Nur wenige Gefügevarianten unter den Småland-Graniten lassen sich einem näheren Herkunftsgebiet zuordnen. Ein Leitgeschiebe für das mittlere Småland ist der Järeda-Granit (HOLST 1885, VINX 1999). Der grobkörnige Granit besteht im Wesentlichen aus Blauquarz und blassrotem bis graurotem Alkalifeldspat, wobei die Färbung im Handstück weitgehend einheitlich ist. Die Alkalifeldspäte sind von annähernd parallel verlaufenden, mit dunklen Mineralen verfüllten Rissen durchzogen, ein charakteristisches Erkennungsmerkmal des Järeda-Granits. Sie entstanden in Folge einer tektonischen Deformation, die sich auch insgesamt durch ein gerichtetes, manchmal fast gneisartiges Mineralgefüge („Gneisgranit“) äußert.
Alkalifeldspat erreicht eine Größe von 1 cm und ist undeutlich, teils augenförmig konturiert. Neben hellroten Farbtönen kommen auch gelblichbraune und klar rote Granite vor (Abb. 5). Quarz, meist milchig blau, seltener weiß oder hellgrau, bildet schlierige Aggregate und ist stellenweise zuckerkörnig ausgebildet. Plagioklas ist unauffällig und auf der Außenseite von Geschieben weiß. Er findet sich eingewachsen im Kalifeldspat, gelegentlich auch als partieller oder vollständiger Saum um einzelne Alkalifeldspäte (Abb. 6). Risse innerhalb der Alkalifeldspäte können zahlreich oder nur in einzelnen Individuen auftreten. Sie sind mit feinschuppigem Biotit verfüllt (VINX 2016). Teilweise lässt sich ein intensiver Glanz dieser dunklen Minerale auf der Bruchfläche beobachten, was auf zusätzlich enthaltene Hornblende hinweisen könnte. Darüber hinaus findet sich Biotit in kleineren Ansammlungen im Gestein.
Die in SMED & EHLERS 2002 verwendete Bezeichnung Mariannelund-Granit ist missverständlich. Das etwa 500 km2 große Järeda-Massiv liegt 20 km südlich davon, zwischen Järnforsen, Pauliström, Hultsfred und Målilla. Zudem kommen um Mariannelund andere Granite vor. Der Järeda-Granit ist ein häufiger Fund in Geschiebevergesellschaftungen mit viel SE-schwedischem Material. Verwechslungsmöglichkeiten mit anderen Småland-Graniten bestehen nicht. Allerdings treten Granite, in denen Alkalifeldspäte mit mafischen Mineralen gefüllte Risse aufweisen, vereinzelt auch an anderen Lokalitäten auf (Abb. 14).
Geschiebefunde
Probenverzeichnis
S41: Järeda-Granit, Straßenaufschluss an der Straße 47, 7 km E Järeda, 4 km WNW Mållila (57.39972, 15.71805).
S113: Järeda-Granit, Straßenaufschluss an der Strecke Kvillfors-Pauliström; 2,5 km N Kvillfors; T. Langmann leg. (57.42935, 15.49602).
Literatur
HOLST N O 1885 Beskrifning till kartbladet Hvetlanda. SGU. Ser Ab. N. 8. Stockholm.
SMED P & EHLERS 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage 2002.
VINX R 1999 Der Järeda-Granit als Leitgeschiebe: Ein roter Småland-Granit mit spezifischen Merkmalen [Järeda-Granite as Glacial Indicator: A Red Småland Granite with Specific Characteristics] – Archiv für Geschiebekunde 2 (9): 687-696, 3 Abb., 1 Tab., Hamburg.
WIK NG, BERGSTRÖM U, BRUUN A et al 2005 Berggrundskartan Kalmar län – 1:250 000, Sveriges geologiska undersökning serie Ba nr 66.
Das Västervik-Fleckengestein, auch Västervik-Cordierit-Granofels, gilt als schönes und leicht erkennbares Leitgeschiebe für das nordöstliche Småland. Der auffällige Gesteinstyp besitzt eine feinkörnige, graue bis bräunlich-graue Grundmasse und eine kontrastreiche Textur aus runden und dunklen Flecken, die von orangeroten Säumen umgeben sind. Die Flecken erreichen eine Größe von 1-2 cm, die Breite der Säume ist variabel.
Im Västervik-Gebiet findet sich das Gestein in undeformierter und deformierter Ausprägung, mitunter im gleichen Aufschluss. Als Leitgeschiebe eignen sich nur die undeformierten Varianten, ideale Ausbildungen gehören eher zu den seltenen Geschiebefunden. Darüber hinaus gilt es, bei der Bestimmung von Geschieben alle unten genannte Merkmale zu überprüfen. Auf keinen Fall genügt es, ein Geschiebe allein aufgrund oranger oder roter Färbung und dunkler Flecken dem Västervik-Gebiet zuzuordnen.
Mehrere Exkursionen nach Schweden haben gezeigt, dass Fleckengesteine auch an anderen Orten vorkommen und denen aus Västervik erstaunlich ähneln können (Abb. 37-49). Die Beschreibung des Leitgeschiebes ist daher entsprechend eng gefasst. Fleckengesteine mit Deformationserscheinungen, gneisartigem Gefügen oder deutlich körnigen Grundmassen scheiden von vornherein aus. Abb. 1 und 2 zeigen eine Probe des Gesteinstyps, wie er nach derzeitigem Kenntnisstand nur im Västervik-Gebiet vorkommt.
Als Leitgeschiebe geeignet sind Fleckengesteine mit folgende Eigenschaften:
Die Grundmasse ist feinkörnig und von grauer bis bräunlich-grauer, selten grünlich-grauer Farbe. Mit der Lupe sind einzelne Mineralkörner nicht oder nur mit Mühe unterscheidbar. Fleckengesteine mit gröber körnigen Grundmassen, in denen z. B. ein Quarz-Feldspat-Gefüge deutlich erkennbar ist, scheiden als Leitgeschiebe aus.
Die orangefarbenen und feinkörnigen Säume können wenige Millimeter schmal sein (Abb. 1); in diesem Fall ist mehr graue Grundmasse zu erkennen. Sie können auch so breit sein, dass das Gestein vollständig aus orangefarbener Grundmasse zu bestehen scheint (Abb. 30). Diese sieht dann oft etwas „wolkig“ aus durch wechselnde Anteile dunkler Minerale. Zwischen den Extremen (schmale Säume – orangefarbene „Grundmasse“) existieren alle möglichen Übergänge. Charakteristisch sind orangefarbene bis orangerote Tönungen. Auch Farbvarianten mit roter, rotbrauner und roségrauer (Abb. 32) Tönung sind bekannt, treten aber seltener auf. Ob sie ebenfalls als Leitgeschiebe geeignet sind, ist nicht sicher.
Die dunklen Flecken sind rund bis elliptisch geformt und besitzen Durchmesser von mindestens 0,5 cm, gewöhnlich von 1 bis 2 cm. Idealerweise sind die Flecken einer Probe annähernd gleich groß (Abb. 1 und 30) und ihre Ränder heben sich kontrastreich von der Saumzone ab. Anteil und Verteilung der Flecken sind variabel, von lockerer bis dichter, von regelloser bis einigermaßen gleichmäßiger Verteilung. Die Flecken sollten überwiegend voneinander getrennt liegen, jedenfalls keine zusammenhängenden Ketten bilden. Sie können auch unregelmäßige Umrisse (Abb. 8 und 9) oder z. B. eine sternförmige Gestalt (Abb. 34) aufweisen.
Fehlen von Deformationserscheinungen: als Leitgeschiebe geeignete Västervik-Fleckengesteine sind Granofelse mit einem richtungslosen Mineralgefüge, die unter weitgehend statischen Metamorphose-Bedingungen entstanden. Fleckengesteine mit Gneisgefüge, erkennbar an der Gleichrichtung plättchenförmiger, dunkler Minerale wie Biotit, kommen sowohl im Västervik-Gebiet als auch an anderen Orten vor und sind der Herkunft nach nicht bestimmbar. In diesem Zusammenhang sollte auf die Bezeichnung „Västervik-Fleckengneis“ (Zandstra 1999:191-193, Smed 2002:133) verzichtet werden.
1.1. Mineralbestand
Die Minerale sind wegen ihrer Feinkörnigkeit von Hand nicht bestimmbar. Lediglich in den dunklen Flecken erkennt man manchmal Blättchen von Biotit; auf der angewitterten Außenseite von Geschieben können diese Bereiche schwarzgrün gefärbt sein. Nach VINX 2016 besteht die Grundmasse aus Quarz, Feldspat und Biotit. Die Flecken sind stark durch Biotit pigmentierter Cordierit, der sich meist einer direkten Beobachtung entzieht, gelegentlich aber blau gefärbt sein kann (Abb. 25). Die feinkörnige orangefarbene Saumzone enthält Feldspat und Quarz, Biotit tritt hier stark zurück oder fehlt vollständig. Optional enthaltener weißer Sillimanit ist an seiner feinfaserigen Ausbildung erkennbar (Abb. 11 und 57).
1.2. Entstehung
Vor etwa 1,85 – 1,88 Milliarden Jahren wurden in einem Flussdelta große Mengen von Sand abgelagert. Dazwischen gab es Flächen, die auch tonhaltige Sedimente enthielten. Während der nachfolgenden svekofennischen Gebirgsbildung entstanden nach Versenkung der sandigen Ablagerungen unter mäßigem Druck und hohen Temperaturen Quarzite, aus den aluminiumreichen sandig-tonigen Sedimenten die schwarz-orange oder schwarz-grau gefärbten Fleckengesteine. Die Bildung der Cordierit-Flecken (Granoblasten) erfolgte im festen Zustand durch Stoffwanderung. Zu ihrer Bildung wurden Eisen und Magnesium aus der näheren Umgebung „abgezogen“, z. B. aus Biotit, der daher in den orangefarbenen Saumzonen fehlt. Die Neubildung von Mineralen in Gestalt feinkörniger Granoblasten („Flecken“) ist typisch für kontaktmetamorphe Vorgänge, z. B. in der Nähe aufsteigender Granitplutone.
1.3. Anstehendproben
Die nächsten Bilder zeigen Aufschlüsse, Anstehendproben und Nahgeschiebe des Västervik-Fleckengesteins. Es existieren zahlreiche kleine und größere Vorkommen, von nur wenigen Dezimetern breiten Einschaltungen (Abb. 11, 23) bis zu einigen Hundert Metern Mächtigkeit. Im Gebiet zwischen Västervik und Gamleby wurden mittlerweile alle größeren, von GAVELIN 1984 kartierten Vorkommen von Metasedimenten mit einer Fleckentextur besucht (s. Abb. 3), im Einzelnen: Östra Skälö (Lok. 3), nördlich vom See Rummen (Lok. 16), Stadtgebiet Gamleby und Kasimirsborg (Lok. 1), Schäre Grönö (Lok. 17; nicht Mjödö und Krokö). Lediglich östlich vom See Hjorten konnten keine Fleckengesteine anstehend beobachtet werden. Eine Liste mit Koordinaten der Lokalitäten findet sich am Ende des Textes.
In der Karte hellblau markierte Bereiche sind die Metasedimente der Västervik-Formation. Ganz überwiegend handelt es sich um Quarzite, das Västervik-Fleckengestein kommt innerhalb dieser Signatur nur untergeordnet vor.
Probe eines Fleckengesteins aus einer dezimeterbreiten Partie in einem Cordierit-Sillimanit-Quarzit („Fleckenquarzit“), wiederum eingeschaltet in eine meterbreite Sequenz aus grauen Fleckengesteinen (Östra Skälö, Lokalität 3, s. a. Abb. 26-29).
Die nächsten Bilder (Abb. 12-17) entstanden im Gebiet nördlich des Sees Rummen (Lokalität 16), wo das undeformierte Västervik-Fleckengestein großflächig ansteht. Neben den orangefarbenen Partien mit Flecken sind graue Partien ohne Flecken erkennbar. Sie weisen auf eine Bewegung weicherer Sedimente vor der Metamorphose hin (vgl. SULTAN & PLINK-BJORKLUND 2006).
Abb. 18: Anstehendprobe vom See Rummen (Lokalität 16), Aufnahme unter Wasser.Abb. 19: Nahaufnahme.
Es folgen Bilder von Varianten, die nicht als Leitgeschiebe geeignet sind, weil sie entweder körnige Grundmassen besitzen, ein deformiertes Gefüge zeigen oder Fleckengesteinen aus anderen Regionen Schwedens ähneln.
Abb. 20: Fleckenbildung in einem orangeroten Metasediment. Teilweise sind die Sediment-Wechsellagen noch erkennbar. Schäre Grönö (Lokalität 17), Bildbreite 60 cm.Abb. 21: Probe mit körniger Grundmasse. In der roten bis hellgrauen Grundmasse lassen sich stellenweise Quarz, Feldspat und Glimmer mit der Lupe klar unterscheiden. Die Flecken sind unregelmäßig verteilt und unterschiedlich groß. Loser Stein von einer Halde mit frischem Bauschutt südöstlich von Västervik (Lokalität 4, Pepparängsvägen).Abb. 22: Leicht deformiertes rotbraunes Fleckengestein mit kleinen und länglichen Flecken (Lokalität 5).Abb. 23: Dunkle Flecken mit hellem Saum in einem Gneis. Fleckengesteine mit Gneisgefüge sind nicht als Leitgeschiebe geeignet, da sie auch an anderen Orten vorkommen. Die kräftig rote Ader, die das Gestein durchzieht, ist granitischer Zusammensetzung und später entstanden. Anstehender Felsen am Übergang zur Schäre Borgö (Lokalität 6).Abb. 24: Probe von der Insel Borgö (Lokalität 6) mit polierter Schnittfläche. Die welligen Streifen der Grundmasse sind wahrscheinlich Reste einer sedimentären Schichtung. Sie weisen ein Gneisgefüge bzw. eine Foliation auf, erkennbar an der Ausrichtung dunkler Glimmerminerale (s. Abb. 25).Abb. 25: Flecken und Saumzone sind etwas körniger als die gneisige Grundmasse. Ausnahmsweise tritt hier bläulicher Cordierit in Erscheinung. So hübsch das Gestein aussieht, die Variante ist nicht als Leitgeschiebe geeignet, da es ähnliche Typen im Gebiet von Kolmården gibt (s. u.)!
Auch graue Fleckengesteine kommen im Västervik-Gebiet vor. Ob diese Varianten als Leitgeschiebe geeignet sind, ist unsicher. T. Langmann berichtet von Nahgeschieben ähnlicher Fleckengesteine (hellgraue Granofelse mit dunklen Flecken) bei Mästocka, östlich von Halmstad in SW-Schweden.
Abb. 26: Graues Fleckengestein, Aufschluss auf Östra Skälö (Lokalität 3), Bildbreite 80 cm.Abb. 27: Handstück aus obigem Aufschluss (Lokalität 3) mit feinkörniger, hell- bis dunkelgrauer Grundmasse. Die Flecken weisen schmale helle Säume auf, sind überwiegend elliptisch geformt und in Reihen gruppiert.Abb. 28: Graues Metasediment mit lagenweise entwickelter Fleckentextur; Straßenaufschluss etwa hundert Meter westlich von Lokalität 3, Bildbreite ca. 60 cm.Abb. 29: Anstehendprobe aus dem Waldstück, etwa 100 m südlich von Lokalität 3. Die Probe zeigt diffuse graue Flecken und enthält zusätzlich weißen Sillimanit; Aufnahme unter Wasser.
1.4. Nahgeschiebe aus dem Västervik-Gebiet
Fleckengesteine finden sich im Västervik-Gebiet in großer Anzahl und Vielfalt auch als Nahgeschiebe. Abb. 30, 31 und 33 zeigen als Leitgeschiebe geeignete Varianten. Die übrigen Funde sind eher als „Exoten“ anzusehen.
Abb. 30: Geschiebe mit breiten orangefarbenen Saumzonen, die sich „wolkig“ in der graubraunen Grundmasse verlieren (Lokalität 7).Abb. 31: Nahgeschiebe aus einem fossilien Strandwall an der Straße nach Händelöp (Lokalität 8), Aufnahme unter Wasser.Abb. 32: Geschiebe mit roségrauer Grundmasse und unregelmäßig begrenzten Flecken (Lokalität 8). Solche Farbvarianten sind im Västervik-Gebiet nur selten zu finden und wahrscheinlich nicht als Leitgeschiebe geeignet.Abb. 33: Graues Fleckengestein mit gleichmäßig verteilten Flecken. Teilweise sind unvollständige und kräftig orangefarbene Säume erkennbar. Der Stein ist etwa 20 cm breit und liegt auf dem Parkplatz des ICA-Supermarkts in Västervik (Lokalität 9).Abb. 34: Ausgefallene Variante mit diffus sternförmigen Flecken und hellen Säumen in einer grauen Grundmasse, trocken fotografiert (Lokalität 9).Abb. 35: Undeutlich konturierte Flecken mit orangefarbenen Säumen in einer grauen und quarzitischen Grundmasse (Lokalität 9).
2. Doppelgänger und ähnliche Fleckengesteine in Schweden
Mehrere Reisen nach Schweden lieferten Erkenntnisse über „Doppelgänger“ bzw. dem Västervik-Fleckengestein ähnliche Gesteine. Sie wurden bisher an drei Lokalitäten gefunden (s. Karte Abb. 36). Man kann davon ausgehen, dass es weitere Vorkommen gibt, denn ihre Entdeckung war eher zufällig. Die Beobachtungen an diesen Gesteinen führten zur Einsicht, dass nur ein kleiner Teil der Västervik-Fleckengesteine als Leitgeschiebe geeignet sein kann, nämlich die feinkörnigen und weitgehend undeformierten Varianten.
Abb. 36: Übersichtskarte der Fundorte in Südschweden. Lokalitäten 1-9, 16-17: Västervik und Umgebung, Lokalitäten 10, 11: Almesåkra-Formation, Lokalitäten 12-14: Kolmården und Umgebung, Lokalität 15: Kiesgrube südlich Linköping.
2.1. Fleckengesteine aus der Almesåkra-Formation
In einer Kiesgrube westlich von Sävsjö (Lokalität 10) fanden sich in großer Anzahl Gesteine der sedimentären Almesåkra-Formation sowie Dolerite als Nahgeschiebe. Die Almesåkra-Formation ist in etwa so alt wie der jotnische Sandstein. Die jüngeren Dolerite drangen in die Sedimentgesteine ein und veränderten diese im Kontaktbereich (Kontaktmetamorphose). Vor allem aus tonhaltigen Sedimentiten könnten die in Abb. 37-39 gezeigten Fleckengesteine entstanden sein. Sie sind eindeutig sedimentären Ursprungs und treten an der Fundlokalität sehr häufig auf, neben Hornfelsen. Nach einer pers. Mitteilung von S. Madsen (rapakivi.dk) könnten die Fleckengesteine aber auch aus dem nördlich gelegenen Oskarshamn-Jönköping-Gürtel (OJB) stammen, wo Metasedimente in der Nachbarschaft von Granit-Intrusionen zu beobachten sind.
Abb. 37: Fleckige Kontaktmetamorphite, Nahgeschiebe aus einer Kiesgrube bei Sävsjö (Lokalität 10). Die meisten Funde Gesteine aus der Kiesgrube ähneln den beiden oberen Varianten. Orangefarbene, auf den ersten Blick dem Västervik-Fleckengestein ähnliche Gesteine treten nur vereinzelt auf.Abb. 38: Fleckiger Metamorphit im Detail, Aufnahme unter Wasser.
Schaut man genauer hin, erkennt man die Unterschiede: 1. recht kleine Flecken bis 5 mm; 2. farblich und texturell inhomogene Grundmasse, in der runde bis eckige und klastische Quarzkörner zu sehen sind, die das sedimentäre Ausgangsgestein noch deutlich erkennen lassen; 3. stellenweise viel Hellglimmer. Klastische Quarze und Hellglimmer kommen im Västervik-Fleckengestein nicht vor.
Eine erschreckende Ähnlichkeit mit dem Västervik-Fleckengestein weist ein Geschiebe vom See Vallsjön auf (Abb. 39). T. Langmann fand dort mehrere vergleichbare Exemplare, die sich in Textur und Gefüge von den Fleckengesteinen der nahe gelegenen Kiesgrube (Lokalität 10) unterscheiden. Hier liegen die Unterschiede zum Västervik-Fleckengestein in den Details: 1. die Grundmasse ist fleckig inhomogen und 2. von Hellglimmer durchsetzt; 3. das Gestein, auch die Flecken, sind teilweise von feinen Rissen durchzogen. Vergleichbare Fleckengesteine könnten in Geschiebegesellschaften mit viel Material aus dem westlichen Småland anzutreffen sein, dürften zu den seltenen Funden gehören. Die Unterscheidung vom Västervik-Fleckengestein setzt eine genaue Untersuchung voraus, im Zweifelsfalle ist sie vielleicht auch gar nicht möglich.
Abb. 39: Fleckengestein vom See Vallsjön (Lokalität 11), Foto und Probe: T. Langmann.
2.2. Gebiet um Kolmården im nordwestlichen Östergötland
Fleckengesteine treten weiterhin in einem größeren Gebiet etwa 100 km nördlich von Västervik auf. Mehrheitlich sind dies Gneise mit Flecken, die ein ausgesprochen körniges Mineralgefüge besitzen. Zwei Exkursionen in das Gebiet von Kolmården lieferten eine Vielzahl an Nahgeschieben sowie einige Anstehendproben der variantenreichen Gesteine. Die roten Gneise (mit oder ohne Flecken) von Kolmården und Umgebung sind auffällige Erscheinungen inmitten der gewöhnlich grauen svekofennischen Metasedimente und bekamen von schwedischen Geologen einen eigenen Namen: Gneise vom „Marmorbruket-Typ“ (WIKSTRÖM 1979).
Abb. 40: Orangeroter Gneis mit sehr großen dunklen Flecken. Der Gesteinstyp ist im Gebiet von Kolmården häufig anzutreffen. Fundort: Strand des Campingplatzes in Kolmården (Lokalität 12), Breite 31 cm.Abb. 41: Die Vergrößerung zeigt ein deutlich körniges Mineralgefüge. Die dunklen Flecken sind sogar grobkörniger als die Grundmasse und bestehen aus dunklen und hellen Mineralen. Eine sichere Mineralbestimmung von Hand war nicht möglich (etwa Cordierit + Andalusit? + Biotit + Quarz).
Abb. 42 zeigt einen anstehenden Fleckengneis am Bahnhof Stävsjö bei Kolmården (Lokalität 14). Die länglichen Flecken mit orangefarbenen Säumen folgen der Foliation und bestehen aus Biotit und einem bläulich-grauen Mineral, wahrscheinlich Cordierit.
Abb. 42: Rot-grauer Fleckengneis, Bahnhof Stävsjö (Lokalität 14), Aufnahme unter Wasser.
Am Strand des Campingplatzes in Kolmården (Lokalität 12) lassen sich Gerölle roter bis orangefarbener Fleckengesteine in großer Zahl aufsammeln. Insgesamt überwiegen Gneisgefüge, körnige Quarz-Feldspat-Grundmassen und diffuse Flecken-Texturen. Regelhaft entwickelte oder durchgehend runde bis ovale Flecken wie im Västervik-Fleckengestein finden sich kaum. Das Mineralgefüge der Flecken ist gewöhnlich recht grobkörnig, nur selten feinkörnig, dunkel und homogen. Abb. 43-46 und 48 zeigt einige Geröllfunde im Detail.
Abb. 43: Brauner, feinkörniger Gneis mit einer gröber kristallisierten Partie aus dunklen Flecken mit orangefarbenen Säumen.Abb. 44: Detailansicht eines orange-grauen Gneises, hier ausnahmsweise mit feinkörnigen Flecken.Abb. 45: Seltener sind solche Fleckengesteine mit vielen, diffus umrissenen Flecken in einer orangefarbenen und körnigen Grundmasse. Die Flecken berühren sich, teilweise gehen sie ineinander über oder sind ausgelängt.Abb. 46: Übergang einer grauen und quarzitischen Partie mit Sedimentstrukturen (unten) in ein gelblich-graues Fleckengestein.Abb. 47: Ein Teil der bei Kolmården anstehenden Gneise zeichnet sich durch dezimeterlange, elliptisch geformte und grob kristallisierte Flecken mit orangeroten Säumen aus. Anstehender Fels in Snörom bei Kolmården (Lokalität 13), Bildbreite 26 cm.Abb. 48: Wenige Hundert Meter Luftlinie südlich vom Anstehenden findet man den gleichen Gesteinstyp als Strandgeröll wieder (Lokalität 12). Bildbreite etwa 25 cm.
2.3. Kiesgrube südlich Linköping
Aus einer Kiesgrube südlich von Linköping (Lokalität 15) stammt ein Einzelfund mit diffusen Flecken. Auch in diesem Gebiet muss es weiter nördlich ein Vorkommen mit Fleckengesteinen geben, die Ähnlichkeiten mit Varianten aus dem Västervik-Gebiet aufweisen.
Abb. 49: Fleckengestein, Kiesgrube südlich von Linköping (Lokalität 15).
3. Geschiebefunde von Fleckengesteinen
Es folgen Bilder von Kiesgruben- und Strandfunden aus Deutschland und Holland. Als Leitgeschiebe eignen sich nach derzeitigem Kenntnisstand die undeformierten und feinkörnigen Varianten der Abbildungen 50-61. Das Västervik-Fleckengestein ist ein nicht gerade häufiger, in Gesellschaft südostschwedischer Gesteine aber regelmäßiger Geschiebefund.
Abb. 50: Västervik-Fleckengestein; feinkörnige und graue Grundmasse mit dunklen Flecken, umgeben von orangefarbenen Säumen mit diffusen Rändern; keine Deformationserscheinungen. Fundort: Kiesgrube Horstfelde südlich von Berlin; Aufnahme unter Wasser.Abb. 51: Västervik-Fleckengestein, Kiesgrube Teschendorf bei Oranienburg, Breite 13,5 cm.Abb. 52: Polierte SchnittflächeAbb. 53: Nahaufnahme
Abb. 54 zeigt ein großes Geschiebe von etwa 40 cm Breite. Die dunklen Cordierit-Flecken verwittern leichter als die Saumzone und die Grundmasse, daher besitzen Kiesgrubenfunde manchmal eine Oberfläche mit löchrigen Vertiefungen. Fundort: Kiesgrube Fresdorfer Heide bei Potsdam; Sammlung G. Engelhardt.
Abb. 54: Breite ca. 40 cm.
Abb. 55: Bildbreite 15 cm
Abb. 56: Bildbreite 15 cm
Abb. 57: Västervik-Fleckengestein mit reichlich weißem Sillimanit; polierte Schnittfläche, Fjordmosen, Insel Als (Dänemark), leg. T. Brückner.Abb. 58: NahaufnahmeAbb. 59: Dieser schöne Fund mit rund polierter Oberfläche zeigt Flecken mit schmalen Säumen, die ihrerseits klar von der grauen Grundmasse abgegrenzt sind.Abb. 60: Detailaufnahme; die Kristallaggregate innerhalb des weißen Sillimanits, links oberhalb der Bildmitte, könnten Andalusit sein.Abb. 61: Västervik-Fleckengestein mit grünlich-grauer Grundmasse.Abb. 62: Fleckengesteine mit unterschiedlichen Gefügemerkmalen. Fundort: Nienhagen bei Rostock (ex coll. D. Somann, Rostock), Aufnahme unter Wasser.
Das Exemplar unten in der Mitte ist deutlich körnig und der Stein unten rechts besitzt ein Gneisgefüge. Wirklich feinkörnig und undeformiert, damit ein Västervik-Fleckengestein, ist nur der Fund ganz oben und unten links.
Abb. 63: Gelber Exot aus obiger Zusammenstellung mit grauer, feinkörniger Grundmasse und gröber körnig kristallisierte Flecken. Das Gestein stammt aus einem unbekannten Vorkommen.Abb. 64: Das Geschiebe in der Mitte der Zusammenstellung (Abb. 62) besitzt als einziges eine dichte Grundmasse sowie orangerote Säume. Aufgrund der diffusen Flecken-Textur bleibt die Herkunft aber ungewiss.Abb. 65: Rotgraues Fleckengestein, Kiesgrube Hohensaaten, Breite 9 cm.Abb. 66: Rotgraues Fleckengestein, wahrscheinlich Västervik-Fleckengestein (vgl. Abb. 33). Kiesgrube Althüttendorf, Breite 18 cm.Abb. 67: Graues Fleckengestein, gekritztes Geschiebe. Der Fund ähnelt den Fleckengesteinen von Östra Skälö (s. Abb. 27). Bislang ist aber unklar, ob ähnliche Gesteine auch außerhalb des Västervik-Gebiets vorkommen. Fundort: Kiesgrube Horstfelde, südlich von Berlin; Aufnahme unter Wasser.Abb. 68: Graues Fleckengestein mit undeformierten Flecken und deformierter Partie im gleichen Stein. Kiesgrube Niederlehme, Aufnahme unter Wasser.
Ein bemerkenswerter Geschiebefund ist der Kontakt eines grauen Cordierit-Fleckengesteins mit einem kleinkörnigen roten Granit (Abb. 69-72). Es enthält auch mit feinfaserigem Sillimanit gefüllte Risse (Abb. 72).
Abb. 70: Breite 18 cm
Abb. 71: Nahaufnahme des Kontaktes
Abb. 72: Risse mit Sillimanit
Gelegentlich finden sich auch Mischgefüge mit größeren dunklen Cordierit- und kleinen weißen Sillimanit-Flecken (Fleckengestein/Fleckenquarzit). Der Gesteinstyp ist bisher nur aus dem Västervik-Gebiet bekannt.
Abb. 73: Cordierit-Sillimanit-Granofels, polierte Schnittfläche, Kiesgrube Horstfelde.Abb. 74: Hellbrauner Cordierit-Sillimanit-Granofels, Geschiebe von Rerik, Breite 14 cm, leg. T. Brückner.Abb. 75: Polierte SchnittflächeAbb. 76: Nahaufnahme
Kein Leitgeschiebe sind Gneisgefüge wie in Abb. 77, mit diffusen Flecken oder Schlieren und roten bzw. farbigen Säumen. Der Fund ähnelt sowohl Fleckengneisen aus dem Gebiet von Kolmården (z. B. Abb. 43) als auch dem Västervik-„Fleckengneis“ in Abb. 24. Die bläulichen Partien innerhalb der dunklen Flecken dürften Cordierit sein.
Abb. 77: Fleckengestein mit blauem Cordierit; Hohenfelde östlich von Kiel, Aufnahme unter Wasser.
Die letzten zwei Funde weisen einige Übereinstimmungen mit den Fleckengesteinen vom Kolmården-Typ auf (vgl. Abb. 40-41). Die bläulichgrauen Flecken sind im Vergleich zur Matrix deutlich gröber kristallisiert und enthalten neben Glimmer wahrscheinlich auch Cordierit.
Abb. 78: Fleckengestein, feinkörniger roter Gneis mit gröber kristallisierten Flecken. Fundort: Klütz-Höved, Slg. E. Figaj (Sprötze).Abb. 79: Nahaufnahme.Abb. 80: Rotgraues Metasediment mit körnigen Flecken; Aufnahme unter Wasser, Kiesgrube Hoppegarten.Abb. 81: Nahaufnahme.
4. Verzeichnis der Lokalitäten mit Koordinaten
Lok. 1: Västervik-Fleckengestein, anstehend Felsen an der Küste bei Casimirsborg (Privatgelände!), (57.874100, 16.435327). Lok. 2: Västervik-Fleckengestein, anstehend Lokalität „Ekobutik“, ehem. „Tjust Motell“ an der E4 (57.868141, 16.414805). Lok. 3: Västervik-Fleckengestein: orangefarbene und graue Variante, anstehend Felsen am Hafen von Östra Skälö (57.58986, 16.63201). Lok. 4: Västervik-Fleckengestein, in der Nähe anstehend Halde aus aktuellen Strassenbaumaßnahmen; Pepparängsvägen S Västervik; Fundstelle erloschen (57.722189, 16.673201). Lok. 5: Västervik-Fleckengestein, anstehend Straßenaufschluss an der 135 westlich Gamleby (ca. 57.91458, 16.30901). Lok. 6: Västervik-Fleckengestein (gneisig), anstehend Felsen am Übergang zur Schäre Borgö (57.724874, 16.699695). Lok. 7: Geschiebe, Fahrradweg in Västervik Jenny, nahe der Autorennbahn (Motorbana), (57.768130, 16.585394). Lok. 8: Geschiebe Fossiler Strandwall an der Strasse nach Händelöp (57.718765, 16.671451; Parkplatz). Lok. 9: Geschiebe Geschiebe als Einfassung auf dem Parkplatz des ICA-Stormarknat Västervik (57.767546, 16.595644). Lok. 10: Geschiebe Kiesgrube 3 km westlich Sävsjö (57.391392, 14.616904). Lok. 11: Geschiebe Uferbereich des Vallsjön (ca. 57.406615, 14.742535). Lok. 12: Geschiebe Rollsteinstrand am Campingplatz Kolmården (58.65718, 16.40712). Lok. 13: Fleckengneis, anstehend Snörum bei Kolmården, temporärer Aufschluss (58.66476, 16.41711). Lok. 14: Fleckengneis, anstehend 200 m östlich Stavsjö-Station (58.702737, 16.442577). Lok. 15: Fleckengestein, Geschiebe Kiesgrube südlich Linköping (58.329789, 15.631448). Lok. 16: Fleckengestein, anstehend Großflächige Aufschlüsse am Wegesrand am Nordufer des Rummen, NW Gamleby (57.937173, 16.285627). Lok. 17: Västervik-Fleckengestein (gneisig), anstehend Schäre Grönö (57.714025, 16.712411).
5. Literatur
BERGMAN S, STEPHENS MB, ANDERSSON J, KATHOL B & BERGMAN T 2012 Sveriges berggrund, skala 1:1 miljon. Sveriges geologiska undersökning K 423.
GAVELIN S 1984 The Västervik Area in South-eastern Sweden – SGU Ser. Ba No. 32, 172 S, Uppsala.
LOBERG B 1963 The Formation of a Flecky Gneiss and Similar Phenomena in Relation to the Migmatite and Vein Gneiss Problem – Geologiska Föreningen i Stockholm Förhandlingar, 85:1, 3-109, Stockholm.
SMED P & EHLERS 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage 2002.
SULTAN L & PLINK-BJORKLUND P 2006 Depositional environments at a Palaeoproterozoic continental margin, Västervik Basin, SE Sweden – Precambrian Research 145 (2006) S. 243-271, Elsevier. DOI: 10.1016/j.precamres.2005.12.005.
VINX R 2016 Steine an deutschen Küsten; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.).
WIKSTRÖM A 1979 Beskrivning till berggrundskartan 1 : 50000 – Katrineholm SO – Sveriges Geologiska Undersökning (Af) 123: 101 S., 44 Abb., 14 Tab., 3 Ktn. in 1 Mappe, Stockholm.
ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., (1+)118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc. (Brill).
Abb. 1: Grauvioletter Västervik-Quarzit, Nahgeschiebe vom See Hjorten (Lokalität 16).
Quarzite sind ein weit verbreiteter Gesteinstyp im nordischen Grundgebirge. Das größte zusammenhängende Vorkommen in Südschweden liegt in der Umgebung der Stadt Västervik. Einige dieser Västervik-Quarzite weisen ein besonderes, nur aus diesem Vorkommen bekanntes Erscheinungsbild auf. Insbesondere der rotviolette Västervik-Quarzit sowie eine bläuliche Spielart mit roten Flecken können als Leitgeschiebe verwendet werden. Västervik-Quarzite treten mitunter gehäuft in glazialen Ablagerungen mit viel südostschwedischem Gesteinsmaterial auf, wo sie bedeutend häufiger anzutreffen sind als das Västervik-Fleckengestein oder die Västervik-Fleckenquarzite.
Die Quarzite des Västervik-Gebietes sind hell- bis dunkelgrau, rötlich-grau, grauviolett, rot, blau und selten auch grünlich gefärbt. Auf der geologischen Übersichtskarte Abb. 3 belegen sie die hellblaue Signatur, zusammen mit anderen Metasedimenten wie den Fleckenquarziten oder dem Västervik-Fleckengestein. Eine weite Verbreitung besitzen hellgraue und glimmerführende (Abb. 5-6), im südlichen Teil des Västervik-Gebiets auch dunkelgraue Quarzite. Sedimentstrukturen wie Schrägschichtung (Abb. 6) sind häufig zu beobachten, manchmal sogar Rippelmarken. Diese Strukturen konnten sich erhalten, weil die Metamorphose der Västervik-Quarzite weitgehend unter statischen Bedingungen erfolgte, ohne Beteiligung von gerichtetem Druck. Abbildungen weiterer Quarzit-Varianten zeigt der Exkursionsbericht Västervik-Gebiet (Abb. 7-19). Gute Kandidaten für ein Leitgeschiebe sind der grauviolette Västervik-Quarzit (Abb. 8-10) sowie blaue Quarzite mit rötlichen Flecken (Abb. 11-14). Auffällig, wahrscheinlich aber weniger spezifisch für das Västervik-Gebiet sind rotfleckige helle Quarzite (Abb. 7), blaue Quarzite mit rotem Feldspat (Abb. 16-18) sowie die weit verbreiteten grauen Quarzite mit gut erhaltenen Sedimentstrukturen wie Schichtung oder Schrägschichtung (z. B. Abb. 6).
Abb. 3: Geologische Übersichtskarte des Västervik-Gebiets. Die hellblaue Signatur markiert die Verbreitung der 1,8-1,9 Ga alten Metasedimente der Västervik-Formation. Im Süden und Westen grenzen sie an Granite des Transskandinavischen Magmatitgürtels (TIB), im Norden an ältere Gesteine. Veränderte Kartenskizze aus BERGMAN 2012 (https://apps.sgu.se/geolagret/).Abb. 4: Straßenaufschluss im Västervik-Quarzit bei Almvik (Lokalität 2), Bildbreite ca. 2,50 m.Abb. 5: Hellgrauer Quarzit mit frischer Bruchfläche. Loser Stein aus einem Straßenaufschluss westlich von Gamleby (Lokalität 8).Abb. 6: Hellgrauer Quarzit mit Sedimentstrukturen (Lokalität 9).Abb. 7: Heller und rotfleckiger Quarzit (Lokalität 9, Bildbreite 35 cm).
Diese Quarzit-Variante kommt nach bisherigem Kenntnisstand nur im Västervik-Gebiet vor (VINX 2016). K.D. Meyer berücksichtigt das Gestein in Geschiebezählungen (z. B. MEYER 1994: 27). In den Bestimmungsbüchern von HESEMANN 1975, ZANDSTRA 1988, 1999 und SMED & EHLERS 2002 fehlt eine Beschreibung.
Abb. 9: Nahaufnahme unter Wasser.
Ein näherer Blick zeigt, dass der grauviolette farbliche Gesamteindruck auf rote und blaue Farbanteile zurückzuführen ist. Rote Anteile sind kleine Feldspäte, die nur bei starker Vergrößerung sichtbar werden. Blauquarz ist nicht immer direkt sichtbar. Als Nebengemengteil treten feinschuppig glänzender Glimmer, vereinzelt auch etwas größere Feldspäte auf, die an reflektierenden Spaltflächen erkennbar sein können. Sedimentäre Schichtung, auch Schrägschichtung, deutet sich mitunter durch farbliche Inhomogenitäten im cm- bis mm-Bereich an. Abb. 8-10 ist eine Anstehendprobe, Abb. 1 ein Nahgeschiebe aus dem Västervik-Gebiet.
Abb. 10: Nahaufnahme (nass) des Gefüges mit rötlichen und graublauen Partien.
Der grauviolette Västervik-Quarzit findet sich mitunter gehäuft in Gemeinschaft von Geschieben aus Nordost-Småland, z. B. Granite vom Kinda- oder Flivik-Typ, Vånevik-Granit, Augengneise vom Loftahammar-Typ oder Småland-Vulkanite. Gleichzeitig wird man hier auch auf massige blaue Quarzite oder graue Quarzite mit Sedimentstrukturen treffen, die mit einiger Wahrscheinlichkeit ebenfalls aus dem Västervik-Gebiet stammen, aber keine Leitgeschiebe sind.
1.2. Rotfleckiger Västervik-Quarzit mit Blauquarz
Eine auffällige Erscheinung und Spielart des violettgrauen Västervik-Quarzits sind Quarzite mit deutlich voneinander getrennt wahrnehmbaren roten und blauen Farbanteilen. Auf zwerfsteenweb.nl wird das Gestein als „Västervik-Quarzit vom Typ Gunnebo“ bezeichnet.
Abb. 11: Rotfleckiger Västervik-Quarzit mit Blauquarz (Steinbruch Hjortkullen, Lokalität 1). Nasse Bruchfläche, gleiche Probe wie in Abb. 2.Abb. 12: Nahaufnahme des Gefüges, nass fotografiert. Die rotfleckigen Bereiche enthalten vermehrt roten Feldspat.Abb. 13: Rotfleckiger Västervik-Quarzit, Aufnahme unter Wasser. Auf der abgerollten Geschiebeoberfläche weist der Quarz nur einen leichten Blaustich auf. Nahgeschiebe vom Ortseingang Västervik, Lokalität 7.Abb. 14: Nahaufnahme des Gefüges.
1.3. Blauer Västervik-Quarzit mit rotem Feldspat
Intensiv blauer Quarzit wurde an mehreren Lokalitäten im südöstlichen Teil des Västervik-Gebietes gefunden (Lokalität 4 und Schäre Gränö). Abb. 22 zeigt blauen Quarzit im Verband mit dunklen Gneisen und roten und pegmatitartigen Partien. Die Entstehung dieser Gesteine erfolgte offenbar unter Beteiligung von gerichtetem Druck und Teilaufschmelzung. Vergleichbare Gesteine könnten auch an anderen Lokalitäten innerhalb des svekofennischen Grundgebirges auftreten. Der auffällige Gesteinstyp ist daher wohl eher als lokale Besonderheit anzusehen, aber kein Leitgeschiebe.
Abb. 15: Blauer Quarzit mit dunklen Gneisen und roten und pegmatitartigen Bereichen. Bildbreite etwa 1 m; Bruchmaterial aus dem Straßenbau, Pepparängsvägen, südöstlich von Västervik (Lokalität 4).Abb. 16: Probe aus dem gleichen Aufschluss, trocken fotografiert.Abb. 17: Die Nahaufnahme zeigt trübe und glasig erscheinende Partie, ein kompakter und massiger Quarzit ohne erkennbare Einzelkörner.Abb. 18: Unregelmäßig im Gestein verteilt sind Ansammlungen mit größeren Körnern aus rotem Feldspat (oben links) und dunkle Minerale, u. a. Glimmer.
2. Geschiebefunde
Abb. 19: Grauviolette Västervik-Quarzite, Aufnahme unter Wasser; Geschiebefunde aus der Kiesgrube Arendsee (Brandenburg).
Alle Geschiebefunde in Abb. 19 zeigen eine grauviolette Gesamtfarbe, rötliches Pigment, Dunkelglimmer und winzige rote Feldspäte. Im Quarzit unten links ist eine sedimentäre Schichtung aus dunklen und hellen Lagen erkennbar.
Abb. 20: Grauvioletter-Västervik-Quarzit, gleicher Stein wie in Abb. 23 oben.Abb. 21: Västervik-Quarzit mit sedimentärer Schichtung und etwas Blauquarz. Kiesgrube Niederlehme, Aufnahme unter Wasser.Abb. 22: Grauvioletter Västervik-Quarzit, Breite 13 cm, Kiesgrube Niederlehme.
Die in Abb. 7 gezeigte hell cremefarbene Quarzit-Variante mit roten Hämatit-Flecken fällt auch als Geschiebe ins Auge, ist aber ein eher seltener Fund (Abb. 23-25). Ob dieser Quarzit-Typ nur im Västervik-Gebiet vorkommt, bleibt zunächst offen.
Abb. 23: Rotfleckiger Quarzit, polierte Schnittfläche, Fundort: Nienhagen, ex. coll D. Somann (Rostock).Abb. 24: Rotfleckiger Quarzit; Pritzen, ehem. Tagebau Greifenhain (Niederlausitz), Breite 35 cm.Abb. 25: Grauer Quarzit mit Sedimentstruktur (Schichtung) und roten Flecken; Kiesgrube Horstfelde, Aufnahme unter Wasser.Abb. 26: Blauer Quarzit mit hellrotem Feldspat und Glimmer, Aufnahme unter Wasser. Der Geschiebefund stimmt mit Anstehendproben aus dem Västervik-Gebiet überein (Abb. 15-18). Ob solche Quarzite nur dort vorkommen, bleibt zunächst offen. Fundort: Kiesgrube Arendsee in Brandenburg, Aufnahme unter Wasser.Abb. 27: Bläulicher Quarzit mit rötlichen Pigmenten; Kiesgrube Hoppegarten bei Müncheberg, Breite 26 cm.
Ebenfalls kein Leitgeschiebe, wenngleich in Gesellschaft mit ostschwedischen Geschieben ein häufiger Fund, sind graue Quarzite mit gut erhaltener Schichtung.
Abb. 28: Grauer Quarzit mit sedimentärer Schichtung, Breite 45 cm, Kiesgrube Penkun (Vorpommern).Abb. 29: Grauer Quarzit mit Schrägschichtung; Steinitz, Findlingslager am Tagebau Welzow-Süd (Niederlausitz), Breite 34 cm.
3. Verwechslungsmöglichkeiten
Eine Verwechslungsmöglichkeit des grauvioletten Västervik-Quarzits besteht mit verkieselten Sandsteinen, wie sie z. B. aus der Almesåkra-Formation bekannt und in ähnlicher Form in anderen jotnischen Sedimentfolgen zu erwarten sind. Ebene Bruchflächen sowie ein Gefüge aus einzelnen Quarzkörnern unterscheidet sie von Quarziten. Dunkelglimmer findet sich bestenfalls in unansehnlichen, durch Erosion umgelagerten (detritischen) Körnern in den Zwickeln zwischen den Quarzkörnern.
Die rosafarbenen bis violetten norwegischen Quarzite, wie sie vermehrt z. B. an der Küste Jütlands zu finden sind (Rudolph 2017:216) weisen nicht das feine rote, manchmal in Flecken verteilte Hämatit-Pigment der Västervik-Quarzite auf.
Abb. 31: Übersichtskarte1 der beprobten Lokalitäten.
Lok. 1: rötlich-blauer Quarzit, Steinbruch Hjortkullen (57.795577, 16.530566). Lok. 2: violettgrauer Västervik-Quarzit und weitere Farbvarianten Almvik; Strassen-aufschluss an der E4 (57.831278, 16.443528). Lok. 4: blaue Quarzite; Västervik-Fleckengestein Halde mit Bruchmaterial aus dem Straßenbau; Pepparängsvägen, südöstlich von Västervik; Gesteine in der Nähe anstehend; Fundstelle erloschen (57.722189, 16.673201). Lok. 7: Geschiebe, u.a. Västervik-Quarzit Fahrradweg in Västervik Jenny, nahe der Autorennbahn Motorbana (57.768130, 16.585394). Lok. 8: heller Västervik-Quarzit Straßenaufschluss an der 135, kurz hinter Gamleby (57.91547, 16.36795). Lok. 9: div. Västervik-Quarzite, u.a. rotfleckiger Quarzit. Straßenaufschluss an der 135; vom Parkplatz Richtung Westen gehen (57.91458, 16.30901; Parkplatz). Lok. 16: grauvioletter Västervik-Quarzit Nahgeschiebe vom See Hjorten (57.793429, 16.527008).
5. Literatur
Gavelin S 1983 The Västervik Area in South-eastern Sweden – SGU Ser. Ba No. 32, 172 S, Uppsala.
Meyer K-D 1994 Exkursionsführer zur Quartärgeologie des nordöstlichen Nieder- sachsen – Geschiebekunde aktuell, Sonderheft 4, 36 S., 6 Taf., 9 Abb., 7 Tab., Hamburg, April 1994.
Rudolph F 2017 Das große Buch der Strandsteine – Die 300 häufigsten Steine an Nord- und Ostsee – 320 S. Wachholtz-Verlag – Murmann Publichers, Kiel/Hamburg, ISBN 978-3-529-5467-9.
Vinx R 2016 Steine an deutschen Küsten; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.).
Abb. 1: Kartenskizze aller Fundpunkte, Angabe von Probenummer und Koordinate im Text in der Form (S44; 57.10998, 15.21005). Karte verändert nach www.sgu.se.
2.11. Vena
In einem kleinen Steinbruch 2 km NE von Vena (S28; etwa 57.53024, 15.99391) treten Vulkanite und Granitoide des TIB nebeneinander auf: rote und hälleflintartige Vulkanite, feinkörnige rhyolithische Mischgesteine, kleinkörnige Granitoide und ein bunter und porphyrischer Småland-Granit mit reichlich Titanit. Scharfe Grenzen zwischen Vulkaniten und Granit sind nicht erkennbar. Die Vulkanite dürften im Kontaktbereich des aufsteigenden Granits verändert worden sein, z. B. durch Umkristallisation unter Mitwirkung zirkulierender Fluide.
Abb. 2: Kleiner Steinbruch bei Vena.Abb. 3: Hälleflintartiger roter Vulkanit ohne Einsprenglinge.Abb. 4: Feinkörniges Mischgestein, wahrscheinlich ein umkristallisierter Vulkanit.Abb. 5: Gleicher Stein, Nahaufnahme unter Wasser. Das Mischgestein enthält undeutlich begrenzte Bereiche mit dunklen, wahrscheinlich sekundär gebildeten Mineralen.Abb. 6: Kleinkörniger Granitoid mit größeren Quarz- und Biotit-Aggregaten.Abb. 7: Stark alterierter, von Chlorit und Epidot durchsetzter Granitoid; Bildbreite 20 cm.Abb. 8: Mit violettem Fluorit und hellgrünem Epidot gefüllte Kluft im Granit.Abb. 9: Handstück des anstehenden porphyrischen Småland-Granits aus rotem Alkalifeldspat, Blauquarz und grünem Plagioklas. Aufnahme unter Wasser.Abb. 10: Nahaufnahme. Vergrünte Plagioklase, hellgrüne Ausscheidungen von Epidot und chloritisierte Glimmerminerale sprechen für eine starke hydrothermale Überprägung. Der Granit enthält reichlich Titanit in gelben, teils perfekt keilförmig ausgebildeten Kristallen.Abb. 11: Gelbe Titanitkristalle auf der nassen Oberfläche.
2.12. Kisa
Bereits in Östergötland liegt ein Vulkanit-Gebiet, aufgeschlossen in einem Steinbruch wenige Kilometer südlich von Kisa (S141; 57.940431, 15.665029). Weiter nördlich gibt es nur noch vereinzelte kleine und isolierte Vorkommen, dort überwiegen die Granitoide des TIB. Entsprechend ihrer Lage im Grenzbereich zu den TIB-Graniten erscheinen die Vulkanite an dieser Lokalität stark verändert. Alle Proben besitzen deutlich körnige („zuckerkörnige“) Grundmassen, ein Hinweis auf eine Rekristallisation, wahrscheinlich durch die in der Nähe aufgestiegenen Granite. Auch tektonische Gleitflächen (Harnische) lassen sich im Steinbruch beobachten.
Neben einem weitgehend homogenen und rotbraunen Vulkanit finden sich gestreifte violettgraue sowie grün- und rotschlierige Gesteine, die eher wie feinkörnige Gneise aussehen und eine gewisse Ähnlichkeit mit den Leptiten Mittelschwedens aufweisen. Solche feinkörnigen Metavulkanite kommen auch immer wieder, wenn auch untergeordnet, in den weiter südlich gelegenen Vulkanit-Gebieten vor.
Abb. 12: Steinbruch südlich von Kisa.Abb. 13: Rotbrauner Metavulkanit mit körniger Grundmasse, Aufnahme unter Wasser.Abb. 14: grauvioletter und gestreifter Metavulkanit.
2.13. Vulkanite in NW-Småland
Auf die zwischen Jönköping, Eksjö und Tranås gelegenen Vulkanitgebiete im nordwestlichen Småland soll nur kurz eingegangen werden, ein separater Exkursionsbericht folgt an anderer Stelle. Beobachtungen an Nahgeschieben ergaben, dass auch hier hälleflintartige und einsprenglingsarme Vulkanite zu finden sind und denen aus anderen Gebieten ähneln. Besonderheiten sind das gehäufte Auftreten von:
einsprenglingsreichen Quarzporphyren mit dichter Grundmasse (z. B. Abb. 15 und 19; vgl. auch Probe aus Skurugata in Teil 1, Abb. 47) und
einsprenglingsreichen bunten Gangporphyren und Granitporphyren (Abb. 17, 20-22 und 25).
Anstehendproben waren nur schwer zu gewinnen, die wenigen zugänglichen Aufschlüsse lieferten ganz überwiegend einsprenglingsarme Vulkanite (Hälleflinta).
Abb. 15: Einsprenglingsreicher fluidaler Vulkanit, Nahgeschiebe aus einer Kiesgrube NW Eksjö (S126; 57.69015, 14.93066).Abb. 16: Vulkanite und Gangporphyre, Nahgeschiebe aus der gleichen Kiesgrube NW Eksjö.Abb. 17: Bunter Gangporphyr (Kiesgrube NW Eksjö).Abb. 18: Brauner Rhyolith, Aufnahme unter Wasser (Nahgeschiebe, Kiesgrube NW Eksjö).Abb. 19: Einsprenglingsreicher rotbrauner Vulkanit (Quarzporphyr), Nahgeschiebe aus der Kiesgrube Nödavägen (S128; 57.74888, 15.16735).
Abb. 20-22: Beispiele von Gangporphyren und einem Granitporphyr; Nahgeschiebe aus der Kiesgrube Nödavägen.
Abb. 20
Abb. 21
Abb. 22
Abb. 23: Nahgeschiebe von Vulkaniten aus der Kiesgrube Älghult (östlich Eksjö, S127; 57.68151, 15.01129), Aufnahme unter Wasser.Abb. 24: Rotgrauer Quarzporphyr aus Älghult, Aufnahme unter Wasser.Abb. 25: Bunter porphyrischer Granit (Älghult, nasse Schnittfläche).
Aus dem Vulkanitgebiet bei Tranås stammt die folgende Probe. Eine „fluidale Hälleflinta“ ist auf skan-kristallin.de abgebildet.
Abb. 26: Brauner und inhomogener, mit Pyrit imprägnierter Vulkanit. Anstehendprobe aus einem Steinbruch bei Tranås, Aufnahme unter Wasser.
2.14. Väderstad-Konglomerat
Das „Väderstad-Konglomerat“ ist ein polymiktes Konglomerat mit Småland-Vulkaniten. Es entstand bei der Abtragung der Vulkanite und Granite, dürfte aber nur wenig jünger sein als die enthaltenen Lithoklasten. Weitere Vorkommen solcher TIB-Konglomerate sind kaum bekannt, zumal es sich um Klein- und Kleinstvorkommen handeln dürfte, die bisher nicht entdeckt wurden oder unter quartärer Bedeckung liegen. Das vorgestellte Gestein kommt nicht als Leitgeschiebe in Betracht.
Der weitläufige Aufschluss, beschrieben von BRUUN et al 1995:14, liegt in einem Wald in der Nähe von Väderstad. Gute Geländefotos waren kaum möglich, weil das Gestein stark mit Flechten bewachsen ist. Zudem erschwerte eine engständige Klüftung die Beprobung.
Abb. 27: Aufschluss des Väderstad-Konglomerats (S220; 58.294655, 14.935558).Abb. 28: Väderstad-Konglomerat, Bildbreite 25 cm.Abb. 29: Dicht gepackte Lithoklasten im Väderstad-Konglomerat, Bildbreite ca. 20 cm.Abb. 30: Väderstad-Konglomerat mit frischer Bruchfläche, Aufnahme unter Wasser. Beim Formatieren entstand leider die Bruchlinie in der Mitte der Probe.
Das klastengestützte Konglomerat enthält Lithoklasten von Vulkaniten, Granitoiden und basaltischen Gesteinen bis 20 cm Größe und mehr. In kleinkörnigeren und matrixgestützten Lagen erreichen die Lithoklasten eine Größe von 1-3 cm. Die Matrix besteht aus klastischen Quarzen und Feldspäten sowie kleinen Vulkanit-Fragmenten. Streifen dunkler Minerale (Glimmer) weisen auf eine Foliation und leichte metamorphe Überprägung des Gesteins hin. Die eckigen bis schwach gerundeten Lithoklasten erscheinen insgesamt etwas eingeregelt, für sich genommen aber weitgehend undeformiert. Als Lithoklasten treten auf: meist bräunlich-rote Vulkanite mit oder ohne Blauquarz; kleinkörnige granitische Klasten von hell rötlicher bis bräunlicher Farbe, gelegentlich mit Blauquarz, darunter aplitähnliche Gesteine und wohl auch Subvulkanite; vereinzelt schwarze bis schwarzgrüne und dichte basaltähnliche Gesteine.
Abb. 31: Väderstad-Konglomerat, Aufnahme unter Wasser.
An der Lokalität fand sich auch ein feinkörniger Aschentuff (oder Tuffit). Braune Flecken auf der angewitterten hellen Oberfläche folgen in ihrer Anordnung der Schichtung. Auf der Bruchfläche ist das Gestein blassrötlich gefärbt. Die regelhaft verteilten schwarzen Glimmer-Butzen könnten ein Hinweis auf eine sekundäre Entstehung sein. Grüne, orangefarbene und violette Flecken dürften Ausscheidungen von Pigmenten sein (z. B. Fe-Verbindungen), wie sie häufiger in Aschentuffen auftreten. Auch einige größere Vulkanoklasten sind erkennbar, teilweise diffus, teilweise klar von der Matrix abgegrenzt und dann von einem schmalen gebleichten Hof umgeben.
Das nördlichste der vier großen Vulkanitgebiete, von NORDENSKJÖLD 1893 als „Sjögelö-Gebiet“ bezeichnet, beheimatet eine Reihe von Gesteinstypen, die im übrigen Småland nicht oder nur untergeordnet vorkommen. Dazu gehören die einsprenglingsreichen und weitgehend quarzfreien Porphyre vom Lönneberga-Typ, der Nymåla-Porphyr, Gangporphyre vom Typ Emarp und Sjögelö, Granitporphyre vom Typ Funghult, Ignimbrite (Typ Idekulla und Mariannelund), Aschentuffe mit akkretionären Lapilli („vulkanische Pisolithe“), Lapillituffe („Lönneberga-Lapillituff“) sowie die in der älteren Literatur als „Kugelhälleflinta“ und „Eutaxite“ bezeichneten Vulkanite. Im Süden des Sjögelö-Gebietes treten vermehrt pyroklastische Gesteine in Erscheinung. Die als Leitgeschiebe geeigneten Vulkanite werden an anderer Stelle beschrieben. Im Folgenden geht es um die Vielfalt und Wechselhaftigkeit der vulkanischen Gesteine in diesem begrenzten Gebiet, in dem fließende Übergänge zwischen den Gefügen die Regel sind. Das Kartenblatt Vetlanda NO (PERSSON 1986) verzeichnet alle besuchten Lokalitäten. Teilweise wurden sie auch der dazu gehörigen Kartenbeschreibung entnommen (PERSSON 1985).
Ein Straßenanschnitt in Silverdalen schließt auf etwa 100 m Länge eine braune bis rötlichbraune vulkanische Brekzie auf, die von Einschaltungen eines feinkörnigen grünlichen Tuffs begleitet wird (S138; 57.548333 15.726389). Die Brekzie ist ein saurer Lapillituff, eine pyroklastische Ablagerung aus einer Episode explosiven Vulkanismus (PERSSON 1973).
Abb. 36: Straßenaufschluss in Silverdalen. Links ein Vulkanit mit engständiger Klüftung, rechts eine ebene Kluft- oder Scherfläche.Abb. 37: Lapillituff, in unterschiedliche Richtungen einfallende Klüftung im dm-Maßstab.Abb. 38: Anstehender Lapillituff, nass fotografierte Bruchfläche, Bildbreite 10 cm. In einer gelblichbraunen Grundmasse liegen graue bis rotbraune und überwiegend scharfkantige Vulkanitklasten.Abb. 39: Probe mit frischer Bruchfläche, Aufnahme unter Wasser.
Das Gestein enthält rote, braune und graue Vulkanit-Klasten, die etwas eingeregelt erscheinen, aber nicht deformiert sind. Die hellbraune Matrix sowie einige der kantigen Vulkanit-Klasten enthalten wenige und mm-große weiße Feldspat-Einsprenglinge. Eine nachträgliche Umkristallisation des Gesteins ist offenbar nicht erfolgt, da scharfe Grenzen zwischen Vulkanoklasten und einbettender Tuffmatrix erkennbar sind. Nach PERSSON 1973 stammen alle Gesteinsbestandteile aus dem gleichen Magma, ältere vulkanische Gesteine dürften nur akzessorisch enthalten sein.
Abb. 40: Gleiche Probe, Nahaufnahme.
3.1.1. Lönneberga-Lapillituff
Ähnliche Lapillituffe kommen auch in der weiteren Umgebung vor, in einem begrenzten Gebiet zwischen Lönneberga und Karlstorp (weitere Proben Abb. 56-57, 89 und auf skan-kristallin.de). Der Gesteinstyp ist nach VINX 2017:168 als Leitgeschiebe geeignet („Lönneberga-Lapillituff“). Der Autor präzisiert die Beschreibungen der sog. „Småland-Agglomeratlava“ in der älteren Literatur. Agglomerate sind nach heutiger Nomenklatur (LEMAITRE et al 2002) pyroklastische Gesteine mit >75% Bomben (=Vulkanoklasten über 64 mm Größe). Im genannten Gebiet finden sich jedoch ganz überwiegend Lapillituffe, also Aschentuffe mit 2-64 mm großen Vulkanoklasten (Lapilli).
Kennzeichnend für den Lönneberga-Lapillituff ist eine sehr helle, manchmal fast weiße Verwitterungsrinde, auf der das brekziöse Gefüge deutlicher hervortritt. Auf der Bruchfläche ist die Matrix braun bis rotbraun gefärbt und enthält einige weiße und mm-große Feldspat-Einsprenglinge. Scharfkantige dunkelgraue und braune bis rotbraune Vulkanit-Fragmente sind locker im Gestein verteilt und machen einen Anteil von etwa 10% aus. Das Gefüge ist insgesamt kaum oder nur mäßig deformiert. Ähnliche, aber deutlich deformierte Vulkanite mit linsenförmigen Vulkanoklasten sind z. B. aus dem Gebiet um Oskarshamn bekannt.
Die nächsten drei Bilder zeigen Geschiebefunde aus Brandenburg.
Abb. 41: Lönneberga-Lapillituff, Geschiebefund aus der Kiesgrube Ruhlsdorf bei Bernau (Brandenburg).Abb. 42: Lönneberga-Lapillituff, leicht deformiert. Kiesgrube Teschendorf bei Oranienburg.Abb. 43: Deutlich deformierter Lapillituff, genauere Herkunft nicht bestimmbar. Kiesgrube Niederlehme bei Berlin.
Im Sjögelö-Gebiet finden sich Übergänge von pyroklastischen Brekzien mit scharfkantigen Vulkanoklasten zu fluidal-brekziösen Vulkaniten mit undeutlich konturierten, teils ausgelängt erscheinenden Vulkanoklasten und schließlich „eutaxitischen“ (schlierig-fluidalen) Vulkaniten. Beispiele hierfür und eine Erläuterung des Begriffes „Eutaxit“ finden sich im Abschnitt 3.6.
3.2. Lönneberga – gerodete Waldfläche
Einige hundert Meter südlich vom Straßenaufschluss in Silverdalen bietet eine gerodete Waldfläche Gelegenheit zum Sammeln von Nahgeschieben sowie kantigem, aus der unmittelbaren Umgebung stammendem Gesteinsschutt (S24; 57.54628, 15.72610). Die Bestimmung der Gesteine ist meist nur auf der Bruchfläche möglich, fast alle sind von einer hellen Verwitterungsrinde überzogen. Im Einzelfall können Gefügemerkmale auch auf der Außenseite deutlicher hervortreten.
Abb. 44: Gerodete Waldfläche an der Straße von Silverdalen nach Haddarp.
Erst nach mehreren Besuchen konnte das Anstehende eines Aschentuffs mit akkretionären Lapilli („vulkanischer Pisolith“) lokalisiert werden, ausgehend von der etwas vagen Angabe in PERSSON 1985:46 („700 m SE von Lönneberga Station“). Der Ausbiss misst gerade mal einen Quadratmeter. Mit etwas Glück findet sich der Gesteinstyp auch als loser Stein (s. ausführliche Beschreibung des Gesteinstyps).
Abb. 45: Aschentuff mit akkretionären Lapilli, loser Stein.
Weiterhin steht an der Lokalität ein grünlichbrauner und geschichteter Aschentuff an.
Abb. 46: Aschentuff, trocken fotografiert. Das Gestein enthält keine Feldspat-Einsprenglinge, wenige rötliche Vulkanitfragmente (Lapilli) sowie einige Quarzaggregate, die auch sekundär entstanden sein können (vgl. Abb. 51).
Weitere Funde auf der Rodung sind Porphyre vom Lönneberga-Typ, dichte und hälleflintartige Vulkanite mit wenigen Einsprenglingen, vulkanische Brekzien, ein Ignimbrit mit eutaxitischem Gefüge (Nahgeschiebe) sowie vereinzelt Diabase mit Plagioklas-Megakristallen.
Abb. 47: Vulkanische Brekzie mit Fluidaltextur und eingeregelten, meist gerundeten Vulkanoklasten (Ignimbrit?).Abb. 48: Ignimbrit mit eutaxitischem Gefüge, Aufnahme der angewitterten Oberfläche unter Wasser; s. a. Abschnitt Småland-Ignimbrite.Abb. 49: Hälleflintartiger Vulkanit mit scherbiger Bruchfläche.Abb. 50: Graubrauner Vulkanit mit wenig Einsprenglingen und dunklen Schlieren.Abb. 51: Nahaufnahme unter Wasser. Die undeutlich konturierten Quarzaggregate sehen nicht wie Einsprenglinge aus und könnten auch sekundär, während der Entglasung entstanden sein.Abb. 52: Fluidaler Vulkanit mit ovalem Einschluss eines Porphyrs, angewitterte Außenseite.Abb. 53: Quarzfreier Porphyr vom Nymåla-Typ mit eckigen Feldspat-Einsprenglingen.Abb. 54: Plagioklas-Megakristalle bis 6 cm Größe in einem grünlichen Diabas, Bildbreite ca. 17 cm.
Der Größenunterschied zwischen den Plagioklas-Megakristallen und dem kleinkörnigen Diabas lässt vermuten, dass die Plagioklase keine Einsprenglinge sind, die allmählich im basischen Diabas-Magma heranwuchsen, sondern mitgerissene Xenokristalle aus einer Kumulationszone innerhalb der Magmakammer.
3.3. Lönneberga Kyrka
Auf einer weiteren Rodung, an der Piste von Lönneberga nach Lönneberga Kyrka (schlechte Wegstrecke), fanden sich Porphyre vom Lönneberga-Typ, eine „Kugelhälleflinta“, deformierte Porphyre vom Nymåla-Typ sowie ähnliche Lapillituffe wie im Straßenaufschluss in Silverdalen (S25; 57.54588, 15.71006).
Abb. 55: Porphyr vom Lönneberga-Typ, Aufnahme unter Wasser.Abb. 56: Lapillituff, ähnlich dem Typ in Silverdalen, aber mit geringerem Anteil roter Vulkanoklasten; Aufnahme unter Wasser.Abb. 57: Nahaufnahme, nass fotografiert; zahlreiche grüne Epidot-Adern durchsetzen die Grundmasse.Abb. 58: „Kugelhälleflinta“, loser Stein. Der außergewöhnliche Vulkanit-Typ wird in einem gesonderten Artikel vorgestellt.Abb. 59: Lönneberga Kyrka.
Westlich von Lönneberga Kyrka erhebt sich der Lammerhatten. An seinem Fuße stehen kleinkörnige und dichte Aschentuffe (Hälleflinta) in Wechsellagerung an (S132; 57.53512, 15.68672).
Abb. 60: Kleinkörniger Lammerhatten-Tuff, Aufnahme unter Wasser.Abb. 61: Nahaufnahme der nassen Oberfläche. Die hell- und rotbraunen Vulkanit-Fragmente sind mehrheitlich kleiner als 2 mm (=Aschentuff), Lapilli (über 6 mm) nur vereinzelt enthalten.
3.4. Kiesgrube Silverdalen
In einer Kiesgrube bei Silverdalen trifft man überwiegend auf gerundete Steine, zumeist wohl Nahgeschiebe (S199; 57.52934, 15.77246). Ein Ignimbrit-Geschiebe mit eutaxitischem Gefüge wird im Abschnitt Småland-Ignimbrite gezeigt.
Abb. 62: Kiesgrube bei Silverdalen.Abb. 63: Einsprenglingsreiche Quarzporphyre sind eher untypisch für dieses Gebiet und wurden anstehend bisher nicht beobachtet. Breite 11 cm.Abb. 64: Tektonische Brekzie, Breite 60 cm. Der Gesteinstyp fand sich mehrfach und stammt wahrscheinlich aus der näheren Umgebung.Abb. 65: Gleicher Stein. Die Risse in diesem Vulkanit, entstanden beim Zerbrechen des Gesteins durch tektonische Einwirkung in der oberen Erdkruste, wurden mit Ausscheidungen von Milchquarz aus hydrothermalen Lösungen verfüllt. Dabei kam es auch zu einer starken Alteration des Wirtgesteins.
Granitoide des TIB sind im Vergleich zu den Vulkaniten in der Grube deutlich in der Überzahl, darunter grobkörnige rote Alkalifelspatgranite und blassrote, teils quarzarme Granite bis Quarzmonzonite.
Abb. 66: Grobkörniger roter Småland-Granit.
Abb. 67: Blassroter TIB-Granit
Abb. 68: Blassroter TIB-Granit
3.5. Weg zum See Linden
Auf der Piste zur Nordspitze des Sees Linden, im Gebiet des Nymåla- und Lönneberga-Porphyrs, gelangt man zu einem Kiesschurf mit großen Findlingen (S133; 57.53736, 15.63313). Neben Nahgeschieben des Nymåla-Porphyrs fanden sich auch zahlreiche basische Gesteine des TIB, von denen zumindest ein Teil aus dem größeren und unmittelbar nördlich gelegenen Gabbro-Gebiet stammen dürfte (s. Karte Abb. 35).
Abb. 69: Diabas mit Plagioklas-Megakristallen, Breite 80 cm, Plagioklase bis 5 cm Länge (vgl. Abb. 54).Abb. 70: Mittelkörniger Gabbro (S133e), Abschlag von einem größeren Block.Abb. 71: Nahaufnahme. Das Gestein reagiert deutlich auf einen Handmagneten und besteht im Wesentlichen aus Plagioklas (weiß, teilweise transparent) und Pyroxen (teilweise umgewandelt in Amphibol).Abb. 72: Doleritischer Metabasit, deutlich magnetisch, mit größeren und runden Amphibol-Granoblasten. Breite 40 cm.Abb. 73: Handstück vom gleichen Stein, frische Bruchfläche (S133f). Die Kristallflächen der großen und metamorph entstandenen Amphibol-Aggregate spiegeln bei geeignetem Einfallen das Licht (links unten).Abb. 74: An der Nordspitze vom See Linden.
Ein weiteres mafisches bis intermediäres Gestein konnte wenige Kilometer entfernt in einem Straßenanschnitt beprobt werden (NW Sjöarp; S 137; 57.56108, 15.62788), laut geologischem Kartenblatt Vetlanda NV ein „Quarzdiorit bis Gabbro“. Mineralbestand und Erscheinungsbild sprechen für einen Diorit, eine sichere Bestimmung und Unterscheidung von einem Gabbro ist aber erst nach mikroskopischer Ermittlung des Anorthitanteils im Plagioklas möglich.
Abb. 75: Mittelkörniger Plutonit (Diorit?) aus transparentem bis trübem Plagioklas und schwarzem Amphibol sowie etwas Erz. Eine Epidotader durchzieht den oberen Teil der Probe.Abb. 76: Nahaufnahme unter Wasser. Aus der Masse aus grauem Plagioklas und schwarzem Amphibol stechen einige weiße Feldspäte hervor, bei denen es sich ebenfalls um Plagioklas handelt. Alkalifeldspat und Quarz wurden nicht beobachtet.
3.6. Umgebung von Karlstorp („Kolsjön-Vulkanite“)
Das Kartenblatt Vetlanda NO (PERSSON 1985) weist mehrere Gebiete mit sauren Ignimbriten aus, so auch westlich von Karlstorp und NW vom See Linden (gelbe und gestrichelte Signatur in Abb. 35). Den Vulkaniten ist ihre ignimbritische Entstehung in der Regel aber nicht anzusehen, weil ihnen das eutaxitische Gefüge fehlt. Man findet Übergänge von pyroklastischen Brekzien mit scharfkantigen Vulkanoklasten (ähnlich Abb. 38) zu fluidal-brekziösen Vulkaniten mit undeutlich konturierten, teils ausgelängt erscheinenden Vulkanoklasten und schließlich fluidal-schlierigen („eutaxitischen“) Vulkaniten.
Die Texturen dieser Vulkanite lassen sich mitunter schwer deuten. Kantige Vulkanit-Fragmente können aus dem gleichen Magma stammen und innerhalb eines Lavaflusses brekziiert worden sein. Vulkanite mit runden und kantigen Vulkanoklasten werden von NORDENSKJÖLD 1893: 81 als „Eutaxitbreccien“, die fluidalen Vulkanite vom Kolsjön in älterer Literatur als „Eutaxite“ bezeichnet. Eutaxit ist ein Begriff aus der Frühzeit der Vulkanologie (FRITSCH & REISS 1868) für Vulkanite mit einer lagig-schlierigen, gefleckten oder einer Fließtextur. Dabei kann es sich um Vulkanoklasten handeln, die zum Zeitpunkt der Entstehung noch verformbar waren. Unterschiedliche Tönungen der Grundmasse können aber auch auf schwankende Anteile von umgewandeltem Gesteinsglas zurückführen sein (WIMMENAUER 1985:175). Die Veränderung primärer vulkanischer Texturen wie Sphärolithe, Perlite, Lithophysen oder eutaxitischem Gefüge durch Entglasung und/oder leichte metamorphe Überprägung führt oftmals zu einer durchgreifenden Veränderung von Gefüge, Textur und Mineralbestand, sogar zu einer Segregation und Neubildung von Mineralen. Die Bezeichnung „Eutaxit“ ist daher wenig spezifisch, zudem veraltet, und sollte nicht mehr verwendet werden. Gebräuchlich – und nicht damit zu verwechseln – ist nur noch der Begriff „eutaxitisches Gefüge“ als spezifisches Merkmal einiger Ignimbrite.
Der Leitwert dieser fluidalen, in der Geschiebeliteratur als „Kolsjön-Vulkanite“ bezeichneten Gesteine (ZANDSTRA 1988:310, HESEMANN 1975:200-201) sowie des grauen Lapillituffs von Gåskullen bei Vimmerby dürfte zweifelhaft sein. Die große Wechselhaftigkeit der Vulkanite auf kleinstem Raum erschwert das Herausstellen von „Normaltypen“. Eine weitere Zusammenstellung von Proben der Kolsjön-Vulkanite, u. a. eines durch Mn-haltigen Epidot violett gefärbten Porphyrs, findet sich auf skan-kristallin.
Abb. 77: Aufschluss am Straßenabzweig zur Badestelle am Kolsjön.Abb. 78: Im dm-Maßstab sind farbliche Übergänge innerhalb der Grundmasse erkennbar. Der dichte Vulkanit enthält kleine weiße Feldspat-Einsprenglinge und teils kantige, teils unscharf begrenzte dunklere Vulkanoklasten. Bildbreite etwa 30 cm.Abb. 79: Handstück mit angewitterter Oberfläche aus dem gleichen Aufschluss, nass fotografiert (S195; 57.52114, 15.52706).
Die Ränder der teils kantigen dunkelbraunen Fragmente grenzen sich undeutlich von der Grundmasse ab. Es dürfte sich um bereits erstarrte, von der heißen Lava aufgenommene und randlich angeschmolzene Vulkanoklasten handeln. Ob die kleineren runden und dunklen Flecken den gleichen Ursprung besitzen, ist unklar. Dies könnten auch Relikte primärer vulkanischer, z. B. sphärolithischer Texturen sein.
Abb. 80: Vulkanit vom Kolsjön, 100 m hinter dem Abzweig zur Badestelle (S30; 57.521111, 15.527019, T. Langmann leg.), Aufnahme unter Wasser.
Hellbrauner Vulkanit mit weißen Feldspat-Einsprenglingen, überwiegend von scharfer Kontur, sowie runden bis kantigen und klaren Quarzkörnern. Wenige dunkelbraune und locker im Gestein verteilte Flecken gehen ohne deutliche Begrenzung in die Grundmasse über. Oben rechts ein weitgehend assimilierter Vukanoklast mit abweichender Zusammensetzung.
Abb. 81: Nahaufnahme.
Nach NORDENSKJÖLD 1893:86 treten in den Vulkaniten vom Kolsjön sphärolithische, perlitische oder lithophysenartige Bildungen auf. Die Perlitstruktur soll teilweise auch makroskopisch wahrnehmbar sein (ebenda S. 102f). Nach PERSSON 1973 könnten die dunklen Flecken als Sphärolithe und runde Quarzaggregate weniger als Einsprenglinge, sondern als entglaste Perlite oder Lithophysen anzusehen sein. Entsprechend nachweisen lässt sich dies erst durch dünnschliffmikroskopische Untersuchungen. HESEMANN 1975:200 bezeichnet das Gestein „Perlitischer und sphärolithischer Ignimbrit von Kolsjön-Kulla“ und nennt ebenfalls primäre vulkanische Texturen, die mit bloßem Auge erkennbar sein sollen. An Hand der vorliegenden und hier gezeigten Proben lässt sich dies allerdings nicht bestätigen. Weitere Bilder von dieser Fundstelle auf strand-und-steine.de.
Abb. 82: Badestelle am Kolsjön.
Im Vulkanitgebiet östlich von Karlstorp (Ignimbrit-Signatur in Abb. 35) treten Lapillituffe und brekziöse bis fluidale Vulkanite sowie hälleflintartige Vulkanite mit wenigen Einsprenglingen auf.
Abb. 83: Straßenaufschluss, etwa 2 km östlich von Karlstorp (S191; 57.51109, 15.54663).Abb. 84: Rotbrauner, teils brekziöser, teils fluidaler Vulkanit. Angewitterte Seite eines losen Steins, nass fotografiert. Breite 14 cm.Abb. 85: Gleicher Stein, Aufnahme einer polierten Schnittfläche unter Wasser; unten links ein runder Vulkanoklast, der wiederum kantige Bruchstücke von Vulkaniten enthält.Abb. 86: Nahaufnahme.
Dieser Vulkanit dürfte unter turbulenten Bedingungen und hohen Temperaturen in einem pyroklastischen Strom abgelagert worden sein: einige der runden bis länglichen Vulkanoklasten sind mit der Matrix verschweißt, andere weisen scharfe Kanten auf. In der Grundmasse sind Ansätze eines eutaxitischen Gefüges erkennbar (Fiamme), das aber keiner Vorzugsrichtung zu folgen scheint. Alle Deformationen dürften primär vulkanisch sein, da die Vulkanite dieses Gebietes kaum oder nur geringfügig tektonisch überprägt wurden.
Abb. 87: Fleckiger und hell- bis dunkelbrauner Vulkanit (S191) mit wenigen, teils klar, teils unscharf konturierten Bruchstücken.Abb. 88: Wenig weiter östlich steht ein schlieriger brauner Lapillituff mit verschiedenfarbigen Vulkanoklasten an (S192; 57.51218, 15.54955).Abb. 89: Lapillituff vom See Kolsjön, ähnlich dem Gestein in Silverdalen (Abb. 39); Handstück in der Sammlung der BGR in Berlin („gekauft von Dr. F. Krantz/Bonn“).Abb. 90: Ein ganz anderer Vulkanit-Typ aus dem gleichen Gebiet, ein grünlichgrauer Porphyr mit weißen Plagioklas-Einsprenglingen, ähnlich dem Lönneberga-Typ. Aufnahme unter Wasser (S193; 57.51237, 15.55107).Abb. 91: In der Vergrößerung der Nahaufnahme ist diagonal zur Klüftung eine feine fluidale Textur erkennbar, ähnlich der Fiamme des eutaxitischen Gefüges.Abb. 92: Aufschluss am Weg zwischen Kulltorp und Kulla, Bildbreite 35 cm. Hellbrauner, teils grünlicher Porphyr mit weißen Feldspat- (Alkalifeldspat erkannt), runden und farblosen Quarz-Einsprenglingen sowie einzelnen braunen bis rotbraunen Lapilli (S194; 57.51811, 15.55337).Abb. 93: Der Vulkanit wird scharf von einem Diabas-Gang durchschnitten; Bildbreite ca. 40 cm.Abb. 94: Probe aus dem Aufschluss, Aufnahme unter Wasser.Abb. 95: Nahaufnahme.
Auch im Gebiet NW des Linden, aus dem die folgenden Proben stammen, stehen laut geologischem Kartenblatt Vetlanda NO (PERSSON 1985) großflächig Ignimbrite an (Abb. 35). Aber in keinem der braunen, überwiegend aber grünlichen und einsprenglingsreichen, dem Lönneberga-Typ ähnlichen Vulkanite, ist eutaxitisches Gefüge erkennbar.
Abb. 96: Stark geklüfteter Vulkanit, ähnlich den Gesteinen vom Kolsjön, mit einem dunkelgrauen Vulkanoklast und undeutlich begrenzten Partien mit bläulichem Quarz. Aufnahme unter Wasser (S196; 57.53554, 15.55710).Abb. 97: Alterierter Vulkanit mit wenigen größeren und weißen (Plagioklas-), ansonsten zahlreichen kleineren und stark vergrünten Einsprenglingen durchsetzt; grüne Grundmasse mit orangebraunen Partien (S197: 57.53519, 15.59475).
Ausgedehnte Straßenaufschlüsse an der Lokalität Rubborna (S198; 57.53444, 15.59532) lieferten Proben grüner und brauner, teils gebänderter Vulkanite (Tuffe und Lapillituffe). Quarzeinsprenglinge waren in keiner der Proben erkennbar. Einige Vulkanite entsprechen dem Lönneberga-Typ, vgl. Abb. 6-7 im Artikel Lönneberga-Porphyr.
Abb. 98: Hell- bis dunkelgrüner, teils rötlichbrauner Tuff, Aufnahme unter Wasser (S198c).Abb. 99: Nahaufnahme. Die Tuffmatrix wurde offenbar weitgehend epidotisiert bzw. chloritisiert.
Bemerkenswert ist der Fund eines Vulkanits mit runden Vulkanoklasten vom Lönneberga-Typ. Die Vulkanoklasten enthalten mehr Feldspat-Einsprenglinge als die hellgrüne, teils rotbraune Grundmasse, dürften aber eine ähnliche Zusammensetzung besitzen und aus dem gleichen Magma stammen.
Abb. 100: Lapillituff mit runden Vulkanoklasten (Lönneberga-Typ), Aufnahme unter Wasser (S198b, Rubborna)Abb. 101: Nahaufnahme; die Ränder der Vulkanoklasten grenzen sich nur unscharf von der Matrix ab. Ihre Abrundung könnte im noch schmelzflüssigen Zustand erfolgt sein.Abb. 102: Blick über die leicht hügelige Landschaft bei Eksjö.
4. Literatur
APPELQUIST K, ELIASSON T, BERGSTRÖM U & RIMSA A 2009 The Palaeoproterozoic Malmbäck Formation in S Sweden: age, composition and tectonic – GFF Volume 31, 2009 – Issue 3, S. 229-243.
BRUUN, NILSSON, SUNDBERG et al 1995 Malmer, industriella mineral och bergarter i Östergötlands län – Rapport och meddelanden nr 80, Uppsala 1995.
FRITSCH R VON & REISS W 1868 Geologische Beschreibung der Insel Tenerife – 494 S., Wurster und Co, Winterthur.
HESEMANN J 1975 Kristalline Geschiebe der nordischen Vereisungen – 267 S., 44 Abb., 8 Taf., 1 Kt., Krefeld (Geologisches Landesamt Nordrhein-Westfalen). HÖGDAHL K, ANDERSSON U B & EKLUND O 2004 The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution – Geological Survey of Finland, Special Paper 37, 125 S., Espoo 2004.
HOLMQVIST P J 1906 Studien über die Granite von Schweden – Bulletin of the Geological Institution of the University of Uppsala VII – S. 77-269.
KORN J 1927 Die wichtigsten Leitgeschiebe der nordischen kristallinen Gesteine im norddeutschen Flachlande – Ein Führer für den Sammler kristalliner Geschiebe – VI + 64 S., 48 Farb-Abb. auf Taf. 1-6, 8 Farb-Karten auf Taf. 7-14, 1 Tab., Berlin (Preußische geologische Landesanstalt).
LE MAITRE R W et al 2002 A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks- 2nd Edition, Cambridge University Press.
LUNDQVIST T 2009 Porfyr i Sverige – en geologist översikt – 66S., Sveriges Geologiska Undersökning, ISBN 978-91-7158-960-6.
NILSSON & WIKMAN in LUNDQVIST 1997 Radiometric Dating Results 3 -Division of Bedrock Geology, Geological Survey of Sweden, SGU Series C830:31-34, Uppsala 1997.
NORDENSKJÖLD O 1893 Ueber archaeische Ergussgesteine aus Småland, Bulletin of the Geological Institution of the University of Upsala, N:2, Vol.I, Ser. C. No. 135 (Buchabdruck 1894, Almqvist & Wiksells).
PERSSON L 1973 Sura vulkaniter, graniter och associerade bergarter i en del av nordöstra Småland, Diss. Geologiska Institutionen, Lunds Universitet, Lund S. 1-160 in deutscher Übersetzung durch A. P. Meyer in: Der Geschiebesammler 12, 4, S.1-28 und 13,1, S.1-14, Hamburg 1979.
PERSSON L 1974 Precambrian Rocks and Tectonic Structures of an Area in Northeastern Småland, Southern Sweden – SGU Ser. C Nr. 703, Stockholm 1974.
PERSSON L 1985 Beskrivning till berggrundskartorna 1 : 50000 – Vetlanda NV och NO [Description to the maps of solid rocks Vetlanda NV and NO with a section of geophysical aspects by Bo Hesselström] – Sveriges Geologiska Undersökning Af 150+151: 138 S., 65 Abb., 30 Tab., Uppsala.
PERSSON L 1986 Berggrundskartan 6F Vetlanda NO – SGU Ser Af nr 151.
SMED P & EHLERS 2002 Steine aus dem Norden – Bornträger-Verlag Stuttgart, 1. Auflage 1994, 2. Auflage 2002.
VINX R 2010 Gesteinsbestimmung im Gelände, 3. Auflage, Spekrum-Verlag (2010).
VINX R 2016 Steine an deutschen Küsten; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.).
WIMMENAUER W 1985 Petrographie der magmatischen und metamorphen Gesteine – 396 S., 297 Einzelabb., 106 Tab., Enke-Verlag, Stuttgart (1985).
WIK NG, BERGSTRÖM U, BRUUN A et al 2005 Beskrivning till regional berggrundskarta över Kalmar län – Sveriges geologiska undersökning serie Ba nr 66, 54 S., ISBN 91-7158-699-7.
WIK NG, BERGSTRÖM U, BRUUN A et al 2005 Berggrundskartan Kalmar län – 1:250 000, Sveriges geologiska undersökning serie Ba nr 66.
WIKMAN H 1997 U-Pb zircon ages of three granitoids from the Växjö region, south central Sweden. I T. Lundqvist (red): Sveriges geologiska undersökning C 830, 63–72.
WIKMAN H 1997 Berggrundskartan 5E Växjö SV, SGU Af nr 188
WIKMAN H 1998 Beskrivning till berggrundskartona Växjö SV och SO – 59 S. Sveriges Geologiska Undersökning – Uppsala 1998.
WIKMAN H 2000 Berggrundskartan 5E Växjö SO, SGU Af nr 200
WIKMAN H 2000 Berggrundskartan 5E Växjö NO, SGU Af nr 201
WIKMAN H 2000 Beskrivning till berggrundskartona 5E Växjö NO och NV – 75 S. Sveriges Geologiska Undersökning – Uppsala 2000.
WIKMAN H 2004 Berggrundskartan 5E Växjö NV, SGU Af nr 201
ZANDSTRA J G 1988 Noordelijke Kristallijne Gidsgesteenten ; Een beschrijving van ruim tweehonderd gesteentetypen (zwerfstenen) uit Fennoscandinavië – XIII+469 S., 118 Abb., 51 Zeichnungen, XXXII farbige Abb., 43 Tab., 1 sep. Kte., Leiden etc.(Brill).
ZANDSTRA JG 1999 Platenatlas van noordelijke kristallijne gidsgesteenten, Foto’s in kleur met toelichting van gesteentetypen van Fennoscandinavië – XII+412 S., 272+12 unnum. Farb-Taf., 31 S/W-Abb., 5 Tab., Leiden (Backhuys).
Abb. 1: In der leicht hügeligen Landschaft Smålands, hier in der Nähe von Eksjö, bilden Vulkanite oft Kuppen und die leichter verwitterbaren Granite die Tallagen.
Småland ist eines der Hauptliefergebiete von Gesteinen, die als Geschiebe in den glazialen Ablagerungen Norddeutschlands gefunden werden. Dieser Artikel skizziert den geologischen Rahmen der Småland-Vulkanite, gefolgt von einigen Anmerkungen zu den Leitgeschieben. In der Hauptsache geht es hier aber um einen allgemeinen Einblick in die petrographische Vielfalt der Gesteine. Ausgewählte Lokalitäten in Småland und Östergötland werden an Hand von Anstehendproben und Geländebildern in Form eines Exkursionsberichtes vorgestellt. Hin und wieder lohnt sich auch ein Blick auf die benachbarten Granitoide und basischen Plutonite des TIB.
Abb. 2: Emarp-Porphyr, rotbrauner Småland-Porphyr mit Blauquarz. Anstehendprobe nahe der Bahnstation Emarp im mittleren Småland, Aufnahme unter Wasser (S27; 57.602397, 15.654842).
Die Småland-Vulkanite sind Teil des Transskandinavischen Magmatitgürtels (TIB), einer geologischen Großeinheit innerhalb des Baltischen Schildes, die überwiegend aus Granitoiden und sauren Vulkaniten, untergeordnet aus basischen oder intermediären Gesteinen aufgebaut ist. Der TIB repräsentiert einen tief abgetragenen Sockel eines etwa 1,8-1,7 Milliarden Jahre alten Gebirges. Dieser Gebirgssockel nimmt ein großes, weit über Småland hinausreichendes Gebiet ein. So gehören u. a. auch die Värmland-Granitoide, die Vulkanite und Granitoide in Dalarna, der Rätan- und Revsund-Batholith zum TIB (HÖGDAHL et al 2004).
Abb. 3: Der Transskandinavische Magmatitgürtel, Grafik aus kristallin.de. Die Gesteine des TIB besitzen eine rote Signatur. Der Kasten markiert den Kartenausschnitt in Abb. 4.
Das Verbreitungsgebiet der Småland-Vulkanite beschränkt sich im Wesentlichen auf die geographischen Grenzen von Småland, den südlichsten Teil von Östergötland sowie kleinere isolierte Vorkommen weiter nördlich. Die Vulkanite bilden kleinere „Inseln“ in den weitläufigen Batholithen aus Plutoniten des TIB und sind als Relikte ehemals ausgedehnter Vorkommen anzusehen, die sich nach ihrer Ablagerung in Verwerfungen und Absenkungen vor der Abtragung bewahren konnten. Die Absenkung und Verkippung der Vulkanite in ihre heutige steile Lagerung erfolgte u.a. durch das zeitgleiche oder unmittelbar nachfolgende Aufdringen von Graniten. Diese Intrusionen führten lokal zu einer hydrothermalen Veränderung, Überprägung durch Kontaktmetamorphose und im Kontaktbereich vielleicht sogar zu einer Faltung der Vulkanite.
Abb. 4: Verbreitungsgebiet der Småland-Vulkanite (gelb) innerhalb der rot markierten TIB-Granitoide. Die Zahlen markieren die Herkunftsgebiete der als Leitgeschiebe geeigneten Vulkanite. Karte verändert nach www.sgu.se.
Der Geologe Otto Nordenskjöld (NORDENSKJÖLD 1893) unterscheidet vier „Vulkanitgürtel“, die etwa W-E oder NW-SE-verlaufenden tektonischen Schwächezonen folgen: das Sjögelö-Gebiet (A in Abb. 4), das Gebiet von Vetlanda-Oskarshamn (B), Laangemaala (heute Långemåla, Nr. C) und Lenhovda (D). Darüber hinaus existieren zahlreiche kleinere und mehr oder weniger isolierte Vorkommen bis in das Gebiet von Linköping (s. Exkursionspunkt 2.14. Väderstad-Konglomerat).
1.1. Petrographie
Unter den Småland-Vulkaniten überwiegen Rhyolithe, also SiO2-reiche, sog. „saure“ Gesteine. Intermediäre (Dacite bis Andesite) und basische Vulkanite (Basalte) kommen nur untergeordnet vor. Sie alle bilden das effusive Gegenstück zu den Plutoniten (Granite, Gabbros, Diorite etc.) und entstanden zeitgleich mit ihnen oder etwas früher. Datierungen im Gebiet von Växjö ergaben Gesteinsalter von 1.800-1.780 Ma (WIKMAN 2000). Nach HÖGDAHL et al 2004 gehören fast alle Småland-Vulkanite zum TIB-1 (1.76–1.81 Ga).
Abb. 5: Aufschluss eines Småland-Vulkanits (Hälleflinta) auf dem Campingplatz in Växjö. Parallele, aber nicht lotrecht kreuzende Kluftlinien sind häufig zu beobachten und finden sich im kleinen Maßstab auch an Geschieben wieder.
Im Gelände lässt sich eine große petrographische Vielfalt beobachten, praktisch die gesamte Bandbreite der vulkanischen Abfolge ist vertreten: Aschentuffe, Lapillituffe und Agglomerate; pyroklastische Ablagerungen aus explosiver vulkanischer Tätigkeit, darunter Ignimbrite; Vulkanite mit sphärolithischer oder perlitischer Textur, Tuffe mit akkretionären Lapilli („vulkanische Pisolithe“), untergeordnet sogar Konglomerate. Hinzu kommen Subvulkanite und Gangporphyre (composite dykes) bis Granitporphyre.
Ein Teil der feinkörnigen Småland-Rhyolithe sind Ignimbrite, was wenig verwundert, da saure bis intermediäre Magmen zu explosiven Ausbrüchen neigen. Die Ablagerung von Ignimbriten ist eng an die Entleerung einer Magmenkammer, ihren nachfolgenden Kollaps und die Bildung einer Caldera geknüpft (SCHMINCKE 2010). Das Caldera-Modell könnte auch eine Erklärung für die verwickelten Beziehungen zwischen Vulkaniten und den weit verbreiteten Gangporphyren als Bestandteil von ring dykes und cone sheets bieten. Calderen wurden bisher allerdings nicht nachgewiesen und dürften bestenfalls in Relikten erhalten sein.
Abb. 6: Einsprenglingsarme Vulkanite („Småland-Hälleflinta“), Nahgeschiebe in der Kiesgrube Skoretorp bei Oskarshamn, Bildbreite 30 cm (S92; 57.20846, 16.38353).Abb. 7: Fluidaler Metavulkanit (S92) mit zerknackten Feldspat-Einsprenglingen, Nahgeschiebe aus der gleichen Grube, Aufnahme unter Wasser.
Nach ihrer Ablagerung unterlagen die Smaland-Vulkanite mehrfachen Veränderungen. Dazu gehören Entglasungsvorgänge. Entglasung bezeichnet die Umwandlung von amorphem Gesteinsglas in kristalline Grundmasse, ein Vorgang, der nach spätestens 300 Millionen Jahren abgeschlossen ist. Diese Kristallisation kann mit einem Weiterwachsen von bereits vorhandenen Kristallen oder Einsprenglingen einhergehen.
Hinzu kommen regional unterschiedliche, maximal grünschieferfazielle Grade einer metamorphen Überprägung, erkennbar an einem gerichteten Mineralgefüge, zerdrückten Mineralen (Kataklase), Sprüngen und der Neubildung von Mineralen wie Chlorit oder Serizit (feinkörniger Hellglimmer). Umwandlungen der Vulkanite erfolgten auch lokal im Kontaktbereich aufdringender TIB-Granite durch Kontaktmetamorphose (z. B. Vergröberung der Korngröße durch Umkristallisation), durch lokale Faltung im unmittelbaren Kontaktbereich oder Konvektion von Fluiden im weiteren Umfeld des aufsteigenden Plutons. Solche Vorgänge erklären die teilweise breiten Übergangszonen und verwischten Grenzen zwischen Porphyren, Graniten und Apliten. Bekannt sind auch Granitgänge in den Porphyren sowie Zonen mit Eruptivbrekzien von Granit in Porphyr (PERSSON 1973).
Entglasung und Metamorphose verwischen die primären vulkanischen Texturen, was eine Deutung gegenwärtiger Gefügemerkmale erschwert bzw. unmöglich macht, sogar im Falle mikroskopischer Untersuchungen. So lassen sich in vielen Småland-Vulkaniten fluidale Texturen beobachten, die primär vulkanisch, als Folge von Entglasung oder durch regionale oder lokale Metamorphose entstanden sein können (z. B. Abb. 7). Nur im Ausnahmefall finden sich z. B. Ignimbrite mit klar erkennbarem eutaxitischen Gefüge oder Vulkanite mit sphärolithischer Textur. Zur Interpretation primärer vulkanischer Gefüge wie welded ignimbrite structure, flow banding oder folded flow foliation in Småland-Metarhyolithen, siehe WIKMAN 2000:28-30. Entsprechende Deutungen mögen im anstehenden Gesteinsverband mit viel Sachkenntnis gelingen, an Geschieben sind sie mit großen Unsicherheiten verbunden.
In der Verteilung der Gesteinstypen lassen sich regionale Unterschiede feststellen. Hälleflintartige Vulkanite sind besonders zahlreich im südlichsten der vier Vulkanitgürtel zu finden, Porphyre mit Blauquarz allgemein weit verbreitet. Gangporphyre scheinen bevorzugt im mittleren und östlichen Småland aufzutreten, einsprenglingsreiche Porphyre und Granitporphyre im nördlichen Småland und braune Lapillituffe im Gebiet um Lönneberga. Solche lokalen Besonderheiten sind noch kein hinreichendes Kriterium für die Herausstellung eines Gesteinstyps als Leitgeschiebe. Dafür bedarf es weiterer charakteristischer und lokal spezifischer Merkmale. Diese lassen sich nur schwer herausstellen, weil die Vulkanite einerseits zu einem uniformen Erscheinungsbild und einer Armut an Merkmalen über weite Gebiete hinweg, andererseits zu einer großen Wechselhaftigkeit auf engem Raum neigen. Ganz ähnliche Gesteine treten zudem in verschiedenen und weit voneinander entfernten Gebieten auf. Der schwedische Geologe Otto Nordenskjöld bemerkt: „Nur wenige Typen zeigen über grössere Gebiete konstantes Aussehen, aber die meisten Varietäten gehen in einander allmählig über …“ (NORDENKJÖLD 1893:107).
1.2. Leitgeschiebe
Nach derzeitigem Kenntnisstand kommen nur wenige Vertreter unter den Småland-Vulkaniten als Leitgeschiebe in Frage. Ihre Beschreibung erfolgt in gesonderten Artikeln. Abb. 4 ist zu entnehmen, dass ihre Herkunftsgebiete ganz überwiegend in zwei Gebieten liegen: der weiteren Umgebung von Lönneberga und dem Vulkanitgebiet von Långemåla, westlich von Påskallavik.
Einige dieser Bezeichnungen gehen auf NORDENKJÖLD 1893 zurück, der die Småland-Vulkanite am Ende des vorletzten Jahrhunderts mikroskopisch untersuchte und nach der Beschaffenheit der Grundmasse einteilte in Porphyre vom Påskallavik, Sjögelö-, Emarp-, Lönneberga-, Nymåla- und Högsrum-Typ. Seine Beschreibungen unterscheiden sich teilweise deutlich von denen der Geschiebekunde, die den Gesteinen lokal spezifische makroskopische Gefügemerkmale zum Zwecke der Herkunftsbestimmung von Geschieben zu Grunde legt.
In der Geschiebeliteratur werden weitere Vulkanit-Typen aufgeführt (HESEMANN 1975 und ZANDSTRA 1988, 1999). Die verwendeten Lokalnamen suggerieren ihre Eignung als Leitgeschiebe, die Einzigartigkeit und Unverwechselbarkeit dieser Vulkanite ist aber weder belegt, noch wurde sie offenbar jemals ernsthaft überprüft. Vielmehr scheinen die genannten Autoren Teile von Nordenskjölds Beschreibungen lediglich übernommen zu haben. Vorbehaltlich weiterer Untersuchungen im Gelände gilt dies für folgende Geschiebetypen: Fagerhult-Kristalltuff, Götsjögle-Hälleflinta, Eoandesit von Karlstorp, Ignimbrite von Ekelid, Gökhult, Kolsjön-Kulla und Gåskullen, Agglomeratlava von Småland, „Kristallsäulen-Syenitporphyr“ und Funghult-Granitporphyr.
Ein Teil der Geschiebefunde aus den glazialen Ablagerungen lässt sich an Hand allgemeiner Merkmale wohl grob einer smaländischen Herkunft, bis auf wenige Ausnahmen aber keinem näheren Herkunftsgebiet zuordnen. Den vielfältigen Erscheinungsformen der Smaland-Vulkanit-Geschiebe ist ein weiterer Beitrag gewidmet.
2. Exkursionsbericht
Die folgenden Kapitel vermitteln einen Eindruck von der petrographischen Vielfalt der Smaland-Vulkanite. Trotz einer Vielzahl gesammelter Proben, von denen nur eine Auswahl gezeigt wird, sind auf der Übersichtskarte aller Probenpunkte (Abb. 8) „weiße Flecken“ – unbeprobte Gebiete – erkennbar. Der zusätzliche Abgleich mit Anstehendproben mehrerer Vergleichssammlungen und Datenbanken im Internet (vor allem skan-kristallin.de) offenbart, dass angesichts der Größe des Gebietes unsere Kenntnis der Småland-Vulkanite wohl stets lückenhaft bleiben muss.
Abb. 8: Kartenskizze aller Fundpunkte. Probenummer und Koordinaten finden sich im Text unter den jeweiligen Proben in der Form (S44; 57.10998, 15.21005). Karte verändert nach www.sgu.se.
Der häufigste und ein weit verbreiteter Gesteinstyp sind dichte und einsprenglingsarme Rhyolithe, die sich durch große Härte und Zähigkeit und einen feuersteinartig splittrigen Bruch auszeichnen. Sie können zusammenfassend als Hälleflinta, alternativ und petrographisch korrekt als „Småland-Metarhyolith“ bezeichnet werden. Ausgangsgesteine sind Aschentuffe, Lapillituffe, aber auch Produkte eines explosiven Vulkanismus, z. B. Ignimbrite. Vertreter der rotbraunen, braunen und grauen Metavulkanite finden sich in zahllosen Aufschlüssen, z. B. auch in Ost-Småland, im Vulkanitgürtel westlich von Oskarshamn. In einer Kiesgrube bei Skoretorp bilden sie den größten Anteil unter den Nahgeschieben (s. Abb. 6-7 und Artikel Granite in Ost-Småland). Untergeordnete Begleiter der Hälleflinta sind stärker rekristallisierte und deutlich körnige Metavulkanite, die den mittelschwedischen Leptiten ähneln (zur Namensgebung s. Artikel Hälleflinta und Leptit, vgl. Exkursionspunkt 2.12. Kisa).
Abb. 9-10 zeigt eine Småland-Hälleflinta aus einem Aufschluss an der Straße von Ruda nach Öjemåla (Nr. 2737 in Abb. 8, keine Koordinate). Das Gestein zeigt einen seidigen Glanz auf der Foliationsebene, was auf metamorph entstandene Glimmerminerale (Serizit) hinweist. Auf der Bruchfläche ist stellenweise eine Augentextur erkennbar, die Nahaufnahme zeigt längliche Partien aus Blauquarz.
Abb. 9: Småland-Hälleflinta, trockene Bruchfläche. Aufschluss an der Straße von Ruda nach Öjemala, leg. D. Andres.Abb. 10: Gleiche Probe, Nahaufnahme unter Wasser.
Im Raum Växjö finden sich graubraune und einsprenglingsarme Vulkanite, die auf angewitterten Oberflächen ein fluidales Gefüge zwischen heller Grundmasse und dunklen, kurz gewellten Schlieren (Fiamme) aufweisen. Nach WIKMAN 2000:21-22 handelt es sich um Ignimbrite.
Abb. 11: Vulkanit-Aufschluss östlich von Växjö (S117; 56.866362, 14.919828).Abb. 12: Fluidaler Vulkanit mit heller Grundmasse und dunkler Fiamme, Bildbreite 15 cm.
Der Vulkanit in Abb. 13 ist durchgängig gebändert (keine kurzwellige Fiamme eines Ignimbrits). Die Streifung kann auf geschichtete Aschenlagen oder primäres Fließen innerhalb Lava (flow banding), die Faltung ebenso auf Fließbewegungen oder nachträgliche tektonische Einwirkung zurückzuführen sein. Genauere Aussagen sind mit makroskopischen Mitteln kaum möglich.
Abb. 13: Gestreifte Hälleflinta in einer Kiesgrube östlich von Silverdalen (S199; 57.53211, 15.78916), Bildbreite 30 cm.
Die hälleflintartigen Småland-Metarhyolithe enthalten oft nur wenige und mm-große Feldspat-Einsprenglinge. In der nächsten Probe ist zusätzlich viel Blauquarz erkennbar („Blauquarzhälleflinta“). Der Aufschluss des rotbraunen Metarhyoliths wird von Diabasgängen durchzogen. Der Diabas besitzt intrusiven Charakter, erkennbar an den „gefritteten“ Kontakten zum Rhyolith und reichlich Ausscheidungen von hellgrünem Epidot. Zur rechten Seite geht der Metarhyolith ohne scharfe Begrenzung in ein feinkörniges granitoides Gestein über.
Abb. 14: Steil einfallender Metavulkanit („Blauquarzhälleflinta“), durchzogen von drei dunklen Diabasgängen von jeweils etwa 30 cm Breite (S94; Straßenaufschluss bei Fliseryd; 57.13716, 16.28858).Abb. 15: Frische Bruchfläche der „Blauquarzhälleflinta“, Aufnahme unter Wasser.Abb. 16: Nahaufnahme. Die gelblichen und undeutlich konturierten Feldspat-Einsprenglinge heben sich nur undeutlich von der Grundmasse ab. Kleine Flasern mit dunklen Mineralen zeigen die Richtung der metamorphen Überprägung an.
Die fluidalen oder schlierigen Texturen in den Vulkaniten folgen meist einer Vorzugsrichtung. Abb. 17 zeigt einen braunen Vulkanit mit Blauquarz-Schlieren ohne Orientierung (Steinbruch bei Herrelida; S124, 57.226803, 14.903750). Ganz in der Nähe, direkt neben der Straße und in einem dichten Tannenwald (57.226803, 14.903750), soll auch ein Konglomerat anstehen (WIKMAN 2000:32). Zum Zeitpunkt des Besuchs (2017) war der Aufschluss weder zugänglich, noch auffindbar.
Abb. 17: Brauner Rhyolith mit Schlieren aus Blauquarz. Aufnahme unter Wasser (S124, Herrelida).
2.2. Gebiet zwischen Åseda und Braås
Südwestlich von Åseda, entlang der A23, bieten zahlreiche Straßenaufschlüsse Gelegenheit zur Beprobung. Es überwiegen einsprenglingsarme und dichte Vulkanite mit splittrigem Bruch und rotbrauner, brauner und hell- bis dunkelgrauer Farbe (Småland-Hälleflinta).
Abb. 18: Brauner Vulkanit (Hälleflinta) mit leicht fluidalem Gefüge und mäßig vielen weißen Feldspat-Einsprenglingen; Quarz-Einsprenglinge fehlen. Probe vom Idrottsplats in Braås (S45; Volvo-Zufahrt, etwa 57.05994, 15.03518), Aufnahme unter Wasser.Abb. 19: Dunkelgrauer Vulkanit mit fluidaler Textur auf der angewitterten Oberfläche (kein eutaxitisches Gefüge). Lesestein aus einem Straßenschotter, ca. 8 km N Braås.
Dunkelgraue, fast schwarze und Hälleflinta mit schwach fluidalem Gefüge und wenigen weißen Feldspat-Einsprenglingen wurde bisher nur im Gebiet nördlich von Växjö beobachtet.
In einem der Aufschlüsse an der A23 fand sich ein einsprenglingsreicher rotbrauner Quarzporphyr, ein in Småland weit verbreiteter Gesteinstyp. Blassrote Alkalifeldspat-Einsprenglinge überwiegen, untergeordnet sind hellgrüne Plagioklase erkennbar. In geringer Menge kommen farbloser Quarz und grünlich-schwarze Minerale vor.
Abb. 20: Einsprenglingsreicher Quarzporphyr, Aufnahme unter Wasser (S44; 57.10998, 15.21005).
Nur wenige Meter entfernt, aus dem gleichen Anschnitt, stammt ein dunkelgrauer Porphyr mit einer ganz anderen Zusammensetzung. Neben undeutlich konturierten Feldspäten (überwiegend Plagioklas) kommt auch Biotit und farbloser Quarz in größerer Menge als Einsprengling vor.
Abb. 21: Dunkelgrauer Porphyr (S44), Aufnahme unter Wasser.
2.3. Vulkanite aus Ost-Småland
Die folgenden Proben sind mäßig einsprenglingsreiche Småland-Quarzporphyre aus zwei Aufschlüssen an der Straße von Mönsterås nach Fliseryd (Nr. 2738, keine Koordinate). Das gerichtete Gefüge der Probe in Abb. 24-25 weist auf eine metamorphe Überprägung hin. Der Anteil dunkler Minerale bzw. mafischer Enklaven ist vergleichsweise hoch.
Abb. 22-27: Småland-Porphyre aus zwei Aufschlüssen an der Straße von Mönsterås nach Fliseryd, leg. D. Andres. Aufnahme unter Wasser.
Abb. 22
Abb. 23
Abb. 24
Abb. 25
Abb. 26
Abb. 27
2.4. Småland-Gangporphyre
Gangförmige Vorkommen von Porphyren (Gangporphyre) mit einer Mächtigkeit von einem Meter bis mehreren Zehnermetern treten in ganz Småland auf. In Ost-Småland ist die Zahl der Gänge besonders hoch. Die Gesteine dürften als Subvulkanite anzusehen sein und besitzen eine dichte bis feinkörnige Grundmasse mit vergleichsweise großen Feldspat-Einsprenglingen (1-2 cm). Einige Typen sind als Leitgeschiebe geeignet, z. B. Påskallavik– oder Sjögelö-Porphyr. Die meisten Gangporphyre weisen jedoch kaum lokal spezifische Merkmale auf. Das erste Beispiel aus einem Straßenaufschluss bei Sibbetorp in der Nähe von Värlebo ist ein brauner Gangporphyr, der einen roten Granit durchschlägt. In der dicht erscheinenden Grundmasse liegen zahlreiche runde Blauquarze und hellbraune, meist gerundete und teilweise zerbrochene Alkalifeldspat-Einsprenglinge. Dunkle Minerale bilden kleine schwarzgrüne Ansammlungen, auch innerhalb größerer Feldspat-Einsprenglinge.
Abb. 28: Brauner Gangporphyr, Aufnahme einer frischen Bruchfläche unter Wasser (S106; Sibbetorp, 57.06629, 16.21282).
Straßenaufschluss bei Påskallavik
Ausgerechnet der in der Nähe der namensgebenden Ortschaft Påskallavik anstehende Gangporphyr weist nach geschiebekundlicher Auffassung nicht die erforderlichen Merkmale des Leitgeschiebes, des Påskallavik-Porphyrs, auf. Sehenswert ist der vergleichsweise frische und breite Aufschluss allemal. Ein Gang von etwa 10 m Breite durchschlägt den Vånevik-Granit. Der Kontakt zum Granit ist scharf und besteht aus einem feinkörnigen und einsprenglingsarmen Rhyolith, der allmählich in den Gangporphyr übergeht. Letzterer wurde auf 1.780 +/-3 Ma datiert (NILSSON & WIKMAN in LUNDQVIST 1997: 31-34).
Porphyrgänge, die an ihren Rändern von einem Gestein mit abweichender Zusammensetzung begleitet werden, sog. composite dykes, sind von vielen Lokalitäten in Småland bekannt, insbesondere vom Påskallavik-Porphyr. In der Regel flankiert ein basisches Gestein (Diabas) den sauren Gangporphyr. Dabei sind regelmäßig Phänomene magmatischer Interaktion (magma mingling und magma mixing) erkennbar: sowohl Feldspat- und Blauquarz-Xenokristalle aus dem Gangporphyr wurden in den Diabas eingetragen, als auch basische Xenolithe und Enklaven in den Gangporphyr (s. Anstehendproben Påskallavik-Porphyr). Ein saures Gestein als randlicher Begleiter, wie in diesem Aufschluss, ist die Ausnahme.
Abb. 29: Straßenaufschluss am Abzweig der E 22 auf die Straße 642 nach Påskallavik (S34; 57.17829, 16.44640). Bild: T. Langmann.Abb. 30: Grenze zwischen braunem Gangporphyr (links) und Vånevik-Granit (rechts) mit etwa 30 cm breiter Randzone aus feinkörnigem Rhyolith in der Bildmitte. Bildbreite 2 Meter.Abb. 31: Grenze zwischen feinkörnigem Rhyolith und Vånevik-Granit, Bildbreite etwa 20 cm.Abb. 32: Abschlag aus diesem Grenzbereich. Der braune Rhyolith enthält wenige weiße Feldspat-Einsprenglinge und Schlieren mit dunklen Mineralen.Abb. 33: Angewitterte Oberfläche des braunen Gangporphyrs, angefeuchtet. Bildbreite 23 cm.
Der Gangporphyr enthält zahlreiche weiße bis blassrote Einsprenglinge von Alkalifeldspat (10-15 mm), einige linsenförmige Blauquarzaggregate und etwas grünen, teils stark alterierten Plagioklas. Flaserige Partien mit mehr dunklen Mineralen sowie einige zerbrochene Alkalifeldspat-Einsprenglinge sind ein Hinweis auf eine leichte tektonische Deformation des Gesteins, ebenso das gerichtete Gefüge von Rhyolith und Granit und zuckerkörniger Quarz im Vånevik-Granit (Abb. 32).
Abb. 34: Probe des Gangporphyrs, Aufnahme unter Wasser.Abb. 35: Nahaufnahme.
Für einen Påskallavik-Porphyr im geschiebekundlichen Sinne fehlen die rundlichen Alkalifeldspat-Einsprenglinge mit den dunklen Kernen (vgl. Beschreibung).
Ein Beispiel für einen Gangporphyr aus dem westlichen Småland ist der folgende Geschiebefund, ein Nahgeschiebe aus einem Aufschluss bei Bäckseda, südlich von Vetlanda (S63; 57.380948, 15.085713).
Abb. 36: Småland-Gangporphyr mit körniger Grundmasse, zerknackten Alkalifeldspat- und grauen Quarz-Einsprenglingen.
Im Sjögelö-Gebiet, dem nördlichsten der vier großen „Vulkanitgürtel“ in Småland, treten neben Gangporphyren auch Gänge und kleinere Massive von Porphyren mit körniger Grundmasse auf (Granitporphyre). Ein Beispiel ist der rötliche Funghult-Granitporphyr aus der Umgebung von Mariannelund. Er ähnelt dem Emarp-Typ von Hamphorva, besitzt aber eine feinkörnige Grundmasse und enthält nur undeutlich begrenzte Einsprenglinge (NORDENSKJÖLD 1893:32). Bläulicher oder gelblicher Quarz kommt in geringer Menge vor, kann aber auch fehlen. Vergleichbare Gesteine sind wohl weit verbreitet und nicht als Leitgeschiebe geeignet (vgl. auch Möeryd-Granit in HESEMANN 1975:39 und Möeryd-Mikrogranit in ZANDSTRA 1988:299).
Abb. 37: Funghult-Granitporphyr mit rötlich-brauner und körniger Grundmasse. Anstehendprobe, Aufnahme einer frischen Bruchfläche unter Wasser (A3; 57.588433, 15.464806; T. Langmann leg.).Abb. 38: Nahaufnahme.
Weitere Proben auf skan-kristallin.de zeigen Småland-Granitporphyre mit brauner oder grauer Grundmasse. Die Größe der Einsprenglinge (weißer, gelblicher bis blassroter Alkalifeldspat und Plagioklas) variiert zwischen 3-20 mm. Neben Biotit kommt Hornblende als dunkles Mineral vor, mitunter recht viel davon. Bläulicher Quarz ist bisweilen in geringerer Menge enthalten und unauffällig.
2.6. Schlucht von Skurugata
Die Schlucht von Skurugata, wenige Kilometer NE von Eksjö, ist bis 50 m tief und auf einem Wanderweg auf etwa 1 km Länge begehbar. An ihrem Ausgang kann man den 337 m hohen Skuruhatt besteigen. Die Lage der Schlucht an einer größeren Störung und eine Ausräumung von Gesteinsmaterial am Ende der letzten Inlandvereisung werden als Ursache ihrer Entstehung angesehen. Möglicherweise spielt auch nachfolgender isostatischer Ausgleich eine Rolle. In diesem Falle handelt es sich eher um einen Canyon als um eine Schlucht. Die TIB-Vulkanite in diesem Gebiet sind hälleflintartige Vulkanite, Quarzporphyre, aplitähnliche Gesteine sowie ein Gangporphyr.
Abb. 39: Blick in die Skurugata-Schlucht (S20, 57.70088, 15.08788). Das weitständige und orthogonale Kluftmuster innerhalb der TIB-Vulkanite dürfte während der Abkühlung entstanden, einzelne quer verlaufende Scherklüfte auf Bruchtektonik zurückzuführen sein.Abb. 40: Häufig findet man einen Quarzporphyr mit hellroter Verwitterungsrinde und wenigen kleinen Feldspat- und Blauquarz-Einsprenglingen.Abb. 41: Nahaufnahme. Die inhomogen-schlierige Grundmasse ist stellenweise feinkörnig, nicht dicht. Feldspat bildet weiße bis rötliche sowie wenige grünliche Einsprenglinge. Neben einigen Blauquarz-Körnern sind auch kleinere und farblose Quarze erkennbar. Dunkle Minerale (Biotit und stengeliger Amphibol) kommen in geringer Menge vor.
In der Skurugata-Schlucht treten Quarz-Feldspat-Gesteine mit deutlich körniger Grundmasse („Mikrogranite“) auf. Die Grundmasse ist aplitähnlich, aber nicht vollständig gleichkörnig. Zudem sind einige weiße Feldspat-Einsprenglinge erkennbar. Die Quarzkörner der Grundmasse bilden kleine Ansammlungen und Gruppen, der rote Feldspat weniger. Es dürfte sich kaum um einen „echten“ Aplit, sondern einen umkristallisierten Vulkanit handeln.
Abb. 42: Rhyolith mit körniger Grundmasse, Aufnahme einer Schnittfläche unter Wasser.Abb. 43: Verbreitet sind auch rotbraune und schlierige Vulkanite (Hälleflinta) mit wenigen Feldspat-Einsprenglingen.
In der Skurugata-Schlucht steht ein Gangporphyr mit körniger Grundmasse und großen Alkalifeldspat-Einsprenglingen an (nicht verzeichnet auf dem geologischen Kartenblatt Vetlanda NV, PERSSON 1985).
Abb. 44: Skurugata-Gangporphyr, polierte Schnittfläche (T. Langmann leg.).Abb. 45: Am Ende des Wanderweges durch die Schlucht beginnt der Aufstieg zum Skuruhatt. Die Erhebung besteht aus hälleflintartigen Vulkaniten.Abb. 46: Überlagerungen eng- und weitständiger Klüfte im Rhyolith auf dem Top des Skuruhatts, wahrscheinlich durch Verwitterung herauspräpariert. Bildbreite 1 m.
Ein einsprenglingsreicher Quarzporphyr vom Hang des Skuruhatt (genauer Fundort unbekannt) unterscheidet sich von den bisher gezeigten Vulkaniten. Beobachtungen an Nahgeschieben ergaben, dass der Gesteinstyp bevorzugt in NW-Småland auftritt, weiter südlich und östlich fehlt er weitgehend.
Abb. 47: Einsprenglingsreicher Quarzporhyr vom Skuruhatt, E. Figaj leg., Aufnahme unter Wasser.
2.7. Metavulkanit von Hörnebo
In den „Dachschiefergruben“ bei Hörnebo wurde bis zum Aufkommen keramischer Dachziegel am Ende des 19. Jahrhunderts ein Metavulkanit abgebaut. Die Gruben sind als Industriedenkmal ausgewiesen, Hinweistafeln informieren über ihre Geschichte (S56, S123; 57.236087, 14.854060). Das Gestein lässt sich sehr dünnplattig spalten, ist aber kein Schiefer im petrographischen Sinne, sondern ein stark foliierter Vulkanit. Nach mikroskopischen Untersuchungen handelt es sich um einen Ignimbrit (SHAIK et al 1989). Wahrscheinlich begünstigten tonhaltige Partien die Foliation des Gesteins an einer lokalen Störungszone. PERSSON & WIKMAN 1997: 50-56 beschreiben aus dem gleichen Vulkanitgebiet auch nicht foliierte Ignimbrite.
Abb. 48: Dachschiefergrube Hörnebo.Abb. 49: Haldenmaterial aus blassroten und grünen, seltener hellgrauen oder ocker-beigefarbenen Metavulkaniten.Abb. 50: Blass violettroter und stark foliierter Metavulkanit (S56). Die violettrote Farbe könnte auf enthaltenen Mn-Epidot (Withamit) zurückzuführen sein (NORDENSKJÖLD 1893:203).Abb. 51: Grünlicher Metavulkanit (S123).Abb. 52: Gleicher Stein, Nahaufnahme der nassen Oberfläche. Die dunklen Flecken scheinen teils zerscherte und stark alterierte Feldspat-Einsprenglinge zu sein.
2.8. Asaryd (Mega-Xenolith)
Einige der kleineren Vulkanit-Vorkommen sind sog. „Mega-Xenolithe“. Beim Aufstieg eines plutonischen Körpers in die obere Erdkruste können die Gesteine in seinen Dachregionen (z. B. Vulkanite) zerbrechen und vom Magma assimiliert, größere Fragmente hingegen als stark veränderte Relikte, als „Mega-Xenolithe“ überdauern, bis sie eines Tages durch Erosion wieder freigelegt werden. Ein Vulkanit aus solch einem Mega-Xenolith steht ca. 2 km westlich von Asaryd an (Haltepunkt: 57.16660, 14.81223, Kartenblatt Växjö NO, WIKMAN 2000). Das Gestein bildet durch seine höhere Verwitterungsresistenz steile Felsen aus und ist von zahlreichen granitischen Adern durchzogen. Vom eigentlichen Granit, seinem Wirtgestein, ist nicht viel zu sehen.
Abb. 53: Vergleichsweise homogene Probe des hellgrauen Vulkanits von Asaryd (S121) mit schwarzen Biotit- und vereinzelten grünen Plagioklas-Einsprenglingen.Abb. 54: Mittel- und gleichkörniger Småland-Granit vom Växjö-Typ, Anstehendprobe aus der Nähe.
Nördlich von Asaryd stehen dacitische bis andesitische Agglomerate und Tuffite an (WIKMAN 2000:23). Nach mühsamer Anfahrt waren die Aufschlüsse zwar leicht zu finden, aber stark von Flechten bewachsen und schlecht zu beproben.
Abb. 55: Von zahlreichen Adern durchzogene basaltische Agglomeratlava, N Asaryd, 350m SSE von der Südwestspitze des Målasjön; 57.198010, 14.835796. Bildbreite 60 cm.
2.9. Nässja: saure und basische TIB-Vulkanite
Wenige Aufschlüsse innerhalb des TIB zeigen ein Nebeneinander aus sauren, intermediären und basischen Vulkaniten. Als Geschiebe sind basische TIB-Vulkanite zwar ohne Bedeutung, im Gelände belegen sie einen bimodalen Vulkanismus in der Frühphase des TIB (s. a. Malmbäck-Formation und Vulkanite von Ankarsrum). Ein Straßenaufschluss am westlichen Ortsausgang der kleinen Siedlung Nässja, etwa 15 km SSE von Sävsjö, zeigt einen metamorph überprägten basaltischen Mandelstein im Kontakt zu einem hälleflintartigen Småland-Metavulkanit. Der saure Vulkanit ist eng geklüftet und teilweise zerschert.
Abb. 56: Basaltischer Mandelstein von Nässja, Aufnahme unter Wasser (S53, 57.267691, 14.767912). Die weißen Kalzit-Mandeln wurden durch seitlich gerichteten Druck teilweise augenförmig ausgewalzt.Abb. 57: Nahaufnahme; Kalzit-Mandeln und gelblichbraune Plagioklas-Einsprenglinge.Abb. 58: Rotbrauner und schlieriger Metavulkanit (Hälleflinta) von Nässja.Abb. 59: Gleicher Stein, Aufnahme unter Wasser. Das Gestein enthält wenige und zerbrochene Einsprenglinge von Feldspat- und Quarz sowie dunkle Minerale.
Vulkanite aus der Frühzeit des TIB finden sich auch im Gebiet von Ankarsrum, westlich von Västervik, s. der intensiv rote Metavulkanit mit Epiklasten von Västervik-Quarzit, Abb. 55 im Exkursionsbericht Västervik-Gebiet.
2.10. Malmbäck-Formation
Die Rhyolithe, Dacite, Andesite und basaltischen Gesteine der Malmbäck-Formation sind das größte bekannte Vorkommen mit Gesteinen eines bimodalen Vulkanismus in der Frühzeit des TIB. Es erstreckt sich über ein isoliertes Gebiet nördlich und NW der kleinen Ortschaft Malmbäck, etwa 20 km SW vom See Vättern. Die Abfolge mafischer bis saurer Vulkanite, untergeordnet auch vulkanoklastischer bis vulkanogener Sedimentgesteine, umfasst blasige Laven, Ignimbrite, Aschen, umgelagerte Vulkanite und Konglomerate. Früher wurden diese Gesteine dem Oskarshamn-Jönköping-Belt (OJB) zugerechnet. Neuere Untersuchungen ergaben eine Entstehung in der Frühzeit des TIB (TIB-1) vor etwa 1.796+/-7 Ma an einem aktiven Plattenrand. Die Vulkanite sind schwach bis mäßig foliiert, gelegentlich auch gefaltet und werden von jüngeren TIB-Graniten intrudiert (APPELQUIST et al 2009).
An der Lokalität Olstorp lässt sich in N-S-Richtung eine Vulkanit-Sequenz auf etwa 500 m Länge verfolgen: rote bis graurote, gefaltete Rhyolithe, ein grüngrauer laminierter Sandstein mit Anteilen mafischer Vulkanite (andesitischer Tuffit, teilweise mit großen Amphibol-Megakristallen), massige Basaltlaven sowie graue bis rotgraue und laminierte Dacite. An einigen Stellen durchziehen granitische Adern die Vulkanite. Die Anfahrt auf einer schlechten Piste gestaltet sich mühsam, das Gestein lässt sich nur schlecht formatieren (S59, 57.673116, 14.411676).
Abb. 60: Proben saurer bis basischer Vulkanite von der Lokalität Olstorp, Bildbreite ca. 50 cm.Abb. 61: Kleinkörniger, vermutlich umkristallisierter Rhyolith.Abb. 62: Die Nahaufnahme unter Wasser zeigt eine schlierige Textur der Grundmasse und einige größere Blauquarze.Abb. 63: Basaltisches Gestein; die hellen Lagen entlang der Schichtebene besitzen granitische Zusammensetzung (Quarz+Feldspat) und dürften später entstanden sein.Abb. 64: Wechselnde Lagen aus hellem Sandstein und mafischem Tuffit. In der unteren Bildhälfte sind eine gröbere Körnung und größere schwarze Amphibol-Aggregate erkennbar. Aufnahme unter Wasser.Abb. 65: Körniger Metabasit mit zahlreichen rechteckigen bis leistenförmigen Plagioklasen und schwarzem Amphibol, wahrscheinlich ein Meta-Andesit. Aufnahme unter Wasser.
Die nordwestlich von Malmbäck gelegene Lokalität Svenshult ist ebenfalls nur schwer mit dem PKW zu erreichen (S61, 57.579348, 14.331176). Eine gerodete Freifläche im Wald versprach günstige Aufschlussverhältnisse, allerdings erschwerten runde oder vollständig überwachsene Felsen eine Probennahme. Die Arbeit von APPELQUIST et al 2009 zeigt Bilder von frischen Aufschlüssen und führt folgende Gesteinstypen auf: 1. Basalte bis Andesite als Mandelstein, 2. vulkanoklastische Konglomerate mit gradierter Schichtung, 3. polymikte vulkanogene Konglomerate mit eckigen bis runden Lithoklasten von massigen bis porphyritischen Dacit, 4. plagioklas-porphyrische basaltische Andesite und massige amphibol-porphyrische Basalte.
Abb. 66: Gerodete Freifläche bei Svenshult (Sommer 2016).Abb. 67: Vergrüntes basaltisches Gestein mit scherbigem Bruch, durchzogen von Epidotadern.
Abb. 68-70 ist ein amphibol-porphyroblastischer Metabasit (Basalt bis Andesit) mit feinkörniger und grauer Grundmasse, in der einige größere und eckige Amphibol-Kristalle stecken. Die Amphibole wuchsen während der Metamorphose heran und sind Porphyroblasten. Eine veraltete Gesteinsbezeichnung für solch feinkörnige Metabasite mit größeren Amphibol-Porphyroblasten ist „Uralit-Porphyr“. Die gleichzeitige Anwesenheit von hellgrünem Epidot lässt auf eine Umwandlung des Gesteins unter Bedingungen der Grünschiefer- bis unteren Amphibolitfazies schließen; in der höheren Amphibolfazies ist Epidot nicht mehr stabil.
Abb. 68: Anstehender amphibol-porphyroblastischer Metabasit (Meta-Basalt bis Meta-Andesit), stellenweise mit größeren Gesteinsklasten. Bildbreite 25 cm.Abb. 69: Angewitterte Außenseite einer Probe. Das Gestein ist leicht foliiert, die Amphibol-Porphyroblasten sind teilweise ausgewittert.Abb. 70: Gleicher Stein, Bruchfläche entlang der Foliationsebene, Aufnahme unter Wasser.Abb. 71: Das vulkanogene Konglomerat ließ sich nicht beproben, Lesesteine waren nicht auffindbar. Auf der stark angewitterten Oberfläche ist lediglich der metamorphe Charakter des Konglomerats an den linsenförmig ausgelängten Lithoklasten sowie eine basaltische Grundmasse erkennbar. Bildbreite 40 cm.Abb. 72: Eine Überraschung bot ein etwa 2×2 m großer Aufschluss eines massigen Quarzits, der petrographisch nicht in die Sequenz basischer bis intermediärer Gesteine passt. Ein Kontakt zum Nebengestein war nicht erkennbar. Bildbreite 80 cm.
Letzter Probenpunkt innerhalb der Malmbäck-Formation ist ein großer Härtling, eine auffällige Geländekuppe an der Straße zwischen Tomten und Dammen (S62; 57.60237, 14.33883). Das dunkelgraue Gestein enthält viele Plagioklas-Einsprenglinge und dürfte ein (Meta-)Andesit sein.
Abb. 73: Andesit der Malmbäck-Formation.Abb. 74: Nahaufnahme unter Wasser. Unterhalb der Bildmitte ist ein einzelnes blaues Quarzkorn erkennbar.
Abb. 1: Felsküste im äußersten Nordwesten der Kullaberg-Halbinsel. Das Grundgebirge besteht hier aus migmatitischen Gneisen mit eingeschalteten Amphibolit-Körpern und besitzt ein Alter von rund 1 Milliarde Jahren.
Ein mehrteiliger Exkursionsbericht führt an ausgewählte Lokalitäten in Südwest-Schweden. Zahlreiche Küstenaufschlüsse und aufgelassene Steinbrüche zwischen Kullaberg-Halbinsel und Varberg bieten hervorragende Einblicke in die Geologie eines metamorphen Grundgebirges, das vor rund 1 Milliarde Jahren im Zuge der Svekonorwegischen Gebirgsbildung entstand. Hier treten großflächig Gesteine zutage, die in keiner anderen Region des nordischen Grundgebirges vorkommen, z. B. saure und mafische Granulite. Auf mehreren Reisen konnte eine Reihe von typisch SW-schwedischen Gesteinstypen, darunter auch kristalline Leitgeschiebe, beprobt und in ihrem geologischen Kontextes studiert werden.
Abb. 2: Karte der vorgestellten Lokalitäten.
Die Zahlen verweisen auf die entsprechenden Abschnitte des Exkursionsberichts. Die meisten Lokalitäten liegen an der Küste, weil dort die Gesteine besonders gut aufgeschlossen sind.
Entlang der Küste zwischen Falkenberg und Halmstad befinden sich zahlreiche gut zugängliche Küstenaufschlüsse mit Gesteinen der SGR (Steninge, Glassvik; nächster Teil: Stensjöstrand). Etwa auf halber Strecke liegt der Ort Steninge (Lok. 3.2 auf der Karte). Ausgehend vom ersten Parkplatz im Ort (56.76421, 12.63274) erreicht man in südlicher Richtung bald einen alten Steinbruch, in dem migmatitische Gneise vom Halmstad-Typ abgebaut wurden.
Abb. 1: Stürmisches Wetter an der Küste bei Steninge; rotgraue Gneise, anstehend und als Haldenmaterial aus dem ehemaligen Steinbruch.Abb. 2: Migmatitischer Gneis vom Halmstad-Typ aus rotem Alkalifeldspat, grauem Quarz, gelbem bis grünlichem Plagioklas und etwas Biotit. Magnetit wurde an dieser Lokalität nicht nachgewiesen. Bildbreite etwa 30 cm.Abb. 3: Gefalteter migmatitischer Gneis. Die roten und mafitarmen Quarz-Feldspat-Leukosome weisen ein richtungslos-körniges Gefüge auf und entstanden durch partielle Aufschmelzung der grauen und feinkörnigen Gneise (Paläosom).Abb. 4: Häufig ist keine klare Grenze zwischen Leukosom (rot) und Paläosom (grau) erkennbar.Abb. 5: Gebänderter migmatitischer Gneis aus dem Steinbruch Steninge.
Innerhalb der rotgrauen migmatitischen Gneise finden sich mafitarme und deformierte Quarz-Feldspat-Leukosome mit plattigen Quarzen („Schonengranulit“, Abb. 6) sowie linsenförmige Einschaltungen von grobkörnigen und pegmatitartigen Gesteinen („Flammenpegmatit“; Abb. 7, 8). Diese zentimeter- bis dezimetergroßen Partien gehen ohne scharfe Grenze in die migmatitischen Gneise über. Plattenquarze und das Fehlen dunkler Minerale weisen auf granulitfazielle Metamorphosebedingungen während der svekofennischen Orogenese hin.
Schonengranulit und Flammenpegmatit sind charakteristische Gesteine des westlichen Teils der SGR und als Leitgeschiebe verwendbar. Sie treten an mehreren Lokalitäten entlang der schwedischen Westküste auf, in einem begrenzten Gebiet zwischen Falkenberg, Halmstad und Kullaberg. Neben Einschaltungen als Leukosom in migmatitischen Gneisen bildet der Flammenpegmatit auch meterbreite Gänge (s. Söndrum). Das Alter der Ausgangsgesteine liegt bei etwa 1,4 Ga, die Metamorphose erfolgte während der svekonorwegischen Orogenese vor etwa 970 Ma (VINX 1998).
Neben dem Flammenpegmatit treten in SW-Schweden auch bunte Pegmatite mit einer ähnlichen Farbgebung auf, die jedoch undeformiert sind und keine Plattenquarze enthalten. Sie wurden postkinematisch (= nach Beendigung der Orogenese) gebildet und sind nicht als Leitgeschiebe geeignet (Abb. 9).
Abb. 6: Migmatitische, von dunklen Mineralen freie Partie mit grauen Plattenquarzen („Schonengranulit“).Abb. 7: „Flammenpegmatit“ (granulitfazieller bunter Pegmatit) aus rotem Alkalifeldspat, blassgelbem Plagioklas und grauen Plattenquarzen. Angefeuchtete Schnittfläche eines Haldenfundes von Steninge.Abb. 8: Grobkörnige Partie eines deformierten bunten Pegmatits mit Plattenquarzen („Flammenpegmatit“), rechts unten begrenzt von Ansammlungen dunkler Minerale (Biotit). Breite des Steins etwa 20 cm.Abb. 9: Grobkörniger (postkinematisch gebildeter) Pegmatit aus rotem Feldspat, grauem Quarz und gelbem Plagioklas. Das Gestein ähnelt dem Flammenpegmatit, ist aber nur mäßig deformiert, weist keine plattige Ausbildung der Quarze auf und enthält Ansammlungen von dunklen Mineralen (blättriger Biotit).
3.3. Glassvik
Einige Kilometer nördlich von Steninge liegt die Ortschaft Glassvik (Lok. 3.3 auf der Karte). Vom Parkplatz (56.77629, 12.62089) aus geht man zur Küste und orientiert sich in nördlicher Richtung. Aufschlüsse von migmatitischen Quarz-Feldspat-Gneisen wechseln sich mit Amphibol-Gneisen ab. Auffällig ist das nahezu senkrechte Einfallen der Gneise (Abb. 10) und eine annähernd parallel zur Klüftung verlaufende Foliation. Verschiedene Generationen von pegmatitischen bis aplitischen Gängen innerhalb der Quarz-Feldspat-Gneise (Abb. 11; 14-16) zeigen Deformationsstrukturen wie Verdünnung, Boudinage und interne Foliation. Die Gesteine entstanden während des „Halland-Events“ vor etwa 1.440 Ma und wurden im Zuge der svekonorwegischen Gebirgsbildung erneut deformiert (MÖLLER et al 1996: 18-19).
Abb. 10: Steil einfallende, NE-SW streichende Gneise an der Küste von Glassvik (etwa 56.78026, 12.61332).Abb. 11: Roter und undeformierter Pegmatit-Gang (Breite etwa 1,5 m) in einem grauen migmatitischen Amphibolgneis.Abb. 12: Granatführender Amphibolit, Bildbreite 1 m. Konkordant zur Foliationsrichtung verläuft ein Pegmatitgang; im Kontaktbereich ist der Amphibolit grobkörniger ausgebildet.Abb. 13: Weiter nordwärts eröffnet sich dem Besucher eine auenartige Küstenlandschaft, die stellenweise von anstehenden Felsen oder kleinen Geröllstränden durchbrochen wird.Abb. 14: Feinkörnige Graugneise, massiv durchsetzt von grobkörnigen roten Partien. Faltenstrukturen weisen auf eine starke Deformation hin. Die roten Partien besitzen eine granitische Zusammensetzung und verlaufen annähernd parallel zur Foliation. Bildbreite etwa 3 m.Abb. 15: Innerhalb der roten Partien sind größere Ansammlungen dunkler Minerale (Biotit) erkennbar. Die anatektischen Körper sind teilweise stark verfaltet, zeigen boudinierte Strukturen oder wirken regelrecht verdreht. Bildbreite etwa 1 m.Abb. 16: Die roten Partien scheinen intern nur wenig deformiert zu sein und weisen ein weitgehend regelloses Mineralgefüge auf (roter Alkalifeldspat, heller Plagioklas, grauer Quarz, Ansammlungen dunkler Minerale). Bildbreite 30 cm.
Ein weiterer interessanter Aufschluss an der Küste von Glassvik zeigt Erosionsrelikte eines gangförmigen und mehrere Zehnermeter mächtigen Granatamphibolits, der aus einer Abfolge unterschiedlicher Gefügevarianten besteht: ein grobkörniger Granat-Amphibolit mit regellosem Gefüge im Zentrum des Ganges wird zu beiden Seiten von migmatitischen Granatamphiboliten flankiert.
Abb. 17: Links ein dunkler und massiger Amphibolit als Gangmitte, rechts davon migmatitische Granatamphibolite. Breite des Aufschlusses etwa 5 m.Abb. 18: Grobkörniger und massiger Granatamphibolit im Zentrum des Ganges (Breite etwa 1,5 m). Das Gestein enthält sehr viel schwarzen Amphibol, der hohe Granatanteil bewirkt eine violettschwarze Gesamtfarbe.Abb. 19: Nahaufnahme; weitgehend richtungslos-körniges Gefüge aus schwarzem Amphibol, rotem Granat und etwas Plagioklas. Die Granat-Porphyroblasten erreichen eine Größe von 3 cm.Abb. 20: Zur linken Seite wird der massige Granatamphibolit von einem migmatitischen („plagioklasschlierigen“) Granatamphibolit begleitet. Breite des Steins etwa 75 cm.Abb. 21: Auf der rechten Seite steht ein migmatitischer Granat-Amphibolgneis mit ausgesprochen großen Granat-Porphyroblasten an. Häufigkeit und Größe der Granate nehmen zum Zentrum und zum Rand des Ganges ab.Abb. 22: Sechseckiger Anschnitt eines großen Granats, umgeben von einem weißen Plagioklas-Leukosom; Durchmesser des Granats 7,5 cm.Abb. 23: Runder Granat-Porphyroblast mit einem Saum aus schwarzem Amphibol; Durchmesser 8 cm.Abb. 24: Flammenpegmatit (deformierter bunter Pegmatit), polierte Schnittfläche, loser Strandstein von Glassvik.
Literatur
MÖLLER C, JOHANSSON L, ANDERSSON J & SÖDERLUND U 1996 Southwest-Swedish Granulite Region – Berichte der Deutschen Mineralogischen Gesellschaft, Beih. z. Eur. J. Mineral. Vol. 8, 1996, No.2.
VINX R 1998 Neue kristalline SW-schwedische Leitgeschiebe: Granoblastischer Mafischer Granulit, Halland-Retro-Eklogit und deformierter, bunter Pegmatit – Archiv für Geschiebekunde, Hamburg 1998, Band 2, Heft 6, S. 363-378.
Der Küstenabschnitt bei Stensjöhamn (Lok. 3.4 auf der Karte), unmittelbar nördlich von Glassvik, bietet eine ganze Reihe interessanter Aufschlüsse, u. a. migmatitische Granatamphibolite, granulitfaziell gebildete Orthopyroxen-Megakristalle und Sillimanitgneise (JOHANSSON 2011, HANSEN et al. 2015). Ausgehend vom Parkplatz (56.78949, 12.61967) hält man sich an der Küste in nördlicher Richtung und erreicht zunächst Aufschlüsse von migmatitischen Quarz-Feldspat-Gneisen und Amphibolgneisen. Auch hier ist von einer komplexen metamorphen Geschichte der Gesteine und mindestens zwei Phasen der Deformation auszugehen, dem Halland-Event vor 1.420-1.440 Ma und der svekonorwegischen Orogenese vor 980-950 Ma.
Abb. 1: Küste bei Stensjöhamn.Abb. 2: Migmatitische Quarz-Feldspat-Gneise mit hellen, annähernd parallel zur Foliation verlaufenden Quarz-Feldspat-Leukosomen. Bildbreite ca. 3 m.Abb. 3: Rotgrauer Quarz-Feldspat-Adergneis (schwach magnetisch), Anstehendprobe von Stensjöstrand.Abb. 4: Verfalteter Amphibolitgang in einem grauen Quarz-Feldspat-Gneis. Breite des Gangs etwa 150 cm.Abb. 5: Migmatitischer Amphibolit. Diskordant zur Foliation verlaufende weiße Leukosome aus Plagioklas verweisen auf eine erneute metamorphe Überprägung des Gesteins während der svekonorwegischen Gebirgsbildung. Die gebänderte und mafitreiche Partie in der Bildmitte enthält keine Leukosome.Abb. 6: Boudinageartige Einschaltungen von grünlichen Kalksilikatgesteinen in einem migmatitischen Amphibolit, Bildbreite 1 m.
Als Boudinage bezeichnet man ellipsoide Gefügeeinheiten in migmatitischen Gneisen. Boudinage entsteht, wenn dünne Gesteinslagen während der Deformation unterbrochen werden und in einzelne linsenförmige Einheiten zerfallen. Das grünliche (epidothaltige) Kalksilikatgestein dürfte sedimentären Ursprungs sein.
Abb. 7: Helles Feldspat-Leukosom mit Boudinage-Struktur in einem Amphibolit. Bildbreite etwa 1 m.
Eine Besonderheit der Lokalität Stensjöstrand sind Megakristalle von Orthopyroxen (Enstatit). Ihre Position innerhalb der Leukosome der Amphibolgneise lässt darauf schließen, dass sie während der partiellen Aufschmelzung des Wirtgesteins entstanden (HANSEN et al 2015).
Abb. 8: Relikte von grünen Orthopyroxen-Megakristallen innerhalb heller Leukosome eines Granatamphibolits. Bildbreite 70 cm.Abb. 9: Nahaufnahme eines großen Orthopyroxens, umgeben von einem Saum aus dunklem Amphibol (bzw. Amphibol-Quarz-Symplektiten) sowie rotem Granat.
Unter granulitfaziellen Bedingungen (1 GPa, 800 Grad) und der Abwesenheit von Fluiden (sog. Dehydrationsschmelzen) kommt es zu einem Zerfall von Biotit und Amphibol unter Bildung von Orthopyroxen:
Bt + Hbl + Pl +/- Qtz ↔ Opx+ Schmelze + Cpx + Gt
Einige Orthopyroxen-Megakristalle sind von einem Saum aus retrograd gebildeten Hornblende-Quarz-Symplektiten umgeben, die als Barriere eine weitere Umwandlung der Megakristalle verhinderten, während andere Orthopyroxe retrograd in Chlorit umgewandelt wurden.
Migmatite mit Orthopyroxen-Megakristallen treten an verschiedenen Lokalitäten in SW-Schweden auf (s. a. Söndrum). Vorkommen dieser aus Dehydrationsschmelzen unter granulitfaziellen Bedingungen gebildeten Orthopyroxene dürften sich auf die südwestschwedische Granulitregion beschränken. Der Gesteinstyp könnte als Leitgeschiebe geeignet sein, allerdings ist eine sichere Bestimmung von Orthopyroxen mit einfachen Mitteln kaum möglich.
Abb. 10: Aufschluss eines migmatitischen Granatamphibolits mit Plagioklas-Leukosomen („plagioklasschlieriger Granatamphibolit“) an der Küste von Stensjöhamn.Abb. 11: Granatamphibolit mit hellen Plagioklas-Leukosomen, Bildbreite 125 cm.Abb. 12: Migmatitischer Granatamphibolit; große Granat-Porphyroblasten sind von hellen Plagioklas-Leukosomen umgeben.Abb. 13: Probe eines migmatitischen Granatamphibolits, Nahaufnahme der frischen Bruchfläche. Das Gestein von der Lokalität Stensjöstrand besteht im Wesentlichen aus Amphibol, Plagioklas und Granat; nach HANSEN et al 2015 enthält es auch geringe Mengen von Pyroxen, Biotit und Apatit.Abb. 14: Amphibol-Gneise bis Amphibolite mit hellen und diskordant zur Foliationsrichtung verlaufenden Leukosomen. Bildbreite etwa 2 m.
Die Löcher im Fels stammen von einem Bohrgerät, mit dem Proben zum Zwecke einer Datierung entnommen wurden. Die Datierung isolierter Zirkone ergab ein Kristallisationsalter von 1.415-1.390 Ma. Anwachssäume um die gleichen Zirkone verweisen auf eine Metamorphose während der svekonorwegischen Orogenese vor 975-965 Ma (HANSEN et al. 2015).
Abb. 15: Küstenlandschaft bei Stensjöhamn.
Nördlich des kleinen Hafens (Stensjöhamn) ändert sich die Zusammensetzung der Gesteine. Hier stehen plattige, teilweise stark gefaltete Sillimanit-Gneise an, die durch Verwitterung bizarre Formen annehmen können.
Abb. 16: Sillimanitgneise bei Stensjöhamn.Abb. 17: Die komplexe Faltenstruktur der Sillimanitgneise tritt durch Verwitterung in bizarren Formen hervor.Abb. 18: Verfaltete Sillimanitgneise. Bildbreite etwa 2 m.Abb. 19: Anstehender Sillimanitgneis, Nahaufnahme; Bänder aus weißem bis gelblichem und plattig ausgebildetem Sillimanit entlang der Foliationsrichtung.Abb. 20: Sillimanit-Gneise, Brandungsgerölle am Ufersaum.Abb. 21: Sillimanitgneis mit rotem Granat, Brandungsgeröll vom Anstehenden, Aufnahme unter Wasser. Sillimanit ist durch Verwitterung gelblich gefärbt und durchzieht das Gestein in breiten Streifen.Abb. 22: Gleicher Stein, trockene Oberfläche. Die Grundmasse besitzt ein nahezu gleichkörniges Gefüge aus deutlich voneinander abgesetzten Körnern aus Quarz, Feldspat und Amphibol.Abb. 23: Nahaufnahme unter Wasser. Schwarzer Amphibol in stengeliger Ausbildung durchsetzt ein größeres Granat-Aggregat.
In Stensjöstrand finden sich neben Brandungsgeröllen anstehender Gesteine auch Geschiebe, u. a. zwei „alte Bekannte“: ein Kinne-Diabas aus Westschweden sowie ein NW-Dolerit, dessen Anstehendes eigentlich viel weiter südlich liegt. Auch zwei Rapakiwi-Granite mit vermuteter Herkunft vom Åland-Archipel wurden aufgelesen. Im Weichsel-Glazial änderte der Baltische Eisstrom im Gebiet der südlichen Ostsee seine ursprünglich südliche Zugrichtung und nahm einen ost-westlichen und schließlich sogar nördlichen Verlauf. Dies dürfte auch der Grund für Funde von NW-Dolerit und Åland-Gesteinen nördlich bzw. weit abseits von ihrem Herkunftsgebiet sein.
Abb. 24: Kinne-Diabas und NW-Dolerit, Geschiebe von Stensjöstrand. Breite der Steine jeweils etwa 9 cm.Abb. 25: Plagioklasschlieriger Granatamphibolit, Geröll von Stensjöstrand. Max. 4 cm große Granat-Porphyroblasten sind von einem hellen Plagioklas-Saum umgeben. Breite des Steins 16 cm.Abb. 26: Grobkörniger, wahrscheinlich postkinematisch entstandener Pegmatit aus rotem Alkalifeldspat, grauem Quarz und gelbem Plagioklas (keine Plattenquarze; kein Flammenpegmatit); Breite des Steins 80 cm.
3.5. Träslövsläge
In Träslövsläge (Lok. 3.5 auf der Karte), einem kleinen Fischerort südlich von Varberg, sollten sich etwa 200 m westlich der Kirche mehrere Aufschlüsse befinden (MÖLLER et al 1996: 32-33). Mittlerweile ist der Strandbereich allerdings stark verwachsen, nur eine Lokalität konnte ausfindig gemacht werden. Ein mafischer Granulit zeigt Relikte einer magmatischen Schichtung. Individuelle Lagen unterschiedlicher Dicke stehen diskordant zur Foliationsrichtung.
Abb. 27: Reliktische magmatische Schichtung in einem mafischen Granulit. Bildbreite ca. 60 cm.Abb. 28: Schonengranulit, einzelnes Strandgeröll von Södra Näs, 2 km NW von Träslövsläge.
Literatur
HANSEN E, JOHANSSON L, ANDERSSON J, LABARGE L, HARLOV D, MÖLLER C & VINCENT S 2015 Partial melting in amphibolites in a deep section of the Sveconorwegian Orogen, SW Sweden – LITHOS (2015), Vol. 236-237, S. 27-45.
JOHANSSON L 2011 Bergrundsgeologi in Stensjöstrands Naturreservat – 7 S., Geologiska Institutionen Lunds Universitet.
MÖLLER C, JOHANSSON L, ANDERSSON J & SÖDERLUND U 1996 Southwest-Swedish Granulite Region – Berichte der Deutschen Mineralogischen Gesellschaft, Beih. z. Eur. J. Mineral. Vol. 8, 1996, No.2.
In der Umgebung von Ullared (Lok. 5 auf der Karte) finden sich die Gesteine mit den höchsten Metamorphosegraden innerhalb der SGR. Es handelt sich um mehrere, max. 1 km² große und linsenförmige Eklogit-Massive, die in stark verfaltete bis mylonitische Gneise eingebettet sind. Die Eklogite entstanden einst in großer Tiefe und wurden bei ihrem Aufstieg am Ende der svekonorwegischen Orogenese in ihrem Mineralbestand verändert. Solche durch sog. retrograde Metamorphose veränderte Eklogite bezeichnet man als Retroeklogite.
Abb. 1: Retro-Eklogit von Ullared, loser Stein mit hellgrüner Verwitterungsrinde und großen hellroten Granaten. Loser Stein in der Nähe vom Anstehenden.
Eklogite entstehen bevorzugt bei tiefer Versenkung und hochgradiger Metamorphose von basischen Gesteinen in Subduktionszonen. Seltener, wie im Falle des Eklogits von Ullared, erfolgt ihre Bildung im Zuge von Kontinent-Kontinent-Kollisionen in Bereichen mit einer verdickten Kruste. Eine solche Kollision fand vor etwa 950 Ma während der Svekonorwegischen Orogenese statt. Als maximale Bildungsbedingungen wurden 17 kbar und 700°C ermittelt, was einer Versenkungstiefe von >50 km entspricht (DYCK 2011). Der nachfolgende schnelle Aufstieg des Eklogits ist wahrscheinlich auf spätorogenen gravitationalen Kollaps des Orogens und ein tektonisches Dehnungsregime zurückzuführen. Dabei wurde der primäre Mineralbestand aus Omphacit und Granat (in Al-reichen Phasen auch Kyanit) durch retrograde Metamorphose verändert. Typisch retrograde Mineralreaktionen in Eklogiten sind die Umwandlung von Omphacit in Plagioklas und Pyroxen sowie von Granat und (in geringer Menge enthaltenem) Quarz zu Klinopyroxen (Diopsid) und Plagioklas. Im Retroeklogit von Ullared ist daher reichlich Plagioklas enthalten, während reine Eklogite plagioklasfrei sind. Pyroxen kann bei fortschreitender retrograder Metamorphose weiter in Amphibol umgewandelt werden.
Abb. 2: Kleiner Eklogit-Steinbruch im Wald, nördlich von Ullared.Abb. 3: Anstehender Retroeklogit mit großen, runden Granat-Aggregaten, Bildbreite 35 cm.
Innerhalb des Eklogitkörpers sind Lagenstrukturen erkennbar (Partien mit größeren und kleinen Granaten), die wahrscheinlich als Relikte eine magmatische Schichtung (magmatic layering) der basischen Ausgangsgesteine abbilden. Die runden Granatkörner sind von schwarzgrünen und feinkörnigen Coronen umgeben (retrograd gebildete Amphibol-Klinopyroxen-Plagioklas-Symplektite).
Abb. 4: Angewitterte Probe eines Retroekogits; roter Granat tritt reliefartig hervor; gelblich verwitternder Plagioklas und farbloser Quarz sind hier leicht unterscheidbar.Abb. 5: Frische Bruchfläche einer weiteren Probe; hellroter Granat (Pyrop), farbloser Quarz und Plagioklas sowie blaue Minerale (Kyanit und/oder retrograd gebildete Symplektite, z. B. mit Sapphirin).Abb. 6: Polierte Schnittfläche eines grobkörnigen Retroeklogits von Ullared. Hauptbestandteile des Gesteins sind roter Granat, ein grünes Mineral – teils Klinopyroxen, teils pyroxenhaltige Symplektite – und blaue Mineralkörner.Abb. 7: Gleicher Stein, Nahaufnahme. In der Bildmitte ist ein größeres bläuliches Mineralaggregat erkennbar.
Bedingt durch die komplexen Mineralreaktionen während der retrograden Metamorphose zeichnen sich Retroeklogite durch vielfältige Mineralparagenesen aus. Im Retroeklogit von Ullared fällt zunächst der hohe Gehalt an hellrotem und Fe-armen Granat (Pyrop) auf. Die großen Granate sind von grünschwarzen Coronen umgeben. Hierbei handelt es sich um fein verfilzte Verwachsungen von retrograd gebildeten Mineralen, die als Symplektite bezeichnet werden. Häufig handelt es sich dabei um Verwachsungen von Plagioklas und Pyroxen, optional auch Amphibol. Bei den weißen und milchig getrübten Bereichen dürfte es sich ebenfalls um Symplektite handeln. Auf der Bruchfläche (Abb. 5) sind auch einzelne grüne Körner von Klinopyroxen (Diopsid) erkennbar, weiterhin farbloser bis weißer Quarz (auch einzelne, 5-10 mm große Aggregate) und Plagioklas (polsynthetische Verzwilligung nur schwer erkennbar). Bei den blauen Mineralkörnern dürfte es sich um Kyanit handeln. Trübungen innerhalb der Körner sprechen für eine teilweise retrograde Umwandlung (in Sapphirin?) und dürften ebenfalls symplektitische Verwachsungen sein.
Der Mineralbestand der retrograd entstandenen Symplektite ist nur mikroskopisch wahrnehmbar. Nach DYCK 2011 finden sich symplektische und coronitische Strukturen häufig um Granat. Diese grünen bis schwarzgrünen und massigen Bereiche bestehen aus Verwachsungen von Klinopyroxen, Amphibol und Plagioklas oder auch Biotit und Plagioklas. Blauer Kyanit entsteht in Eklogiten mit Al-reichen Mineralphasen. Im Zuge der retrograden Druckentlastung kann es an der Grenzfläche von Kyanit und Omphacit zur Bildung von hellblauen und trüben Symplektiten aus Sapphirin und Plagioklas kommen (s. a. MÖLLER 1999). Eine weitere retrograde Bildung im Retroeklogit von Ullared ist Skapolith (hellgrüne Lichter, durchscheinend bis opak), einem typischen Mineral der retrograden Amphibolitfazies in Eklogiten. Weitere und eigenständig auftretende Minerale im Retroeklogit von Ullared sind einzelne größere Aggregate von Amphibol und Biotit sowie Akzessorien von Rutil und opaken Mineralen (Ilmenit?).
Die nächste Probe ist ein mittelkörniger und relativ dunkler Retroeklogit mit einer Lagentextur, die vermutlich ein magmatic layering des Ausgangsgesteins abbildet (Ansicht um 90 Grad gedreht). Eine dunkle Partie (links) geht in eine hellere über (Mitte), unter Vergröberung des Mineralkorns (rechte Seite). Blaue Mineralkörner sind in dieser Probe reichlicher enthalten.
Abb. 8: Polierte Schnittfläche eines mittelkörnigen Eklogits.Abb. 9: Nahaufnahme der dunklen Partie: rote Granatkörner und blauer Kyanit (teils trüb und symplektitisch) sowie feinkörnige Bereiche mit grünen Mineralen. Die dunkle Farbe dürfte auf einen höheren Gehalt an Amphibol zurückzuführen sein.Abb. 10: Nahaufnahme der hellen Partie.Abb. 11: Makroaufnahme einiger blauer Mineralkörner mit einem milchig-trüben Kern aus Symplektiten. Bild: T. Langmann.Abb. 12: Erstaunlich ist, dass die milchig-trüben und mutmaßlich symplektitischen Bereiche im Kern der transparenten Mineralkörner liegen und nicht an ihren Rändern, wo man eine retrograde Umwandlung im Kontakt mit anderen Mineralen erwarten würde. Bild: T. Langmann.Abb. 13: Weitere Makroaufnahme eines Blauen Mineralkorns mit milchig-trübem Kern und transparentem Rand. Bild: T. Langmann.
In der näheren Umgebung vom kleinen Steinbruch mit dem Retroeklogit stehen neben Graugneisen helle und granatreiche Gneise mit wenig dunklen Mineralen an, in Nachbarschaft zu dunklen Metabasiten, die augenscheinlich deutlich niedrigeren Metamorphosegraden unterlagen (Amphibolitfazies).
Abb. 14: Granatreicher Gneis bei Ullared.Abb. 15: Metabasit aus weißem Plagioklas (teilweise epidotisiert) und schwarzem Amphibol; kein Granat.Abb. 16: Im Wald befindet sich auch eine Halde aus derbem Quarzgestein (wahrscheinlich Gangquarz). Es dürfte sich um Relikte eines bergmännischen Schurfes handeln. Was hier einst abgebaut wurde, ist unklar.
Literatur
Hegardt E A et al 2005 Eclogites in the central part of the Sveconorwegian Eastern Segment of the Baltic Shield: Support for an extensive eclogite terrane – GFF 127, 3 S. 221-232.
Dyck B 2011 A key fold structure within a Sveconorwegian eclogite-bearing deformation zone in Halland, south-western Sweden: geometry and tectonic implications – M.Sc. Thesis in geology at Lund University, Nr. 279, 42 pp. 45 hskp/ECTS.
Langendoen J & van Roermund HLM 2007 An investigation into the genesis of an erratic (retro) eclogite block from Haren, Groningen, the Netherlands – Netherlands Journal of Geoscience 86-2, S. 145-157.
Möller C, Andersson J, Dyck B & Lundin I A 2015 Exhumation of an eclogite terrane as a hot migmatitic nappe, Sveconorwegian orogen – Lithos Volume 226, 1 June 2015, Pages 147–168.
Möller C et al, 1997 A Sveconorwegian deformation zone (system?) within the Eastern Segment,Sveconorwegian orogen of SW Sweden – a first report – GFF, Vol. 119, S. 73-78.
Möller C 1998 Decompressed eclogites in the Sveconorwegian (Grenvillian) orogen of SW Sweden: petrology and tectonic implications – Journal of metamorphic Geology, 16: S. 641-656.
Möller C 1999 Sapphirine in SW Sweden: a record of Sveconorwegian (Grenvillian) late-orogenic tectonic exhumation – Journal of metamorphic Geology, 17, S.127-141.
Vinx R 1998 Neue kristalline SW-schwedische Leitgeschiebe: Granoblastischer mafischer Granulit, Halland-Retro-Eklogit und deformierter, bunter Pegmatit – Archiv für Geschiebekunde (2) 6, S. 363-378. Hamburg Mai 1998. Vinx R 2016 Steine an deutschen Küsten; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.).
Abb. 1: Alter Charnockit-Steinbruch zwischen Varberg und Apelviken.
Charnockite sind ein seltener und exotischer Gesteinstyp mit einer eigenen Klassifikation (QAPF-Diagramm). Sie bestehen zwar im Wesentlichen aus Quarz und Feldspat, führen als Besonderheit aber Orthopyroxen als dunkles Mineral. Die Anwesenheit von Orthopyroxen ist auf die besonderen Bildungsbedingungen der Gesteine zurückzuführen. Dabei wird seit langem diskutiert, ob Charnockite plutonischen oder metamorphen Ursprungs sind (HARLOV et al 2013). Feldstudien und eingehende petrographische Untersuchungen ergaben, dass zunächst beide Möglichkeiten in Betracht zu ziehen sind und eine Entscheidung vom Einzelfall abhängt.
Charnockite treten an mehreren Lokalitäten in SW-Schweden auf, ihre Verbreitung beschränkt sich auf das Gebiet der SGR (Abb. 2). Das größte Charnockit-Vorkommen Europas liegt in der Umgebung der Stadt Varberg, weitere kleine Massive sind von Björnamossa und Laholm bekannt. Darüber hinaus treten „charnockitisierte“ Bereiche innerhalb der SW-schwedischen Grundgebirgsgneise auf, die durch trockene Hochtemperatur-Metamorphose entstanden. Im Gelände kann man solche Areale an einer Grünfärbung der Gesteine erkennen (s. Exkursionsbericht Söndrum).
Auf eine plutonische Entstehung des Varberg-Charnockits weisen geochemische Daten hin (HARLOV et al 2013). Die Bildung des Charnockit-Magmas erfolgte in der Unterkruste durch fraktionierte Kristallisation aus fluidreichen basaltischen Schmelzen bei 750-850°C und einem Druck von 800-850 MPa. Diese wasserarmen, aber CO2-reichen Schmelzen begünstigten die Entstehung von Ortho- und Klinopyroxen. Zum Aufstieg des Varberg-Charnockit kam es vor 1399 ± 6 Ma, nach Beendigung einer als „Halland-Event“ bezeichneten Gebirgsbildung. Wahrscheinlich aus der gleichen Magmaquelle gingen auch die postorogenen Granite hervor (Torpa-/Tjärnesjö-Granit, 1380 ± 12 Ma). ). Im nördlichen Teil des Charnockit-Massivs von Varberg umschließt der Torpa-Granit einen Teil des Charnockits und weist auf eine enge Assoziation von Charnockiten und Graniten hin. Charnockite und Granite wurden während der svekonorwegischen Orogenese vor etwa 1 Ga teilweise deformiert.
Abb. 2: Karte: Lage der Charnockit-Vorkommen in SW-Schweden.Abb. 3: Ausdehnung des Varberg-Charnockits (dunkelgrau) und der anorogenen Granit-Massive (Torpa und Tjärnesjö-Granit, hellgrau). Im Norden des Varberg-Massivs umschließt der Torpa-Granit einen Teil des Charnockits. Grafik nach HARLOV et al 2012.
Nördlich von Apelviken bei Varberg können verschiedene Varianten von Charnockiten in aufgelassenen Steinbrüchen studiert werden. Neben den üblicherweise feinkörnigen und grünen, mehr oder minder stark foliierten Gneisen mit oder ohne Feldspat-Megakristallen treten untergeordnet auch grobkristalline und porphyrische Charnockite auf. Etwas weiter nordwestlich, in den Steinbrüchen von Hästhagaberget ist ebenfalls eine Vielfalt an Gefügen zu beobachten, siehe der Reisebericht auf strand-und-steine.de.
Abb. 4: Varberg-Charnockit, anstehender Felsen und Haldenmaterial in einem ehemaligen Steinbruch bei Apelviken.Abb. 5: Anstehender Charnockit am Strand von Apelviken. Im frischen Zustand ist das Gestein grün gefärbt, bei Verwitterung nimmt es eine gelblichgraue Farbe an. Bildbreite etwa 40 cm.Abb. 6: Varberg-Charnockit mit frischer Bruchfläche aus dem Steinbruch Apelviken.
Der feinkörnige Gneis besteht im Wesentlichen aus grünem Feldspat und etwas weniger Quarz. Die Mineralkörner bilden eine granulierte Masse und besitzen unklare Korngrenzen. Quarz tritt auch in einzelnen größeren und hell- bis dunkelgrauen Körnern (bis 3 mm) auf. Flecken und Streifen mit Ansammlungen dunkler Minerale weisen eine Paralleltextur entlang der Foliationsrichtung auf.
Abb. 7: Gleicher Stein, Nahaufnahme.
Mit einfachen Mitteln lässt sich der Mineralbestand nicht näher bestimmen. Die zuckerkörnig granulierte Grundmasse erschwert die Unterscheidung von Plagioklas und Alkalifeldspat, beide besitzen die gleiche grüne Farbe. Lediglich ein einzelner größerer Feldspat zeigt polysynthetische Verzwilligung (Plagioklas). Auch die feinkörnigen dunklen Minerale sind kaum identifizierbar. In Frage kommen Klinopyroxen und Orthopyroxen als charakteristische Bestandteile von Charnockiten sowie Amphibol und Biotit. Hin und wieder weist ein lebhafter Glasglanz einzelner Körner auf Amphibol hin. Granat ist in dieser Probe nicht erkennbar, in den folgenden Handstücken aber in winzigen roten Körnern enthalten. Das Gestein reagiert auf einen Handmagneten, auch alle folgenden Charnockit-Proben sind deutlich magnetisch.
Häufig treten einzelne größere und leicht gerundete Feldspat-Megakristalle auf (Abb. 8, 11-13). Diese bilden Karlsbader Zwillinge, weisen aber keine perthitische Entmischung auf. Manchmal erscheinen die großen Feldspäte wie rotiert und werden von gebogenen Streifen aus dunklen Mineralen umflossen.
Abb. 8: Charnockit mit Feldspat-Megakristallen.Abb. 9: Nahaufnahme unter Wasser. In der Vergrößerung sind winzige rote bis rötlichbraune Granat-Körner erkennbar.
Nach mikroskopischen Untersuchungen (HARLOV et al 2013) besteht der Varberg-Charnockit aus Kalifeldspat, Plagioklas, Quarz, Orthopyroxen (Enstatit), Klinopyroxen (Diopsid), Granat, Biotit und Magnetit. Amphibol tritt zusammen mit Pyroxen in feinen Verwachsungen, gelegentlich auch in isolierten Körnern auf. Der Haupttyp des Varberg-Charnockits (an der Festung Varberg) besitzt eine monzonitische Zusammensetzung, weiter südlich (Apelviken) überwiegen Quarzmonzonite. Entsprechend der Klassifikation charnockitischer Gesteine handelt es sich damit um Mangerite bzw. Quarz-Mangerite. Bekannt sind auch gangförmige Einschaltungen von Pegmatitkörpern mit Klinopyroxen-Megakristallen bis 1 cm, umgeben von einem Saum aus kleineren Orthopyroxen-Körnern. Ein höherer Granat-Anteil kann einen rotbraunen Farbstich des Gesteins bewirken. In den Proben von Apelviken ist Granat nur in kleiner Menge anzutreffen (Abb. 7).
Abb. 10: Varberg-Charnockit von Varberg, Nahaufnahme einer polierten Schnittfläche. Sammlung Bennhold, Museum Fürstenwalde.
4.1. Charnockite als Geschiebe
Charnockite sind typische Gesteine der Südwestschwedischen Granulitregion und unter Vorbehalt als Leitgeschiebe geeignet. Zum einen ist die eindeutige Bestimmung von Charnockiten an den Nachweis von Orthopyroxen gebunden, der mikroskopische Untersuchungen erforderlich macht, zum anderen ist nicht jeder grüne Gneis ein Charnockit. Vielmehr wird man bei der Bestimmung von Geschieben auf grüne und feinkörnige Quarz-Feldspat-Gneise achten, die kleine (mitunter nur schwer erkennbare) Körner aus rotem Granat sowie Magnetit enthalten. Charakteristisch und bisher nur aus Varberg bekannt sind Charnockite mit einzelnen größeren Feldspat-Megakristallen bis 3 cm.
Nur auf der Bruchfläche sind die Gesteine wirklich grün gefärbt. Bei Verwitterung nimmt das Gestein einen gelblichen bis bräunlichen Farbton an. Geschiebe-Charnockite dürften ganz ähnlich aussehen wie die abgerollten Brandungsgerölle vom Steinbruch in Apelviken (Abb. 9 und 10). SW-schwedische Charnockite finden sich regelmäßig in Schleswig und an der Ostküste von Jütland (VINX 2016: 187). Charnockite sind auch aus Südnorwegen bekannt („Arendalit“, s. skan-kristallin.de). Geschiebe von dort könnten nach N-Dänemark, aber wohl kaum nach Norddeutschland gelangt sein.
In der Geschiebeliteratur variieren die Beschreibungen des Varberg-Charnockits. HESEMANN 1975: 91-92 bezieht in seine Darstellung des „Varberg-Granits“ auch charnockitisierte Gneise ein. ZANDSTRA 1988: 355 schlägt in diesem Zusammenhang „Pyroxengneis“ als die treffendere Bezeichnung vor und nennt an erkennbarem Mineralbestand: farblosen bis sehr hellgrünen Diopsid und dunklen bis schwarzen Hypersthen mit einem kupferroten Metallglanz auf den Flächen, neben gewöhnlichem Amphibol; reichlich gelben Titanit (nach ASKLUND 1946). In den Proben aus Apelviken konnte ich weder unterschiedlich ausgebildete Pyroxene noch Titanit beobachten. Eine Abbildung eines Geschiebefunds in ZANDSTRA 1999 als Referenz für eine allgemeine Gesteinsbeschreibung ist hinsichtlich zahlreicher möglicher kleiner Charnockitvorkommen methodisch problematisch, zumal es sich nicht um den Varberg-Typ handelt. Auch SMED & EHLERS 2002 (Nr. 120) nennen als dunkle Minerale: dunkelbraunen Hypersthen mit gold- bis bronzescheinenden Spaltflächen; gelegentlich auch Diopsid in Gestalt länglicher grüner und seidenglänzender Kristalle. Die mir vorliegenden Anstehendproben aus Apelviken bestätigten auch diese Beobachtungen nicht.
Abb. 11: Varberg-Charnockit mit Feldspat-Megakristallen, Strandgeröll von Apelviken.Abb. 12: ein weiteres Strandgeröll vom Anstehenden in Apelviken.Abb. 13: Nahaufnahme der nassen Oberfläche: ein abgerundeter Kalifeldspat als Karlsbader Zwilling; kleine bräunlichrote Granate in der Grundmasse.
Erwähnenswert sind mehrere Funde von Granatcoroniten am Geröllstrand von Apelviken, die aus einem weiter nördlich gelegenen Metabasit-Vorkommen auf der Insel Balgö stammen könnten (Abbildung im Artikel mafischer Granulit/Granatcoronit).
4.2. Torpa- und Tjärnesjön-Granit
Torpa- und Tjärnesjön-Granit (Abb. 3) sind zwei größere anorogene Granit-Massive im nördlichen Halland, die vor etwa 1.380 Ma im Zuge der als „Halland-Event“ bezeichneten Gebirgsbildung entstanden. Sie wurden in ihren Randbereichen während der svekonorwegischen Orogenese stark deformiert. Der Torpa-Granit wird an seinem nördlichen Rand von der Mylonitzone tangiert.
Die grob- bis riesenkörnige Variante des Torpa-Granits besitzt ein auffälliges Gefüge und ist als Leitgeschiebe geeignet (VINX 2016). 2-3 cm, im Ausnahmefall bis 5 cm große und violettgraue Alkalifeldspat-Megakristalle weisen kräftige perthitische Entmischungen auf und sind von einem dünnen Saum aus orangefarbenem Feldspat umgeben. Die Grundmasse bilden schmutzig-weißer bis gelblicher Feldspat und recht wenig xenomorphe Aggregate aus grauem und transparentem Quarz. Dunkle Minerale (Biotit, Amphibol) treten untergeordnet und in cm-großen Ansammlungen auf, seltener ist auch etwas Granat zu beobachten. Anstehendproben siehe skan-kristallin.de.
Abb. 14: Torpa-Granit, Geschiebe von Weißenhaus (R. Vinx det., Slg. E. Figaj). Breite des Steins 19 cm.Abb. 15: Nahaufnahme eines violettgrauen Alkalifeldspat-Megakristalls mit perthitischer Entmischung.
Die nächste Anstehendprobe ist ein grobkörniger Augengranit vom See Tjärnesjön (Lok. 4.2 auf der Karte). Einige der braunen und perthitisch entmischten Alkalifeldspat-Megakristalle sind von einem orangeroten Plagioklas-Saum umgeben.
Abb. 16: Tjärnesjön-Granit aus einem Straßenaufschluss, 250 m SE von Bålabron (SW-Schweden).Abb. 17: Gleicher Stein, Aufnahme unter Wasser.Abb. 18: Gleicher Stein, Nahaufnahme.Abb. 19: Blick auf den See Tjärnesjön.Abb. 20: Torpa-/Tjärnesjön-Granit, Geschiebe vom Stohler Ufer bei Kiel; Aufnahme unter Wasser.
Literatur
HARLOV DE, VAN DEN KERKHOFf A & JOHANSSON L 2013 TheVarberg-Torpa Charnockite-Granite Association, SW Sweden: Mineralogy, Petrology, and Fluid Inclusion Chemistry – Journal of Petrology, Volume 54 (1), S. 3-40 – Oxford University Press 2013. doi:10.1093/petrology/egs060
VINX R 2016 Steine an deutschen Küsten; Finden und bestimmen – 279 S., 307 farb. Abb., 5 Grafiken, 25 Kästen, Wiebelsheim (Quelle & Meyer Verl.).