichtung; Breite 17 cm.
Abb. 107: Auffälliger porphyrischer (Östergötland?)-Granit mit gelbem Alkalifeldspat, orangerotem Plagioklas und Blauquarz. Bildbreite 18 cm.
Abb. 108: Orangefarbener porphyrischer Rapakiwi-Granit, Herkunft unbekannt. Breite 14 cm.

2.5. Ramsnäs

Ramsnäs bietet die besten Fundmöglichkeiten für Kristallingeschiebe, Kalksteine sind hier deutlich in der Unterzahl. Unter den TIB-Graniten überwiegen rote Smålandgranite und braune porphyrische Monzogranite, darunter viele vom Kinda-Typ.

Abb. 109: Geröllstrand von Ramsnäs.
Abb. 110: Rote Smålandgranite und braune porphyrische Monzogranite. Bildbreite ca. 50 cm.

Auch Metasedimente, ganz offensichtlich aus dem Västervik-Gebiet, finden sich auffällig häufig: blassviolette und graue Quarzite, rote Granofelse mit schwarzen Cordierit-Flecken („Västervik-Fleckengestein“, deformiert und undeformiert) sowie hell- bis dunkelgraue Quarzite mit weißen Sillimanitflecken („Västervik-Fleckenquarzit“).

Abb. 111: Västervik-Fleckengestein, leicht deformiert. Breite 26 cm.
Abb. 112: Västervik-Fleckengestein, Breite 11,5 cm.
Abb. 113: Metasediment mit schwarzen Flecken, Breite 13 cm.
Abb. 114: Grauer Västervik-Fleckenquarzit, Breite 13 cm.
Abb. 115: Dunkelgrauer Västervik-Fleckenquarzit, Breite 9 cm.
Abb. 116: Blauer Quarzit mit rötlichem Feldspat; in vergleichbarer Form aus dem Västervik-Gebiet bekannt. Breite 12,5 cm.

Der mittelkörnige und nur schwach porphyrische Flivik-Granit in typischer Ausbildung ist ein seltener Fund auf Öland. Man beachte den hohen Gehalt an Blauquarz und seine gleichmäßige Verteilung im Gestein.

Abb. 117: Flivik-Granit, Breite 21 cm.
Abb. 118: Nahaufnahme des Gefüges.
Abb. 119: Kinda-Granit, Breite 12 cm.
Abb. 120: Kinda-Granit, Breite 15 cm.
Abb. 121: Kinda-Granit, Aufnahme unter Wasser.
Abb. 122: Nahaufnahme. Orangefarbener und grüner Plagioklas bilden stellenweise bräunliche Mischfarben.
Abb. 123: Farbenfrohe und plagioklasreiche Variante des Kinda-Granits. Ein vergleichbares Gestein wurde allerdings auch im Gebiet des Flivik-Granits in NE-Småland beobachtet, außerhalb des eigentlichen Kinda-Granitgebietes. Breite 17 cm.
Abb. 124: Nahaufnahme.
Abb. 125: Braune porphyrische Monzogranite mit Blauquarz und gelbem/grünem/orangefarbenem Plagioklas treten in großer Zahl auf. Dieser Granittyp besitzt ein großes Herkunftsgebiet, von NE-Småland bis ins südliche Östergötland. Breite 12 cm.
Abb. 126: Aus dem südlichen Östergötland dürften solche grobkörnigen Augengranite aus hellrotem Alkalifeldspat mit orangefarbenen Plagioklassäumen stammen. Breite 24 cm.
Abb. 127: Grobkörniger porphyrischer Östergötland(?)-Granit mit grünem und orangerotem Plagioklas (Mischfarbe braun); vgl. ähnlichen Fund in Eskilslund (Abb. 97). Breite 18 cm.
Abb. 128: Titanitreicher NE-Småland-Granit mit hellrotem Alkalifeldspat, Breite 13,5 cm.

Die nächsten drei Granite sind Varianten mittel- bis grobkörniger Alkalifeldspatgranite vom Växjö-Typ mit lebhaftem Blauquarz und wenigen dunklen Mineralen. Der Granittyp tritt an allen Lokalitäten sehr häufig auf.

Abb. 129: Småland-Granit vom Växjö-Typ, Breite 10 cm.
Abb. 130: Småland-Granit vom Växjö-Typ, Breite 13 cm.
Abb. 131: Blauquarzgranit, Växjö-Typ, Breite 9 cm.

Funde von Graniten mit hellen Plagioklassäumen um einzelne Alkalifeldspäte (Filipstad-Granittyp) sind auf Öland die Ausnahme.

Abb. 132: Blauquarzgranit, Typ Filipstad (Einzelfund). Breite 12,5 cm.
Abb. 133: Quarzreicher Granit mit zuckerkörnig granuliertem Quarz (Älö-Granit?). Breite 11,5 cm.

Vereinzelt finden sich auch hier wieder Rapakiwi-Granite als Ferngeschiebe.

Abb. 134: Rötlichgrauer Rapakiwi-Granit mit Wiborgitgefüge (Åland-Wiborgit). Breite 10,5 cm.

Geologische Streifzüge auf Rügen

Abb. 1: Steilküste auf Jasmund; Ablagerungen der Oberkreide (weiß) mit eingeschaltetem Geschiebemergel (grau).

Das bevorzugte Ziel für den geologisch interessierten Besucher von Rügen ist die beeindruckende Steilküste auf dem Inselteil Jasmund. Hier sind die als „Rügener Schreibkreide“ bezeichneten Sedimente sowie pleistozäne Ablagerungen aufgeschlossen. Nach einer kurzen Übersicht zu Rügens Geologie werden in dieser Artikelreihe Funde kristalliner Geschiebe von mehreren Stränden der Insel vorgestellt.

1. Zur Geologie von Rügen
2. Geschiebesammeln auf Rügen
2.1. Sassnitz
2.2. Dwasieden
2.3. Kap Arkona
2.4. Lohme
2.5. Sellin
2.6. Mönchgut
3. Links und ausgewählte Literatur

1. Zur Geologie von Rügen

Die Rügener Schreibkreide ist ein krümeliger und wenig verfestigter Kalkstein, der von zahlreichen Feuersteinbändern durchzogen wird. Sie entstand in einem Zeitabschnitt der Oberkreide, im Maastricht, vor etwa 72-66 Millionen Jahren. Zu dieser Zeit bedeckte ein Flachmeer praktisch ganz Mitteleuropa. Nur einige Inseln ragten aus diesem Kreidemeer hervor, die Alpen gab es noch nicht. Ein tropisches Klima, aber eine recht kühle Wassertemperatur begünstigte das Wachstum kleinster, planktonisch lebender Meerestiere, aus denen die Schreibkreide zusammengesetzt ist. Im Wesentlichen sind dies die als Coccolithen bezeichneten Kalkplättchen von Algen der Ordnung Coccolithophorida, neben weiteren Kleinfossilien. Die Sedimentation erfolgte erstaunlich langsam, etwa 35 mm in 1.000 Jahren (REICH 1998). In der Schreibkreide finden sich auch zahlreiche Makrofossilien: Seeigel, Schwämme, Belemniten, Korallen, Muscheln, Bryozoen, Schnecken, Seesterne, Ammoniten und weitere (vgl. SCHULZ 2003: 347-351, REICH et al 2018).

Innerhalb der hellen Schreibkreide treten Lagen von dunkelgrauen Feuersteinen auf. Sie entstanden nach der Ablagerung der Kreideschichten während der Diagenese und bilden Konkretionen – massige Gesteine von rundlicher, knolliger, teils auch bizarrer Gestalt. Die Feuersteine sind der „Prototyp“ des nordischen Geschiebes, weil sie in glazialen Ablagerungen praktisch allgegenwärtig auftreten. Ihre südlichste Verbreitungsgrenze, die sog. „Feuersteinlinie“ kennzeichnet die Maximalausdehnung der nordischen Inlandvereisungen.

Abb. 2: Feuersteinlagen innerhalb der Rügener Schreibkreide, Steilküste nördlich von Sassnitz. Die Lagen sind annähernd gleich mächtig und regelhaft rhythmisch angeordnet.
Abb. 3: Feuersteinlagen, Bildhöhe etwa 3 Meter.
Abb. 4: Frisch ausgebrochene Feuersteine besitzen einen splittrigen Bruch und eine weiße Rinde. Mit der Zeit werden sie abgerollt, auf Grund ihrer Härte und Zähigkeit nur durch gegenseitige Bewegung im Brandungssaum. Bildbreite ca. 50 cm.

Vor den nordischen Inlandvereisungen bildeten die Schichten der Oberkreide ein mehr oder weniger ebenes und bis 400 m mächtiges Sedimentpaket. Diese Schichten sind auch heute im Untergrund noch großflächig verbreitet und durch jüngere Schichten verdeckt. Durch tektonische Vorgänge, wahrscheinlich Störungen des Untergrundes während der alpidischen Gebirgsbildung, kam es im Tertiär zu Hebungen. Durch leichte Verkippung bildeten sich Kreide-Horste. Einst verband ein etwa 100 km breites, in Ost-West-Richtung sich erstreckendes Kreidemassiv die Vorkommen von Rügen und Møn.

Die erosive Kraft des Inlandeises führte zu einer Abtragung der oberen 100 m dieses Massivs und zur Bildung kleiner und größerer Schollen, die in der Folge teils dachziegelartig verkippt oder sogar verfaltet wurden. Dabei konnten auch größere zusammenhängende Pakete der lockeren Kreidesedimente bewegt werden, weil der Untergrund gefroren war. Durch diese glazitektonischen Vorgänge gelangten die Kreidesedimente in ihre heutige Position und bilden ein komplexes Nebeneinander mit Geschiebemergeln und anderen glazialen Ablagerungen. Erst der Geschiebemergel des letzten weichselzeitlichen Eisvorstoßes liegt über den verschuppten kreidezeitlichen und glazialen Sedimenten, was auf eine zeitliche Einordnung der Glazitektonik in die Zeit bis zum Pommerschen Stadium der Weichselvereisung vor etwa 22.000 – 20.000 Jahren deutet.

Die Verkippung und Faltung der aufragenden Schollen lässt sich an den Feuersteinbändern stellenweise gut nachvollziehen (Abb. 5). Größere Kreideschollen sind vor allem im Nordteil der Insel auf Jasmund sowie an der NE-Spitze von Wittow aufgeschlossen. Kleinere Kreideschollen und -schlieren finden sich z. B. auch an der Steilküste von Dwasieden (Abb. 6).

Abb. 5: Gebogene Feuersteinlagen (Glazitektonik). Ursprünglich horizontal abgelagerte Kreide mit den typischen Feuersteinbändern. Durch die Kraft der Gletscher in der letzten Eiszeit kam es zur Aufschiebung, Verkippung und Stauchung der Kreide.
Abb. 6: Geschiebemergel mit Kreideschlieren, Dwasieden.

Im letzten Stadium der Eisvorstöße, im späten Weichselglazial, wirkten die Inselkerne von Jasmund und Arkona als Hindernis. Der Gletscher teilte sich hier in zwei Eisströme. Ein südlich verlaufender sog. Oder-Eisstrom modellierte die hügelige Landschaft Ostrügens. Durch Stillstand und Abschmelzen des Eises entstanden die Endmoränen der sog. Mittelrügenschen Stillstandslage. Ihre heutige Gestalt nahm die Insel lange nach dem Rückzug des Eises an. Rügen war nach dem Abschmelzen des Eises zunächst Festland. Vor etwa 7.800 Jahren, zu Zeiten der Litorina-Transgression, wurde das Gebiet überflutet, nur die Inselkerne Jasmund, Wittow und Mönchgut lagen über dem Meeresspiegel. Durch Brandung entstanden an ihren Außenseiten Steilufer. Abgetragener Sand wurde durch Küstenströmungen in Gestalt von Nehrungen wieder ablagert und verbindet seitdem die Inselkerne miteinander. Im Naturschutzgebiet „Schmale Heide“ (Feuersteinfelder von Mukran) finden sich 14 Strandwälle aus Feuersteinen, die vor etwa 4.000 Jahren während mehrerer Sturmfluten aufgeschüttet wurden (Abb. 7).

Abb. 7: Feuersteinfelder von Mukran. Die wallartigen Akkumulationen von Feuersteinen sind Ablagerungen historischer Sturmfluten vor etwa 4.000 Jahren.

Rügens Steilküsten sind von einem beachtlichen Fortschreiten der Erosion betroffen, die Küstenlinie wird jährlich um durchschnittlich 30 cm zurückverlegt. Vor allem nach der Schneeschmelze und starken Regenfällen ereignen sich größere Abbrüche, Geschiebemergel und Schmelzwassersande zwischen die Kreidefelsen wirken dabei als Sollbruchstellen.

Abb. 8: Frischer Abbruch nördlich von Sassnitz (Mai 2012).
Abb. 9: Bedrohlich hängen metergroße Geschiebe in der Steilwand bei Sassnitz.

Auf Rügen gibt es eine Vielzahl interessanter geologischer Lokalitäten, die im Text genannten sind auf der Karte Abb. 10 markiert.

Abb. 10: Übersichtskarte Rügen mit besuchten Lokalitäten: Nordufer Wittow und Kap Arkona (1), Dwasieden (2), Kreideküste nördlich Sassnitz (3), Klein Zicker (4), Groß Zicker (5), Dargast (6), Kreidemuseum Gummanz (7), Feuersteinfelder Mukran (8). Karte aus wikipedia.org, Urheber: devil m25, CC BY-SA 2.0 de.

Auf Jasmund wurde die Rügener Schreibkreide zur Gewinnung von Schlämmkreide früher in zahlreichen Steinbrüchen abgebaut. Ein aktiver Tagebau liegt bei Promoisel, ein aufgelassener Bruch bei Dargast.

Abb. 11: Aufgelassener Tagebau bei Dargast.

Das Kreidemuseum in Gummanz (www.kreidemuseum.de) informiert mit einer bergbautechnischen Sammlung und einem Freilichtbereich über die Historie des Kreideabbaus und die Verwendung der Rügener Schreibkreide, ein geologisch-paläontologischer Sammlungsteil über die Entstehung der Insel Rügen. Auch eine hervorragende Ausstellung mit Kreidefossilien kann besichtigt werden.

Abb. 12: Kreidemuseum Gummanz
Abb. 13: Ehemaliger Tagebau am Freilichtmuseum Gummanz.

Auf Rügen gibt es auch mehrere große Geschiebe, z. B. der Schwanenstein bei Lohme. Auf den Siebenschneiderstein (Karlshamn-Granit) wird im Abschnitt Kap Arkona eingegangen. Der größte Findling Norddeutschlands ist der Buskam östlich von Göhren.

Abb. 14: Schwanenstein bei Lohme.

2. Geschiebesammeln auf Rügen

Abb. 15: Steilküste nördlich von Sassnitz.

Die Geröllstrände auf Rügen bieten dem Geschiebesammler gute Fundmöglichkeiten. Auf ein übermäßiges „Abräumen“ der Strände sollte man allerdings verzichten und Steine mit Bedacht entnehmen, damit auch zukünftige Besucher noch die ganze Bandbreite an nordischen Geschieben vorfinden können. Vielleicht vermag eine gute fotografische Dokumentation den „Sammeltrieb“ ebenfalls zu befriedigen. Die meisten der hier gezeigten Gesteine liegen noch vor Ort. Das Hauptaugenmerk gilt den kristallinen Geschieben, die in drei Abschnitten vorgestellt werden:

Die kristalline Geschiebegemeinschaft auf Rügen ist stark von den Gesteinen des Transskandinavischen Magmatitgürtels (TIB) geprägt, darunter die variationsreichen und oft bunten Småland-Granitoide und Småland-Porphyre. Allgemein häufig ist auch der Braune Ostsee-Quarzporphyr, der Rote Ostsee-Quarzporphyr tritt nur ganz vereinzelt auf. Rapakiwi-Gesteine von Åland sind in mäßiger Häufigkeit anzutreffen. Aus Dalarna finden sich nur wenige Kristallingesteine. Granite von Bornholm sind seltener, als es die Nähe zum Anstehenden und die Zugrichtung der Gletscher während der letzten Vereisung erwarten lässt.

Oslogesteine (z. B. Rhombenporphyre) oder SW-schwedisches Material fehlen vollständig, Rügen liegt jenseits ihrer Verbreitungsgrenzen. In diesem Zusammenhang sind Funde von dunklen und quarzfreien Porphyren mit rhombenförmigen Feldspat-Einsprenglingen interessant, die dem Rhombenporphyr ähneln, aber kaum aus dem Oslograben stammen dürften (Abb. 2-4). Ein weiterer Fund eines ganz ähnlichen Porphyrs wird im Abschnitt „Dwasieden“ (Abb. 13) gezeigt und diskutiert.

Abb. 16: Rhombenführender Porphyr, Sassnitz.
Abb. 17: Rückseite
Abb. 18: Nahaufnahme der nassen Oberfläche.
Abb. 19: Nahaufnahme einiger rhombenförmiger Feldspäte; rechts der Bildmitte ein Pyritkorn.

2.1. Sassnitz

Nördlich vom Hafen in Sassnitz wurden große Steine als Uferschutz abgelagert, neben zahlreichen Großgeschieben auch Lausitzer Granodiorit aus der Westlausitz als Fremdmaterial. Der Plutonit entstand im Zuge der Cadomischen Gebirgsbildung vor etwa 650-550 Millionen Jahren.

Abb. 20: Dunkler Xenolith in einem grauen Xenolith im Lausitzer Granodiorit. Uferbefestigung nördlich vom Hafen Sassnitz. Bildbreite 35 cm.

Etwas weiter nördlich beginnt die Steilküste von Jasmund. Aufragende Schollen von Schreibkreide wechseln sich mit Geschiebemergel und Schmelzwassersanden ab (Abb. 1). Bänder aus Feuerstein sind geradezu regelhaft in die Kreidesedimente eingeschaltet (Abb. 2). An einigen Stellen kann man auch eine Faltung dieser Bänder durch Tektonik oder Eistektonik beobachten (Abb. 5). Beim Aufenthalt am Fuße der Steilküste sollte stets die Gefahr von Steinschlag berücksichtigt werden. Besonders nach starkem Regen, während der Schneeschmelze und bei Sturm ist äußerste Vorsicht geboten.

Der vorgelagerte Geröllstrand besteht größtenteils aus schwarzen Feuersteinen. Jedes einzelne der wenigen eingestreuten Kristallingeschiebe lässt sich dadurch genauer in Augenschein nehmen. An Strandabschnitten mit aufgearbeiteten glazialen Ablagerungen treten diese auch zahlreicher in Erscheinung.

Abb. 21: Geröllstrand bei Sassnitz, Bildbreite 90 cm.
Abb. 22: Brauner Ostsee-Quarzporphyr mit einem helleren Quarzporphyr als Xenolith. Aufnahme unter Wasser.
Abb. 23: Nahaufnahme der nassen Oberfläche.
Abb. 24: Porphyrischer Rapakiwi (Kökar-Rapakiwi?), Breite 11,5 cm.
Abb. 25: Vollroter Granophyr mit hellem, teils bläulichem Quarz, Breite 12 cm.
Abb. 26: Nahaufnahme.

Solche vollroten Granophyre (granitische Gesteine, die fast vollständig aus graphischen Verwachsungen von Feldspat und Quarz bestehen) sind z. B. aus dem Nordingrå-Pluton in Nordschweden, aber auch aus anderen Rapakiwi-Vorkommen bekannt. Mangels charakteristischer Merkmale lässt sich der Gesteinstyp nicht auf ein bestimmtes Vorkommen zurückführen.

Abb. 27: Roter Rapakiwi (Rödö-Rapakiwi), Breite 17 cm.
Abb. 28: Das Gestein enthält weißen Calcit, sein Erscheinungsbild stimmt mit den Wiborgiten von Rödö überein (große, klare und magmatisch kaum korrodierte Quarze; gelber Plagioklas), wenn auch nur ein einzelnes größeres, von gelbem Plagioklas umsäumtes Kalifeldspat-Ovoid enthalten ist.
Abb. 29: Nahaufnahme
Abb. 30: Mischgestein aus einem Rapakiwi-Vorkommen. Die roten Bereiche bestehen aus graphischen Verwachsungen aus Quarz und Feldspat. Quarz bildet auch einzelne größere und rundliche Aggregate. Breite 13 cm.
Abb. 31: Nahaufnahme des Gefüges.
Abb. 32: Verhältnismäßig großes Geschiebe eines Bottenseeporphyrs, Typ Andeskeri, Breite 11,5 cm.
Abb. 33: Gleicher Stein, Aufnahme unter Wasser. Lagige oder schlierige Wechsel in der Färbung der Grundmasse sind in diesem Porphyrtyp häufig zu beobachten.
Abb. 34: Nahaufnahme der nassen Oberfläche.
Abb. 35: Polierte Schnittfläche.
Abb. 36: Nahaufnahme des Gefüges. Die dunkelgrauen Quarze weisen deutliche Spuren einer magmatischen Korrosion auf (radiale Einbuchtungen durch Anschmelzung; aufgefüllt mit Grundmasse).

Häufigster Geschiebetyp in Sassnitz sind die bunten Granitoide des Transskandinavischen Magmatitgürtels (TIB). Dazu gehören die mittelkörnigen Alkalifeldspatgranite vom Växjö-Typ mit blauem oder farblosem Quarz und braunem oder rotem Alkalifeldspat; weiterhin porphyrische Granite mit der typischen Dreifarbigkeit (blauer Quarz, brauner oder roter Alkalifeldspat sowie weißer, grüner, gelber oder orangefarbener Plagioklas). Die Anzahl der Leitgeschiebe unter den TIB-Graniten ist klein, da an verschiedenen Lokalitäten im Anstehenden Gesteine mit dem gleichen Gefüge auftreten.

Abb. 37: Mittelkörniger TIB-Granit (Flivik-Granit) aus Ost-Småland, Aufnahme unter Wasser.
Abb. 38: In der Nahaufnahme sind größere Mengen an gelblichem Titanit sichtbar.

Aus Nordost-Småland und dem südlichen Östergötland dürften die folgenden Granite mit porphyrischem Gefüge stammen. Gemeinsam ist ihnen ein Anteil von gelbem bis orangerotem Plagioklas und viel Titanit.

Abb. 39: NE-Småland-Granit (ähnlich Kinda-Granit), Breite 14 cm.
Abb. 40: NE-Småland-Granit (ähnlich Kinda-Granit), Breite 14 cm.
Abb. 41: Nahaufnahme
Abb. 42: Porphyrischer Granit mit Gefügewechsel, Breite 16 cm.
Abb. 43: Ein weiterer Gefügewechsel in einem porphyrischen Granit (grüner sowie wahrscheinlich durch Metasomatose umgewandelter gelber Plagioklas). Breite 14 cm.

Die nächsten Bilder (Abb. 44-51) sind eine Zusammenstellung einiger der überaus zahlreichen gleich- und mittelkörnigen Småland-Granite vom Växjö-Typ.

Abb. 44: Gleichkörniger Alkalifeldspat-Granit (Växjö-Typ), Breite 28 cm.
Abb. 45: Gleichkörniger Småland-Granit, Breite 11 cm.
Abb. 46: Gleichkörniger Småland-Granit mit etwas Plagioklas (gelb); Breite 14 cm.
Abb. 47: Gleichkörniger Småland-Monzogranit mit basischen Xenolithen, Breite 42 cm
Abb. 48: Nahaufnahme. Der Xenolith wurde hydrothermal alteriert und zeigt einen Saum aus hellgrünem Epidot.
Abb. 49: Gleichkörniger roter Alkalifeldspat-Granit (Växjö-Typ), Breite 13,5 cm.
Abb. 50: Bunter Växjö-Granit, kommt in N-Småland verbreitet vor und besitzt eine gewisse Ähnlichkeit mit dem Siljan-Granit aus Dalarna. Breite 10,5 cm.
Abb. 51: Quarzreicher mittelkörniger Granit vom Växjö-Typ, Breite 11 cm.
Abb. 52: Porphyrischer roter Småland-Alkalifeldspatgranit, Breite 18 cm.
Abb. 53: Braune und aplitähnliche Partie mit einer mittelkörnigen Übergangszone in einem grobkörnigen Monzogranit bis Quarzmonzonit (rechts und ganz links). Breite 45 cm.
Abb. 54: Nahaufnahme
Abb. 55: Granit mit zuckerkörnigem Quarz (TIB-Granit, Älö-Granit?). Breite 13 cm.
Abb. 56: Quarzreicher Granitoid mit wenig hellbraunem Alkalifeldspat und kleineren, deutlich voneinander abgegrenzten Plagioklas-Aggregaten von weißer bis gelblichgrüner Farbe (Granodiorit). Breite 11 cm.
Abb. 57: Bornholm-Granit (Vang-Granit), Breite 28 cm.
Abb. 58: Nahaufnahme.

Typisch für die Bornholm-Granite ist das „verwaschene“ Gefüge mit unklaren Korngrenzen aus Kalifeldspat, Quarz und Plagioklas, die rötliche, über Korngrenzen hinweg laufende Hämatit-Imprägnierung sowie runde Ansammlungen von dunklen Mineralen (Biotit). Innerhalb des Biotits findet sich reichlich Titanit.

Abb. 59: (Bornholm?-)Streifengneis; Partien des Gesteins sind mit rotem Hämatit imprägniert. Breite 17 cm.

Auch Porphyrgeschiebe aus dem TIB finden sich in großer Zahl, darunter Porphyre vom Påskallavik- und Emarp-Typ. Nicht selten sind auch Gangporphyre mit einem deformierten Gefüge, erkennbar an schlierigen Ansammlungen und einer Vorzugsrichtung der dunklen Glimmerblättchen (Abb. 60).

Abb. 60: Deformierter Gangporphyr („Högsrum-Porphyr“), Breite 13 cm.
Abb. 61: Småland-Gangporphyr vom Påskallavik-Typ, Breite 19 cm.
Abb. 62: Roter Gangporphyr mit Blauquarz und körniger Grundmasse, Breite 10 cm.

Nur vereinzelt lassen sich am Strand von Sassnitz Kristallingesteine aus Dalarna entdecken.

Abb. 63: Älvdalen-Ignimbrit aus Dalarna, Breite 10,5 cm.
Abb. 64: Auffälliger Plutonit mit rosafarbenen Alkalifeldspat-Einsprenglingen und weißer Grundmasse aus feinkörnigem Feldspat. Breite 17 cm.
Abb. 65: Nahaufnahme. Quarzkörner sind nur vereinzelt aufzufinden, wahrscheinlich liegt der Quarzgehalt unter 5%. Wenn der Feldspat der weißen Grundmasse ausschließlich Plagioklas ist, dürfte es sich um einen Monzonit handeln (35-65% Alkalifeldspat am Gesamtfeldspatanteil, Quarz unter 5%).
Abb. 66: Västervik-Fleckenquarzit, Breite 9 cm.
Abb. 67: Kontakt zwischen Pegmatit und einem grauen Gneis, Breite 65 cm.
Abb. 68: Nahaufnahme der nassen Oberfläche. Der Pegmatit besteht fast ausschließlich aus Alkalifeldspat und großen Biotit-Aggregaten (bis 5 cm). Die grauen Partien innerhalb der Feldspäte weisen auf feinste Entmischungen von Albit und Kalifeldspat hin.
Abb. 69: Geschichteter Sandstein. Die wellenförmige Oberseite der rötlichen Lagen deutet auf Strömungsrippel, während die grauen Lagen darüber planar ausgebildet sind (ruhiges Strömungsregime). Breite 25 cm.

Links und ausgewählte Literatur

3D-Modell von Jasmund

GEHRMANN A 2020 The multistage structural development of the Upper Weichselian Jasmund Glacitectonic Complex (Rügen, NE Germany) – E & G Quaternary Science Journal, 69: 59-60, https://doi.org/10.5194/egqsj-69-59-2020.

HAGENOW F VON 1839 Monographie der Rügen’schen Kreide-Versteinerungen, I. Abtheilung: Phytolithen und Polyparien – Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1839: 253-296, Taf. 4-5, Stuttgart.

HAGENOW F VON 1840 Monographie der Rügen’schen Kreide-Versteinerungen, II. Abtheilung: Radiarien und Annulaten. Nebst Nachträgen zur ersten Abtheilung – Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1840: 631-672, Taf. 9, Stuttgart.

HAGENOW F VON 1842 Monographie der Rügen’schen Kreide-Versteinerungen, III. Abtheilung: Mollusken – Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1842: 528-575, Taf. 9, Stuttgart.

KENZLER M, OBST K, HÜNEKE H, SCHÜTZE K 2010 Glazitektonische Deformation der kretazischen und pleistozänen Sedimente an der Steilküste von Jasmund nördlich des Königsstuhls (Rügen). – Brandenburgische Geowissenschaftliche Beiträge, 17: 107-122.

LUDWIG A O 2011 Zwei markante Stauchmoränen: Peski/Belorussland und Jasmund, Ostseeinsel Rügen/Nordostdeutschland – Gemeinsame Merkmale und Unterschiede. – E & G, Quaternary Science Journal, 60(4): 464-487.

MÜLLER U & OBST K 2006 Lithostratigraphie und Lagerungsverhältnisse der pleistozänen Schichten im Gebiet von Lohme (Jasmund/Rügen). – Zeitschrift für geologische Wissenschaften, 34: 39-54.

REICH M 1998 (Hrsg) Die Kreide Mecklenburg-Vorpommerns. – Exkursionsführer zur Geländetagung der Subkommission für Kreidestratigraphie – 41 S., 31 Abb., 1 Tab., Greifswald.

REICH M, HERRIG E, FRENZEL P & KUTSCHER M 2018 Die Rügener Schreibkreide – Lebewelt und Ablagerungsverhältnisse eines pelagischen oberkretazischen Sedimentationsraumes / The Rügen White Chalk – Habitat and deposits of a pelagic Late Cretaceous sedimentation area. Zitteliana. 92.

SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 446+42 meist farb. kapitelweise num. Abb., 1 Kte. als Beil., Schwerin (cw Verlagsgruppe).

WAGENBRETH O & STEINER W 1982 Geologische Streifzüge – Landschaft und Erdgeschichte zwischen Kap Arkona und Fichtelberg – 204 S., 65 Farbfotos, 16 Schwarzweißfotos, 117 Abb., VEB Deutscher Verlag für Grundstoffindustrie, Leipzig.

Geschiebesammeln in Polen: Jastrzębia Góra und Gdynia

Abb. 1: Anorthosit, Geschiebe vom Geröllstrand in Jastrzębia Góra, Breite 15 cm.

Geschiebestrände sind an der polnischen Ostseeküste selten, weil es sich ganz überwiegend um eine Ausgleichsküste handelt. Durch Einwirkung von Wind und Wasser wird Sand abgetragen und der Küste vorgelagert. Auf diese Weise wird die Küstenlinie begradigt, ausgedehnte Sandstrände und Dünen entstehen. An solchen Küstenabschnitten findet man dann kilometerweit keinen Stein. In Polen gibt es nur wenige Lokalitäten, wo ein aktives Kliff mit Geschiebemergel oder ein Sandkliff angeschnitten ist, z. B. bei Misdroy (Westpolen). Eine Reise im Sommer 2021 führte an zwei der wenigen Geschiebestrände im Gebiet der Danziger Bucht, nach Jastrzębia Góra und in die Hafenstadt Gdynia.

Abb. 2: Lage der beiden Fundlokalitäten. Quelle: wikipedia, Karte verändert.

1. Jastrzębia Góra

Jastrzębia Góra (alter deutscher Name: Habichtsberg) liegt in der Woiwodschaft Pommern, etwa 55 km NNW von Danzig. Hier befindet sich der nördlichste Punkt Polens, ansonsten gibt es nicht viel zu sehen, denn der Ort lebt ausschließlich vom sommerlichen Badetourismus. Wo sich die in nordöstlicher Richtung verlaufende Ausgleichsküste nach Südosten wendet, ist ein Kliff angeschnitten. Auf knapp 1,5 km Länge gibt es einen Geschiebestrand. Zu Zwecken des Küstenschutzes wurden am Strand große Geschiebe abgelagert, die aus der unmittelbaren Umgebung stammen dürften.

Abb. 3: Geschiebestrand von Jastrzębia Góra.
Abb. 4: Größere Geschiebe im Brandungssaum.
Abb. 5: Aufgrund des starken Küstenrückgangs der vergangenen Jahre wurde zum Zwecke des Uferschutzes eine Betonmauer errichtet, der zahlreiche Großgeschiebe vorgelagert sind.

Das Geschiebespektrum am Strand von Jastrzębia Góra ist nicht außergewöhnlich und im Grunde genommen mit einigen Lokalitäten im östlichen Brandenburg vergleichbar: reichlich Åland-Kristallin und Rapakiwi-Gesteine, viel Brauner Ostseequarzporphyr und Gesteine aus Dalarna. Auffällig ist das weitgehende Fehlen von Feuerstein. Ostbaltisches, also aus östlichen Richtungen angeliefertes Material wie Kugelsandstein und Dolomit, ist aber ebenfalls kaum zu finden. Unterkambrische Sandsteine mit Spurenfossilien (Skolithos-Sandstein) treten nur vereinzelt auf, häufiger sind paläozoische Kalksteine, vor allem Paläoporellenkalk.

Rapakiwi-Gesteine von Åland gehören zu den häufigsten Funden. Es findet sich die ganze Bandbreite an Åland-Rapakiwis, v.a. Wiborgite, weiterhin Åland-Ringquarzporphyre, Quarzporphyre, darunter auch die Gangporphyre von Hammarudda.

Abb. 6: Åland-Quarzporphyr.
Abb. 7: Åland-Quarzporphyr, Skeppsvik-Typ mit trüben und leicht bläulichen Quarzen. Breite 18 cm.
Abb. 8: Åland-Ringquarzporphyr, Breite 16 cm.
Abb. 9: Großer Block eines Åland-Ringquarzporphyrs, Breite 37 cm.
Abb. 10: Nahaufnahme einer angenässten Partie.
Abb. 11: Hammarudda-Quarzporphyr, Breite 21 cm.
Abb. 12: Blassroter Åland-Wiborgit, Breite 30 cm.
Abb. 13: Nahaufnahme des Gefüges.
Abb. 14: Åland-Rapakiwi, Mischtyp Wiborgit/Pyterlit. Breite 25 cm.
Abb. 15: Blassroter Porphyraplit, Breite 75 cm.
Abb. 16: Nahaufnahme.
Abb. 17: Grauer Pyterlit. Breite 50 cm. Herkunft ungewiss. Wahrscheinlich stammt zumindest ein Teil solcher hellen Pyterlite von Åland.
Abb. 18: Nahaufnahme.

In Jastrzębia Góra treten – wenn auch nicht besonders zahlreich – Rapakiwi-Granite auf, die dem Rapakiwi-Vorkommen von Kökar zugeordnet werden können.

Abb. 19: Kökar-Rapakiwi. Sehr grobkörniger porphyrischer Rapakiwigranit mit rotem und grünem Plagioklas. Zahlreiche Feldspäte weisen einen dicken Saum aus rotbraunem Plagioklas auf. Breite 60 cm.
Abb. 20: Nahaufnahme, nass fotografiert.
Abb. 21: Wiborgit mit reichlich rotbraunem Plagioklas (Åland oder Kökar?). Breite 26 cm.
Abb. 22: Nahaufnahme.
Abb. 23: Åland?-Wiborgit mit bläulichen Quarzen und grün umsäumten Feldspat-Ovoiden bis 33 mm Durchmesser.

Darüber hinaus finden sich zahlreiche weitere und interessante Rapakiwi-Geschiebe, die sich nicht ohne weiteres einer genaueren Herkunft zuordnen lassen.

Abb. 24: Porphyrischer Rapakiwi, Breite 48 cm.
Abb. 25: Nahaufnahme des Gefüges; kreuzförmiger Zwilling zweier Feldspat-Kristalle.
Abb. 26: Dunkler Pyterlit mit sehr großen Ovoiden. Breite 50 cm. Gefüge und dunkle Farbe erinnern an Rapakiwis vom Wiborg-Pluton. Allerdings sind hier keine Feldspat-Ovoide erkennbar (kein Wiborgitgefüge). Eine Herkunft vom SW-finnischen Festland ist denkbar (Laitila- oder Vehmaa-Pluton), allerdings kann auch nicht ausgeschlossen werden, dass weitere und bisher unentdeckte (Unterwasser)-Vorkommen solch grobkörniger Pyterlite existieren.
Abb. 27: Nahaufnahme.
Abb. 28: Roter porphyrischer Rapakiwi-Granit mit hellen Quarzen und dicken Säumen aus gelbem Plagioklas um einzelne Alkalifeldspat-Ovoide. Breite 37 cm.
Abb. 29: Nahaufnahme. Das Gefüge ähnelt den Wiborgiten vom Rödö-Pluton, die Ovoide sind jedoch recht klein für eine eindeutige Zuordnung (unter 2 cm).
Abb. 30: Dieses Geschiebe hingegen ist ganz eindeutig ein Rödö-Wiborgit. Breite 50 cm.
Abb. 31: Nahaufnahme, Bildbreite 14 cm. Die großen und hellen Quarze der 1. Generation zeigen kaum Spuren einer magmatischen Korrosion. Viele der Feldspat-Ovoide sind größer als 2 cm und weisen vereinzelt dicke Plagioklasringe auf.
Abb. 32: Nahaufnahme. Um die blassgelben Alkalifeldspäte findet sich häufig ein Ring aus radial verlaufenden und roten graphischen Verwachsungen aus Feldspat und Quarz. Auch reichlich intensiv gelbgrüner Plagioklas ist enthalten.
Abb. 33: Dieser Wiborgit zeigt ebenfalls Merkmale eines Rödö-Rapakiwis. Rapakiwis mit orangebrauner Gesamtfarbe kommen auf Rödö vor, wenn auch untergeordnet. Breite 18 cm.
Abb. 34: Nahaufnahme.
Abb. 35: Rödö-Rapakiwi. Die gelblichen, bis 2 cm großen Feldspat-Ovoide sind heller als die vollrote Grundmasse, die großen und leicht bläulichen Quarze zeigen kaum Spuren einer magmatischen Korrosion. Breite 13 cm.
Abb. 36: Vollroter Rapakiwi mit etwas helleren Alkalifeldspat-Ovoiden und dunklen größeren Quarzen. Breite 13 cm.
Abb. 37: Nahaufnahme. Ob auch dieser Rapakiwi von Rödö stammt, ist unklar. Entscheidend für die Bestimmung ist die Größe der Ovoide (2 cm und mehr), hier bleiben sie deutlich darunter. Ähnliche Rapakiwigranite könnten z. B. auch von Nordingrå stammen.
Abb. 38: Porphyrischer Rapakiwi (Nordingrå-Rapakiwi?). Helle und rechteckige Feldspäte sind von einer roten Grundmasse aus graphischen Quarz-Feldspat-Verwachsungen umgeben, größere hellgraue Quarze sind locker im Gestein verteilt.
Abb. 39: Nahaufnahme. Solche porphyrischen Rapakiwi-Granite sind aus Nordingrå bekannt. Allerdings besteht bei vielen Varianten eine Verwechslungsmöglichkeit mit Rapakiwis vom Åland-Pluton.

Porphyre

Abb. 40: Der Braune Ostsee-Quarzporphyr tritt sehr häufig auf, auch in großen Blöcken. Breite 45 cm.
Abb. 41: Brauner Ostsee-Quarzporphyr, Breite 56 cm.
Abb. 42: Der Rote Ostsee-Quarzporphyr ist bedeutend seltener. Ein besonderer Fund ist dieses große und stark angewitterte Ignimbrit-Geschiebe. Breite 47 cm.
Abb. 43: Nahaufnahme. Durch Verwitterung tritt das eutaxitische Gefüge besonders deutlich hervor. Neben basischen Xenolithen ist ein rundes Fragment eines braunen Quarzporphyrs erkennbar.
Abb. 44: Quarzporphyr, ein Gangporphyr mit graphischen Verwachsungen in der Grundmasse. Herkunft unbekannt.
Abb. 45: Grüner Quarzporphyr mit hellen, teilweise stark magmatisch korrodierten Feldspat-Einsprenglingen, Breite 95 mm. Herkunft unbekannt.
Abb. 46: Auch der Lemland-Granit stammt von Åland, gehört aber nicht in die Suite der Rapakiwi-Gesteine. Er ist etwa 1,8 Ga alt und entstand nach Beendigung der Svekofennischen Gebirgsbildung. Breite 16 cm.

Der nächste Fund zeigt ein ähnliches Gefüge wie der Lemland-Granit, ist aber nicht so grobkörnig; ein Granit mit porphyrischem Gefüge aus blassroten Alkalifeldspat-Zwillingen in einer Grundmasse aus grauem Quarz und rotem Plagioklas.

Abb. 47: Lemland-Granit oder postsvekofennischer Granit? Breite 55 cm.
Abb. 48: Nahaufnahme des Gefüges.

Geschiebe aus Dalarna

Kristallingesteine aus Dalarna finden sich reichlich am Strand von Jastrzębia Góra, neben Bredvad- und Grönklitt-Porphyr auch auffällig viele Geschiebe des Garberg-Granits, während der Siljan-Granit kein einziges Mal angetroffen wurde.

Abb. 49: Älvdalen-Ignimbrit, Breite 21 cm.
Abb. 50: Einsprenglingsreicher Dala-Porphyr, Breite 14 cm.
Abb. 51: Digerberg-Konglomerat, Breite 18 cm.
Abb. 52: Gleicher Stein, Nahaufnahme eines roten Porphyrs mit fluidaler Textur.
Abb. 53: Heden-Porphyr, Breite 20 cm.
Abb. 54: Garberg-Granit, Breite 17 cm.
Abb. 55: Garberg-Granit, Breite 17 cm.
Abb. 56: Garberg-Granit, recht quarzreich, möglicherweise ein Übergang zum Siljan-Granit.

Marmor und Gneise vom Sörmland-Typ

Unter den mittelschwedischen Geschiebetypen treten Marmor bzw. Silikatmarmor („Ophicalcit“) und graue migmatitische Paragneise vom Sörmland-Typ sehr häufig in Erscheinung. Marmorgeschiebe sind besonders häufig, insgesamt 7 Funde wurden dokumentiert, die meisten davon sind Großgeschiebe. Näheres zu Marmor/Silikatmarmor und Sörmland-Gneis.

Abb. 57: Großes Geschiebe eines Silikatmarmors (Ophicalcit), Breite 47 cm.
Abb. 58: Nahaufnahme der nassen Oberfläche. Die grünen Mineralkörner sind forsteritischer (Mg-reicher) und meist serpentinisierter Olivin oder Klinopyroxen (Diopsid). Eine Unterscheidung dieser Minerale von Hand ist nicht möglich.
Abb. 59: Silikatmarmor, Breite 12 cm.
Abb. 60: Silikatmarmor, Breite 21 cm.
Abb. 61: Gleicher Stein, Nahaufnahme.
Abb. 62: Einschlussführender Marmor, Breite 65 cm.
Abb. 63: Detailansicht, Breite 27 cm. Das Gestein enthält gerundete Klasten von Quarz-Feldspat-Gneisen.
Abb. 64: Gebänderter Marmor, Breite 50 cm.
Abb. 65: Grauer migmatitischer Paragneis, Breite 95 cm.
Abb. 66: Grauer migmatitischer Paragneis mit Granat (Sörmland-Gneis). Breite 110 cm.
Abb. 67: Sörmland-Gneis, Breite 14 cm.
Abb. 68: Granatreicher migmatitischer Paragneis („Kinzigit“), Breite 38 cm. Der Fund eines ähnlichen Gesteins wird von BAUSCH & LÜTTIG 2005 diskutiert. Als mögliches Herkunftsgebiet nennen die Autoren SW-Finnland. Allerdings könnte mit ähnlichen Vorkommen in der Ostsee und in Sörmland zu rechnen sein (s. a. Sörmland-Gneis).
Abb. 69: Gleicher Stein, Bildbreite 17 cm. Neben reichlich Granat enthält das Gestein graublauen Cordierit und Sillimanit (silbrig-graue Schlieren zwischen den Granat-Porphyroblasten).

Granite

Granite aus dem Transskandinavischen Magmatitgürtel (TIB) sind regelmäßig, von der Menge her den Rapakiwigesteinen deutlich untergeordnet zu finden. Rote Småland-Granite oder die gleichkörnigen Växjö-Typen kommen nur vereinzelt vor, häufiger sind dunkle porphyrische Varianten, wie aus NE-Småland bekannt sind (u. a. Kinda-Granit). Die aus dem südlichen Småland stammenden Vulkanite wie Paskallvik- und Emarp-Porphyr fehlen, ebenso die hälleflintartigen Småland-Vulkanite.

Abb. 70: Kinda-Granit, Breite 14 cm.
Abb. 71: Kinda-Granit bzw. NE-Småland-Granit.
Abb. 72: „Virbo-Granit“ (Ost-Småland), Breite 28 cm.
Abb. 73: Filipstad-Granit, Breite 37 cm.
Abb. 74: Filipstad-Granit.

Besonders grobkörnige bis riesenkörnige porphyrische Granite lassen sich häufiger beobachten. Sie können zwar keiner näheren Herkunft zugeordnet werden, dürften zum Teil aber aus den nördlichen Gebieten des TIB stammen, z. B. Östergötland. Andere porphyrische Granite besitzen große helle und rechteckige Alkalifeldspat-Einsprenglinge, ihre Herkunft ist gänzlich ungewiß (Abb. 78, 79).

Abb. 75: Grob porphyrischer TIB-Granit mit etwas Blauquarz, Breite 45 cm. Ein einzelnes Ovoid besitzt einen Durchmesser von 56 mm.
Abb. 76: Grob porphyrischer Granit, Breite 55 cm.
Abb. 77: Grob porphyrischer Granit, Breite 30 cm.
Abb. 78: Grob porphyrischer Granit, Breite 30 cm.
Abb. 79: Grob porphyrischer Granit, Grenze zu einem basaltischen Gestein. Breite 43 cm.
Abb. 80: Revsund-Granit. Breite 52 cm.
Abb. 81: Nahaufnahme. Die weißen Alkalifeldspäte bilden teilweise perfekte Karlsbader Zwillinge und weisen eine deutliche perthitische Entmischung auf. Gelblicher Plagioklas und hellgrauer Quarz bilden bedeutend kleinere Körner.
Abb. 82: Weißer porphyrischer Granit, Bildbreite 46 cm.
Abb. 83: Porphyrischer Granit mit einem runden Alkalifeldspat mit zoniertem Aufbau. Breite 17 cm. Der orbicul-ähnliche Feldspat dürfte durch Bewegung in der Schmelze eine runde Gestalt erhalten haben. An seinem Außenrand schieden sich dunkle Minerale ab, anschließend setzte das Kristallwachstum offenbar erneut ein.

An mittelschwedischen Graniten aus Bergslagen und Uppland konnten mehrfach Geschiebe des Vänge- und Stockholm-Granits beobachtet werden, vereinzelt Sala- und Uppsala-Granit. Darüber hinaus gibt es zahlreiche unspezifische graue Granite („Uppland-Granite“) mit vermutlich ähnlichem Herkunftsgebiet (Abb. 93). Die übrigen Bergslagen-Granite dürften als Geschiebe meist nicht eindeutig bestimmbar sein, zu sehr ähneln sich Varianten aus verschiedenen Gebieten, zu unspezifisch sind die allgemeinen Merkmale. Entsprechende Zuordnungen wurden daher mit einem Fragezeichen versehen (Abb. 87 und 94).

Abb. 84: Sala-Granit, Breite 70 cm.
Abb. 85: Nahaufnahme.
Abb. 86: Vänge-Granit, Bildbreite 30 cm.
Abb. 87: Mittelkörniger Granit, Farbe und Zusammensetzung ähnlich dem Vänge-Granit, aber abweichendes Gefüge (Malingsbo-/Enkullen-Granit?). Vgl. auch Ähnlichkeiten zwischen Hedesunda-Granit und Vänge-Granit.
Abb. 88: „Grauer Uppland-Granit“. Solche Granite mit einem ähnlichen Gefüge wie der Sala-Granit, aber ohne Blauquarz, kommen häufig vor. Herkunft dürfte in der Region Uppland/Bergslagen liegen.
Abb. 89: Porphyrischer Granit; Herkunft unbekannt, möglicherweise ebenfalls ein Uppland-Granit (Fellingsbro-Granit?). Breite 25 cm.

Basische Gesteine und Metabasite

Abb. 90: Diabas, Breite 23 cm.
Abb. 91: Grobkörniger Åsby-Ulvö-Dolerit, Breite 48 cm.
Abb. 92: Nahaufnahme der nassen Oberfläche.
Abb. 93: Basaltisches Gestein mit glasglänzender Oberfläche („Basaltähnlicher Ostsee-Diabas“?), nur mikroskopisch bestimmbar, vgl. HESEMANN 1975: 168). Breite 38 cm.
Abb. 94: Gabbroides Gestein mit Xenolith eines porphyrischen Magmatits (Gabbro oder Diorit). Breite 45 cm.
Abb. 95: Porphyroblastischer Amphibolit („Uralitgabbro“), Breite 40 cm.
Abb. 96: Coronitischer Leukogabbro (Olivingabbro). Breite 27 cm.
Abb. 97: Gefüge des Gesteins.
Abb. 98: Nahaufnahme. Kerne und Coronen dieses Gesteinstyps bestehen zumeist aus Mineralgemischen. Der Kern enthält Olivin-Relikte, die Coronen – hier gut erkennbar – faserigen Amphibol („Aktinolith-Sonnen“).
Abb. 99: Ein weiterer coronitischer Olivingabbro, Breite 60 cm.
Abb. 100: Nahaufnahme.

Weitere Metamorphite

Abb. 101: „Gedrit-Leptit“; feinkörniger heller Granofels mit büschelartigen Aggregaten aus feinfaserigem Amphibol, wahrscheinlich Gedrit. Breite 24 cm. (s. a. Ampbibol-porphyroblastische Gneise, Abb. 31-34).
Abb. 102: Gleicher Stein, andere Ansicht.
Abb. 103: Dunkler und doleritischer Metabasit, durchsetzt von einem Netz eines helleren und quarzreichen Magmas (net veins). Breite 50 cm.
Abb. 104: Migmatitischer Gneis; graue Gneispartie (Restit?) mit Staffelbruch. Bildbreite 40 cm.
Abb. 105: Grünstein (Metabasit), durchzogen von pegmatitischen Gängen. Breite 40 cm.
Abb. 106: Fleckenquarzit mit weißen Sillimanit-Granoblasten. Herkunft: wahrscheinlich svekofennisch, nicht unbedingt aus dem Västervik-Gebiet. Breite 20 cm.

Sedimentite

Abb. 107: Einziger Fund eines Kugelsandsteins in Jastrzębia Góra. Breite 12 cm.
Abb. 108: Jotnischer Sandstein mit Entfärbungsflecken, Breite 45 cm.
Abb. 109: Jotnischer Sandstein mit Schrägschichtung, Breite 40 cm.
Abb. 110: Jotnischer Sandstein mit Tongallen, Bildbreite 32 cm.
Abb. 111: Konglomerat-Lage in einem Sandstein (Schichtrichtung um 90 Grad gedreht); Porphyr-, Granit- und Milchquarz-Klasten in einer konglomeratischen Sandstein-Matrix. Breite 15 cm.

Tilluntersuchungen an ausgewählten Lokalitäten in der Umgebung der Danziger Bucht bestätigen als Hauptliefergebiete Åland, Dalarna und Mittelschweden (WOŹNIAK et al 2009). Neben der vorherrschenden Zugrichtung des Eises aus NNW, lokal auch von Osten, wird anhand von Leitgeschiebezählungen für einzelne Tillablagerungen (Unterteilung in roof/base part of the upper till und lower till) ein weiterer Vorstoß von Nordwesten genannt, belegt durch Funde südschwedischer Leitgeschiebe sowie der Orientierung der Längsachsen von Geschieben in den Moränenablagerungen. Für die Zählungen herangezogen wurden im Einzelnen rote und graue Växjö-Granite, rote Småland-Granite und Småland-Porphyre; Vånevik-Granit sowie Beyrichienkalk. Die kursiv gedruckten Geschiebetypen gelten allerdings nicht als Leitgeschiebe, die übrigen konnte ich weder in Jastrzebia Gora, noch in Gdynia finden. „Südlichste“ Vertreter sind Kinda-Granit und Virbo-Granit; sie könnten auch mit einem Eisstrom aus nördlicher Richtung transportiert worden sein.

Abb. 112: Skizze der Transportrichtungen von Gesteinsmaterial in die Danziger Bucht. Schwarzer Pfeil: Hauptrichtung; roter Pfeil: untergeordneter Transport von Westen und Nordwesten; weißer Pfeil: lokal ist auch ein Transport aus östlichen Richtungen belegt. Kartenskizze nach WOŹNIAK et al 2009.

Weiter zu: Geschiebesammeln in Polen, Teil 2: Gdynia

Literatur

BAUSCH WM & LÜTTIG GW 2005 Ein Kinzigit-Geschiebe aus Salzhausen (Lüneburger Heide) – Geschiebekunde aktuell 21 (1): 5-12, 2 Abb., Hamburg / Greifswald.

SOKOŁOWSKI, RJ (Ed.) 2014 Ewolucja środowisk sedymentacyjnych regionu Pobrzeża Kaszubskiego – 126 S, Wydział Oceanografii i Geografii Uniwersytetu Gdańskiego.

WOŹNIAK P, CZUBLA P, WYSIECKA G & DRAPELLA M 2009 Petrographic composition and directional properties of tills on the NW surroundings of the Gdansk Bay, Northern Poland – Geologija 51, S. 59-67. 10.2478/v10056-009-0007-z.