Archiv des Autors: Marc Torbohm

Exkursionsbericht Öland 2 – Kristallingeschiebe

Abb. 42: Kartenskizze mit den Heimatgebieten einiger Kristallingesteine in Ost-Småland und den Geschiebefundorten auf Öland. Der Pfeil markiert die Hauptzugrichtung des Eises während der letzten Vereisung. Karte verändert nach: WIK et al 2005: Berggrundskartan Kalmar län – 1:250 000.

2.1. Äleklinta
2.2. Byxelkrog
2.3. Eskilslund
2.4. Hagskog
2.5. Ramsnäs

Das Sammeln von Nahgeschieben auf Öland bietet einen Einblick in die Gesteine des nahen Grundgebirges in Ost- und Nordost-Småland und ist eine vergleichsweise bequeme Abwechslung zum mühsamen Sammeln von Anstehendproben. Die Gletscher der nordischen Inlandvereisungen transportierten Gesteine auf dem Festland nur über geringe Distanzen, in der Regel wenige Zehnerkilometer. Auch Öland dürfte damals Festland gewesen sein und der Meeresspiegel bedeutend niedriger gelegen haben als heute. An den Inselstränden finden sich ganz überwiegend Kristallingeschiebe aus dem östlichen und nordöstlichen Småland, dem Gebiet entgegen der vorherrschenden südöstlichen Zugrichtung des Eises. Zur Lage der Fundlokalitäten s. Abb. 3 im ersten Teil des Exkursionsberichtes.

Von Strand zu Strand unterscheidet sich die Geschiebegemeinschaft. Ganz klar dominieren granitoide Gesteine des Transskandinavischen Magmatitgürtels (TIB) aus Ost- und Nordost-Småland und dem südlichen Östergötland. Dabei lassen sich grob drei Gefügevarianten unterscheiden:

  1. gleichkörnige Alkalifeldspatgranite vom Växjö-Typ mit rotem bis rotbraunem Alkalifeldspat, häufig mit lebhaftem Blauquarz (z. B. Abb. 43);
  2. grobkörnige rote Alkalifeldspatgranite (z. B. Abb. 48);
  3. dunkle und porphyrische Monzogranite mit Blauquarz, braunem Alkalifeldspat, gelbem oder orangefarbenem Plagioklas sowie reichlich Titanit (z. B. Abb. 53). Zu diesem Granittyp gehört auch der Kinda-Granit (z. B. Abb. 82). Der Anteil dieses Geschiebetyps nimmt nach Norden hin zu.

Funde der geschiebekundlich interessanten anorogenen Ost-Småland-Granite (Uthammar-, Götemar- und Jungfrun-Granit) werden im dritten Abschnitt vorgestellt.

Vulkanite und Porphyre des TIB sind nur vereinzelt anzutreffen (meist Gangporphyre), was wenig verwunderlich ist, denn ihr Herkunftsgebiet liegt entweder weiter südlich (Påskallavik-Porphyr oder die hälleflintartigen Småland-Vulkanite mit wenigen Feldspat-Einsprenglingen aus dem Gebiet um Växjö) oder zu weit westlich. Denn auch Porphyre aus dem Vulkanitgebiet von Lönneberga wie Lönneberga-Porphyr oder der Nymåla-Porphyrtyp kommen auf Öland nicht vor (lediglich ein Emarp-Porphyr wurde gesichtet, Abb. 56).

Der Anteil an Ferngeschieben ist gering. Regelmäßig fallen allerdings einzelne Rapakiwigranite vom Åland-Pluton ins Auge (z. B. Abb. 68-69). Der Åland-Pluton liegt über 350 NNW von Öland und nicht in Zugrichtung der letzten Vereisung. Eine Besonderheit sind gleich zwei Funde von Rödö-Rapakiwis aus Nordschweden am Strand von Eskilslund (Abb. 99-102).

Auch svekofennische Gesteine sind nur vereinzelt zu finden, z. B. die spätorogenen grauen Plutonite (Uppland-Granite) oder auch allgemein Gneise und Migmatite. Eine Ausnahme bilden lokale Häufungen von Fleckengesteinen mit den dazugehörigen Quarziten aus dem nahen Västervik-Gebiet (Lokalität Ramsnäs). Der Loftahammar-Augengneis in typischer Ausbildung tritt hingegen kaum in Erscheinung.

2.1. Äleklinta

Neben den im ersten Abschnitt besprochenen Sedimentgesteinen (mittelkambrische Sandsteine, Anthrakonite, Orthocerenkalke etc.) treten an der Lokalität Äleklinta auch Kristallingeschiebe auf. Durch ihre Farbigkeit und den Kontrast sind sie leicht zu lokalisieren, kaum eines der vereinzelten Geschiebe entgeht dem Blick. Unter den TIB-Graniten finden sich reichlich gleichkörnige bis schwach porphyrische, meist mittelkörnige Alkalifeldspatgranite vom Växjö-Typ mit lebhaftem Blauquarz (Abb. 43-46).

Abb. 43: Alkalifeldspatgranit vom Växjö-Typ; rosafarbener bis bräunlicher Alkalifeldspat, reichlich Blauquarz und Titanit in den Biotit-Ansammlungen. Breite 12,5 cm. Es besteht eine Ähnlichkeit zum Vånevik-Granit, allerdings liegt das Vorkommen direkt westlich vom Fundort.
Abb. 44: Alkalifeldspatgranit, Breite 12 cm.
Abb. 45: Brauner Granit mit Blauquarz, Breite 13,5 cm.
Abb. 46: Mittelkörniger Småland-Granit vom Växjö-Typ, Breite 13 cm.

Grobkörnige rote Småland-Granite mit grauem oder blauem Quarz, kaum Plagioklas
(Abb. 47-52):

Abb. 47: Roter Småland-Granit; einige Risse innerhalb der Feldspäte sind mit dunklen Mineralen verfüllt. Breite 10,5 cm.
Abb. 48: gewöhnlicher roter Småland-Alkalifeldspatgranit, Breite 11 cm.
Abb. 49: roter Småland-Granit. In den Zwickeln zwischen Alkalifeldspat und Quarz ist eine feinkörnige grüne und epidotähnliche Masse erkennbar. Breite 15 cm.
Abb. 50: Ungleichkörniger roter Ost-Småland-Granit mit reichlich Titanit. Breite 12,5 cm.

Die typischen porphyrischen NE-Småland-Granite mit braunem Alkalifeldspat, trübem und leicht bläulichem Quarz und orangefarbenem Plagioklas sowie Titanit treten in Äleklinta nur untergeordnet auf.

Abb. 51: Småland-Granit mit rotem bis braunem Alkalifeldspat, Blauquarz, etwas gelblichem Plagioklas und Biotit. Breite 12,5 cm.
Abb. 52: Geht man etwas näher heran, erkennt man viel gelblichen Titanit. Bildbreite 80 mm.
Abb. 53: Titanitführender porphyrischer NE-Småland-Granit aus braunem Alkalifeldspat, trübem und leicht bläulichem Quarz und orangefarbenem Plagioklas. Breite 13 cm.
Abb. 54: Ungleichkörniger NE-Småland-Granit; einzelner größerer Alkalifeldspat mit orangefarbenem Plagioklas-Saum. Breite 12 cm.

Ein alter Bekannter und ein Leitgeschiebe für das mittlere Småland ist der Järeda-Granit, der mehrmals in Äleklinta angetroffen wurde. Typisch sind die mit dunklen Mineralen gefüllten parallelen Risse innerhalb der Alkalifeldspäte.

Abb. 55: Järeda-Granit, Breite 10,5 cm.

Ebenfalls aus dem mittleren Småland stammt der Emarp-Porphyr (Einzelfund in Äleklinta).

Abb. 56: Emarp-Porphyr, Breite 12 cm.

Der nächste Fund ähnelt dem „Högsrum-Porphyr“. Sein Herkunftsgebiet liegt allerdings weiter südlich und nicht in der Zugrichtung des Eises. Vermutlich treten Porphyre vom Högsrum-Typ nicht nur an ihrer Typlokalität auf.

Abb. 57: Deformierter Gangporphyr, Breite 19 cm.
Abb. 58: Rotbrauner deformierter Småland-Gangporphyr, ähnlich dem Påskallavik-Typ, mit runden Blauquarzen. Es fehlen die dunklen Kerne innerhalb der Alkalifeldspäte. Breite 15 cm.
Abb. 59: Roter Granitporphyr mit runden Feldspat-Einsprenglingen. Breite 17 cm.
Abb. 60: Nahaufnahme, Bildbreite 10 cm.

Der nächste Granit ist ein grobkörniges, rot-orangefarbiges Gestein mit viel Titanit. Sein Habitus entspricht weitgehend dem „massiven Typ Virbo-Granit“ (TIB-Granit, ZANDSTRA 1999:164), anstehend bei Saltvik, unmittelbar südlich vom Uthammar-Pluton.

Abb. 61: Virbo-Granit, massiger Typ, Breite 10 cm.
Abb. 62: Nahaufnahme; gelblicher Titanit innerhalb der dunklen Mineralaggregate.
Abb. 63: Roter, vermutlich metasomatisch überprägter Plutonit (Quarzsyenit), Breite 18 cm.
Abb. 64: Nahaufnahme. Viel Quarz ist nicht zu entdecken. Das Gestein besteht aus rotem Alkalifeldspat und grünem, stellenweise auch weißem Plagioklas (Quarzsyenit). Das Dunkelrote sind Hämatitflecken, Titanit ist reichlich enthalten.
Abb. 65: Småland-Granit mit leichter Deformation, erkennbar an der Einregelung der dunklen Minerale. Das Gestein führt keinen Titanit; der Gefügetyp wurde mehrfach als Geschiebe angetroffen. Breite 19 cm.
Abb. 66: Roter Småland-Granit, Breite 16 cm.

Das Gefüge des Granits in Abb. 67 weicht durch den Kontrast zwischen rosafarbenem Alkalifeldspat und weißem Plagioklas deutlich ab von den bisher gezeigten Proben (Einzelfund, Emsfors-Granit?).

Abb. 67: Granit mit grauem Quarz; einige Alkalifeldspäte besitzen einen hellen Plagioklas-Saum. Breite 13 cm.

Hin und wieder finden sich in Äleklinta auch Rapakiwi-Geschiebe. Ihr Transportweg ist unklar, denn alle Rapakiwivorkommen, insbesondere der Åland-Pluton, liegen nicht in der Hauptzugrichtung der letzten Inlandvereisung.

Abb. 68: Mischgefüge Pyterlit/porphyrischer Rapakiwi, vermutlich von Åland. Breite 13,5 cm.
Abb. 69: Heller Wiborgit/gleichkörniger Rapakiwi, vermutlich von Åland. Breite 13 cm.
Abb. 70: Mischgestein, Granitporphyr, ähnlich dem Åland-Ringquarzporphyr. Breite 10,5 cm.

Der letzte Fund aus Äleklinta zeigt ein interessantes Gefüge. In den Zwickeln zwischen den roten Alkalifeldspäten sind rote bis gelbliche und eckige graphische Verwachsungen erkennbar. Die Herkunft des Gesteins ist unbekannt.

Abb. 71: Hellroter Granit mit graphischen Verwachsungen. Bildbreite 20 cm.

2.2. Byxelkrog

Etwa 500 m nördlich von Byxelkrog (letzter Parkplatz vor der Lokalität Neptuni åkrar) liegen am Strand einige große Geschiebe. Die Bedingungen zum Fotografieren vor Ort waren schlecht, daher fehlen einige Nahaufnahmen.

Abb. 72: Strand nördlich von Byxelkrog.
Abb. 73: Porphyrischer brauner Småland-Östergötland-Granit mit gelbem Plagioklas. Für einen Kinda-Granit fehlen die partiellen Plagioklassäume um die braunen Alkalifeldspäte. Bildbreite 19 cm.
Abb. 74: Porphyrischer Monzogranit mit blassrotem bis grauviolettem Alkalifeldspat und weißem Plagioklas (kein Titanit). Bildbreite 22 cm.
Abb. 75: Großes Geschiebe eines dunklen Fleckengesteins, Breite 36 cm.
Abb. 76: Länglicher Einschluss eines dunklen Fleckengesteins (oder fleckigen Metabasits) in einem roten Småland-Granit. Breite 40 cm.

Südlich von Byxelkrog am Enerumsvägen, vor dem Campingplatz und dem Leuchtturm, lassen sich am Strand maximal handgroße Kristallingeschiebe sammeln.

Abb. 77: Repräsentative Auswahl an Geschieben vom Strand bei Byxelkrog. Bildbreite 41 cm.

Hier finden sich deutlich mehr braune porphyrische Monzogranite (einige vom Typ Kinda-Granit) als in Äleklinta, neben gewöhnlichen mittel- bis grobkörnigen roten Småland-Graniten. Der Anteil an stärker deformierten Graniten – teilweise auch Augengranite, aber keine Loftahammar-Typen – ist höher als an den weiter südlich gelegenen Fundlokalitäten (Abb. 79).

Abb. 78: Einige Granitgeschiebe, näher fotografiert. Bildbreite 26 cm.
Abb. 79: Quarzreicher und leicht deformierter Blauquarzgranit. Schmutzig-grüner Plagioklas bildet Säume um die roten Alkalifeldspäte. Das Gestein enthält reichlich Titanit. Aufnahme unter Wasser.
Abb. 80: Gleichkörniger Småland-Granit vom Typ Tuna-Granit, nass fotografiert.
Abb. 81: Nahaufnahme des Gefüges.
Abb. 82: Kinda-Granit, Aufnahme unter Wasser.
Abb. 83: Graues Fleckengestein, quarzitisches Metasediment mit dunklen Cordierit-Flecken, wahrscheinlich aus dem Västervik-Gebiet.

2.3. Eskilslund

An der weitgehend monotonen, aus Grauem Orthocerenkalk bestehenden Küste von Eskilslund finden sich auch kleinere Strandabschnitte mit Kristallingeschieben. Häufig sind grobkörnige rote Småland-Granite und Augengranite, aber auch porphyrische Monzogranite sowie unterkambrische Kalmarsund-Sandsteine (s. Abb. 23-28 in Teil 1).

Abb. 84: Küste bei Eskilslund, Blick auf die Insel Blå Jungfrun.
Abb. 85: Strandabschnitt mit Kristallingeschieben.
Abb. 86: Titanitreicher Småland-Monzogranit mit blassrotem Alkalifeldspat und gelblichem Plagioklas; ähnlich Kinda-Typ, mit unvollständigen Plagioklas-Säumen um einzelne Alkalifeldspäte. Breite 9 cm.
Abb. 87: Småland-Monzogranit mit rotem Plagioklas (spricht für nördlichere Herkunft: Östergötland-Granite enthalten gelegentlich roten Plagioklas). Breite 9 cm.

Typische, wenn auch weniger auffällige NE-Småland-Granite sind grobkörnige Granite mit hellrotem Alkalifeldspat, reichlich Titanit und grünem sowie etwas rotem Plagioklas. Eine entsprechende Anstehendprobe konnte in der Umgebung vom Götemar-Pluton gesammelt werden.

Abb. 88: NE-Småland-Granit mit rotem und grünem Plagioklas, Breite 13 cm.

Am Strand fanden sich auch grobkörnige und leicht deformierte Granite vom Virbo-Typ (Abb. 89-91).

Abb. 89: NE-Småland-Granit, Typ Virbo-Granit. Breite 17 cm.
Abb. 90: Nahaufnahme.
Abb. 91: NE-Småland-Granit, Typ Virbo-Granit. Breite 17 cm.
Abb. 92: Plutonit mit geringem Quarzanteil (Monzonit bis Quarzmonzonit) aus blassrotem Alkalifeldspat und orangefarbenem Plagioklas (wahrscheinlich aus NE-Småland). Breite 17 cm.
Abb. 93: Nahaufnahme.
Abb. 94: Ungewöhnliche Farbkombination: orangeroter Granit mit weißem Plagioklas, Breite 15,5 cm.
Abb. 95: Grauer Gangporphyr mit Einschlüssen basischer Gesteine und wenig Quarz (klare runde Aggregate), Breite 20 cm.
Abb. 96: Nahaufnahme, Bildbreite 140 mm.
Abb. 97: Porphyrischer Monzogranit mit grünlichem und rotem (Mischfarbe: braun) Plagioklas. Der Typ wurde mehrfach auf Öland und in einer Kiesgrube in E-Småland beobachtet. Herkunft: vermutlich nördliches Småland – südliches Östergötland. Breite 20 cm.
Abb. 98: Helsinkitähnliches Gestein. Innerhalb der feinkörnigen rötlichen Masse zwischen den weißen Feldspäten ist etwas Blauquarz erkennbar. Breite 13 cm.

In Eskilslund fanden sich zwei Rapakiwis vom Rödö-Massiv in Nordschweden. Die hellen Feldspat-Ovoide im zweiten Fund (Abb. 101-102) erreichen allerdings kaum 2 cm (wichtiges Erkennungsmerkmal!).

Abb. 99: Rödö-Rapakiwi mit Wiborgitgefüge. Breite 21 cm.
Abb. 100: Nahaufnahme.
Abb. 101: Rödö-Rapakiwi mit Wiborgitgefüge (dicker Plagioklassaum rechts unten im Bild). Aufnahme unter Wasser.
Abb. 102: Nahaufnahme der nassen Oberfläche. Die großen runden und klaren Quarze der ersten Generation weisen kaum Spuren einer magmatischen Korrosion auf.
Abb. 103: Porphyr mit Ringquarzen aus einem Rapakiwi-Vorkommen. Die roten Partien bestehen aus graphischen Verwachsungen von Feldspat und Quarz. Breite 12,5 cm.

2.4. Hagskog

Am Strand von Hagskog fanden sich vergleichsweise häufig anorogene Ost-Småland-Granite (Götemar- oder Jungfrun-Granit, s. Teil 3 des Berichts) sowie Granite vom Kinda-Typ.

Abb. 104: Granit vom Kinda-Typ mit reichlich Titanit. Breite 13 cm.
Abb. 105: Kinda-Granit mit reichlich Titanit. Breite 15 cm.
Abb. 106: Västervik-Fleckenquarzit mit reliktischer sedimentärer Schichtung; Breite 17 cm.
Abb. 107: Auffälliger porphyrischer (Östergötland?)-Granit mit gelbem Alkalifeldspat, orangerotem Plagioklas und Blauquarz. Bildbreite 18 cm.
Abb. 108: Orangefarbener porphyrischer Rapakiwi-Granit, Herkunft unbekannt. Breite 14 cm.

2.5. Ramsnäs

Ramsnäs bietet die besten Fundmöglichkeiten für Kristallingeschiebe, Kalksteine sind hier deutlich in der Unterzahl. Unter den TIB-Graniten überwiegen rote Smålandgranite und braune porphyrische Monzogranite, darunter viele vom Kinda-Typ.

Abb. 109: Geröllstrand von Ramsnäs.
Abb. 110: Rote Smålandgranite und braune porphyrische Monzogranite. Bildbreite ca. 50 cm.

Auch Metasedimente, ganz offensichtlich aus dem Västervik-Gebiet, finden sich auffällig häufig: blassviolette und graue Quarzite, rote Granofelse mit schwarzen Cordierit-Flecken („Västervik-Fleckengestein“, deformiert und undeformiert) sowie hell- bis dunkelgraue Quarzite mit weißen Sillimanitflecken („Västervik-Fleckenquarzit“).

Abb. 111: Västervik-Fleckengestein, leicht deformiert. Breite 26 cm.
Abb. 112: Västervik-Fleckengestein, Breite 11,5 cm.
Abb. 113: Metasediment mit schwarzen Flecken, Breite 13 cm.
Abb. 114: Grauer Västervik-Fleckenquarzit, Breite 13 cm.
Abb. 115: Dunkelgrauer Västervik-Fleckenquarzit, Breite 9 cm.
Abb. 116: Blauer Quarzit mit rötlichem Feldspat; in vergleichbarer Form aus dem Västervik-Gebiet bekannt. Breite 12,5 cm.

Der mittelkörnige und nur schwach porphyrische Flivik-Granit in typischer Ausbildung ist ein seltener Fund auf Öland. Man beachte den hohen Gehalt an Blauquarz und seine gleichmäßige Verteilung im Gestein.

Abb. 117: Flivik-Granit, Breite 21 cm.
Abb. 118: Nahaufnahme des Gefüges.
Abb. 119: Kinda-Granit, Breite 12 cm.
Abb. 120: Kinda-Granit, Breite 15 cm.
Abb. 121: Kinda-Granit, Aufnahme unter Wasser.
Abb. 122: Nahaufnahme. Orangefarbener und grüner Plagioklas bilden stellenweise bräunliche Mischfarben.
Abb. 123: Farbenfrohe und plagioklasreiche Variante des Kinda-Granits. Ein vergleichbares Gestein wurde allerdings auch im Gebiet des Flivik-Granits in NE-Småland beobachtet, außerhalb des eigentlichen Kinda-Granitgebietes. Breite 17 cm.
Abb. 124: Nahaufnahme.
Abb. 125: Braune porphyrische Monzogranite mit Blauquarz und gelbem/grünem/orangefarbenem Plagioklas treten in großer Zahl auf. Dieser Granittyp besitzt ein großes Herkunftsgebiet, von NE-Småland bis ins südliche Östergötland. Breite 12 cm.
Abb. 126: Aus dem südlichen Östergötland dürften solche grobkörnigen Augengranite aus hellrotem Alkalifeldspat mit orangefarbenen Plagioklassäumen stammen. Breite 24 cm.
Abb. 127: Grobkörniger porphyrischer Östergötland(?)-Granit mit grünem und orangerotem Plagioklas (Mischfarbe braun); vgl. ähnlichen Fund in Eskilslund (Abb. 97). Breite 18 cm.
Abb. 128: Titanitreicher NE-Småland-Granit mit hellrotem Alkalifeldspat, Breite 13,5 cm.

Die nächsten drei Granite sind Varianten mittel- bis grobkörniger Alkalifeldspatgranite vom Växjö-Typ mit lebhaftem Blauquarz und wenigen dunklen Mineralen. Der Granittyp tritt an allen Lokalitäten sehr häufig auf.

Abb. 129: Småland-Granit vom Växjö-Typ, Breite 10 cm.
Abb. 130: Småland-Granit vom Växjö-Typ, Breite 13 cm.
Abb. 131: Blauquarzgranit, Växjö-Typ, Breite 9 cm.

Funde von Graniten mit hellen Plagioklassäumen um einzelne Alkalifeldspäte (Filipstad-Granittyp) sind auf Öland die Ausnahme.

Abb. 132: Blauquarzgranit, Typ Filipstad (Einzelfund). Breite 12,5 cm.
Abb. 133: Quarzreicher Granit mit zuckerkörnig granuliertem Quarz (Älö-Granit?). Breite 11,5 cm.

Vereinzelt finden sich auch hier wieder Rapakiwi-Granite als Ferngeschiebe.

Abb. 134: Rötlichgrauer Rapakiwi-Granit mit Wiborgitgefüge (Åland-Wiborgit). Breite 10,5 cm.

Exkursionsbericht Öland

  1. Sedimentgesteine
    1.1. Äleklinta
    1.2. Eskilslund
    1.3. Hagskog
    1.4. Neptuni åkrar
  2. Kristallingeschiebe
  3. Anorogene Ostsmåland-Granite
  4. Literatur
Abb. 1: Küste bei Äleklinta.

Öland ist ein beliebtes Reiseziel für den Fossiliensammler. Die Insel besteht aus paläozoischen Sedimentgesteinen (Mittelkambrium bis Mittelordovizium), vor allem den grauen und roten Orthocerenkalken, die auch in Norddeutschland häufig als Geschiebe zu finden sind. Der erste Teil dieses Exkursionsberichtes führt an einige der zahlreichen paläontologisch interessanten Lokalitäten (entnommen aus GRAVESEN 1993). Zur Geologie und Paläontologie Ölands sowie weiterführender Literatur s. SCHULZ 2002, VOLLBRECHT & WEMMER 2019.

Eigentliches Ziel der Reise war der Blick auf die Kristallingeschiebe an den westlichen Inselstränden und Steilufern im nördlichen Teil von Öland. Die Geschiebe stammen überwiegend vom nahen schwedischen Festland, aus Ost- und Nordost-Småland, einem Gebiet entgegen der vorherrschenden Zugrichtung der Gletscher während der letzten Vereisung. Viele der Strandgerölle haben also nur einen kurzen Transportweg zurückgelegt und sind als Nahgeschiebe anzusehen. Ihr Studium ermöglicht auf einfache Weise einen umfassenden Einblick in die häufigsten Gesteinstypen des nahen Grundgebirges. Neben der allgemeinen Betrachtung der Kristallingeschiebe im zweiten Teil wird ein dritter Abschnitt den anorogenen Ost-Småland-Graniten (Uthammar-, Götemar- und Jungfrun-Granit) gewidmet, die von besonderem geschiebekundlichen Interesse und auf Öland nicht selten zu finden sind.

Abb. 2: Kartenskizze Skandinavien. Der graue Kasten markiert das Gebiet in Abb. 3.
Abb. 3: Kartenskizze der Fundlokalitäten auf Öland (Kartenausschnitt, leicht verändert, aus WIK et al 2005).

1. Sedimentgesteine

An den westlichen Steilufern der Insel sind die Sedimentgesteine teilweise hervorragend aufgeschlossen. Der Grund ist die Ausbildung einer Schichtstufe durch das leichte Einfallen der ursprünglich planar abgelagerten Sedimentschichten (Plattformsedimente) nach Ostsüdost. Im Westen streichen die ältesten Schichten aus (Mittelkambrium bis Unterer Roter Orthocerenkalk), nach Osten sind sie bis ins Mittelordovizium verfolgbar. Oberes Ordovizium steht am Ostseegrund östlich von Öland an. Es folgt ein vereinfachter Abriss der Schichtenfolge Ölands vom Mittelkambrium bis Mittelordovizium:

Mittel- bis Oberkambrium ist mit hellen Sand- bis Siltsteinen („Tessini-Sandstein“, „Paradoxissimus-Sandstein“), schwarzen Alaunschiefern, Stinkkalken und Anthrakoniten vertreten. Im untersten Ordovizium setzt sich die Tiefwasserfazies aus dunklen Tonsteinen fort. Den Beginn des Ordoviziums markiert ein erstes Auftreten von Graptolithen. Der Dictyonema– jetzt Rhabdinopora-Schiefer, ein schwarzer geschichteter Tonstein, enthält netzförmige Kolonien des Graptolithen Rhabdinopora flabelliformis. Über dem Dictyonema-Schiefer schließt sich lokal eine dünne Lage des Obolus-Konglomerats an, ein heller Sandstein mit phosphatschaligen Brachiopoden (Obolus apollinis).

Ab dem Unterordovizium entwickelt sich zum ersten Mal in der Erdgeschichte eine ausgedehnte Sedimentation von Kalksteinen, eine Flachwasserfazies mit einer vielfältigen Fauna aus Cephalopoden, Trilobiten und Brachiopoden. Die Gliederung des Ordoviziums von Öland erfolgt traditionell in Trilobitenstufen (SCHULZ 2002: 216ff). Verschiedenen Schichtteilen werden eigene Namen nach der spezifischen stratigraphischen Verbreitung der einzelnen Trilobitenarten zugeordnet. Daraus resultiert auch die verwirrende Vielfalt der Bezeichnungen ordovizischer Kalksteine. Sie können zwar anhand ihrer Lithologie bestimmbar sein, im Zweifelsfall ist aber das Auffinden der namensgebenden Trilobiten entscheidend.

Den Beginn der kalkigen Ablagerungen bildet die Ceratopyge-Stufe aus geschichteten und massigen glaukonitischen Kalken. Graue bis bunte und glaukonitreiche Kalke sowie härtere glaukonitisch-knollige Tonsteinlagen wechseln sich gegenseitig ab. Vom Ceratopyge-Kalk sind zahlreiche Typen bekannt. Das Gestein enthält mm-große, schwarzgrüne Glaukonit-Pellets und kann dunkelgrau, häufig mit grünlichen und rötlichen Partien, seltener auch bunt gefärbt sein.

Roter und Grauer Orthoceren-Kalk wurden früher in großem Stil in Steinbrüchen gewonnen und zu Platten verarbeitet. Ein Abbau ist seit der Wikingerzeit belegt, die historischen Steinbrüche liegen direkt an der Westküste und ermöglichten einen leichten Abtransport per Schiff. Auch heute noch gibt es große Steinbrüche im Inland der Insel. Die Vorkommen von Orthocerenkalken sind nicht auf Öland beschränkt, sondern setzen sich wenig südlich der Insel, vor allem aber quer durch die Ostsee bis nach Estland und weiter zum Ladoga-See fort. Namensgeber sind die Reste lang gestreckter bis kegelförmiger großer Kopffüßer (Cephalopoden). Orthoceras, Endoceras und Lituites bilden verschiedene Gattungen innerhalb der Ordnung der Nautiloideen und sind längst ausgestorben, ihr Vorkommen beschränkt sich auf das Ordovizium.

Die Orthocerenkalke lassen sich grob in Unteren, Mittleren und Oberen Grauen und Roten Orthocerenkalk unterscheiden (vgl. RUDOLPH 2017). Darüber hinaus existieren für die einzelnen Schichtteile zahlreiche Unterbezeichnungen (mehr als 30 Varietäten in PATRUNKY 1925). Namensgeber sind wieder die entsprechenden Trilobitengattungen.

Unterer roter Orthocerenkalk: gleichmäßig roter, feinkörniger bis dichter und deutlich geschichteter Kalkstein, teilweise auch gelb- und grün geflammt. Zum Unteren Roten Orthocerenkalk gehören Planilimbata– und Limbata-Kalk. Der Planilimbata-Kalk (Abb. 36) ist violettrot gefärbt, mit orangegelben bis gelblichgrünen Schlieren. Gelegentlich finden sich kleine Glaukonitnester; Trilobiten bis 5 cm. Der Limbata-Kalk (Abb. 29-31) ist der typische Untere Orthocerenkalk und als Geschiebe sehr häufig zu finden. Er besitzt eine ziegel- bis dunkelrote Farbe und enthält manchmal grünliche Wühlspuren sowie Trilobiten bis 1 cm.

Der Untere Rote Orthocerenkalk wird durch die bunte „Blumenschicht“ (schwedisch blomminge bladet) begrenzt. Die Blumenschicht liefert auffällige Geschiebe und sieht sehr attraktiv aus (Beispiele von Älekinta Abb. 18-19).

Unterer Grauer Orthocerenkalk: dichter und harter Kalkstein mit splittrigem Bruch; recht fossilarm; führt wenige grüne Glaukonitkörnchen.

Mittlerer Grauer Orthocerenkalk: früher nach dem Kopffüßer Anthoceras vaginatum als „Vaginaten-Kalk“ bezeichnet, nimmt größere Schichtteile zwischen Unterem Grauen und Oberem Roten Orthocerenkalk ein. Dazu gehören der glaukonitführende graue Expansus-Kalk (Abb. 32) und der glaukonitfreie Raniceps-Kalk.

Mittlerer Roter Orthocerenkalk: fein- bis grobkristalliner, im Bruch zuckerkörnig glänzender Kalkstein, manchmal mit großen weißen Calcit-Kristallen.

Oberer Roter Orthocerenkalk: feinkristalliner roter Kalk mit grünlichen Partien und großen Orthoceren; gelegentlich große Panzerteile von Trilobiten. Auf den Gehäusen der Kopffüßer ein roter, abfärbender Hämatitüberzug.

Oberer Grauer Orthocerenkalk: sehr fossilreich; grüngrauer, deutlich geschichteter Kalkstein mit gelblicher Verwitterungsrinde. Auch der Schroeteri-Kalk mit dem „Bischofsstab“ Lituites stammt aus diesem Schichtverband (Abb. 4). Im Top der Folge steht der Echinosphäritenkalk an (Echinosphaerites aurantium).

Das Mittelordovizium findet sich entlang der Ostküste Ölands mit Kalken mit diversen Lokalnamen, z. B. Dalby-Kalk (mit Cystoideen) oder Ludibundus-Kalk.

Oberordovizium steht auf Öland nicht an, seine Vorkommen liegen am Grund der Ostsee und sind nicht direkt zugänglich. Hier leistet die Geschiebekunde einen wichtigen Beitrag zur Erforschung der Fauna dieser Gesteine. Die wichtigsten Geschiebetypen sind Backsteinkalk, Macrouruskalk, Ostseekalk, Paläoporellenkalk, Öljemir-Flinte und diverse Crinoidenkalke.

Abb. 4: Diverse „Bischofsstäbe“ (Lituites) in der Sammlung des Urzeithofes in Stolpe.

1.1. Äleklinta

Abb. 5: Steilküste nördlich von Äleklinta, an der Basis Siltsteine des Mittelkambriums („Tessini-Sandstein“).

An der etwa 10 m hohen Steilküste nördlich der Ortschaft Äleklinta steht Mittelkambrium und Unteres Ordovizium an (vgl. GRAVESEN 1993: 26, 35, 50). Die Gesteine finden sich auch als Strandgeröll wieder.

Abb. 6: Plattige Strandgerölle, im Wesentlichen Roter und Grauer Orthocerenkalk und mittelkambrische Sandsteine. Bildbreite 1 m.
Abb. 7: Links roter und grauer Orthocerenkalk, rechts mittelkambrische Siltsteine. Bildbreite 30 cm.

Die unteren Meter der Schichtenfolge bilden feinkörnige und hellgraue Sand- bis Siltsteine aus dem Mittelkambrium („Tessini-Sandstein“, „Paradoxissimus-Sandstein“). Lagenweise führen sie braune Häutungsreste des Trilobiten Paradoxides paradoxissimus. Auf den Schichtflächen sind Sedimentgefüge, seltener auch biogene Spuren (Grab- und Ruhespuren von Trilobiten) erkennbar. Der Tessini-Sandstein ist synonym mit dem „Eophyton-Sandstein“. Das einst als Abdrücke von Pflanzen (griech. eo-phyton: alte Pflanze) interpretierte Sedimentgefüge wird heute als Positivabdruck von Schleif- und Driftmarken aufgefasst.

Abb. 8: Mittelkambrischer Sandstein mit Schleif- und Driftmarken („Eophyton-Sandstein“), Breite 13 cm.

Anthrakonite finden sich in sehr großen Blöcken am Strand. Sie entstammen einer knapp 1 m mächtigen Anthrakonitbank, die oben und unten von Konglomeratlagen begrenzt und dem Unterordovizium zugerechnet wird (VOLLBRECHT 2015: 60; Oberkambrium in GRAVESEN 1993). Anthrakonite sind grobkristalline, durch organische Beimengungen schwarz gefärbte Kalksteine. Beim Aufschlagen macht sich ein starker Geruch nach Bitumen bemerkbar. Sie entstanden während der Diagenese und können an anderen Lokalitäten auch als Einschaltung in kambrischen Alaunschiefern auftreten.

Abb. 9: Großer Anthrakonit-Block mit sehr grob kristallisiertem Calcit, Breite 45 cm.
Abb. 10: Anthrakonit, unten stengelige Calcit-Kristalle, senkrecht zur Schichtebene (Übergang in Alaunschieferfazies). Breite 14 cm.

Über den Anthrakoniten steht ein Sandstein mit bituminösem Kalkzement an. Im oberen Teil des Aufschlusses folgen etwa 2 m mächtige Alaunschiefer mit einem Konglomerat an der Basis. Die obere Konglomeratlage geht weiter nördlich ins Obolus-Konglomerat über. Alle Schichtteile werden mittlerweile dem Unterordovizium zugerechnet (STOUGE 2004). Der unterordovizische Dictyonema-Schiefer soll etwa 300 m nördlich des Hafens anstehen, wurde aber nicht gefunden bzw. ausreichend beachtet. Darüber folgen der Ceratopyge-Schiefer und Unterer Roter und Grauer Orthocerenkalk (Hunneberg- und Billingen-Unterstufe).

Abb. 11: Löchriger heller und calcitgebundener Sandstein, wahrscheinlich Unterordovizium. Breite 14 cm.
Abb. 12: Gleicher Typ, Blick auf die Schichtfläche. Breite 9,5 cm.
Abb. 13: Weiter nördlich stößt man auf Halden eines alten Steinbruchs. Hier finden sich fast nur noch große Blöcke von Orthocerenkalk mit besonders schönen Anschnitten von Kopffüßern.
Abb. 14: Rotbraun-grünlicher Orthocerenkalk, Bildbreite 38 cm.
Abb. 15: Orthocerenkalk, Bildbreite 23 cm.
Abb. 16: Orthocerenkalk, Bildbreite 55 cm.

Einige Kalke zeigen runde löchrige Vertiefungen. Wahrscheinlich handelt es sich um Hartgründe, angebohrt durch benthische Organismen. Hartgründe entstehen bei temporärem Aussetzen der Sedimentation und einer diagenetischen Verfestigung der Sedimentoberfläche.

Abb. 17: Löchriger Hartgrund im Orthocerenkalk, Bildbreite 17 cm.

Im Grenzbereich zwischen Unterem Roten Orthocerenkalk und den roten bis grauen Limbata-Kalken finden sich mehrere Diskontinuitätsflächen und bioturbate Horizonte.

Zwei davon werden „Blumenschicht“, schwedisch blomminge bladet genannt (Abb. 18-19). Diese roten bis grauen Kalke enthalten rundliche, wiederum mit einem grünen Material verfüllte und häufig von einem gelben Rand umgebene Löcher. Eine nähere Beschreibung des Gesteinstyps und seiner komplexen Genese geben BARTOLOMÄUS & POPP 2018.

Abb. 18: Roter Orthocerenkalk der „Blumenschicht“, Breite 16,5 cm.
Abb. 19: Roter Orthocerenkalk mit rotbraunen und gelb umrandeten Löchern, ähnlich „Blumenschicht“. Bildbreite 17 cm.
Abb. 20: Bioturbater Orthocerenkalk, Breite 18 cm.
Abb. 21: Bioturbater? Orthocerenkalk, Breite 10 cm.
Abb. 22: Diskontinuierliche Gefügegrenze zwischen rotem und grauem Orthocerenkalk. Breite 12 cm.

1.2. Eskilslund

Eskilslund ist die einzige der besuchten Lokalitäten, an der unterkambrische Sandsteine („Kalmarsund-Sandstein“) gehäuft auftreten, insbesondere helle Sandsteine mit dunklen Grabgängen von Skolithos und die sog. „Chiasma-Sandsteine“. Dies ist bemerkenswert, vermutet man das Anstehende doch im Kalmarsund westlich von Öland und erwartet ein häufigeres Auftreten des Gesteinstyps als Nahgeschiebe. Offenbar besitzen die Vorkommen zumindest im nördlichen Teil des Kalmarsunds nur eine geringe lokale Ausdehnung. Wie es im Süden von Öland mit den Fundmöglichkeiten aussieht, ist mir nicht bekannt.

Abb. 23: Besser geht es nicht: Kalmarsund-Sandstein mit senkrecht zur Schichtung stehenden Grabspuren. Schräg zur Schichtung drangen eisenhaltige Lösungen ein („Chiasma-Sandstein“). Breite 15 cm.

Der etwa 520-525 Millionen Jahre alte Kalmarsund-Sandstein ist ein feinkörniger Sandstein mit fein laminierten Bändern aus rot- bis violettbraunen sowie gelblichen bis fast weißen Lagen im mm- bis cm-Maßstab. Sandsteine vom Typ Kalmarsund mit dunklen Skolithos-Wohnröhren und die „Chiasma-Sandsteine“ sind nur aus dem Kalmarsund bekannt und gelten als Leitgeschiebe.

Als „Chiasma“ (griech. Kreuzung) bezeichnet man die divergierenden Streifen zwischen Schichtebene und einer schräg dazu verlaufenden Streifung. Letztere entstand wahrscheinlich durch rhythmische Fällungen aus eisenhaltigen Lösungen im Kontakt mit Sauerstoff (Umwandlung von löslichem Fe(II) in unlösliches dreiwertiges Eisen).

Abb. 24: Kalmarsund-Sandstein, Breite 13 cm.
Abb. 25: Kalmarsund-Sandstein, Breite 8 cm.
Abb. 26: Kalmarsund-Sandstein, Wurmbauten senkrecht zur Schichtebene, kein „Chiasma“. Breite 13 cm.
Abb. 27: Rotbrauner unterkambrischer Sandstein, Breite 14 cm.
Abb. 28: Sandstein mit schräg zur Schichtung verlaufenden gelblichen Entfärbungen. Breite 9 cm.

1.3. Hagskog

An der niedrigen Steilküste bei Hagskog (Lokalität Haget in GRAVESEN 1993: 51) steht Unterer Roter Orthocerenkalk (Limbata-Kalk) an. Als Geschiebe tritt auch der bunte Planilimbata-Kalk auf, ein roter bis violetter glaukonithaltiger Orthocerenkalk mit orangegelben bis grünlichgelben Schlieren. Weiterhin finden sich in großer Zahl graue und glaukonitische Kalke, wahrscheinlich Expansus-Kalk aus dem Mittleren Grauen Orthocerenkalk.

Abb. 29: Niedrige Steilküste mit Unterem Roten Orthocerenkalk (Limbata-Kalk).
Abb. 30: Roter Orthocerenkalk mit welligen Schichtflächen. In der Bildmitte die „Blumenschicht“. Höhe ca. 70 cm.
Abb. 31: Roter Orthocerenkalk im Spülsaum, Bildbreite 42 cm.
Abb. 32: Graue und glaukonitische Kalke, Expansus-Kalk. Bildbreite 24 cm.
Abb. 33: Grünlichgrauer Glaukonitkalk, Expansus-Kalk mit Trilobitenrest. Breite 14 cm.
Abb. 34: Glaukonitkalk, nass fotografiert.
Abb. 35: Nahaufnahme. Die Glaukonitkörnchen sind unregelmäßig rund und pelletartig geformt.
Abb. 36: Bunter Orthocerenkalk (Planilimbata-Kalk), Breite 18 cm.
Abb. 37: Bunter Orthocerenkalk (Planilimbata-Kalk), Breite 10,5 cm.
Abb. 38: Grüner Kalkstein mit gelben Flecken, Breite 13 cm.

1.4. Neptuni åkrar

Neptuni åkrar, die „Neptunfelder“, sind eine Erosionsplattform aus Orthocerenkalken auf Meeresniveau, denen ein Strandwall aus zerkleinerten Kalksteinen nachgelagert ist.

Abb. 39: Neptuni åkrar, Strandwall und Erosionsplattform.
Abb. 40: Auf der Erosionsplattform.
Abb. 41: „Orthoceren-Schlachtfeld“, Bildbreite ca. 130 cm.

Geschiebesammeln auf Rügen 3: Kap Arkona, Sellin und Mönchgut

2.3. Kap Arkona

Vom Parkplatz am Nordstrand Wittow, etwa 2,5 km westlich von Kap Arkona, führt ein Abstieg zum Strand. Wendet man sich nach Osten, werden die Steine bald größer, und nach 2 km erreicht man Gellort, den nördlichsten Punkt der Insel. Die Steilküste besteht hier wieder aus kreidigen Lockersedimenten. Am Gellort befindet sich auch der Siebenschneiderstein, der viertgrößte Findling auf Rügen.

Abb. 1: Strandabschnitt mit großen Geschieben, östlich vom Parkplatz am Nordufer auf der Insel Wittow.
Abb. 2: Abstieg zum Siebenschneiderstein am Gellort.

Der Siebenschneiderstein besitzt ein Volumen von ca. 61m³. Laut Erfassungsbeleg Geotop des GLA Mecklenburg-Vorpommern (Bearbeiter W. Schulz) handelt sich um einen Karlshamm-Granit, einem etwa 1,4 Ga alten anorogenen Granit aus Blekinge in Südschweden.

Abb. 3: Die Oberfläche des Findlings ist stark angewittert. Stellenweise ist eine schalige Ablösungen zu beobachten, wahrscheinlich eine Folge von Verwitterung durch Frostsprengung.
Abb. 4: Nur an einer Stelle ist das Gefüge des Findlings einigermaßen sichtbar und eine Ähnlichkeit mit dem Karlshamn-Granit erkennbar. Das Gestein enthält braunen Titanit.

Ein ausgesprochen interessantes Geschiebe befindet sich am einige hundert Meter westlich vom Siebenschneiderstein.

Abb. 5: Breite 75 cm.

Ein einsprenglingsarmer grüner Diabas und ein basisches Gestein mit sehr großen Plagioklas-Einsprenglingen steht im Kontakt mit einem sauren Porphyr vom Påskallavik-Typ (rechts unten). Solche Kontakte zwischen Gangporphyr und basischem Magma sind aus Ostsmåland bekannt. In diesen „gemischten Gängen“ nutzte zuerst das saure, später das basische Magma den gleichen Aufstiegsweg. Das basische Magma flankiert den sauren Gangporphyr, entstand also später. Im vorliegenden Fall scheint es mehrere basische Magmenschübe gegeben zu haben. Dabei wurde das feinkörnige und einsprenglingsarme Magma mechanisch mit dem Magma mit körniger Grundmasse und den großen Plagioklas-Einsprenglingen vermengt (magma mingling).

Abb. 6: Diabas mit körniger Grundmasse und großen Plagioklas-Einsprenglingen. Bildbreite 45 cm. Die Partie durchzieht eine etwa 1 cm breite Ader eines braunen Gesteins mit dichter Grundmasse, ohne Einsprenglinge (lokale, durch das heiße basische Magma aus dem Porphyr mobilisierte Schmelze?)
Abb. 7: Nahaufnahme der gleichen Partie. Im Diabas mit körniger Grundmasse sind die Plagioklase unregelmäßig verteilt, einige davon gerundet. Andere Partien sehen aus wie Fragmente (Bildmitte rechts). Offenbar fand mehrfach eine Vermengung unterschiedlicher basischer Gesteine statt.
Abb. 8: Der größte Plagioklas-Einsprengling (oder Xenokristall) ist 10 cm lang.
Abb. 9: Detailaufnahme einer anderen Partie. Eine Epidotader durchschlägt mehrere Plagioklas-Einsprenglinge (oben).
Abb. 10: Kontakt von Diabas und braunem Porphyr. Bildbreite ca. 25 cm.
Abb. 11: Braune Porphyrpartie. Die runden Alkalifeldspat-Einsprenglinge mit dunklen Kernen sind typisches Erkennungsmerkmal des Påskallavik-Porphyrs. Bildbreite etwa 30 cm.
Abb. 12: Die Grundmasse des Porphyrs wurde im Kontakt zum aufsteigenden Diabas-Magma aufgeschmolzen und assimiliert, nicht aber die runden Alkalifeldspäte. Sie häufen sich an dieser Stelle, teilweise sind sie von einem hellen Feldspat-Saum umgeben (Plagioklas aus dem Diabas-Magma?). Bildbreite ca. 13 cm.

Zwischen Nordstrand und Gellort sind noch weitere interessante Geschiebe zu finden, darunter auffällig viele größere Geschiebe von porphyrischen Amphiboliten (kleinkörnige Metabasite mit großen, runden Amphibol-Granoblasten, sog. „Uralit-Porphyrite“ oder „Uralit-Diabase“, Abb. 14-15).

Abb. 13: Påskallavik-Porphyr mit basischem Xenolith, Breite 24 cm. Das basische Gestein enthält einige runde Feldspäte (Xenokristalle) aus dem Porphyr. Auch hier muss das basische Magma zeitlich also nach dem Porphyr aufgestiegen sein.
Abb. 14: Porphyrischer Amphibolit, Breite 22 cm.
Abb. 15: Porphyrischer Amphibolit, Breite 24 cm.
Abb. 16: Metabasit. Für einen porphyrischen Amphibolit enthält das Gestein zu wenig Amphibol. Es dürfte sich um einen metamorphen Leukogabbro oder -diorit handeln. Breite 25 cm.
Abb. 17: Åland-Quarzporphyr, dunkle Variante, mit größeren grünen Plagioklas-Xenokristallen. Aufnahme unter Wasser.
Abb. 18: Nahaufnahme des Gefüges; rechts oben ein unvollständiger Ringquarz.

Auch an diesem Küstenabschnitt ist der Braune Ostsee-Quarzporphyr ein häufiger Geschiebefund. Die nächsten Bilder zeigen zwei ausgefallene Varianten.

Abb. 19: Brauner Ostsee-Quarzporphyr mit einem aplitischen Xenolith. Aufnahme unter Wasser.
Abb. 20: Nahaufnahme der nassen Oberfläche.
Abb. 21: Brauner Ostsee-Quarzporphyr mit fleckiger Grundmasse (Fragmente, vulkanische Brekzie?); Aufnahme unter Wasser.
Abb. 22: Der Porphyr enthält mit Quarz und Chalcedon gefüllte Hohlräume (Lithophysen). Stellenweise ist eine Bandtextur erkennbar (gebänderter Chalcedon = Achat).
Abb. 23: Gleicher Stein, polierte Schnittfläche.
Abb. 24: Nahaufnahme. Einige Lithophysen sind mit bläulichem Chalcedon verfüllt.
Abb. 25: Mafitreicher porphyrischer Rapakiwi, wahrscheinlich ein Nordingrå-Rapakiwi. Aufnahme unter Wasser.
Abb. 26: Polierte Schnittfläche. Die meisten der grauen bis gelbbraunen Alkalifeldspäte besitzen undeutliche Konturen, einige einen nahezu quadratischen Umriss.
Abb. 27: Nahaufnahme. Graugrüner Plagioklas ist in geringer Menge enthalten. Als dunkles Mineral tritt ganz überwiegend Amphibol auf. Eckige, teils idiomorphe mittelgraue Quarze sitzen in den Zwischenräumen der Feldspäte. Partien mit graphischen Verwachsungen sind nicht erkennbar.
Abb. 28: Fleckengestein, leicht foliierter Granofels mit feinkörniger roter Matrix und dunklen Flecken. Breite 35 cm, Herkunft unbekannt.
Abb. 29: Rotes Fleckengestein mit unregelmäßig konturierten Flecken in einer feinkörnigen Grundmasse. Solche Fleckengesteine kommen im Västervik-Gebiet, in ähnlicher Form aber auch in anderen Regionen vor. Breite 30 cm.
Abb. 30: Västervik-Fleckengestein, polierte Schnittfläche, Geschiebe von Göhren (Nordperd).
Abb. 31: Abendliche Stimmung am Gellort.

2.4. Lohme

Glück beim Finden wie auch beim Schneiden eines kambrischen Sandsteins hatte T. Brückner (Hilter). Der linke Grabgang mit dem Ichnofossil Monocraterion ist perfekt mittig getroffen.

Abb. 32: Außenseite des Geschiebes (Slg. T. Brückner).
Abb. 33: Polierte Schnittfläche mit Monocraterion tentaculum (TORELL 1870).
Abb. 34: In der Nahaufnahme erkennt man, dass beim Anlegen des Grabganges gröberes Sediment nachgesackt ist.

2.5. Sellin

Die nächsten Funde stammen vom Geröllstrand nordwestlich der Seebrücke Sellin.

Abb. 35: Seebrücke Sellin.
Abb. 36: Hammarudda-Quarzporphyr, Breite 75 mm.
Abb. 37: Åland-Rapakiwi mit Wiborgit-/Pyterlit-Mischgefüge, Aufnahme unter Wasser.
Abb. 38: Vulkanit mit Blauquarz (Småland-Vulkanit); Breite 7,5 cm.
Abb. 39: Rotbrauner Gangporphyr vom Påskallavik-Typ mit Blauquarz, Breite 11 cm.
Abb. 40: Porphyrischer Monzogranit, NE-Småland-Granit vom Kinda-Typ; Breite 13 cm.
Abb. 41: Monzogranit, Typ Filipstad, mit blass rötlich- bis braungrauem Alkalifeldspat und weißem bis grünlichgelbem Plagioklas. Breite 10,5 cm.
Abb. 42: Biotitreicher Monzogranit mit grünem und rotbraunem Plagioklas, Breite 7 cm.
Abb. 43: Plagioklasreicher Granitoid vom Typ Sala (Uppland-Granit), Breite 14 cm.
Abb. 44: Roter Flasergneis, Breite 9 cm.
Abb. 45: Roter Skolithos-Sandstein mit hellen Entfärbungsflecken, Breite 11 cm.

2.6. Mönchgut

Am südlichen Ende der Halbinsel Mönchgut liegt Klein Zicker. Vom Cafe „Zollhaus“ aus geht man eine niedrige Steilküste aus ockerbraunem Geschiebemergel entlang. Dieser Geschiebemergel des Mönchsguter Eislobus wurde vor 13.000 bis 15.000 Jahren während der weichselglazialen Mecklenburg-Phase abgelagert und ist ein sog. Ausschmelztill, d. h. er entstand durch sukzessives Abschmelzen des Eises während einer Stillstandslage.

Abb. 46: Steilküste auf Klein Zicker; ungeschichteter Till mit einem hohen Anteil an feinkörnigen Sedimenten (Ton, Sill) und wenigen größeren Steinen (dropstones).
Abb. 47: Brutröhren der Schornsteinwespe (Odynerus spinipes) im Geschiebemergel.
Abb. 48: Eigenartiges orthogonales Bruchmuster im Geschiebemergel. Sauerstoffhaltiges, entlang der Klüfte eindringendes Oberflächenwasser führte zu einer Oxidation von Fe II (grau) aus dem Geschiebemergel zu Fe III (Braunfärbung durch Bildung von Limonit).
Abb. 49: Steilküste aus Geschiebelehm und Schmelzwassersanden am westlichen Ende der Halbinsel.
Abb. 50: Åland-Ringquarzporphyr, Aufnahme unter Wasser.
Abb. 51: Grüner Quarzporphyr, polierte Schnittfläche.
Abb. 52: Nahaufnahme. Einige der eckigen bis kantengerundeten Quarze weisen Spuren einer magmatischen Korrosion auf.

Solche grünen Quarzporphyre werden immer wieder gefunden. Einige der eckigen bis kantengerundeten Quarze erinnern zwar an die magmatische korrodierten Quarze im Roten Ostsee-Quarzporphyr, allerdings kommen sie auch in Porphyren aus anderen Gebieten vor (u.a. Rödö).

Abb. 53: Bunter Granit vom Växjö-Typ, Aufnahme unter Wasser. Der Granittyp kommt verbreitet im nördlichen Småland vor.
Abb. 54: Grobkörniges und pegmatitähnliches Gestein aus blauem Quarz, etwas weißem Feldspat und einem braunen Mineral (Amphibol oder Andalusit?). Aufnahme unter Wasser.
Abb. 55: Tosterup-Konglomerat; überwiegend schwach kantengerundete Lithoklasten aus grünem Tonschiefer sowie ein rundes Quarzgeröll und ein rotbrauner Tonstein in einer sandigen, kalkgebundenen Matrix. Breite 20 cm.

Im westlichen Teil des Großen Zicker ist eine Steilküste aus Geschiebemergel und Schmelzwassersanden aufgeschlossen. Westlich der Zickerschen Berge liegt ein ausgedehnter Geschiebestrand.

Abb. 56: Blick von Klein Zicker auf die Zickerschen Berge.
Abb. 57: Die grasbewachsenen Hügel der Zickerschen Berge im Westen von Möchsgut werden zur Weidewirtschaft genutzt.
Abb. 58: Porphyrischer Rapakiwi; ähnliches Gefüge wie der Ostsee-Rapakiwi vom Nordbaltischen Pluton, allerdings ohne die charakteristischen kleinen Quarze um die Alkalifeldspäte. Polierte Schnittfläche, leg. D. Lüttich.
Abb. 59: Granodiorit bis Quarzmonzodiorit, Aufnahme unter Wasser.
Abb. 60: Mittelkörniger Granit aus blassrotem Alkalifeldspat (Karlsbader Zwillinge), braunrotem Plagioklas und grauem Quarz. Abgesehen von seiner Kleinkörnigkeit weist der Granit alle Merkmale des Lemland-Granits auf. Breite 13,5 cm.
Abb. 61: Ein weiterer porphyrischer Granit mit rotem Plagioklas, vermutlich (post)svekofennisch, aber kein Lemland-Granit. Aufnahme unter Wasser.
Abb. 62: Nahaufnahme der nassen Oberfläche.
Abb. 63: Abendstimmung auf Groß Zicker.

Geologische Streifzüge auf Rügen

Abb. 1: Steilküste auf Jasmund; Ablagerungen der Oberkreide (weiß) mit eingeschaltetem Geschiebemergel (grau).

Das bevorzugte Ziel für den geologisch interessierten Besucher von Rügen ist die beeindruckende Steilküste auf dem Inselteil Jasmund. Hier sind die als „Rügener Schreibkreide“ bezeichneten Sedimente sowie pleistozäne Ablagerungen aufgeschlossen. Nach einer kurzen Übersicht zu Rügens Geologie werden in dieser Artikelreihe Funde kristalliner Geschiebe von mehreren Stränden der Insel vorgestellt.

1. Zur Geologie von Rügen
2. Geschiebesammeln auf Rügen
2.1. Sassnitz
2.2. Dwasieden
2.3. Kap Arkona
2.4. Lohme
2.5. Sellin
2.6. Mönchgut
3. Links und ausgewählte Literatur

1. Zur Geologie von Rügen

Die Rügener Schreibkreide ist ein krümeliger und wenig verfestigter Kalkstein, der von zahlreichen Feuersteinbändern durchzogen wird. Sie entstand in einem Zeitabschnitt der Oberkreide, im Maastricht, vor etwa 72-66 Millionen Jahren. Zu dieser Zeit bedeckte ein Flachmeer praktisch ganz Mitteleuropa. Nur einige Inseln ragten aus diesem Kreidemeer hervor, die Alpen gab es noch nicht. Ein tropisches Klima, aber eine recht kühle Wassertemperatur begünstigte das Wachstum kleinster, planktonisch lebender Meerestiere, aus denen die Schreibkreide zusammengesetzt ist. Im Wesentlichen sind dies die als Coccolithen bezeichneten Kalkplättchen von Algen der Ordnung Coccolithophorida, neben weiteren Kleinfossilien. Die Sedimentation erfolgte erstaunlich langsam, etwa 35 mm in 1.000 Jahren (REICH 1998). In der Schreibkreide finden sich auch zahlreiche Makrofossilien: Seeigel, Schwämme, Belemniten, Korallen, Muscheln, Bryozoen, Schnecken, Seesterne, Ammoniten und weitere (vgl. SCHULZ 2003: 347-351, REICH et al 2018).

Innerhalb der hellen Schreibkreide treten Lagen von dunkelgrauen Feuersteinen auf. Sie entstanden nach der Ablagerung der Kreideschichten während der Diagenese und bilden Konkretionen – massige Gesteine von rundlicher, knolliger, teils auch bizarrer Gestalt. Die Feuersteine sind der „Prototyp“ des nordischen Geschiebes, weil sie in glazialen Ablagerungen praktisch allgegenwärtig auftreten. Ihre südlichste Verbreitungsgrenze, die sog. „Feuersteinlinie“ kennzeichnet die Maximalausdehnung der nordischen Inlandvereisungen.

Abb. 2: Feuersteinlagen innerhalb der Rügener Schreibkreide, Steilküste nördlich von Sassnitz. Die Lagen sind annähernd gleich mächtig und regelhaft rhythmisch angeordnet.
Abb. 3: Feuersteinlagen, Bildhöhe etwa 3 Meter.
Abb. 4: Frisch ausgebrochene Feuersteine besitzen einen splittrigen Bruch und eine weiße Rinde. Mit der Zeit werden sie abgerollt, auf Grund ihrer Härte und Zähigkeit nur durch gegenseitige Bewegung im Brandungssaum. Bildbreite ca. 50 cm.

Vor den nordischen Inlandvereisungen bildeten die Schichten der Oberkreide ein mehr oder weniger ebenes und bis 400 m mächtiges Sedimentpaket. Diese Schichten sind auch heute im Untergrund noch großflächig verbreitet und durch jüngere Schichten verdeckt. Durch tektonische Vorgänge, wahrscheinlich Störungen des Untergrundes während der alpidischen Gebirgsbildung, kam es im Tertiär zu Hebungen. Durch leichte Verkippung bildeten sich Kreide-Horste. Einst verband ein etwa 100 km breites, in Ost-West-Richtung sich erstreckendes Kreidemassiv die Vorkommen von Rügen und Møn.

Die erosive Kraft des Inlandeises führte zu einer Abtragung der oberen 100 m dieses Massivs und zur Bildung kleiner und größerer Schollen, die in der Folge teils dachziegelartig verkippt oder sogar verfaltet wurden. Dabei konnten auch größere zusammenhängende Pakete der lockeren Kreidesedimente bewegt werden, weil der Untergrund gefroren war. Durch diese glazitektonischen Vorgänge gelangten die Kreidesedimente in ihre heutige Position und bilden ein komplexes Nebeneinander mit Geschiebemergeln und anderen glazialen Ablagerungen. Erst der Geschiebemergel des letzten weichselzeitlichen Eisvorstoßes liegt über den verschuppten kreidezeitlichen und glazialen Sedimenten, was auf eine zeitliche Einordnung der Glazitektonik in die Zeit bis zum Pommerschen Stadium der Weichselvereisung vor etwa 22.000 – 20.000 Jahren deutet.

Die Verkippung und Faltung der aufragenden Schollen lässt sich an den Feuersteinbändern stellenweise gut nachvollziehen (Abb. 5). Größere Kreideschollen sind vor allem im Nordteil der Insel auf Jasmund sowie an der NE-Spitze von Wittow aufgeschlossen. Kleinere Kreideschollen und -schlieren finden sich z. B. auch an der Steilküste von Dwasieden (Abb. 6).

Abb. 5: Gebogene Feuersteinlagen (Glazitektonik). Ursprünglich horizontal abgelagerte Kreide mit den typischen Feuersteinbändern. Durch die Kraft der Gletscher in der letzten Eiszeit kam es zur Aufschiebung, Verkippung und Stauchung der Kreide.
Abb. 6: Geschiebemergel mit Kreideschlieren, Dwasieden.

Im letzten Stadium der Eisvorstöße, im späten Weichselglazial, wirkten die Inselkerne von Jasmund und Arkona als Hindernis. Der Gletscher teilte sich hier in zwei Eisströme. Ein südlich verlaufender sog. Oder-Eisstrom modellierte die hügelige Landschaft Ostrügens. Durch Stillstand und Abschmelzen des Eises entstanden die Endmoränen der sog. Mittelrügenschen Stillstandslage. Ihre heutige Gestalt nahm die Insel lange nach dem Rückzug des Eises an. Rügen war nach dem Abschmelzen des Eises zunächst Festland. Vor etwa 7.800 Jahren, zu Zeiten der Litorina-Transgression, wurde das Gebiet überflutet, nur die Inselkerne Jasmund, Wittow und Mönchgut lagen über dem Meeresspiegel. Durch Brandung entstanden an ihren Außenseiten Steilufer. Abgetragener Sand wurde durch Küstenströmungen in Gestalt von Nehrungen wieder ablagert und verbindet seitdem die Inselkerne miteinander. Im Naturschutzgebiet „Schmale Heide“ (Feuersteinfelder von Mukran) finden sich 14 Strandwälle aus Feuersteinen, die vor etwa 4.000 Jahren während mehrerer Sturmfluten aufgeschüttet wurden (Abb. 7).

Abb. 7: Feuersteinfelder von Mukran. Die wallartigen Akkumulationen von Feuersteinen sind Ablagerungen historischer Sturmfluten vor etwa 4.000 Jahren.

Rügens Steilküsten sind von einem beachtlichen Fortschreiten der Erosion betroffen, die Küstenlinie wird jährlich um durchschnittlich 30 cm zurückverlegt. Vor allem nach der Schneeschmelze und starken Regenfällen ereignen sich größere Abbrüche, Geschiebemergel und Schmelzwassersande zwischen die Kreidefelsen wirken dabei als Sollbruchstellen.

Abb. 8: Frischer Abbruch nördlich von Sassnitz (Mai 2012).
Abb. 9: Bedrohlich hängen metergroße Geschiebe in der Steilwand bei Sassnitz.

Auf Rügen gibt es eine Vielzahl interessanter geologischer Lokalitäten, die im Text genannten sind auf der Karte Abb. 10 markiert.

Abb. 10: Übersichtskarte Rügen mit besuchten Lokalitäten: Nordufer Wittow und Kap Arkona (1), Dwasieden (2), Kreideküste nördlich Sassnitz (3), Klein Zicker (4), Groß Zicker (5), Dargast (6), Kreidemuseum Gummanz (7), Feuersteinfelder Mukran (8). Karte aus wikipedia.org, Urheber: devil m25, CC BY-SA 2.0 de.

Auf Jasmund wurde die Rügener Schreibkreide zur Gewinnung von Schlämmkreide früher in zahlreichen Steinbrüchen abgebaut. Ein aktiver Tagebau liegt bei Promoisel, ein aufgelassener Bruch bei Dargast.

Abb. 11: Aufgelassener Tagebau bei Dargast.

Das Kreidemuseum in Gummanz (www.kreidemuseum.de) informiert mit einer bergbautechnischen Sammlung und einem Freilichtbereich über die Historie des Kreideabbaus und die Verwendung der Rügener Schreibkreide, ein geologisch-paläontologischer Sammlungsteil über die Entstehung der Insel Rügen. Auch eine hervorragende Ausstellung mit Kreidefossilien kann besichtigt werden.

Abb. 12: Kreidemuseum Gummanz
Abb. 13: Ehemaliger Tagebau am Freilichtmuseum Gummanz.

Auf Rügen gibt es auch mehrere große Geschiebe, z. B. der Schwanenstein bei Lohme. Auf den Siebenschneiderstein (Karlshamn-Granit) wird im Abschnitt Kap Arkona eingegangen. Der größte Findling Norddeutschlands ist der Buskam östlich von Göhren.

Abb. 14: Schwanenstein bei Lohme.

2. Geschiebesammeln auf Rügen

Abb. 15: Steilküste nördlich von Sassnitz.

Die Geröllstrände auf Rügen bieten dem Geschiebesammler gute Fundmöglichkeiten. Auf ein übermäßiges „Abräumen“ der Strände sollte man allerdings verzichten und Steine mit Bedacht entnehmen, damit auch zukünftige Besucher noch die ganze Bandbreite an nordischen Geschieben vorfinden können. Vielleicht vermag eine gute fotografische Dokumentation den „Sammeltrieb“ ebenfalls zu befriedigen. Die meisten der hier gezeigten Gesteine liegen noch vor Ort. Das Hauptaugenmerk gilt den kristallinen Geschieben, die in drei Abschnitten vorgestellt werden:

Die kristalline Geschiebegemeinschaft auf Rügen ist stark von den Gesteinen des Transskandinavischen Magmatitgürtels (TIB) geprägt, darunter die variationsreichen und oft bunten Småland-Granitoide und Småland-Porphyre. Allgemein häufig ist auch der Braune Ostsee-Quarzporphyr, der Rote Ostsee-Quarzporphyr tritt nur ganz vereinzelt auf. Rapakiwi-Gesteine von Åland sind in mäßiger Häufigkeit anzutreffen. Aus Dalarna finden sich nur wenige Kristallingesteine. Granite von Bornholm sind seltener, als es die Nähe zum Anstehenden und die Zugrichtung der Gletscher während der letzten Vereisung erwarten lässt.

Oslogesteine (z. B. Rhombenporphyre) oder SW-schwedisches Material fehlen vollständig, Rügen liegt jenseits ihrer Verbreitungsgrenzen. In diesem Zusammenhang sind Funde von dunklen und quarzfreien Porphyren mit rhombenförmigen Feldspat-Einsprenglingen interessant, die dem Rhombenporphyr ähneln, aber kaum aus dem Oslograben stammen dürften (Abb. 2-4). Ein weiterer Fund eines ganz ähnlichen Porphyrs wird im Abschnitt „Dwasieden“ (Abb. 13) gezeigt und diskutiert.

Abb. 16: Rhombenführender Porphyr, Sassnitz.
Abb. 17: Rückseite
Abb. 18: Nahaufnahme der nassen Oberfläche.
Abb. 19: Nahaufnahme einiger rhombenförmiger Feldspäte; rechts der Bildmitte ein Pyritkorn.

2.1. Sassnitz

Nördlich vom Hafen in Sassnitz wurden große Steine als Uferschutz abgelagert, neben zahlreichen Großgeschieben auch Lausitzer Granodiorit aus der Westlausitz als Fremdmaterial. Der Plutonit entstand im Zuge der Cadomischen Gebirgsbildung vor etwa 650-550 Millionen Jahren.

Abb. 20: Dunkler Xenolith in einem grauen Xenolith im Lausitzer Granodiorit. Uferbefestigung nördlich vom Hafen Sassnitz. Bildbreite 35 cm.

Etwas weiter nördlich beginnt die Steilküste von Jasmund. Aufragende Schollen von Schreibkreide wechseln sich mit Geschiebemergel und Schmelzwassersanden ab (Abb. 1). Bänder aus Feuerstein sind geradezu regelhaft in die Kreidesedimente eingeschaltet (Abb. 2). An einigen Stellen kann man auch eine Faltung dieser Bänder durch Tektonik oder Eistektonik beobachten (Abb. 5). Beim Aufenthalt am Fuße der Steilküste sollte stets die Gefahr von Steinschlag berücksichtigt werden. Besonders nach starkem Regen, während der Schneeschmelze und bei Sturm ist äußerste Vorsicht geboten.

Der vorgelagerte Geröllstrand besteht größtenteils aus schwarzen Feuersteinen. Jedes einzelne der wenigen eingestreuten Kristallingeschiebe lässt sich dadurch genauer in Augenschein nehmen. An Strandabschnitten mit aufgearbeiteten glazialen Ablagerungen treten diese auch zahlreicher in Erscheinung.

Abb. 21: Geröllstrand bei Sassnitz, Bildbreite 90 cm.
Abb. 22: Brauner Ostsee-Quarzporphyr mit einem helleren Quarzporphyr als Xenolith. Aufnahme unter Wasser.
Abb. 23: Nahaufnahme der nassen Oberfläche.
Abb. 24: Porphyrischer Rapakiwi (Kökar-Rapakiwi?), Breite 11,5 cm.
Abb. 25: Vollroter Granophyr mit hellem, teils bläulichem Quarz, Breite 12 cm.
Abb. 26: Nahaufnahme.

Solche vollroten Granophyre (granitische Gesteine, die fast vollständig aus graphischen Verwachsungen von Feldspat und Quarz bestehen) sind z. B. aus dem Nordingrå-Pluton in Nordschweden, aber auch aus anderen Rapakiwi-Vorkommen bekannt. Mangels charakteristischer Merkmale lässt sich der Gesteinstyp nicht auf ein bestimmtes Vorkommen zurückführen.

Abb. 27: Roter Rapakiwi (Rödö-Rapakiwi), Breite 17 cm.
Abb. 28: Das Gestein enthält weißen Calcit, sein Erscheinungsbild stimmt mit den Wiborgiten von Rödö überein (große, klare und magmatisch kaum korrodierte Quarze; gelber Plagioklas), wenn auch nur ein einzelnes größeres, von gelbem Plagioklas umsäumtes Kalifeldspat-Ovoid enthalten ist.
Abb. 29: Nahaufnahme
Abb. 30: Mischgestein aus einem Rapakiwi-Vorkommen. Die roten Bereiche bestehen aus graphischen Verwachsungen aus Quarz und Feldspat. Quarz bildet auch einzelne größere und rundliche Aggregate. Breite 13 cm.
Abb. 31: Nahaufnahme des Gefüges.
Abb. 32: Verhältnismäßig großes Geschiebe eines Bottenseeporphyrs, Typ Andeskeri, Breite 11,5 cm.
Abb. 33: Gleicher Stein, Aufnahme unter Wasser. Lagige oder schlierige Wechsel in der Färbung der Grundmasse sind in diesem Porphyrtyp häufig zu beobachten.
Abb. 34: Nahaufnahme der nassen Oberfläche.
Abb. 35: Polierte Schnittfläche.
Abb. 36: Nahaufnahme des Gefüges. Die dunkelgrauen Quarze weisen deutliche Spuren einer magmatischen Korrosion auf (radiale Einbuchtungen durch Anschmelzung; aufgefüllt mit Grundmasse).

Häufigster Geschiebetyp in Sassnitz sind die bunten Granitoide des Transskandinavischen Magmatitgürtels (TIB). Dazu gehören die mittelkörnigen Alkalifeldspatgranite vom Växjö-Typ mit blauem oder farblosem Quarz und braunem oder rotem Alkalifeldspat; weiterhin porphyrische Granite mit der typischen Dreifarbigkeit (blauer Quarz, brauner oder roter Alkalifeldspat sowie weißer, grüner, gelber oder orangefarbener Plagioklas). Die Anzahl der Leitgeschiebe unter den TIB-Graniten ist klein, da an verschiedenen Lokalitäten im Anstehenden Gesteine mit dem gleichen Gefüge auftreten.

Abb. 37: Mittelkörniger TIB-Granit (Flivik-Granit) aus Ost-Småland, Aufnahme unter Wasser.
Abb. 38: In der Nahaufnahme sind größere Mengen an gelblichem Titanit sichtbar.

Aus Nordost-Småland und dem südlichen Östergötland dürften die folgenden Granite mit porphyrischem Gefüge stammen. Gemeinsam ist ihnen ein Anteil von gelbem bis orangerotem Plagioklas und viel Titanit.

Abb. 39: NE-Småland-Granit (ähnlich Kinda-Granit), Breite 14 cm.
Abb. 40: NE-Småland-Granit (ähnlich Kinda-Granit), Breite 14 cm.
Abb. 41: Nahaufnahme
Abb. 42: Porphyrischer Granit mit Gefügewechsel, Breite 16 cm.
Abb. 43: Ein weiterer Gefügewechsel in einem porphyrischen Granit (grüner sowie wahrscheinlich durch Metasomatose umgewandelter gelber Plagioklas). Breite 14 cm.

Die nächsten Bilder (Abb. 44-51) sind eine Zusammenstellung einiger der überaus zahlreichen gleich- und mittelkörnigen Småland-Granite vom Växjö-Typ.

Abb. 44: Gleichkörniger Alkalifeldspat-Granit (Växjö-Typ), Breite 28 cm.
Abb. 45: Gleichkörniger Småland-Granit, Breite 11 cm.
Abb. 46: Gleichkörniger Småland-Granit mit etwas Plagioklas (gelb); Breite 14 cm.
Abb. 47: Gleichkörniger Småland-Monzogranit mit basischen Xenolithen, Breite 42 cm
Abb. 48: Nahaufnahme. Der Xenolith wurde hydrothermal alteriert und zeigt einen Saum aus hellgrünem Epidot.
Abb. 49: Gleichkörniger roter Alkalifeldspat-Granit (Växjö-Typ), Breite 13,5 cm.
Abb. 50: Bunter Växjö-Granit, kommt in N-Småland verbreitet vor und besitzt eine gewisse Ähnlichkeit mit dem Siljan-Granit aus Dalarna. Breite 10,5 cm.
Abb. 51: Quarzreicher mittelkörniger Granit vom Växjö-Typ, Breite 11 cm.
Abb. 52: Porphyrischer roter Småland-Alkalifeldspatgranit, Breite 18 cm.
Abb. 53: Braune und aplitähnliche Partie mit einer mittelkörnigen Übergangszone in einem grobkörnigen Monzogranit bis Quarzmonzonit (rechts und ganz links). Breite 45 cm.
Abb. 54: Nahaufnahme
Abb. 55: Granit mit zuckerkörnigem Quarz (TIB-Granit, Älö-Granit?). Breite 13 cm.
Abb. 56: Quarzreicher Granitoid mit wenig hellbraunem Alkalifeldspat und kleineren, deutlich voneinander abgegrenzten Plagioklas-Aggregaten von weißer bis gelblichgrüner Farbe (Granodiorit). Breite 11 cm.
Abb. 57: Bornholm-Granit (Vang-Granit), Breite 28 cm.
Abb. 58: Nahaufnahme.

Typisch für die Bornholm-Granite ist das „verwaschene“ Gefüge mit unklaren Korngrenzen aus Kalifeldspat, Quarz und Plagioklas, die rötliche, über Korngrenzen hinweg laufende Hämatit-Imprägnierung sowie runde Ansammlungen von dunklen Mineralen (Biotit). Innerhalb des Biotits findet sich reichlich Titanit.

Abb. 59: (Bornholm?-)Streifengneis; Partien des Gesteins sind mit rotem Hämatit imprägniert. Breite 17 cm.

Auch Porphyrgeschiebe aus dem TIB finden sich in großer Zahl, darunter Porphyre vom Påskallavik- und Emarp-Typ. Nicht selten sind auch Gangporphyre mit einem deformierten Gefüge, erkennbar an schlierigen Ansammlungen und einer Vorzugsrichtung der dunklen Glimmerblättchen (Abb. 60).

Abb. 60: Deformierter Gangporphyr („Högsrum-Porphyr“), Breite 13 cm.
Abb. 61: Småland-Gangporphyr vom Påskallavik-Typ, Breite 19 cm.
Abb. 62: Roter Gangporphyr mit Blauquarz und körniger Grundmasse, Breite 10 cm.

Nur vereinzelt lassen sich am Strand von Sassnitz Kristallingesteine aus Dalarna entdecken.

Abb. 63: Älvdalen-Ignimbrit aus Dalarna, Breite 10,5 cm.
Abb. 64: Auffälliger Plutonit mit rosafarbenen Alkalifeldspat-Einsprenglingen und weißer Grundmasse aus feinkörnigem Feldspat. Breite 17 cm.
Abb. 65: Nahaufnahme. Quarzkörner sind nur vereinzelt aufzufinden, wahrscheinlich liegt der Quarzgehalt unter 5%. Wenn der Feldspat der weißen Grundmasse ausschließlich Plagioklas ist, dürfte es sich um einen Monzonit handeln (35-65% Alkalifeldspat am Gesamtfeldspatanteil, Quarz unter 5%).
Abb. 66: Västervik-Fleckenquarzit, Breite 9 cm.
Abb. 67: Kontakt zwischen Pegmatit und einem grauen Gneis, Breite 65 cm.
Abb. 68: Nahaufnahme der nassen Oberfläche. Der Pegmatit besteht fast ausschließlich aus Alkalifeldspat und großen Biotit-Aggregaten (bis 5 cm). Die grauen Partien innerhalb der Feldspäte weisen auf feinste Entmischungen von Albit und Kalifeldspat hin.
Abb. 69: Geschichteter Sandstein. Die wellenförmige Oberseite der rötlichen Lagen deutet auf Strömungsrippel, während die grauen Lagen darüber planar ausgebildet sind (ruhiges Strömungsregime). Breite 25 cm.

Links und ausgewählte Literatur

3D-Modell von Jasmund

GEHRMANN A 2020 The multistage structural development of the Upper Weichselian Jasmund Glacitectonic Complex (Rügen, NE Germany) – E & G Quaternary Science Journal, 69: 59-60, https://doi.org/10.5194/egqsj-69-59-2020.

HAGENOW F VON 1839 Monographie der Rügen’schen Kreide-Versteinerungen, I. Abtheilung: Phytolithen und Polyparien – Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1839: 253-296, Taf. 4-5, Stuttgart.

HAGENOW F VON 1840 Monographie der Rügen’schen Kreide-Versteinerungen, II. Abtheilung: Radiarien und Annulaten. Nebst Nachträgen zur ersten Abtheilung – Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1840: 631-672, Taf. 9, Stuttgart.

HAGENOW F VON 1842 Monographie der Rügen’schen Kreide-Versteinerungen, III. Abtheilung: Mollusken – Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1842: 528-575, Taf. 9, Stuttgart.

KENZLER M, OBST K, HÜNEKE H, SCHÜTZE K 2010 Glazitektonische Deformation der kretazischen und pleistozänen Sedimente an der Steilküste von Jasmund nördlich des Königsstuhls (Rügen). – Brandenburgische Geowissenschaftliche Beiträge, 17: 107-122.

LUDWIG A O 2011 Zwei markante Stauchmoränen: Peski/Belorussland und Jasmund, Ostseeinsel Rügen/Nordostdeutschland – Gemeinsame Merkmale und Unterschiede. – E & G, Quaternary Science Journal, 60(4): 464-487.

MÜLLER U & OBST K 2006 Lithostratigraphie und Lagerungsverhältnisse der pleistozänen Schichten im Gebiet von Lohme (Jasmund/Rügen). – Zeitschrift für geologische Wissenschaften, 34: 39-54.

REICH M 1998 (Hrsg) Die Kreide Mecklenburg-Vorpommerns. – Exkursionsführer zur Geländetagung der Subkommission für Kreidestratigraphie – 41 S., 31 Abb., 1 Tab., Greifswald.

REICH M, HERRIG E, FRENZEL P & KUTSCHER M 2018 Die Rügener Schreibkreide – Lebewelt und Ablagerungsverhältnisse eines pelagischen oberkretazischen Sedimentationsraumes / The Rügen White Chalk – Habitat and deposits of a pelagic Late Cretaceous sedimentation area. Zitteliana. 92.

SCHULZ W 2003 Geologischer Führer für den norddeutschen Geschiebesammler – 508 S., 446+42 meist farb. kapitelweise num. Abb., 1 Kte. als Beil., Schwerin (cw Verlagsgruppe).

WAGENBRETH O & STEINER W 1982 Geologische Streifzüge – Landschaft und Erdgeschichte zwischen Kap Arkona und Fichtelberg – 204 S., 65 Farbfotos, 16 Schwarzweißfotos, 117 Abb., VEB Deutscher Verlag für Grundstoffindustrie, Leipzig.

Geschiebesammeln in Polen, Teil 2: Gdynia

Abb. 1: Steilküste von Orłowo, Sandstrand mit lockerer Geschiebebestreuung.

Im Stadtgebiet von Gdynia liegt das Orłowo-Kliff. Auf knapp 2 km Länge ist eine Steilküste bis 60 m Höhe aufgeschlossen, die aus Geschiebemergel und sandigen bis kiesigen Sedimenten der Weichsel- und Saale-Vereisung (Warthe, evtl. auch Drenthe) mit Spuren glazialer Deformation besteht (KAULBARSZ D 2005).

Abb. 2: Mächtiger Geschiebemergel der Warthevereisung am Kliff Orłowo (vgl. KAULBARSZ D 2005).
Abb. 3: Glazitektonisch verfaltete Sande und Geschiebelehm.
Abb. 4: Nahaufnahme einer steilgestellten Sequenz aus glazialen Sanden. Bildbreite ca. 1 m.

Als Besonderheit finden sich im nördlichen Teil miozäne Sedimente, meist Sande mit eingeschalteter Braunkohle, die Verwerfungen und Vermengungen mit den glazialen Sedimenten bilden. Miozäne Ablagerungen im östlichsten Pommern beschreibt schon DEECKE 1899: 119-125. Demnach sehen die Sande durch beigemengten weißen Ton sehr charakteristisch aus; weiterhin treten fette graue Tone, schmale mulmige Braunkohlebänder sowie Wurzelquarzite auf. In Orłowo (Adlershorst) stehen Miozänsedimente in einer Mächtigkeit von 30-40 m an: unten Schluffsande, darüber eine dicke Tonlage, grüne tonige Sande, schließlich feine weiße Sande.

Die folgenden Bilder zeigen Anschnitte miozäner Sedimente. Charakteristisch ist eine intensive Wechsellagerung dunkler und heller Schichten, teilweise mit kohligen Einschaltungen.

Abb. 5: Leicht nach Süden einfallende helle Feinsande und graue Schluffe werden von einer Sequenz mit feiner Wechsellagerung erosiv gekappt.
Abb. 6: Nahaufnahme, Bildbreite 1,50 m.
Abb. 7: Ein weiterer Anschnitt mit einer ähnlichen Sequenz, vermutlich glazitektonisch verformt.
Abb. 8: Flaserige Wechsellagerung von hellen Sanden und grauen Schluffen. Bildbreite 70 cm.
Abb. 9: Kohlige Lagen innerhalb der miozänen Sande. Bildbreite 55 cm.

Unter den Geschieben ist der Anteil von Gesteinen aus Dalarna höher und an Åland-Kristallin etwas geringer als in Jastrzębia Góra. Brauner Ostsee-Quarzporphyr findet sich sehr häufig (+ 1 Ostsee-Syenitporphyr, Abb. 22), Roter Ostsee-Quarzporphyr ist deutlich seltener. Hin und wieder sieht man braune oder schwarze Feuersteine der Oberkreide. Geschiebe von Kugelsandstein wurden nicht gefunden, auf ein östliches Herkunftsgebiet weisen aber mehrere Dolomit-Geschiebe hin (Oberes Silur, Devon; Abb. 33). Die Beobachtungen decken sich mit den Angaben in DEECKE 1899, der noch Kalke des Obersilurs als häufigen Fund hinzufügt (s. a. KOWALEWSKA 2020).

Abb. 10: Geschiebestrand, Bildbreite 60 cm. Unten rechts ein brauner Feuerstein. Weiterhin im Bild erkennbar: Brauner Ostsee-Quarzporphyr, Roter Ostsee-Quarzporphyr, einige paläozoische Kalke.

Am Strand fallen ziemlich schnell hellgraue bis grünlichgraue und sehr leichte Kreidekalke auf (Abb. 11-14). Die Gesteine sind meist stark bioturbat, Glaukonit ist reichlich enthalten. Es dürfte sich um Nah- oder Lokalgeschiebe, um die glaukonitische „harte“ Kreide Westpreußens handeln (Deecke 1907: 86). Sie ähnelt dem Arnagerkalk und enthält bisweilen Schwammreste (Ventriculites?). Ob das Gestein zeitlich dem Arnagerkalk gleichzusetzen ist, ist unklar, da Transgressionen und Regressionen in verschiedenen Bereichen des Kreidemeeres zu unterschiedlichen Zeiten einsetzten.

Abb. 11: Lokalgeschiebe: „harte“ Kreide, ähnlich dem Arnagerkalk. Bildbreite 35 cm.
Abb. 12: Bioturbater Kreidekalk mit Glaukonitkörnern. Angeschnitten ist ein verkieselter Kreideschwamm (Ventriculites?). Breite 12 cm.
Abb. 13: Gleicher Geschiebetyp mit Bioturbation. Im angefeuchteten Zustand verstärkt sich die grünliche Färbung des Gesteins. Breite 10 cm.
Abb. 14: Glaukonitischer Kreidekalk, feucht fotografiert.

Geschiebe aus Dalarna

Abb. 15: Grönklitt-Porphyr, Breite 10 cm.
Abb. 16: Älvdalen-Ignimbrit, Breite 18 cm.
Abb. 17: Venjan-Porphyrit, Breite 13 cm.
Abb. 18: Garberg-Granit, Breite 13 cm.
Abb. 19: Konglomeratischer Sandstein mit jaspisartigem Zement. Evtl. aus Dalarna. Breite 7 cm.

Vereinzelt finden sich Granite des TIB, und zwar weniger die gleichkörnigen Granite vom Växjö-Typ, vielmehr porphyrische Varianten wie der Kinda-Granit aus NE-Småland mit den typischen orangefarbenen Feldspat-Säumen um einzelne größere und braune Alkalifeldspat-Einsprenglinge.

Abb. 20: Kinda-Granit, Breite 11 cm.
Abb. 21: Gleichkörniger Alkalifeldspatgranit (Rapakiwi) mit hellen Quarzen; Herkunft unbekannt. Breite 10 cm.
Abb. 22: Eher unauffällige Variante des Ostsee-Syenitporphyrs, einziger Fund im Gebiet der Danziger Bucht. Breite 12 cm.
Abb. 23: Bottenseeporphyr, brauner Quarzporphyr vom Typ Näsby? Nass fotografiert.
Abb. 24: Nahaufnahme. Das Gestein enthält nur sehr wenige kleine und eckige Quarze.
Abb. 25: Nahaufnahme der polierten Schnittfläche.
Abb. 26: Grüner Quarzporphyr, Bottenseeporphyr vom Typ Andeskeri. Nass fotografiert.
Abb. 27: Die Nahaufnahme zeigt schmale helle Säume um größere und magmatisch korrodierte Quarze. Auch eine zweite Generation (?) kleiner Quarze ist erkennbar. Nahaufnahme unter Wasser.
Abb. 28: Grüner Quarzporphyr, Herkunft unbekannt. Breite 12 cm.
Abb. 29: Helsinkitartiges Gestein (Metasomatit). Weißer Feldspat besitzt ein brekzienartiges Gefüge. Die Zwischenräume sind mit einem feinkörnigen rotbraunem Material verfüllt. Nass fotografiert.
Abb. 30: Nahaufnahme. Etwas Biotit oder Chlorit ist vorhanden, Quarz nicht erkennbar.
Abb. 31: Helsinkitartiges Gestein (Metasomatit) aus gelbem Feldspat und einer violettgrauen, teils körnigen (und feldspathaltigen) Zwischenmasse. Auch Quarz sowie gelber Titanit und glimmerartige dunkle Minerale sind in geringer Menge enthalten. Breite 13 cm.
Abb. 32: Feinkörniger und leicht verfalteter Gneis (Leptit) mit schwarzen Flecken. Breite 13 cm.
Abb. 33: Cremefarbener Dolomit, Breite 10 cm.

Am Strand von Orłowo und in den umliegenden Hügeln finden sich Relikte einer langen militärischen Nutzung. Das Gebiet war bis zum Ende des Kalten Krieges ein strategisch wichtiger Punkt zur Verteidigung der Danziger Bucht.

Abb. 34: Reste militärisch genutzter Bauten am Strand.
Abb. 35: Drehbares polnisches 130 mm-Artilleriegeschütz.

Literatur

DEECKE W 1907 Geologie von Pommern – VI+302 S., 40 Abb., div. Tab., Sachregister, Ortsregister, Berlin (Borntraeger).

DEECKE W 1899 Geologischer Führer durch Pommern – Sammlung geologischer Führer 4: 132 S., 7 Abb., S. 119-125, Berlin (Borntraeger).

KAULBARSZ D 2005 Budowa geologiczna i glacitektonika klifu orołwskiego w Gdyni – Przeglad Geologiczny 53, 7, S. 572-581.

KOWALEWSKA A 2020 Trilobites and associated fauna from Baltoscandian erratic boulders at Orłowo cliff, Northern Poland – Fragmenta Naturae (Formerly Nature Journal) 53: 17–26, Opole Scientific Society ISSN 2544-3941.

SOKOŁOWSKI, RJ (Ed.) 2014 Ewolucja środowisk sedymentacyjnych regionu Pobrzeża Kaszubskiego – 126 S, Wydział Oceanografii i Geografii Uniwersytetu Gdańskiego.

WOŹNIAK P, CZUBLA P, WYSIECKA G & DRAPELLA M 2009 Petrographic composition and directional properties of tills on the NW surroundings of the Gdansk Bay, Northern Poland – Geologija 51, S. 59-67.

Geschiebesammeln in Polen: Jastrzębia Góra und Gdynia

Abb. 1: Anorthosit, Geschiebe vom Geröllstrand in Jastrzębia Góra, Breite 15 cm.

Geschiebestrände sind an der polnischen Ostseeküste selten, weil es sich ganz überwiegend um eine Ausgleichsküste handelt. Durch Einwirkung von Wind und Wasser wird Sand abgetragen und der Küste vorgelagert. Auf diese Weise wird die Küstenlinie begradigt, ausgedehnte Sandstrände und Dünen entstehen. An solchen Küstenabschnitten findet man dann kilometerweit keinen Stein. In Polen gibt es nur wenige Lokalitäten, wo ein aktives Kliff mit Geschiebemergel oder ein Sandkliff angeschnitten ist, z. B. bei Misdroy (Westpolen). Eine Reise im Sommer 2021 führte an zwei der wenigen Geschiebestrände im Gebiet der Danziger Bucht, nach Jastrzębia Góra und in die Hafenstadt Gdynia.

Abb. 2: Lage der beiden Fundlokalitäten. Quelle: wikipedia, Karte verändert.

1. Jastrzębia Góra

Jastrzębia Góra (alter deutscher Name: Habichtsberg) liegt in der Woiwodschaft Pommern, etwa 55 km NNW von Danzig. Hier befindet sich der nördlichste Punkt Polens, ansonsten gibt es nicht viel zu sehen, denn der Ort lebt ausschließlich vom sommerlichen Badetourismus. Wo sich die in nordöstlicher Richtung verlaufende Ausgleichsküste nach Südosten wendet, ist ein Kliff angeschnitten. Auf knapp 1,5 km Länge gibt es einen Geschiebestrand. Zu Zwecken des Küstenschutzes wurden am Strand große Geschiebe abgelagert, die aus der unmittelbaren Umgebung stammen dürften.

Abb. 3: Geschiebestrand von Jastrzębia Góra.
Abb. 4: Größere Geschiebe im Brandungssaum.
Abb. 5: Aufgrund des starken Küstenrückgangs der vergangenen Jahre wurde zum Zwecke des Uferschutzes eine Betonmauer errichtet, der zahlreiche Großgeschiebe vorgelagert sind.

Das Geschiebespektrum am Strand von Jastrzębia Góra ist nicht außergewöhnlich und im Grunde genommen mit einigen Lokalitäten im östlichen Brandenburg vergleichbar: reichlich Åland-Kristallin und Rapakiwi-Gesteine, viel Brauner Ostseequarzporphyr und Gesteine aus Dalarna. Auffällig ist das weitgehende Fehlen von Feuerstein. Ostbaltisches, also aus östlichen Richtungen angeliefertes Material wie Kugelsandstein und Dolomit, ist aber ebenfalls kaum zu finden. Unterkambrische Sandsteine mit Spurenfossilien (Skolithos-Sandstein) treten nur vereinzelt auf, häufiger sind paläozoische Kalksteine, vor allem Paläoporellenkalk.

Rapakiwi-Gesteine von Åland gehören zu den häufigsten Funden. Es findet sich die ganze Bandbreite an Åland-Rapakiwis, v.a. Wiborgite, weiterhin Åland-Ringquarzporphyre, Quarzporphyre, darunter auch die Gangporphyre von Hammarudda.

Abb. 6: Åland-Quarzporphyr.
Abb. 7: Åland-Quarzporphyr, Skeppsvik-Typ mit trüben und leicht bläulichen Quarzen. Breite 18 cm.
Abb. 8: Åland-Ringquarzporphyr, Breite 16 cm.
Abb. 9: Großer Block eines Åland-Ringquarzporphyrs, Breite 37 cm.
Abb. 10: Nahaufnahme einer angenässten Partie.
Abb. 11: Hammarudda-Quarzporphyr, Breite 21 cm.
Abb. 12: Blassroter Åland-Wiborgit, Breite 30 cm.
Abb. 13: Nahaufnahme des Gefüges.
Abb. 14: Åland-Rapakiwi, Mischtyp Wiborgit/Pyterlit. Breite 25 cm.
Abb. 15: Blassroter Porphyraplit, Breite 75 cm.
Abb. 16: Nahaufnahme.
Abb. 17: Grauer Pyterlit. Breite 50 cm. Herkunft ungewiss. Wahrscheinlich stammt zumindest ein Teil solcher hellen Pyterlite von Åland.
Abb. 18: Nahaufnahme.

In Jastrzębia Góra treten – wenn auch nicht besonders zahlreich – Rapakiwi-Granite auf, die dem Rapakiwi-Vorkommen von Kökar zugeordnet werden können.

Abb. 19: Kökar-Rapakiwi. Sehr grobkörniger porphyrischer Rapakiwigranit mit rotem und grünem Plagioklas. Zahlreiche Feldspäte weisen einen dicken Saum aus rotbraunem Plagioklas auf. Breite 60 cm.
Abb. 20: Nahaufnahme, nass fotografiert.
Abb. 21: Wiborgit mit reichlich rotbraunem Plagioklas (Åland oder Kökar?). Breite 26 cm.
Abb. 22: Nahaufnahme.
Abb. 23: Åland?-Wiborgit mit bläulichen Quarzen und grün umsäumten Feldspat-Ovoiden bis 33 mm Durchmesser.

Darüber hinaus finden sich zahlreiche weitere und interessante Rapakiwi-Geschiebe, die sich nicht ohne weiteres einer genaueren Herkunft zuordnen lassen.

Abb. 24: Porphyrischer Rapakiwi, Breite 48 cm.
Abb. 25: Nahaufnahme des Gefüges; kreuzförmiger Zwilling zweier Feldspat-Kristalle.
Abb. 26: Dunkler Pyterlit mit sehr großen Ovoiden. Breite 50 cm. Gefüge und dunkle Farbe erinnern an Rapakiwis vom Wiborg-Pluton. Allerdings sind hier keine Feldspat-Ovoide erkennbar (kein Wiborgitgefüge). Eine Herkunft vom SW-finnischen Festland ist denkbar (Laitila- oder Vehmaa-Pluton), allerdings kann auch nicht ausgeschlossen werden, dass weitere und bisher unentdeckte (Unterwasser)-Vorkommen solch grobkörniger Pyterlite existieren.
Abb. 27: Nahaufnahme.
Abb. 28: Roter porphyrischer Rapakiwi-Granit mit hellen Quarzen und dicken Säumen aus gelbem Plagioklas um einzelne Alkalifeldspat-Ovoide. Breite 37 cm.
Abb. 29: Nahaufnahme. Das Gefüge ähnelt den Wiborgiten vom Rödö-Pluton, die Ovoide sind jedoch recht klein für eine eindeutige Zuordnung (unter 2 cm).
Abb. 30: Dieses Geschiebe hingegen ist ganz eindeutig ein Rödö-Wiborgit. Breite 50 cm.
Abb. 31: Nahaufnahme, Bildbreite 14 cm. Die großen und hellen Quarze der 1. Generation zeigen kaum Spuren einer magmatischen Korrosion. Viele der Feldspat-Ovoide sind größer als 2 cm und weisen vereinzelt dicke Plagioklasringe auf.
Abb. 32: Nahaufnahme. Um die blassgelben Alkalifeldspäte findet sich häufig ein Ring aus radial verlaufenden und roten graphischen Verwachsungen aus Feldspat und Quarz. Auch reichlich intensiv gelbgrüner Plagioklas ist enthalten.
Abb. 33: Dieser Wiborgit zeigt ebenfalls Merkmale eines Rödö-Rapakiwis. Rapakiwis mit orangebrauner Gesamtfarbe kommen auf Rödö vor, wenn auch untergeordnet. Breite 18 cm.
Abb. 34: Nahaufnahme.
Abb. 35: Rödö-Rapakiwi. Die gelblichen, bis 2 cm großen Feldspat-Ovoide sind heller als die vollrote Grundmasse, die großen und leicht bläulichen Quarze zeigen kaum Spuren einer magmatischen Korrosion. Breite 13 cm.
Abb. 36: Vollroter Rapakiwi mit etwas helleren Alkalifeldspat-Ovoiden und dunklen größeren Quarzen. Breite 13 cm.
Abb. 37: Nahaufnahme. Ob auch dieser Rapakiwi von Rödö stammt, ist unklar. Entscheidend für die Bestimmung ist die Größe der Ovoide (2 cm und mehr), hier bleiben sie deutlich darunter. Ähnliche Rapakiwigranite könnten z. B. auch von Nordingrå stammen.
Abb. 38: Porphyrischer Rapakiwi (Nordingrå-Rapakiwi?). Helle und rechteckige Feldspäte sind von einer roten Grundmasse aus graphischen Quarz-Feldspat-Verwachsungen umgeben, größere hellgraue Quarze sind locker im Gestein verteilt.
Abb. 39: Nahaufnahme. Solche porphyrischen Rapakiwi-Granite sind aus Nordingrå bekannt. Allerdings besteht bei vielen Varianten eine Verwechslungsmöglichkeit mit Rapakiwis vom Åland-Pluton.

Porphyre

Abb. 40: Der Braune Ostsee-Quarzporphyr tritt sehr häufig auf, auch in großen Blöcken. Breite 45 cm.
Abb. 41: Brauner Ostsee-Quarzporphyr, Breite 56 cm.
Abb. 42: Der Rote Ostsee-Quarzporphyr ist bedeutend seltener. Ein besonderer Fund ist dieses große und stark angewitterte Ignimbrit-Geschiebe. Breite 47 cm.
Abb. 43: Nahaufnahme. Durch Verwitterung tritt das eutaxitische Gefüge besonders deutlich hervor. Neben basischen Xenolithen ist ein rundes Fragment eines braunen Quarzporphyrs erkennbar.
Abb. 44: Quarzporphyr, ein Gangporphyr mit graphischen Verwachsungen in der Grundmasse. Herkunft unbekannt.
Abb. 45: Grüner Quarzporphyr mit hellen, teilweise stark magmatisch korrodierten Feldspat-Einsprenglingen, Breite 95 mm. Herkunft unbekannt.
Abb. 46: Auch der Lemland-Granit stammt von Åland, gehört aber nicht in die Suite der Rapakiwi-Gesteine. Er ist etwa 1,8 Ga alt und entstand nach Beendigung der Svekofennischen Gebirgsbildung. Breite 16 cm.

Der nächste Fund zeigt ein ähnliches Gefüge wie der Lemland-Granit, ist aber nicht so grobkörnig; ein Granit mit porphyrischem Gefüge aus blassroten Alkalifeldspat-Zwillingen in einer Grundmasse aus grauem Quarz und rotem Plagioklas.

Abb. 47: Lemland-Granit oder postsvekofennischer Granit? Breite 55 cm.
Abb. 48: Nahaufnahme des Gefüges.

Geschiebe aus Dalarna

Kristallingesteine aus Dalarna finden sich reichlich am Strand von Jastrzębia Góra, neben Bredvad- und Grönklitt-Porphyr auch auffällig viele Geschiebe des Garberg-Granits, während der Siljan-Granit kein einziges Mal angetroffen wurde.

Abb. 49: Älvdalen-Ignimbrit, Breite 21 cm.
Abb. 50: Einsprenglingsreicher Dala-Porphyr, Breite 14 cm.
Abb. 51: Digerberg-Konglomerat, Breite 18 cm.
Abb. 52: Gleicher Stein, Nahaufnahme eines roten Porphyrs mit fluidaler Textur.
Abb. 53: Heden-Porphyr, Breite 20 cm.
Abb. 54: Garberg-Granit, Breite 17 cm.
Abb. 55: Garberg-Granit, Breite 17 cm.
Abb. 56: Garberg-Granit, recht quarzreich, möglicherweise ein Übergang zum Siljan-Granit.

Marmor und Gneise vom Sörmland-Typ

Unter den mittelschwedischen Geschiebetypen treten Marmor bzw. Silikatmarmor („Ophicalcit“) und graue migmatitische Paragneise vom Sörmland-Typ sehr häufig in Erscheinung. Marmorgeschiebe sind besonders häufig, insgesamt 7 Funde wurden dokumentiert, die meisten davon sind Großgeschiebe. Näheres zu Marmor/Silikatmarmor und Sörmland-Gneis.

Abb. 57: Großes Geschiebe eines Silikatmarmors (Ophicalcit), Breite 47 cm.
Abb. 58: Nahaufnahme der nassen Oberfläche. Die grünen Mineralkörner sind forsteritischer (Mg-reicher) und meist serpentinisierter Olivin oder Klinopyroxen (Diopsid). Eine Unterscheidung dieser Minerale von Hand ist nicht möglich.
Abb. 59: Silikatmarmor, Breite 12 cm.
Abb. 60: Silikatmarmor, Breite 21 cm.
Abb. 61: Gleicher Stein, Nahaufnahme.
Abb. 62: Einschlussführender Marmor, Breite 65 cm.
Abb. 63: Detailansicht, Breite 27 cm. Das Gestein enthält gerundete Klasten von Quarz-Feldspat-Gneisen.
Abb. 64: Gebänderter Marmor, Breite 50 cm.
Abb. 65: Grauer migmatitischer Paragneis, Breite 95 cm.
Abb. 66: Grauer migmatitischer Paragneis mit Granat (Sörmland-Gneis). Breite 110 cm.
Abb. 67: Sörmland-Gneis, Breite 14 cm.
Abb. 68: Granatreicher migmatitischer Paragneis („Kinzigit“), Breite 38 cm. Der Fund eines ähnlichen Gesteins wird von BAUSCH & LÜTTIG 2005 diskutiert. Als mögliches Herkunftsgebiet nennen die Autoren SW-Finnland. Allerdings könnte mit ähnlichen Vorkommen in der Ostsee und in Sörmland zu rechnen sein (s. a. Sörmland-Gneis).
Abb. 69: Gleicher Stein, Bildbreite 17 cm. Neben reichlich Granat enthält das Gestein graublauen Cordierit und Sillimanit (silbrig-graue Schlieren zwischen den Granat-Porphyroblasten).

Granite

Granite aus dem Transskandinavischen Magmatitgürtel (TIB) sind regelmäßig, von der Menge her den Rapakiwigesteinen deutlich untergeordnet zu finden. Rote Småland-Granite oder die gleichkörnigen Växjö-Typen kommen nur vereinzelt vor, häufiger sind dunkle porphyrische Varianten, wie aus NE-Småland bekannt sind (u. a. Kinda-Granit). Die aus dem südlichen Småland stammenden Vulkanite wie Paskallvik- und Emarp-Porphyr fehlen, ebenso die hälleflintartigen Småland-Vulkanite.

Abb. 70: Kinda-Granit, Breite 14 cm.
Abb. 71: Kinda-Granit bzw. NE-Småland-Granit.
Abb. 72: „Virbo-Granit“ (Ost-Småland), Breite 28 cm.
Abb. 73: Filipstad-Granit, Breite 37 cm.
Abb. 74: Filipstad-Granit.

Besonders grobkörnige bis riesenkörnige porphyrische Granite lassen sich häufiger beobachten. Sie können zwar keiner näheren Herkunft zugeordnet werden, dürften zum Teil aber aus den nördlichen Gebieten des TIB stammen, z. B. Östergötland. Andere porphyrische Granite besitzen große helle und rechteckige Alkalifeldspat-Einsprenglinge, ihre Herkunft ist gänzlich ungewiß (Abb. 78, 79).

Abb. 75: Grob porphyrischer TIB-Granit mit etwas Blauquarz, Breite 45 cm. Ein einzelnes Ovoid besitzt einen Durchmesser von 56 mm.
Abb. 76: Grob porphyrischer Granit, Breite 55 cm.
Abb. 77: Grob porphyrischer Granit, Breite 30 cm.
Abb. 78: Grob porphyrischer Granit, Breite 30 cm.
Abb. 79: Grob porphyrischer Granit, Grenze zu einem basaltischen Gestein. Breite 43 cm.
Abb. 80: Revsund-Granit. Breite 52 cm.
Abb. 81: Nahaufnahme. Die weißen Alkalifeldspäte bilden teilweise perfekte Karlsbader Zwillinge und weisen eine deutliche perthitische Entmischung auf. Gelblicher Plagioklas und hellgrauer Quarz bilden bedeutend kleinere Körner.
Abb. 82: Weißer porphyrischer Granit, Bildbreite 46 cm.
Abb. 83: Porphyrischer Granit mit einem runden Alkalifeldspat mit zoniertem Aufbau. Breite 17 cm. Der orbicul-ähnliche Feldspat dürfte durch Bewegung in der Schmelze eine runde Gestalt erhalten haben. An seinem Außenrand schieden sich dunkle Minerale ab, anschließend setzte das Kristallwachstum offenbar erneut ein.

An mittelschwedischen Graniten aus Bergslagen und Uppland konnten mehrfach Geschiebe des Vänge- und Stockholm-Granits beobachtet werden, vereinzelt Sala- und Uppsala-Granit. Darüber hinaus gibt es zahlreiche unspezifische graue Granite („Uppland-Granite“) mit vermutlich ähnlichem Herkunftsgebiet (Abb. 93). Die übrigen Bergslagen-Granite dürften als Geschiebe meist nicht eindeutig bestimmbar sein, zu sehr ähneln sich Varianten aus verschiedenen Gebieten, zu unspezifisch sind die allgemeinen Merkmale. Entsprechende Zuordnungen wurden daher mit einem Fragezeichen versehen (Abb. 87 und 94).

Abb. 84: Sala-Granit, Breite 70 cm.
Abb. 85: Nahaufnahme.
Abb. 86: Vänge-Granit, Bildbreite 30 cm.
Abb. 87: Mittelkörniger Granit, Farbe und Zusammensetzung ähnlich dem Vänge-Granit, aber abweichendes Gefüge (Malingsbo-/Enkullen-Granit?). Vgl. auch Ähnlichkeiten zwischen Hedesunda-Granit und Vänge-Granit.
Abb. 88: „Grauer Uppland-Granit“. Solche Granite mit einem ähnlichen Gefüge wie der Sala-Granit, aber ohne Blauquarz, kommen häufig vor. Herkunft dürfte in der Region Uppland/Bergslagen liegen.
Abb. 89: Porphyrischer Granit; Herkunft unbekannt, möglicherweise ebenfalls ein Uppland-Granit (Fellingsbro-Granit?). Breite 25 cm.

Basische Gesteine und Metabasite

Abb. 90: Diabas, Breite 23 cm.
Abb. 91: Grobkörniger Åsby-Ulvö-Dolerit, Breite 48 cm.
Abb. 92: Nahaufnahme der nassen Oberfläche.
Abb. 93: Basaltisches Gestein mit glasglänzender Oberfläche („Basaltähnlicher Ostsee-Diabas“?), nur mikroskopisch bestimmbar, vgl. HESEMANN 1975: 168). Breite 38 cm.
Abb. 94: Gabbroides Gestein mit Xenolith eines porphyrischen Magmatits (Gabbro oder Diorit). Breite 45 cm.
Abb. 95: Porphyroblastischer Amphibolit („Uralitgabbro“), Breite 40 cm.
Abb. 96: Coronitischer Leukogabbro (Olivingabbro). Breite 27 cm.
Abb. 97: Gefüge des Gesteins.
Abb. 98: Nahaufnahme. Kerne und Coronen dieses Gesteinstyps bestehen zumeist aus Mineralgemischen. Der Kern enthält Olivin-Relikte, die Coronen – hier gut erkennbar – faserigen Amphibol („Aktinolith-Sonnen“).
Abb. 99: Ein weiterer coronitischer Olivingabbro, Breite 60 cm.
Abb. 100: Nahaufnahme.

Weitere Metamorphite

Abb. 101: „Gedrit-Leptit“; feinkörniger heller Granofels mit büschelartigen Aggregaten aus feinfaserigem Amphibol, wahrscheinlich Gedrit. Breite 24 cm. (s. a. Ampbibol-porphyroblastische Gneise, Abb. 31-34).
Abb. 102: Gleicher Stein, andere Ansicht.
Abb. 103: Dunkler und doleritischer Metabasit, durchsetzt von einem Netz eines helleren und quarzreichen Magmas (net veins). Breite 50 cm.
Abb. 104: Migmatitischer Gneis; graue Gneispartie (Restit?) mit Staffelbruch. Bildbreite 40 cm.
Abb. 105: Grünstein (Metabasit), durchzogen von pegmatitischen Gängen. Breite 40 cm.
Abb. 106: Fleckenquarzit mit weißen Sillimanit-Granoblasten. Herkunft: wahrscheinlich svekofennisch, nicht unbedingt aus dem Västervik-Gebiet. Breite 20 cm.

Sedimentite

Abb. 107: Einziger Fund eines Kugelsandsteins in Jastrzębia Góra. Breite 12 cm.
Abb. 108: Jotnischer Sandstein mit Entfärbungsflecken, Breite 45 cm.
Abb. 109: Jotnischer Sandstein mit Schrägschichtung, Breite 40 cm.
Abb. 110: Jotnischer Sandstein mit Tongallen, Bildbreite 32 cm.
Abb. 111: Konglomerat-Lage in einem Sandstein (Schichtrichtung um 90 Grad gedreht); Porphyr-, Granit- und Milchquarz-Klasten in einer konglomeratischen Sandstein-Matrix. Breite 15 cm.

Tilluntersuchungen an ausgewählten Lokalitäten in der Umgebung der Danziger Bucht bestätigen als Hauptliefergebiete Åland, Dalarna und Mittelschweden (WOŹNIAK et al 2009). Neben der vorherrschenden Zugrichtung des Eises aus NNW, lokal auch von Osten, wird anhand von Leitgeschiebezählungen für einzelne Tillablagerungen (Unterteilung in roof/base part of the upper till und lower till) ein weiterer Vorstoß von Nordwesten genannt, belegt durch Funde südschwedischer Leitgeschiebe sowie der Orientierung der Längsachsen von Geschieben in den Moränenablagerungen. Für die Zählungen herangezogen wurden im Einzelnen rote und graue Växjö-Granite, rote Småland-Granite und Småland-Porphyre; Vånevik-Granit sowie Beyrichienkalk. Die kursiv gedruckten Geschiebetypen gelten allerdings nicht als Leitgeschiebe, die übrigen konnte ich weder in Jastrzebia Gora, noch in Gdynia finden. „Südlichste“ Vertreter sind Kinda-Granit und Virbo-Granit; sie könnten auch mit einem Eisstrom aus nördlicher Richtung transportiert worden sein.

Abb. 112: Skizze der Transportrichtungen von Gesteinsmaterial in die Danziger Bucht. Schwarzer Pfeil: Hauptrichtung; roter Pfeil: untergeordneter Transport von Westen und Nordwesten; weißer Pfeil: lokal ist auch ein Transport aus östlichen Richtungen belegt. Kartenskizze nach WOŹNIAK et al 2009.

Weiter zu: Geschiebesammeln in Polen, Teil 2: Gdynia

Literatur

BAUSCH WM & LÜTTIG GW 2005 Ein Kinzigit-Geschiebe aus Salzhausen (Lüneburger Heide) – Geschiebekunde aktuell 21 (1): 5-12, 2 Abb., Hamburg / Greifswald.

SOKOŁOWSKI, RJ (Ed.) 2014 Ewolucja środowisk sedymentacyjnych regionu Pobrzeża Kaszubskiego – 126 S, Wydział Oceanografii i Geografii Uniwersytetu Gdańskiego.

WOŹNIAK P, CZUBLA P, WYSIECKA G & DRAPELLA M 2009 Petrographic composition and directional properties of tills on the NW surroundings of the Gdansk Bay, Northern Poland – Geologija 51, S. 59-67. 10.2478/v10056-009-0007-z.

Geschiebesammeln auf Rügen 2: Dwasieden

Abb. 1: Steilküste von Dwasieden.

Die Steilküste von Dwasieden liegt zwischen dem Hafen von Mukran und Sassnitz. Im Wald finden sich gesprengte Reste des imposanten Schlosses Dwasieden. Das 1873-1877 erbaute Hotel wurde seit den 1930er Jahren militärisch genutzt und nach dem Krieg gesprengt. Auf dem Gelände gibt es neben weiteren Relikten einer militärischen Nutzung aus DDR-Zeiten auch Parkmöglichkeiten. Steigt man von hier zur Küste hinab, stößt man zunächst auf einen Geröllstrand mit großen Geschieben sowie Werksteinen, die zum Bau des Schlosses verwendet wurden.

Abb. 2: Reste eines Pavillions vom Schloss Dwasieden.
Abb. 3: Alte Uferbefestigung.

Unter anderem trifft man auf den einst sehr beliebten Königshainer Granit, einem postvariszischen und anorogenen Granit aus der Oberlausitz. Der gleichkörnige und meist etwas gelblich verfärbte Granit fällt durch seine idiomorphen Quarze auf. Am Strand weiter südlich findet sich das Gestein gelegentlich als Geröll wieder und sollte nicht mit „echten“ Geschieben verwechselt werden.

Abb. 4: Königshainer Granit, Breite 30 cm.
Abb. 5: Königshainer Granit, Strandgeröll, Breite 10 cm.
Abb. 6: Ein Zugang zum Geröllstrand ist auch von Süden vom Hafen Mukran aus möglich. Hier wurden große Blöcke von Larvikit als Uferschutz abgeladen.
Abb. 7: Geröllstrand Dwasieden von Süden.

Die Steilküste besteht aus weichselkaltzeitlichem Geschiebemergel mit Einschaltungen von Rügener Schreibkreide. Die schlierenartigen Kreide-Schollen liegen zwischen zwei Geschiebemergeln (Brandenburger und Pommersches Stadium). Die glazialen Sedimente ruhen auf einer offenbar fast ungestört lagernden großen Kreide-Scholle (LUDWIG et al 2010; erkennbar in Abb. 1).

Abb. 8: Kreide-Schlieren in weichselkaltzeitlichem Geschiebemergel.
Abb. 9: Gekippte Kreidescholle unter Geschiebemergel.
Abb. 10: Grauer Geschiebemergel, im Hangenden gelblichbrauner Geschiebelehm.

Am nördlichen Strandabschnitt ist ein ungewöhnliches Sedimentprofil zu sehen. Über dem Geschiebemergel liegt eine Bank aus grobem Schotter, gefolgt von geschichteten glazialen Beckensanden bzw. Bändertonen (Warven) in feiner Wechsellagerung. Sie werden als Ablagerungen eines Eissees aufgefasst.

Abb. 11: Fein geschichtete Wechsellagen aus hellen Sanden und Tonen über braunem Geschiebemergel, getrennt durch eine Schotterbank.
Abb. 12: Höhe etwa 8 Meter.

Geschiebe aus dem Oslograben kommen auf Rügen nicht vor, die Insel liegt außerhalb des Verbreitungsgebietes der Oslo-Gesteine. Sollte man einen Larvikit finden, dürfte er aus den zu Uferschutzzwecken herbeigeschafften Blöcken am Hafen von Mukran stammen. Auch der folgende Fund, ein dunkler Gangporphyr mit rhombenförmigen Feldspat-Einsprenglingen, dürfte mit einiger Sicherheit nicht aus dem Oslograben stammen.

Abb. 13: Dunkler Porphyr mit teils rhombenförmigen Feldspat-Einsprenglingen. Breite des Steins 17 cm.

Auf skan-kristallin.de wird der gezeigte Porphyrtyp in Verbindung mit einer Rand- oder Gangfazies des Vaggeryd-Syenits gebracht. Gegen eine Herkunft aus diesem Gebiet spricht, dass der gewöhnliche Vaggeryd-Syenit auf Rügen als Geschiebe ebenfalls nicht angetroffen wurde. Hingegen konnte ein zweiter und ganz ähnlicher Porphyrtyp am Strand von Sassnitz aufgelesen werden. Viel wahrscheinlicher ist also eine Herkunft aus einem unbekannten Vorkommen mit syenitischen Porphyren, z. B. in Småland.

Es folgen Bilder von Åland-Gesteinen, Rapakiwis unbekannter Herkunft und Porphyren aus dem Ostseebecken.

Abb. 14: Åland-Rapakiwi mit Wiborgitgefüge, Breite 12,5 cm.
Abb. 15: Großes Geschiebe eines Åland-Wiborgits, Breite 50 cm.
Abb. 16: Nahaufnahme des Gefüges.
Abb. 17: Ein weiterer Åland-Wiborgit. Breite 15 cm.
Abb. 18: Åland-Ringquarzporphyr. Charakteristisch sind die dunklen Säume um die größeren und gerundeten Quarzkörner. Breite 17 cm.
Abb. 19: Das Gestein enthält einen schwammartigen Einschluss (Xenolith) aus Quarz und Feldspat, wahrscheinlich ein in der Porphyrschmelze angeschmolzenes Relikt eines gleichkörnigen Rapakiwigranits.
Abb. 20: Schlieriger Åland-Quarzporphyr, Breite 32 cm. Ob es sich um einen Åland-Ignimbrit handelt, ist unklar. Ein eindeutig eutaxitisches Gefüge konnte nicht beobachtet werden. Porphyre können auch durch die Vermengung zweier Magmen ein schlieriges Aussehen annehmen.
Abb. 21: Kleines Geschiebe eines Åland-Ignimbrits, Aufnahme unter Wasser.
Abb. 22: Ebenfalls von den Åland-Inseln stammt der Lemland-Granit. Er gehört nicht zu den Rapakiwigesteinen, sondern ist älter und entstand nach dem Ende der svekofennischen Gebirgsbildung vor ca. 1,8 Ga. Breite des Steins 20 cm.

Stets finden sich auch interessante Rapakiwigeschiebe, die keiner näheren Herkunft zugeordnet werden können.

Abb. 23: Mischgefüge Wiborgit und porphyrischer Rapakiwi-Granit mit rotem Plagioklas. Breite 11,5 cm.
Abb. 24: Mischgefüge Wiborgit/Pyterlit mit idiomorphen und leicht bläulichen Quarzen (Åland oder Kökar?). Breite 18 cm.
Abb. 25: Ein einzelnes Ovoid erreicht einen Durchmesser von 35 mm.
Abb. 26: Orangeroter Wiborgit (Rödö-Rapakiwi) mit lebhaftem Blauquarz. Breite 13 cm.
Abb. 27: Rückseite des gleichen Geschiebes.
Abb. 28: Nahaufnahme.

Die größeren Blauquarze weisen nur geringe Spuren einer magmatischen Korrosion auf, die größten Feldspat-Ovoide erreichen einen Durchmesser von 2 cm. Graphische Verwachsungen aus Quarz und Feldspat in der Grundmasse sind eher eckig (aplitartig), nicht gewunden. Der Geschiebefund besitzt Merkmale der Wiborgite vom Rödö-Pluton, vgl. die auf kristallin.de gezeigten Typen.

Abb. 29: Bottensee-Porphyr, Quarzporphyr vom Typ Andeskeri.

Eine Reihe von braunen bis grünen Quarzporphyren mit orangefarbenen Feldpäten und oft schlieriger Grundmasse wird einem vermuteten Vorkommen in der Bottensee zugeordnet und als Bottenseeporphyr bezeichnet. Diese Porphyre finden sich auf Åland vermehrt als Geschiebe und müssen aus einem Vorkommen weiter nördlich stammen. Ob sie alle aus einem einzigen autonomen Vorkommen stammen oder wenigstens zum Teil aus dem Åland-Pluton, ist ungeklärt.

Abb. 30: Nahaufnahme des Gefüges.

Als Herkunftsgebiete des folgenden Ignimbrits kommen das Vulkanitgebiet von Dalarna, aber auch das Vorkommen des Roten Ostsee-Quarzporphyrs in Frage. Dafür sprechen das gänzlich undeformierte Gefüge, Xenolithe basischer Gesteine und einzelne Quarze, die den charakteristischen magmatisch korrodierten Hochquarz-Relikten des gewöhnlichen Roten Ostsee-Quarzporphyrs ähneln.

Abb. 31: Ignimbrit; polierte Schnittfläche eines Funds von D. Lüttich.
Abb. 32: Nahaufnahme. Das Gestein enthält Bruchstücke anderer Porphyre sowie Diabas-Xenolithe.
Abb. 33: Weitere Nahaufnahme. Sollte das Gestein tatsächlich zum Roten Ostsee-Quarzporphyr gehören, wäre aus diesem Vorkommen mit einer Vielzahl weiterer Porphyr-Varianten zu rechnen.
Abb. 34: Dieser Geschiebetyp dürfte einer der variantenreichen Ostsee-Syenitporphyre sein. Eine grünliche bis braune und feinkörnige Grundmasse enthält wenige rote Feldspat-Einsprenglinge sowie einige dunkle Mandeln. Einsprenglinge und Mandeln sind konzentrisch von Ringen umgeben. Polierte Schnittfläche, leg. D. Lüttich.
Abb. 35: Nahaufnahme. Eine einzelne ovale Mandel ist mit sekundärem Quarz verfüllt.

Granite des Transskandinavischen Magmatitgürtels (TIB), die bunten „Småland“-Granite mit Blauquarz, finden sich in großer Anzahl in Dwasieden.

Abb. 36: Gleichkörniger Småland-Granit (Växjö-Typ) mit Blauquarz, Breite 14 cm.
Abb. 37: Porphyrischer Granit mit braunem Alkalifelspat und Blauquarz. Einige orangerot pigmentierte Feldspäte sowie das reichliche Vorhandensein von Titanit deuten auf eine Herkunft aus NE-Småland.
Abb. 38: Nahaufnahme. Gelber Titanit bildet teilweise gut entwickelte keilförmige Kristalle.
Abb. 39: Uthammar-Granit, Breite 20 cm.

Eine Reihe von Merkmalen unterscheidet den 1,45 Ga alten anorogenen Uthammar-Granit von den grobkörnigen roten Småland-Graniten. Der Uthammar-Granit besitzt ein undeformiertes Gefüge; dunkle Minerale finden sich in kleinen Aggregaten, nicht in Schnüren und Schlieren (Hinweis auf Deformation). Mit der Lupe erkennt man weitgehend unverbogene Biotit-Plättchen. Grünlicher und roter Plagioklas sind nur in geringer Menge enthalten. Innerhalb der Alkalifeldspäte finden sich kleine eckige Quarzeinschlüsse.

Abb. 40: Grob porphyrischer Quarz-Monzonit mit etwas Blauquarz. Herkunft: wahrscheinlich Östergötland. Breite 23 cm.
Abb. 41: Granit aus hellrotem Alkalifeldspat, gelblichem Plagioklas und grauem Quarz. Herkunft unbekannt. Breite 15 cm.
Abb. 42: Hellroter Granit, Vänge-Granit (Uppland), Breite 16 cm.
Abb. 43: Nahaufnahme des Gefüges. Grünlichgrauer Quarz ist zuckerkörnig ausgebildet. Kleinere Aggregate eines zweiten Feldspats (Plagioklas) sind gelblich, grün, teilweise auch rötlich pigmentiert.
Abb. 44: Mittel- und gleichkörniger Granit aus weißem Alkalifeldspat, rotem Plagioklas, farblosem Quarz und etwas Biotit. Breite 14 cm, Herkunft unbekannt.
Abb. 45: Nahaufnahme.

Basische Gesteine

Abb. 46: Kinne-Diabas aus Västergötland. Breite 18 cm.
Abb. 47: Grauvioletter porphyrischer Basalt bzw. basaltisches Gestein („Öje-Diabasporphyrit“). Breite 21 cm.
Abb. 48: Nahaufnahme. Die großen Plagioklas-Einsprenglinge sind durch hydrothermale Alteration grün gefärbt und enthalten dunkle Minerale. Teilweise zeichnen diese die Spaltlinien der Plagioklas-Kristalle nach.
Abb. 49: Basaltischer Mandelstein, trocken fotografiert, leg. S. Mantei.
Abb. 50: Nahaufnahme, nasse Oberfläche. Ein größerer Feldspat-Einsprengling wurde durch magmatische Korrosion siebartig durchlöchert.
Abb. 51: Grobkörniger grüner Anorthosit, Breite 10 cm.
Abb. 52: Bemerkenswertes gabbroides Gestein mit rundlichen Mineralaggregaten und einer feinkörnigen Grundmasse eines weißen Minerals. Es ist nicht erkennbar, ob es sich dabei um Plagioklas handelt. Breite 11 cm.
Abb. 53: Nahaufnahme. Die rundlichen Aggregate besitzen teilweise eine diallagartige Textur und einen seidigen Glanz. Diallag ist kein eigenständiges Mineral, sondern ein Produkt der Entmischung von augitischem Pyroxen.

Metamorphite

Abb. 54: Fleckengneis mit weißen Sillimanitflecken. Feinkörnige Quarz-Feldspat-Gneise mit weißen Flecken kommen z. B. an verschiedenen Orten in Sörmland vor, nicht jedoch im Västervik-Gebiet. Breite 10 cm.
Abb. 55: Feinkörniger Fleckenquarzit mit ausgelängten Sillimanit-Flecken, Herkunft ungewiss. Nur die undeformierten Fleckenquarzite lassen sich mit einiger Sicherheit dem Västervik-Gebiet zuordnen. Breite 14 cm.
Abb. 56: „Turmalingranit“ – pegmatitähnlicher Quarz-Feldspat-Magmatit mit reichlich schwarzem Turmalin (Schörl).

Sedimentgesteine

Der Strandabschnitt von Dwasieden ist bekannt durch die häufigen Funde von paläozoischen Kalken, insbesondere Stinkkalken. Tatsächlich ist die Belegung mit paläozoischen Geschieben hoch.

Abb. 57: Paläozoische Kalksteine in unveränderter Lage am Fuße der Steilwand. Die Kalke stammen direkt aus dem Geschiebemergel. Bildbreite 80 cm.
Abb. 58: Bioturbater glaukonitischer Sandstein mit Phosphorit-Geröllen (Typ Norretorp-Sandstein), Unterkambrium von Bornholm und Südost-Schonen.
Abb. 59: Norretorp-Sandstein, Breite 18 cm.
Abb. 60: Rispebjerg-Sandstein mit Phosphorit-Geröllen (Unterkambrium). Breite 19 cm.
Abb. 61: Stinkkalk, Breite 15 cm. Die oberkambrischen Stinkkalke enthalten Bitumen und riechen nach dem Aufschlagen nach Erdöl. In diesen Kalken ist mitunter eine reichhaltige Trilobitenfauna zu finden.
Abb. 62: Stinkkalk mit Einlagerungen von schwarzem, kristallinem Calcit (Anthrakonit), Breite 13 cm.
Abb. 63: Ceratopygekalk. Der unterordovizische Kalk enthält reichlich schwarzgrüne Glaukonitkörner von pelletartiger Gestalt . Breite 14 cm.
Abb. 64: Ceratopygekalk, Breite 12 cm.
Abb. 65: Graugrüner bis rötlicher Orthocerenkalk mit Anschnitt eines Kopffüßlers; Breite 17 cm.
Abb. 66: Der unterordovizische Paläoporellenkalk gehört zu den häufigsten Sedimentärgeschieben, eher selten sind hellrote Varianten. Breite 11,5 cm.
Abb. 67: Konglomeratischer Dolomit (Obersilur bis Devon). Das Gestein ist sehr schwer und reagiert nur sehr verhalten auf 10%ige Salzsäure. Es enthält Klasten eines konglomeratischen Rotsandsteins mit gerundeten Sandstein- sowie grünlichen Silt- oder Tonklasten. Breite 10 cm.
Abb. 68: Postsilurisches Konglomerat. Dieser polymikte Typ ist seltener als das gewöhnliche postsilurische Konglomerat, das aus Bruchstücken des roten Beyrichienkalks sowie Tonschiefern besteht. Der abgebildet Fund enthält zusätzlich Klasten von Basalt, Porphyr und Granit.
Abb. 69: Seeigel (Galerites).

In Dwasieden treten reichlich Limonitsandsteine auf, die überwiegend jurassischen Alters sein dürften und wahrscheinlich aus Vorkommen von Bornholm, SE-Schonen oder dem Ostseegrund stammen.

Literatur

LUDWIG A O, PANZIG W-A & KENZLER M 2010 Das Pleistozän nördlich von Sassnitz – Fazies, Lagerung und Stratigraphie des Pleistozän-Streifens 4 in: LAMPE R & LORENZ S (Hrsg.) 2010 Eiszeitlandschaften in Mecklenburg-Vorpommern. S. 65-68. Verlag Geozon Science Media, ISBN 3-941971-05-0.

Geschiebesammeln auf der Halbinsel Wustrow

Die Halbinsel Wustrow bei Rerik war seit 1933 militärisches Sperrgebiet und erst 1993 nach dem Abzug der Roten Armee wieder zugänglich. Mittlerweile ist Wustrow teilweise Naturschutzgebiet, teilweise in Privatbesitz. Eine schmale Landzunge (Nehrung) verbindet die Halbinsel mit dem Festland, das Betreten ist nur mit Genehmigung möglich. Im Juli 2021 konnten die ausgedehnten Geschiebestrände der Halbinsel erkundet werden. Da hier wenig gesucht wird, sind gute Funde möglich.

Abb. 1: Alte Kasernengebäude auf Wustrow.
Abb. 2: Hinab zur Steilküste geht es mit Hilfe eines Seils.
Abb. 3: Die seeseitige Küste von Wustrow besteht aus Geschiebelehm und -mergel der Grundmoräne des Pommerschen Stadiums der Weichsel-Vereisung.

Auffällig ist das relativ häufige Vorkommen von Geschieben aus dem Gebiet des Oslograbens (Rhombenporphyre, Larvikit), während knapp 30 km weiter östlich, am Strand von Nienhagen, praktisch keine solchen Funde möglich sind. SW-schwedische Leitgeschiebe wurden nicht gefunden.

Abb. 4: Rhombenporphyr, Breite 10 cm.
Abb. 5: Rhombenporphyr, Breite 10 cm.
Abb. 6: Larvikit, Aufnahme unter Wasser.
Abb. 7: Nahaufnahme. Einige Feldspäte zeigen den für Larvikit typischen bläulichen Schiller.

Nicht selten trifft man auf Geschiebe von Schonen-Basalt und Schonen-Lamprophyr. Die Funde belegen eine Transportrichtung des Eises aus NNE.

Abb. 8: Schonen-Basalt mit gelbgrünen Olivin- sowie wenigen schwarzen Pyroxen-Einsprenglingen.
Abb. 9: Schonen-Lamprophyr mit zahlreichen hellen Mandeln.
Abb. 10: Nahaufnahme. Olivin verwittert gelblichbraun, die Pyroxen-Einsprenglinge sind grünlich gefärbt.
Abb. 11: Ein weiterer Schonen-Lamprophyr.
Abb. 12: Bruchfläche des gleichen Steins. Alterierter Olivin ist rötlich gefärbt, stellenweise auch hellgrün und weitgehend unverändert; Pyroxen ist schwarz bis flaschengrün.
Abb. 13: Das helle, teils radialstrahlige Mineral innerhalb der Mandeln ist sehr weich und zerfällt mit Salzsäure ohne Aufschäumen (Hinweis auf Zeolith).

Am Geschiebestrand von Wustrow finden sich auch Mandelsteine in großer Zahl.

Abb. 14: Grüner Mandelstein mit schwarzen Mandeln, Einsprenglingen von Plagioklas und einer durchlaufenden Ader, teils mit Achat, teils mit einem feinkörnigen blassgrünen Mineral verfüllt. Aufnahme unter Wasser, leg. S. Mantei.
Abb. 15: Nahaufnahme, nasse Oberfläche. Die Bänderung des Achats ist nur schwach ausgeprägt.
Abb. 16: Blasenreicher und stark alterierter Mandelstein. Aufnahme unter Wasser.
Abb. 17: Nahaufnahme der nassen Oberfläche.
Abb. 18: Grauer Mandelstein, Breite 15 cm.
Abb. 19: Grünstein, Breite 10 cm. Offenbar ist hier eine mit rotem Feldspat gefüllte Kluft angeschnitten.
Abb. 20: Der Feldspat (Plagioklas, polysynthetische Verzwilligung) bildet ungewöhnliche orthogonale Querschnitte aus.

Plutonite und Vulkanite des Transkandinavischen Magmatitgürtels (TIB) – die bunten Småland-Granite mit Blauquarz sowie Småland-Porphyre – sind am Strand von Wustrow nur in mäßiger Zahl vertreten.

Abb. 21: Roter Alkalifeldspatgranit. Einige Feldspäte weisen Risse auf, welche mit dunklen Mineralen verfüllt sind. Dunkle Minerale sind nur spärlich vorhanden und ungleichmäßig im Gestein verteilt (Ausschlusskriterium für Uthammar-Granit). Bildbreite 18 cm.
Abb. 22: Anorogener und undeformierter Granit mit etwas grünem Plagioklas, wahrscheinlich ein porphyrischer Rapakiwi. Aufnahme unter Wasser.

Gesteine aus Rapakiwi-Vorkommen treten regelmäßig, aber nicht besonders häufig auf. Ein besonderer Fund ist ein brauner Ignimbrit, der wahrscheinlich aus dem Vorkommen des Roten Ostsee-Quarzporphyrs stammt. Dafür sprechen die charakteristischen eckigen Hochquarz-Relikte mit Spuren magmatischer Korrosion.

Abb. 23: Roter Ostsee-Quarzporphyr-Ignimbrit, braune Variante. Aufnahme unter Wasser.
Abb. 24: Gleicher Stein, polierte Schnittfläche.
Abb. 25: Neben größeren gerundeten und trüben Quarzen finden sich auch einige eckige Quarze mit der gleichen Gestalt wie im Roten Ostsee-Quarzporphyr.
Abb. 26: Fragmente von Porphyren, einer davon ähnelt dem Roten Ostsee-Quarzporphyr.

Häufig finden sich graue Paragneise vom Sörmland-Typ. Diese enthalten in der Regel Granat und Cordierit, seltener auch reichlich Sillimanit.

Abb. 27: Granat-(Cordierit)-Sillimanitgneis (Sörmland-Gneis). Die Granat-Porphyroblasten liegen innerhalb eines Leukosoms aus Quarz und Feldspat. Aufnahme unter Wasser.
Abb. 28: Nahaufnahme. Das Gestein enthält größere Mengen an dunkelgrauem bis silbrig glänzendem Sillimanit. Cordierit (hellgrau bis graublau, zwischen den Sillimanitnadeln) ist nicht eindeutig identifizierbar.
Abb. 29: Cordierit-Sillimanit-Granofels. Solche undeformierten Quarzite mit schwarzen Cordierit- und weißen Sillimanitflecken sind anstehend aus dem Västervik-Gebiet bekannt.
Abb. 30: Porphyrischer Amphibolit. Die blastische Wuchsform der Amphibole ist ein Hinweis auf eine metamorphe Entstehung aus einem basischen Gestein, z. B. Gabbro, Dolerit oder Basalt. Breite 26 cm.

Sedimentite

Abb. 31: Feuerstein mit rhythmischer Bänderung. Breite 32 cm.
Abb. 32: Silurkoralle, Breite 11 cm.

Lias-Geschiebe (Limonitsandsteine, häufig mit Pflanzenresten) sind auf Wustrow regelmäßig anzutreffen. Das nächste Geschiebe ist ein konkretionärer Toneisenstein (von ungewisser stratigraphischer Stellung).

Abb. 33: Toneisenstein, Breite 15 cm.
Abb. 34: Konglomerat mit runden Toneisenstein-Klasten. Vergleichbare Gesteine kommen auch im Jura vor. Breite 24 cm.
Abb. 35: Postsilurisches Konglomerat, leg. K. Obst; polymikter Typ mit Klasten von rotem und grauem Beyrichienkalk, grünen Sandsteinen, Feinsandsteinen, Toneisenstein und Milchquarzgeröllen. Breite 15 cm.
Abb. 36: Rückseite des gleichen Geschiebes.
Abb. 37: Reste von rezenten Seepocken. Bildbreite ca. 7 cm.
Abb. 38: Mitten auf dem Strand eine Sonnenblume, der das salzhaltige Milieu offensichtlich nicht schadet.

Die folgenden Funde stammen aus der Nähe der Halbinsel Wustrow, von der Steilküste NE von Rerik. Gesammelt, geschnitten und poliert wurden die Geschiebe von T. Brückner (Hilter).

Abb. 39: Tektonische Brekzien sind ein häufiger Geschiebefund. Selten handelt es sich dabei um einen brekziierten geschichteten Hornstein.
Abb. 40: Das Gestein ist hälleflintartig dicht. Die feinen Wechsellagen bilden die Schichtung eines feinkörnigen Sediments oder vulkanischer Aschen ab.
Abb. 41: Nahaufnahme einer brekziierten Partie. Die Risse sind mit Quarz und einem hellgrünen Mineral verheilt.
Abb. 42: Cordierit-Sillimanit-Granofels, wahrscheinlich aus dem Västervik-Gebiet. Siehe auch Abb. 30.
Abb. 43: Nahaufnahme.
Abb. 44: Bornholm-Granit. Typisch für Bornholm-Granite ist ein verwaschenes Gefüge aus rotem Feldspat und Quarz sowie helle Plagioklase, teilweise mit dunklem Kern; dunkle Minerale bilden Flecken.
Abb. 45: Nahaufnahme. Innerhalb der dunklen Minerale findet sich reichlich Titanit.
Abb. 46: Eigenartiges zoniertes Syenit-Geschiebe. Das Gestein besteht fast vollständig aus Alkalifeldspat von grüner bis bräunlicher Farbe. Der Vaggeryd-Syenit führt in der Regel etwas Quarz und enthält mehr dunkle Minerale. Es könnte sich bei diesem Syenit auch um einen Larvikit in ungewöhnlicher Ausbildung handeln.
Abb. 47: Einige Feldspäte weisen einen bläulichen Schiller auf.
Abb. 48: Zwischen den Feldspäten und innerhalb von Rissen finden sich schmale orangefarbene Partien (Plagioklas-Entmischungen von Feldspat?).
Abb. 49: Orangefarbene Risse innerhalb schwarzgrüner Feldspäte.

Literatur

GERTH A 2008 GIS-gestützte 3D-Modellierung hochweichsel-zeitlicher Sedimente in Nordwest-Mecklenburg-Vorpommern – Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln. 196 S., Bautzen 2008.

Geschiebe am Steilufer von Nienhagen

Abb. 1: Nienhagener Kliff.

Die Steilküste bei Nienhagen, etwa 8 km westlich von Warnemünde, ist ein aktives Kliff aus weichselkaltzeitlichem Geschiebemergel, Geschiebelehm und Schmelzwassersanden. Hier finden sich zwei jüngere Geschiebemergel der Weichselvereisung, getrennt durch eine dünne Sand-, Kies- bzw. Gerölllage. Der liegende graue Geschiebemergel ist dem Hauptvorstoß des Pommerschen Stadiums vor 15.000 Jahren zuzuordnen, der braune Geschiebemergel dem vor ca. 13.200 Jahren einsetzenden Mecklenburger Stadium. Eine ähnliche Zusammensetzung findet sich am gesamten Küstenabschnitt von Geinitzort bis Kühlungsborn, während weiter östlich, entlang der Stoltera, Geschiebemergel älterer weichselzeitlicher Eisvorstöße abgelagert wurden (SCHULZ & PETERSS 1989, KLAFACK 1996).

Durch fortschreitende Küstenerosion ist das Nienhagener Kliff ständigen Veränderungen unterworfen, entsprechend ergeben sich immer neue Fundmöglichkeiten. Am westlichen Abstieg fallen zunächst große Blöcke von Larvikit ins Auge, die offenbar als Uferbefestigung dienen. Larvikit ist ein Anorthoklas-Syenit und kommt, wie alle übrigen Gesteine aus dem Oslograben sowie SW-schwedische Leitgeschiebe (Schonengranulit, Flammenpegmatit etc.), in Nienhagen nicht als Geschiebe vor.

Abb. 2: Larvikit als Uferbefestigung, Breite etwa 1 Meter.
Abb. 3: Das Gestein ist sehr grobkörnig, einzelne Anorthoklas-Kristalle erreichen eine Länge von 4 cm. Trocken fotografiert, Bildbreite 22 cm.
Abb. 4: Nahaufnahme, nass fotografiert. Einige der grünlichen Feldspäte besitzen den typisch blauen Schiller. Dieser entsteht durch Lichtbrechung an feinsten Entmischungslamellen innerhalb der Feldspäte.

Kristalline Geschiebe

In Nienhagen überwiegen ganz klar Magmatite und Vulkanite des Transkandinavischen Magmatitgürtels (TIB). Der Anteil an Åland- bzw. Rapakiwi-Gesteinen ist nicht besonders hoch (keine Bilder), der Braune Ostseeporphyr tritt hingegen sehr häufig auf. Dieser unterliegt – wie alle Vulkanite – Variationen hinsichtlich Farbe und Gefüge. Gemeinsame Merkmale dieses Porphyrtyps sind: Reichtum an Einsprenglingen, dichte Grundmasse, kleine Quarze, mafische Enklaven.

Abb. 5: Varianten des Braunen Ostsee-Quarzporphyrs. Bildbreite 25 cm.
Abb. 6: Brauner Ostsee-Quarzporphyr mit orangefarbenen Feldspat-Einsprenglingen. Breite 10 cm.
Abb. 7: Brauner Ostsee-Quarzporphyr mit weißen und roten Feldspat-Einsprenglingen, die deutliche Spuren magmatischer Korrosion zeigen. Leg. Sebastian Mantei.
Abb. 8: Brauner Ostsee-Quarzporphyr, Feldspäte teilweise stark magmatisch korrodiert. Breite 8,5 cm.
Abb. 9: Dem Braunen Ostsee-Quarzporphyr ähnliches Porphyrgeschiebe mit einer Abfolge verschiedener Gefügevarianten, vermutlich eine Folge von magma mingling bzw. einer mafischen Enklave.

Bei gehäuften Funden des Braunen Ostsee-Quarzporphyrs ist auch vermehrt mit Funden des Ostsee-Syenitporphyrs zu rechnen, dem ein ähnliches Herkunftsgebiet zugeschrieben wird. Aus Nienhagen liegen 4 Funde vor. Der gewöhnliche Ostsee-Syenitporphyr ist ein recht unauffälliges Gestein, einige seltene Varianten fallen ins Auge (Abb. 13-14).

Abb. 10: Ostsee-Syenitporphyr; grünlichgraue Grundmasse, schwarze Mandeln und Feldspateinsprenglinge in geringer Menge. Breite 15 cm.
Abb. 11: Ostsee-Syenitporphyr, grünliche Variante. Die Grundmasse wird von einem Netz aus Rissen durchzogen; Aufnahme unter Wasser.
Abb. 12: Ostsee-Syenitporphyr mit Gefügewechsel zwischen rotbrauner und grünlichgrauerGrundmasse; Aufnahme unter Wasser.
Abb. 13: Ostsee-Syenitporphyr, seltene blaugraue Variante; Aufnahme unter Wasser (Sebastian Mantei leg.).
Abb. 14: Nahaufnahme der nassen Oberfläche.

Auch basaltische Mandelsteine sind häufig anzutreffen.

Abb. 15: Violettgrauer basaltischer Mandelstein. Breite 11 cm.
Abb. 16: Basaltischer Mandelstein; zonierter Aufbau der Mandeln mit hellgrünem Epidot am Rand der ehemaligen Blasenhohlräume.
Abb. 17: Sehr blasenreicher basaltischer Mandelstein. Das hornsteinartige und dichte rote Material sind Ausscheidungen von Jaspis.

Vulkanite und Magmatite (Porphyre und Granite) aus Småland bzw. dem Transskandinavischen Magmatitgürtel (TIB) sind die häufigsten Kristallingeschiebe in Nienhagen.

Abb. 18: Järeda-Granit; blassroter Småland-Granit mit viel Blauquarz. Besonderes Kennzeichen sind die feinen, mit dunklen Mineralen gefüllten Risse innerhalb der Feldspäte. Breite 13 cm.
Abb. 19: Kinda-Granit. Porphyrischer Granit aus trübem, leicht bläulichem Quarz, größeren braunen Alkalifeldspäten und kleineren orangefarbenen Plagioklasen. Plagioklas bildet stellenweise unvollständige Säume um Alkalifeldspat. Innerhalb der dunklen Minerale ist gelblicher Titanit erkennbar.
Abb. 20: Ein weiterer Kinda-Granit bzw. NE-Småland-Granit. Breite 11 cm.
Abb. 21: Roter Småland-Granit (Filipstad-Typ) mit etwas gelblichem Plagioklas. Breite 17 cm.
Abb. 22: Leicht deformierter Småland-Granit vom Växjö-Typ (gleichkörnig) mit blassrotem Alkalifeldspat und weißem bis gelblichem Plagioklas. Der Blick geht auf die Foliationsebene, dadurch wirkt das Gestein quarzreicher. Breite 12 cm.
Abb. 23: Vollroter und grobkörniger Alkalifeldspatgranit, Breite 11 cm. Das Gefüge erscheint undeformiert; Plagioklas ist nicht erkennbar, Mafite nur in geringer Menge vorhanden. Es dürfte sich um einen Uthammar-Granit handeln.
Abb. 24: Granit vom Typ Filipstad mit runden Feldspat-Ovoiden, teilweise umgeben von einem gelbem Plagioklassaum; ohne nähere Herkunftsangabe. Breite 13 cm.
Abb. 25: Weißer Filipstad-Granit. Seltene Variante aus der Familie der Filipstad-Granite, evtl. als Leitgeschiebe für das westliche Värmland geeignet. Polierte Schnittfläche, leg. Sebastian Mantei.

Auch Granite aus anderen Gebieten als dem TIB finden sich in Nienhagen, z. B. der Karlshamn-Granit aus Blekinge, seltener auch Bornholm-Granite.

Abb. 26: Gneisgranit mit roten Flecken, evtl. von Bornholm. Breite 12 cm.
Abb. 27: Karlshamn-Granit aus Blekinge, Aufnahme unter Wasser.
Abb. 28: Der Granit enthält reichlich gelben Titanit.
Abb. 29: Ein ähnlicher Granit, wahrscheinlich Karlshamn-Granit. Breite 12 cm.

Die meisten der zahlreichen Porphyr-Geschiebe sind auf das Gebiet des TIB zurückzuführen, vor allem auf Småland, wo ausgedehnte Porphyrgebiete existieren. Eine genauere Herkunftsangabe lässt sich aber meist nicht machen. Als Leitgeschiebe eignen sich der Paskallavik- und Emarp-Typ, mit Abstrichen auch Lönneberga-, Högsrum- und Nymala-Porphyr. Porphyre aus Dalarna treten in Nienhagen nur untergeordnet auf; häufiger sind – neben Bredvad- und Grönklitt-Porphyr – Geschiebe vom Typ „Einsprenglingsreicher Porphyr aus Dalarna“. Auch unter den Småland-Porphyren gibt es einsprenglingsreiche Varianten (Abb. 34). Sie enthalten Enklaven mit dunklen Mineralen und sind in der Regel leicht deformiert.

Abb. 30: Påskallavik-Porphyr, Breite 11 cm.
Abb. 31: Deformierter Gangporphyr, „Högsrum-Porphyr„. Breite 9 cm.
Abb. 32: Nymåla-Porphyr, Breite 9 cm.
Abb. 33: Lönneberga-Porphyr, Breite 75 mm. Dieser Porphyrtyp ist in Nienhagen recht häufig anzutreffen.
Abb. 34: Einsprenglingsreicher Porphyr (Småland-Porphyr), Breite 10 cm.
Abb. 35: Quarzporphyr, Herkunft unbekannt. Breite 15 cm.
Abb. 36: Aus Dalarna stammt dieser Lapillituff aus roten, violetten und braunen, teils gerundeten Porphyr-Klasten (Digerberg-Tuffit). Breite 14 cm.

Unter den kleineren Strandsteinen in Nienhagen kann man sehr viele basische Gesteine beobachten, vor allem Dolerite vom Asby-Ulvö-Typ.

Abb. 37: Schonen-Lamprophyr. Dunkles und basaltähnliches Gestein mit Einsprenglingen von Pyroxen (schwarz), Olivin (gelbbraun) sowie weißen Mandeln. Breite ca. 30 cm. Einziger Fund dieses Gesteinstyps in Nienhagen.
Abb. 38: Dolerit mit grünem Olivin, Aufnahme unter Wasser.
Abb. 39: Nahaufnahme.
Abb. 40: Sehr grobkörniger Dolerit vom Åsby-Ulvö-Typ. Diese Variante ist aus Nordingrå (Ulvö) bekannt. Aufnahme unter Wasser.
Abb. 41: Gabbroides Gestein mit Glimmer. Breite 9 cm.
Abb. 42: Dioritisches Gestein mit länglichen Amphibolen und etwas Glimmer. Breite 16 cm.
Abb. 43: Porphyroblastischer Amphibolit. Die runden Amphibol-Blasten sind ein deutlicher Hinweis auf seine metamorphe Bildung aus einem Gabbro oder Dolerit. Das Gestein kein Hornblendegabbro, da dieser zu einem großen Teil aus magmatisch gebildetem Amphibol bestehen muss. Breite 85 mm.

Unter den Metamorphiten sind Paragneise vom Sörmland-Typ mit violettroten Granat-Porphyroblasten sehr häufig anzutreffen. Auch die Fundmöglichkeiten für Fleckengesteine aus dem Västervik-Gebiet scheinen in Nienhagen günstig zu sein. Allerdings treten die violetten Västervik-Quarzite nur selten auf, obwohl sie mengenmäßig die Fleckengesteine überwiegen müssten.

Abb. 44: Paragneis vom Sörmland-Typ mit violettroten Granat-Porphyroblasten; Breite 10 cm.
Abb. 45: Glimmerführender Quarzit mit weißen Sillimanit-Granoblasten. Solche Fleckenquarzite mit deformiertem Gefüge lassen sich nicht ausschließlich auf das Västervik-Gebiet zurückführen. Breite 14 cm.
Abb. 46: Västervik-Fleckengestein (Cordierit-Granofels), Breite 12 cm.
Abb. 47: Diverse Fleckengesteine aus der ehem. Sammlung Somann. Eine Erläuterung der Funde findet sich auf kristallin.de, Abb. 51.
Abb. 48: Rotfleckiger Quarzit, Breite 8,5 cm.
Abb. 49: Nahaufnahme.
Abb. 50: Rotfleckiger Quarzit. Dieser Typ kommt auch im Västervik-Gebiet vor. Polierte Schnittfläche. Ehem. Sammlung Somann.
Abb. 51: Silikatmarmor („Ophicalcit“), Breite 17 cm. Näheres zu Marmor.
Abb. 52: Nahaufnahme unter Wasser.
Abb. 53: Glimmerquarzit. Früher als „Weißer Glimmerschiefer von Schonen“ in KORN 1927 bezeichnetes Gestein kommt u. a. in Västana, aber auch an anderen Lokalitäten vor. Mitunter ist eine seltene Mineralisation phosphathaltiger Minerale zu beobachten. Kein Leitgeschiebe, Breite 13 cm.
Abb. 54: Epidotisierter Magmatit (Metasomatit) aus rotem Alkalifeldspat, hellgrünem Epidot, epidotisiertem Plagioklas sowie etwas Quarz. Breite 12 cm.
Abb. 55: Weitgehend aus Feldspäten bestehende Brekzie, Risse verfüllt mit feinkristallinem Quarz und Milchquarz. Breite 11 cm.
Abb. 56: Tektonische Brekzie. Das Wirtgestein besteht aus rotem Alkalifeldspat und Quarz und besitzt eine granitische Zusammensetzung. Die Risse wurden mit feinkristallinem Quarz und Milchquarz verfüllt. Breite 12 cm.
Abb. 57: Mylonitischer Augengneis mit hellen Feldspat-Porphyroblasten. Der als „Tännas-Augengneis“ bezeichnete Geschiebetyp dürften in vergleichbarer Ausbildung auch in anderen Mylonit-Vorkommen zu erwarten sein. Breite 9 cm.
Abb. 58: Feinkörniger gebänderter Gneis (Leptit). Aufnahme unter Wasser.
Abb. 59: Nahaufnahme der nassen Oberfläche. Die Grundmasse besteht aus einem gleichkörnigem Gefüge aus Quarz und Feldspat.
Abb. 60: Pegmatoide Quarz-Feldspat-Partie mit großen hellroten Granat-Porphyroblasten, wahrscheinlich Teil eines Leukosoms in einem Migmatit. Leg. Sebastian Mantei.
Abb. 61: Nahaufnahme des Granats, durchsetzt von schwarzer Hornblende.

Sedimentärgeschiebe

In Nienhagen finden sich sehr viele Feuersteine. Günstig scheinen die Fundmöglichkeiten für Lias-Geschiebe (Toneisensteine mit Pflanzenresten) zu sein, weiterhin Kambrische Geschiebe (BUCHHOLZ 2011, HINZ-SCHALLREUTER & KOPPKA 1996), Stinkkalke, Silur-Geschiebe mit Graptolithen (MALETZ 1995, 1996) Gelegentlich kommen Roter Beyrichienkalk sowie Unterkreide-Geschiebe vor.

Abb. 62: „Rhät-Lias“-Geschiebe, Feinsandstein mit kohligen Pflanzenresten, leg. Sebastian Mantei.
Abb. 63: Grünliche Sandstein-Konkretion (wahrscheinlich Unterkreide) mit phosphorischem Zement sowie Holzresten.
Abb. 64: Bruchfläche.
Abb. 65: Trias-Konglomerat („Caliche-Konglomerat“). Bunte Mergelklasten in einem sparitischen Zement. Leg. Georg Engelhardt (Potsdam).
Abb. 66: Bruchfläche.
Abb. 67: Nahaufnahme der Bruchfläche.
Abb. 68: Roter Beyrichienkalk, Aufnahme unter Wasser.
Abb. 69: Knolliger Dolomit mit Dolomit-Drusen.
Abb. 70: Druse mit würfelförmigen Dolomit-Kristallen. Der Nachweis von Dolomit gelingt mit verdünnter Salzsäure: Dolomit zeigt nur eine sehr schwache Reaktion unter Bildung von CO2-Bläschen.
Abb. 71: Sandstein-Konglomerat mit phosphoritisch gebundenen Klasten, Breite 13 cm.

Nach einem Hinweis von S. Mantei handelt es sich bei diesem Konglomerat nicht etwa um den unterkambrischen Rispeberg-Sandstein, vielmehr sprechen enthaltene Trilobitenreste von Agnostus pisiformis für das obere Mittelkambrium. Dies ist ungewöhnlich, da eine sandige Fazies in der A. pisiformis-Zone in der Literatur bisher nicht beschrieben wurde. Von hier bekannt sind entweder (Stink-)kalkige Konglomerate mit oder sandige Konglomerate ohne A. pisiformis.

Abb. 72: Steilufer und Geröllstrand bei Nienhagen.

Literatur

SCHULZ W & PETERSS K 1989 Geologische Verhältnisse im Steiluferbereich des
Fischlandes sowie zwischen Stoltera und Kühlungsborn – In: Mitteilungen der
Forschungsanstalt für Schiffahrt, Wasser- und Grundbau; Schriftenreihe Wasser- und
Grundbau 54. Berlin: Forschungsanstalt für Schiffahrt, Wasser- und Grundbau. S. 132-148.

BUCHHOLZ A 2011 Ein Geschiebe des A[ht]iella jentzschi-Konglomerates von Nienhagen, Mecklenburg (Norddeutschland) – Mitteilungen der Naturforschenden Gesellschaft Mecklenburg 11 (1): 24-30, 14 Abb., Ludwigslust.

BÜLOW K VON 1937 Grundmoränenbilder – Zeitschrift für Geschiebeforschung und Flachlandsgeologie 13 (1): 5-8, 3 Abb., Leipzig.

GEINITZ E 1910 Das Uferprofil des Fischlandes – Mitteilungen aus der Großherzoglichen Mecklenburgischen Geologischen Landesanstalt 21: 11 S., 11 Taf., Rostock (Leopold i. Komm.).

HINZ-SCHALLREUTER I & KOPPKA J 1996 Die Ostrakodenfauna eines mittelkambrischen Geschiebes von Nienhagen (Mecklenburg) [The Ostracod Fauna of a Middle Cambrian Geschiebe from Nienhagen (Mecklenburg)] – Archiv für Geschiebekunde 2 (1): 27-42, 5 Taf., Hamburg.

KLAFAK R 1996 Bericht über die Exkursion zur Steilküste Nienhagen – Geschiebekunde aktuell 12 (2): 61, Hamburg.

MALETZ J 1995 Dicranograptus clingani in einem Geschiebe von Nienhagen (Mecklenburg) – Geschiebekunde aktuell 11 (2): 33-36, 2 Abb., Hamburg.

MALETZ J 1996 Saetograptus cf. leintwardinensis in einem Geschiebe von Nienhagen – Geschiebekunde aktuell 12 (4): 111-116, 2 Abb., Hamburg.

PETERSS K 1990 Strukturtektonische Untersuchungen glazigener Sedimente im Raum Stoltera-Kühlung – Zeitschrift für geologische Wissenschaften 18 (12): 1093-1103, 10 Abb., Berlin (Verlag für Geowissenschaften).

Geologische Streifzüge in SW-Schweden

Abb. 1: Felsküste im äußersten Nordwesten der Kullaberg-Halbinsel. Das Grundgebirge besteht hier aus migmatitischen Gneisen mit eingeschalteten Amphibolit-Körpern und besitzt ein Alter von rund 1 Milliarde Jahren.

Ein mehrteiliger Exkursionsbericht führt an ausgewählte Lokalitäten in Südwest-Schweden. Zahlreiche Küstenaufschlüsse und aufgelassene Steinbrüche zwischen Kullaberg-Halbinsel und Varberg bieten hervorragende Einblicke in die Geologie eines metamorphen Grundgebirges, das vor rund 1 Milliarde Jahren im Zuge der Svekonorwegischen Gebirgsbildung entstand. Hier treten großflächig Gesteine zutage, die in keiner anderen Region des nordischen Grundgebirges vorkommen, z. B. saure und mafische Granulite. Auf mehreren Reisen konnte eine Reihe von typisch SW-schwedischen Gesteinstypen, darunter auch kristalline Leitgeschiebe, beprobt und in ihrem geologischen Kontextes studiert werden.

Abb. 2: Karte der vorgestellten Lokalitäten.

Die Zahlen verweisen auf die entsprechenden Abschnitte des Exkursionsberichts. Die meisten Lokalitäten liegen an der Küste, weil dort die Gesteine besonders gut aufgeschlossen sind.

  1. Zur Geologie SW-Schwedens
    1.1. Leitgeschiebe und Geschiebetypen aus SW-Schweden
  2. Kullaberg-Halbinsel
    2.1. Kullaberg und Kullaite
    2.2. Kullaite als Geschiebe
    2.3. Kullaberg: Ransvik
    2.4. Nordwest-Dolerit von Arild
  3. SW-schwedische Küstenaufschlüsse
    3.1. Söndrum
    3.2. Steninge
    3.3. Glassvik
    3.4. Stensjöhamn
    3.5. Träslövsläge
  4. Varberg-Charnockit und Torpa-Granit
    4.1. Charnockite als Geschiebe
    4.2. Torpa- und Tjärnesjön-Granit
  5. Retroeklogit von Ullared

Im Zusammenhang mit den SW-schwedischen Gesteinen neu hinzugekommen sind Einzelbeschreibungen der folgenden Gesteinstypen: